If we are to beat cancer, early detection and diagnosis are arguably the most effective means we have at our disposal. Progress during the past 40 years has transformed the prospects of people diagnosed with cancer in the UK, with survival doubling since the 1970s.1 However, further improvements are still greatly needed, because cancer remains the leading cause of death in the UK,2 with a stark projection of rising incidence to more than half a million cases per year by 2035.3 Patients diagnosed with cancer at an early stage have the best chance of curative treatment and long-term survival; for example, 57% of people with lung cancer survive their disease for 5 years or more when diagnosed at stage I compared with only 3% of those diagnosed at stage IV.4 Despite cancer screening programmes, improved awareness, and more streamlined diagnostic pathways, only 54% of patients with cancer in England had their cancer detected at stage I or II in 2018.5 With lower survival rates in the UK than in similar countries, such as Australia, Canada, or Norway,6, 7 and notable inequalities in survival across the UK,8, 9 there is a pressing need to see a paradigm shift in our ability to accurately detect and diagnose cancer at an early stage.
Beyond the clear potential for health benefit, the UK has the capacity to be a world leader in developing a thriving early detection and diagnosis industry, capitalising on its excellent science base and vast National Health Service (NHS) and data infrastructure, and attracting global investment. This potential for health and wealth benefit is recognised by UK's national governments, with ambitious targets set in NHS England's Long Term Plan (ie, a commitment to detect 75% of cancers at stage I and II by 2028) and the Scottish Government's Beating Cancer strategy,10 and investments to support progress in early detection and diagnosis (eg, the Accelerating Detection of Disease challenge, the National Artificial Intelligence Diagnostics Lab, and the Data to Early Diagnosis initiative).
The true potential of early detection and diagnosis remains largely unexploited globally due to many historical challenges. Early detection research is a comparatively new and fragmented field with substantial barriers to achieving validation because of, for example, complex and unclear biology, a paucity of availability of quality samples, and insufficient funding for translation. Furthermore, corporate investment is scant because of the high cost of research and development (eg, the requirement for expensive long-term studies to show beneficial effects on mortality), the low price point of diagnostics, undervaluing and underprioritisation of early detection and diagnosis by the health-care system, and complicated navigation of unclear regulatory and approval pathways.
The multidisciplinary and multisectoral network needed for development and delivery of early detection and diagnosis is complex and fragmented, spanning academic research, industry, research funders, regulators, investors, health-care professionals, NHS decision makers, government, and—crucially—patients and the public. A holistic vision, integrating this whole network end-to-end from discovery science to implementation, has been absent so far. Without such a vision, progress has been slow.
To unite the fragmented efforts of the early detection and diagnosis network, and to establish a pathway for early detection and diagnosis in the UK, Cancer Research UK consulted extensively with more than 100 expert stakeholders across a broad range of sectors to develop a roadmap for early detection and diagnosis of cancer. The roadmap presents a shared vision, from discovery to implementation, for a long-term future in which early detection and diagnosis of all cancers is a routine reality. It highlights current challenges that are impeding progress and makes a series of tangible recommendations for research, development, health system delivery, and government policy on how to overcome these challenges and realise the shared vision (panel ). The recommendations are for collaborative efforts across an interlinked network, building in a stepwise manner to deliver a huge shift in early detection and diagnosis. Underlying every recommendation is a mandate to ensure early detection and diagnosis is delivered ethically, equitably, and transparently throughout the UK, with extensive involvement with patients and the public to reduce health inequalities.
Panel. Key themes for action to deliver the roadmap.
-
•
Understanding risk and prognosis, from biology to technology
-
•
Biomedical data science and systems
-
•
Incentivising and supporting development and commercialisation
-
•
Health-care system innovation and supporting adoption
Although this roadmap for early detection and diagnosis focuses on cancer, the future of health care lies not only in the effective treatment of symptomatic disease but also in health maintenance—ie, a holistic, proactive approach to understanding disease risk, early detection of deviations away from health, and intervening appropriately, whatever the disease. Cancer acts as an example to establish technologies and approaches that will deliver benefit across a range of disease areas, incorporating disease prevention via interception of predisease, further underscoring the need for partnerships across the health network. With emerging technological capabilities and increased urgency in the post-COVID-19 era, an unprecedented opportunity exists to transform health outcomes.
Acknowledgments
We declare no competing interests. The Early Detection and Diagnosis Roadmap Steering Group are Billy Boyle (Owlstone Medical, Cambridge, UK), Caroline Dive (University of Manchester, Manchester, UK), Rebecca Fitzgerald (University of Cambridge, Cambridge, UK), George B Hanna (Imperial College London, London, UK), Sue Hill (NHS England, London, UK), David Hunter (Oxford University, Oxford, UK), Sam Janes (University College London, London, UK), Stan Kaye (Royal Marsden Hospital, London, UK), Harpal Kumar (Grail, London, UK), Karin Oien (University of Glasgow, Glasgow, UK), Cally Palmer (Royal Marsden Hospital), Andy Richards (London, UK), Mike Richards (NHS, London, UK), Peter Sasieni (King's College London, London, UK), Bob Steele (University of Dundee, Dundee, UK), and Fiona Walter (University of Cambridge). The Early Detection and Diagnosis Roadmap Steering Group provided consultation on the content of this Comment.
References
- 1.Quaresma M, Coleman MP, Rachet B. 40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971–2011: a population-based study. Lancet. 2014;385:1206–1218. doi: 10.1016/S0140-6736(14)61396-9. [DOI] [PubMed] [Google Scholar]
- 2.Cancer Research UK Cancer mortality for all cancers combined. Oct 9, 2019. https://www.cancerresearchuk.org/health-professional/cancer-statistics/mortality/all-cancers-combined#heading-Zero
- 3.Smittenaar CR, Petersen KA, Stewart K, Moitt N. Cancer incidence and mortality projections in the UK until 2035. Br J Cancer. 2016;115:1147–1155. doi: 10.1038/bjc.2016.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Office for National Statistics Cancer survival in England: adults diagnosed 2013–2017. Aug 12, 2019. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/cancersurvivalratescancersurvivalinenglandadultsdiagnosed
- 5.Public Health England Case-mix adjusted percentage cancers diagnosed at stages 1 and 2 by CCG in England. May 29, 2020. https://www.gov.uk/government/statistics/case-mix-adjusted-percentage-cancers-diagnosed-at-stages-1-and-2-by-ccg-in-england
- 6.Arnold M, Rutherford MJ, Bardot A. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): a population-based study. Lancet Oncol. 2019;20:1493–1505. doi: 10.1016/S1470-2045(19)30456-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Araghi M, Arnold M, Rutherford MJ. Colon and rectal cancer survival in seven high-income countries 2010–2014: variation by age and stage at diagnosis (the ICBP SURVMARK-2 project) Gut. 2020 doi: 10.1136/gutjnl-2020-320625. published online June 1. [DOI] [PubMed] [Google Scholar]
- 8.Welsh Cancer Intelligence and Surveillance Unit. Public Health Wales Cancer survival in Wales, 1995–2016. July 11, 2019. http://www.wcisu.wales.nhs.uk/cancer-survival-in-wales-1995-2016-1
- 9.Exarchakou A, Rachet B, Belot A. Impact of national cancer policies on cancer survival trends and socioeconomic inequalities in England, 1996–2013: population based study. BMJ. 2018;360:k764. doi: 10.1136/bmj.k764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.The Scottish Government Beating cancer: ambition and action. March, 2016. https://www.scan.scot.nhs.uk/News/Documents/Scottish%20Government%202016%20Cancer%20plan.pdf