Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2020 Sep 30:2020.09.29.319731. [Version 1] doi: 10.1101/2020.09.29.319731

Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino-oligomers

Kyle Rosenke, Shanna Leventhal, Hong M Moulton, Susan Hatlevig, David Hawman, Heinz Feldmann, David A Stein
PMCID: PMC7536879  PMID: 33024974

Synopsis

Background

SARS-CoV-2 is the causative agent of COVID-19 and a pathogen of immense global public health importance. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense agents composed of a phosphordiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide. PPMO require no delivery assistance to enter cells and are able to reduce expression of targeted RNA through sequence-specific steric blocking.

Objectives and Methods

Five PPMO designed against sequences of genomic RNA in the SARS-CoV-2 5’-untranslated region and a negative control PPMO of random sequence were synthesized. Each PPMO was evaluated for its effect on the viability of uninfected cells and its inhibitory effect on the replication of SARS-CoV-2 in Vero-E6 cell cultures. Cell viability was evaluated with an ATP-based method and viral growth was measured with quantitative RT-PCR and TCID 50 infectivity assays.

Results

PPMO designed to base-pair with sequence in the 5’-terminal region or the leader transcription regulatory sequence-region of SARS-CoV-2 genomic RNA were highly efficacious, reducing viral titers by up to 4-6 log10 in cell cultures at 48-72 hours post-infection, in a non-toxic and dose-responsive manner.

Conclusion

The data indicate that PPMO have the ability to potently and specifically suppress SARS-CoV-2 growth and are promising candidates for further pre-clinical development.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES