Skip to main content
PLOS Neglected Tropical Diseases logoLink to PLOS Neglected Tropical Diseases
. 2020 Sep 28;14(9):e0008705. doi: 10.1371/journal.pntd.0008705

Surveillance of invasive Aedes mosquitoes along Swiss traffic axes reveals different dispersal modes for Aedes albopictus and Ae. japonicus

Pie Müller 1,2,*, Lukas Engeler 3, Laura Vavassori 1,2, Tobias Suter 1,2, Valeria Guidi 3, Martin Gschwind 1,2, Mauro Tonolla 3, Eleonora Flacio 3
Editor: Mariangela Bonizzoni4
PMCID: PMC7544034  PMID: 32986704

Abstract

Over the past three decades, Europe has witnessed an increased spread of invasive aedine mosquito species, most notably Aedes albopictus, a key vector of chikungunya, dengue and Zika virus. While its distribution in southern Europe is well documented, its dispersal modes across the Alps remain poorly investigated, preventing a projection of future scenarios beyond its current range in order to target mosquito control. To monitor the presence and frequency of invasive Aedes mosquitoes across and beyond the Alps we set oviposition and BG-Sentinel traps at potential points of entry with a focus on motorway service areas across Switzerland. We placed the traps from June to September and controlled them for the presence of mosquitoes every other week between 2013 and 2018. Over the six years of surveillance we identified three invasive Aedes species, including Ae. albopictus, Ae. japonicus and Ae. koreicus. Based on the frequency and distribution patterns we conclude that Ae. albopictus and Ae. koreicus are being passively spread primarily along the European route E35 from Italy to Germany, crossing the Alps, while Ae. japonicus has been expanding its range from northern Switzerland across the country most likely through active dispersal.

Author summary

Because of global trade of used tyres and ornamental plants, invasive mosquitoes of the genus Aedes are spreading passively between continents. Within continents, adults are frequently travelling along roads as hitchhikers in motorised vehicles and may then colonise new areas. Because some Aedes mosquitoes are competent to transmit diseases they threaten public and veterinary health. In Europe, the Asian tiger mosquito, Aedes albopictus is of particular concern as it is a vector of chikungunya, dengue and Zika virus. While its distribution in southern Europe is well documented, its dispersal modes across the Alps remain poorly investigated, preventing a projection of future scenarios beyond its current range in order to target mosquito control. To monitor the introduction of invasive Aedes mosquitoes beyond the Alps we placed traps at motorway service areas across Switzerland. Between 2013 and 2018 we identified three invasive Aedes species, including Ae. albopictus, Ae. koreicus (Korean bush mosquito) and Ae. japonicus (Japanese bush mosquito). Based on the frequency and distribution patterns we conclude that Ae. albopictus and Ae. koreicus are being passively spread primarily along the European route E35 from Italy to Germany, while Ae. japonicus has been expanding its range across Switzerland mainly through active dispersal.

Introduction

In the wake of globalisation and environmental change invasive Aedes mosquito species are an emerging public health threat [1, 2]. Several Aedes species are competent disease vectors and have a particularly high invasive potential as they adapt to new environments and produce eggs that can withstand desiccation for several months. Therefore, their eggs are passively displaced across the globe by the international trade of used tyres and ornamental plants. At the same time, international travel is increasing and, as a result, more and more travellers are returning from disease endemic countries with infections [3] that may then be locally transmitted where competent, invasive Aedes mosquitoes are present.

Among the Aedes mosquitoes, Aedes aegypti (Linnaeus, 1762), the yellow fever mosquito and Ae. albopictus, the Asian tiger mosquito (Skuse, 1894) are particularly important vectors because they are widespread, well adapted to human habitats and competent to transmit a range of medically important viruses. Aedes aegypti is an important vector of yellow fever, dengue, chikungunya and Zika virus and competent for several other arboviruses [4]. Aedes albopictus is also a vector of dengue, chikungunya and Zika virus, and has been shown to transmit at least another 23 viruses under experimental conditions, including yellow fever and West Nile virus [5]. In contrast to Ae. aegypti that favours a tropical climate, Ae. albopictus can produce diapausing eggs allowing the species to persist cold periods that are critical to adult survival. Photoperiodic diapause together with adaptation to human habitats has allowed for its invasion of more temperate regions, including Europe [6]. In Europe, Ae. albopictus has become an emerging health threat and has been associated with autochthonous transmissions of chikungunya in Italy [7,8] and France [911], dengue in Croatia [12], France [13,14] and Spain [15], and for the first time with Zika in France [16]. In addition to its vector potential, Ae. albopictus is primarily perceived as a considerable nuisance mosquito because it affects people when they spend time outdoors during the day [17].

Aedes albopictus is considered the most invasive mosquito species worldwide [18]. Within 40 years the species spread from its native range in South-East Asia to America, Europe, Africa, Australia and several islands in the Pacific. Like other invasive Aedes species, the eggs of Ae. albopictus are primarily spread passively over long distances across continents through the international trade of used tyres and ornamental plants. Within continents, adult mosquitoes are frequently hitch riding in vehicles and subsequently displaced along the roads [19]. In mainland Europe, Ae. albopictus was first recorded in Albania in 1979 [20] and later in northern Italy in the early 90's [21,22]. Less than a decade later it was established in the northern and central regions of Italy [23,24] from where it spread further across Europe [25]. Currently, Ae. albopictus is established all over the Mediterranean region from Spain to Greece [26]. In Switzerland, Ae. albopictus was first detected in the Canton of Ticino at a motorway service area and the Airport Locarno Magadino in 2003 [27], and has since then gradually infested several regions of the Canton south of the Alps [28,29].

In addition to Ae. albopictus, two other invasive Aedes species, originating from East Asia, have previously been reported from Switzerland; Ae. japonicus japonicus (Theobald, 1901), the Asian or Japanese bush mosquito [30], hereafter called Ae. japonicus, and Ae. koreicus (Edwards, 1917), the Korean bush mosquito. In contrast to Ae. albopictus, these two species are generally considered to be less relevant in terms of public health because there is little evidence for disease transmission [1]. Nevertheless, under laboratory conditions, both species show vector competence for a range of human pathogenic viruses [31] and filarial nematodes [32,33]. Aedes japonicus and Ae. koreicus seem to prefer lower temperatures as compared to Ae. albopictus and, therefore, these species show a high invasive potential in the more temperate regions of Central Europe, including many areas across Switzerland [34,35].

In Switzerland Ae. japonicus was first identified in 2008 when it had already colonised an area of about 1,400 km2 in the North across the border with southwestern Germany [36]. In Europe, it had previously only been found in smaller areas, including France [37] and Belgium [38], while until now Ae. japonicus has already been reported from 12 European countries [39]. Aedes koreicus, on the other hand, was first identified in ovitraps near the Swiss-Italian border in 2013 [40]. Before that time Ae. koreicus had also been reported from Belgium [41], north-eastern Italy [42] and European Russia [43]. Today, Ae. koreicus is present in at least seven European countries, including Austria, Belgium, Germany, Hungary, Italy, Slovenia and Switzerland [30, 4042, 4446].

Until 2013 no Ae. albopictus had been reported from Switzerland outside the Canton of Ticino. Similarly, the other two invasive Aedes species, Ae. japonicus and Ae. koreicus had shown very localised distribution patterns [36,40]. The Alps potentially constitute a natural physical and climatic barrier for the migration of invasive Aedes species from South to North, and vice versa. Alternatively, Ae. albopictus and Ae. koreicus might have remained unnoticed outside Ticino in the absence of a nationwide surveillance programme.

While its distribution in southern Europe is well documented [26], its dispersal modes across the Alps remain poorly investigated, preventing a projection of future scenarios beyond its current range in order to target mosquito control. To monitor the presence and frequency of invasive Aedes mosquitoes beyond the Alps we set oviposition and BG-Sentinel traps at potential points of entry with a focus on motorway service areas across Switzerland. We set the traps between 2013 and 2018 from June to September and controlled them for the presence of mosquitoes every second week. We found both Ae. albopictus and Ae. koreicus being introduced primarily along the route from Italy to Germany across the Alps, while the pattern for Ae. japonicus implies a more active, radial range expansion away from its initial distribution in the North.

Methods

Mosquito sampling

From 2013 to 2018 we sampled invasive Aedes mosquitoes at potential points of entry (sites) along the major traffic axes in Switzerland, including motorway service areas (n = 35), commercial harbours (n = 3), international airports (n = 2) and the railway station in Chiasso at the Swiss-Italian border (Table 1). We deployed oviposition traps (ovitraps) to collect eggs and BG-Sentinel version 1 traps (Biogents, Regensburg, Germany) to catch host-seeking adults. Each year the traps were set from end of June (i.e. calendar week 26 or 27) to mid-September (i.e. calendar week 36 or 37) as this corresponds to the activity peak of Ae. albopictus in northern Italy and in the infested areas of the Canton of Ticino [47]. We controlled the traps for the presence of mosquitoes every other week, leading to six sampling rounds per year.

Table 1. Sampling sites and number of ovitraps and BG-Sentinel traps per site.

Site Canton Coordinates (degrees) Elevation (m.a.s.l.) OT (n) BGS (n)
A1 Bavois-Est VD N 46.67460, E 6.56958 555 3 -
A1 Bavois-Ouest VD N 46.67400, E 6.57067 555 3 -
A1 Deitingen-Nord SO N 47.22889, E 7.62275 423 3 1
A1 Deitingen-Süd SO N 47.22601, E 7.61578 423 3 -
A1 Forrenberg-Nord ZH N 47.52667, E 8.73433 468 3 -
A1 Grauholz BE N 46.99029, E 7.47769 584 6 1
A1 Gunzgen-Nord SO N 47.31012, E 7.83232 433 3 -
A1 Gunzgen-Süd SO N 47.31015, E 7.84734 444 3 -
A1 Kemptthal ZH N 47.44858, E 8.70026 503 4 -
A1 Kölliken-Nord AG N 47.33007, E 8.03098 438 3 -
A1 Kölliken-Süd AG N 47.32289, E 8.02166 446 3 -
A1 La Côte Jura VD N 46.44707, E 6.29995 435 3 1*
A1 La Côte Lac VD N 46.44462, E 6.29673 429 3 1
A1 Rose de la Broye FR N 46.83206, E 6.85950 489 6 1
A1 St. Margrethen-Nord SG N 47.46151, E 9.60356 399 3 1
A1 St. Margrethen-Süd SG N 47.46066, E 9.60297 400 3 1
A1 Thurauen-Nord ZH N 47.46100, E 9.09423 509 3 1
A1 Würenlos-Nord AG N 47.43904, E 8.34747 392 3 -
A1 Würenlos-Süd AG N 47.43907, E 8.34616 394 3 -
A2 Bellinzona-Nord TI N 46.20982, E 9.02753 238 3 -
A2 Bellinzona-Sud TI N 46.18211, E 9.00164 227 3 1*
A2 Coldrerio TI N 45.84970, E 8.98612 312 3 -
A2 Eggberg SO N 47.33595, E 7.82834 549 3 -
A2 Gotthard-Nord UR N 46.84612, E 8.63370 457 3 1*
A2 Gotthard-Süd UR N 46.84706, E 8.63203 457 3 1
A2 Neuenkirch-Nord LU N 47.11365, E 8.23129 560 3 1*
A2 Neuenkirch-Süd LU N 47.11063, E 8.23380 548 3 1
A2 Pratteln—Nord BL N 47.52759, E 7.70125 273 3 1
A2 Pratteln—Süd BL N 47.52710, E 7.70055 272 3 1
A2 San Gottardo-Sud TI N 46.51521, E 8.66768 1015 3 -
A2 San Gottardo-Sud Stalvedro TI N 46.52080, E 8.63637 1064 3 1
A2 Teufengraben SO N 47.33316, E 7.82170 522 3 1
A9 St-Bernard VS N 46.12759, E 7.06026 455 3 -
A13 Heidiland GR N 47.01092, E 9.51217 501 3 1*
A13 Rheintal-Ost SG N 47.14597, E 9.50159 455 3 -
A13 Rheintal-West SG N 47.14622, E 9.49989 455 3 -
Auhafen BL N 47.54023, E 7.66176 258 6 1
Bahnhof Chiasso TI N 45.84059, E 9.00212 247 6 -
Genève Aéroport GE N 46.23701, E 6.10910 418 6 1
Flughafen Zürich ZH N 47.45399, E 8.57711 432 6 1
Innenhof Swiss TPH BS N 47.55564, E 7.57809 279 3 1*
Rheinhafen Kleinhüningen–Hafenbecken 1 BS N 47.58450, E 7.58855 249 6 1
Rheinhafen Kleinhüningen–Hafenbecken 2 BS N 47.58705, E 7.59879 253 6 1
Total 154 24

Swiss cantons: AG: Aargau; BE: Bern; BL: Basel-Landschaft; BS: Basel-Stadt; FR: Fribourg; GE: Genève; GR: Graubünden; LU: Luzern; SG: St. Gallen: SO: Solothurn; TI: Ticino; UR: Uri; VD: Vaud; VS: Wallis; ZH: Zürich. OT: ovitrap; BGS: BG-Sentinel trap. The star (*) next to the number indicates that the trap was additionally supplied with CO2.

At the larger motorway service areas that are accessible from both driving directions (i.e. "A1 Gunzgen" and "A1 Rose de la Broye"), the airports, the commercial harbours and the Chiasso railway station we placed six ovitraps, while only three ovitraps were set at the smaller motorway service areas that can only be accessed in one direction (Table 1). To reduce competition in attraction between the traps we set them apart by at least 50 m. At the motorway service areas we placed one trap near the entrance, one next to the main service building and one near the lorry parking, usually situated near the exit. For the ovitraps we adopted the design previously described in Flacio et al. [28]. In brief, an ovitrap consists of a black 1.5 litre plastic container, filled with about 1.2 litres of tap water (Fig 1A), into which a short wooden slat is plunged that serves as a substrate for the female Aedes mosquitoes to lay their eggs (Fig 1B). In each trap we added about 20–30 Vectobac granules (Valent BioSciences, Illinois, USA), containing the active Bacillus thuringensis var. israelensis (Bti), to prevent the trap from becoming an additional breeding site. We set the traps in hidden places on the ground that were protected from direct sunlight (e.g. under vegetation or near buildings).

Fig 1. Ovitrap used to collect eggs of invasive Aedes species.

Fig 1

(A) The female mosquitoes glue their eggs on the slat that is plunged into the water inside the flower pot. The slats were collected and inspected biweekly. Photo credit: Roland Schmid, Swiss TPH. (B) Slat with Aedes mosquito eggs. Photo credit: Christian Flierl, University of Basel.

At each site we also aimed at placing one BG-Sentinel trap. However, as the BG-Sentinel trap requires electricity to power its fan and because we visited each site once every other week we only placed BG-Sentinel traps at sites where we had direct access to a permanent power supply (Table 1). Each BG-Sentinel trap was fitted with a BG-Lure (Biogents, Regensburg, Germany) as an attractant. In addition, we equipped six BG-Sentinel traps with a cylinder that released CO2 at a constant flow rate of 175 ml per minute (Table 1).

Species identification

Upon removing from the ovitraps, we wrapped each slat in cling film and stored the labelled and packaged slats at room temperature until they were inspected under a stereo microscope for the presence of Aedes eggs. Where present, we distinguished between the indigenous Ae. geniculatus and potentially invasive Aedes species. While Ae. geniculatus can be unambiguously identified morphologically, the eggs of invasive species are hard to identify to species level. Therefore, we first counted the eggs of invasive Aedes species and then took a subsample for molecular identification. For the molecular identification, we measured protein profiles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with an AXIMA Performance spectrometer (Shimadzu, Kyota, Japan) following the protocol of Schaffner et al. [48]. Then we sent the resulting spectra to Mabritec AG (Riehen, Switzerland) to compare them against the company’s validated mosquito species reference data base.

For the identification of the adult mosquitoes, we kept the specimens at -20°C until morphological identification under a stereo microscope [49,50]. While we identified any mosquito potentially being an invasive Aedes species, all other specimens were not further analysed, with the exception of the collections in 2014 when we identified all specimens to species or species complex level. In some instances, the adult mosquitoes could not be identified morphologically because they were in a bad condition or members of closely related species that could morphologically not be distinguished (e.g. Culex pipiens/torrentium). In these cases, we identified the specimens also with MALDI-TOF MS following a similar protocol as used for the eggs but adapted for adults [51] and sent them to Mabritec AG.

Data analysis

Data were captured in an Access 2016 database (Microsoft, Washington, USA), then exported as separate text files for eggs and adults and finally imported into the open source software package R version 3.5.1 [52] for statistical analysis. The analysis comprised of descriptive summary statistics of the presence-absence and the numbers of eggs and adults of invasive Aedes species. For the ovitraps we assumed that all the eggs not identified morphologically to species level were the same species as those eggs identified by MALDI-TOF MS from the same slat. In a few cases we had more than one species on the same slat and, as we did not measure every single egg, for simplicity we accounted the total number of eggs to all species identified.

To investigate the relationship between the number of positive ovitraps and sampling year, we fitted generalised linear models (GLMs) with a logit link function and a binomial error distribution. Similarly, we modelled the number of eggs in the positive ovitraps as a function of year using GLMs with a log link function and a negative binomial error distribution in the R package "MASS" [53]. The level of significance was set at α = 0.05.

We plotted the graphs with the R package “ggplot” [54], while the maps were drawn with ArcGIS Desktop 10.6.1 (Environmental Systems Research Institute, Inc., California, USA).

Results

In total, we placed 5,294 wooden slats across 154 ovitraps over six years. The number of slats was slightly lower than theoretically possible (i.e. 5,544) because we could not set all traps in each year and trapping round. For example, ongoing construction work temporarily restricted access to some of the sites. From the wooden slats placed in the field, 13.1% were lost; either the traps or the slats were missing, or the traps have become dysfunctional (e.g. being tipped over, damaged or filled with rubbish). From the remaining slats 31.5% were positive. Among the positive slats (n = 1,448), 56.7% had Ae. japonicus eggs, 19.5% Ae. albopictus eggs, 1.9% Ae. koreicus eggs and 1.9% Ae. geniculatus. In 24.4% of the positive slats we had eggs that could not be identified to species level but were most likely one of the three invasive Aedes species. On a few occasions we also had slats with more than one Aedes species (4.4%). The raw data from the ovitraps are provided in S1 Data.

As with the ovitraps, we could not set all the 24 BG-Sentinel traps in Table 1 throughout the entire study and the number of traps in a year varied between 19 (2018) and 23 (2014). In contrast to the ovitraps, we could, however, reclaim and analyse all catch bags from the BG-Sentinel traps that were placed. Per trap we caught a maximum of five Ae. albopictus and a maximum of 10 Ae. japonicus adults. We had no Ae. koreicus in the BG-Sentinel traps. The raw data from the BG-Sentinel traps are provided in S2 Data.

Since 2013, the number of wooden slats that had eggs of an invasive Aedes species has increased continuously from one year to the next (odds ratio, OR = 1.23, 95% confidence interval, 95% CI = 1.19–1.28; Fig 2A). The overall annual increase in the proportion of positive traps was primarily due to a rise in the number of ovitraps with Ae. japonicus eggs (OR = 1.22, 95% CI = 1.16–1.27). Nevertheless, the proportion of ovitraps with Ae. albopictus eggs has also slightly increased over the years (OR = 1.1, 95% CI = 1.02–1.18). It is also conceivable that the increased number of positive traps with unidentified eggs would, if known, further contribute to a rise in one or the other Aedes species. As an illustration, in 2013, the proportion of positive traps has been 17% (n = 710), while it rose to 47.5% (n = 750) in 2018, with an individual increase from 6.1% to 9.8% for Ae. albopictus and an almost three-fold increase from 8.5% to 25.2% for Ae. japonicus. In parallel to the number of positive traps the average egg count in the positive ovitraps has also increased between consecutive years (OR = 1.18, 95% CI = 1.13–1.23; Fig 2B). The ORs for Ae. japonicus and Ae. albopictus were 1.17 (95% CI = 1.11–1.23) and 1.22 (95% CI = 1.13–1.31), respectively. Since 2015, a small number of traps was sporadically also positive for Ae. koreicus (Fig 2).

Fig 2. Trends in the number of positive ovitraps and egg counts between 2013 and 2018.

Fig 2

(A) Proportion of ovitraps (i.e. slats) that had eggs. (B) Average number of eggs per trap among the positive traps (i.e. slats). Traps that had not been set throughout the entire study were removed from the analysis. The error bars indicate the 95% confidence intervals (95% CI) around the average estimated using the generalised linear models. The large 95% CI's for Aedes koreicus are due to the low number of positive traps. "Aedes sp." denotes all counts associated with slats where the eggs were invasive Aedes species but could not be identified to species level.

In the collections from 2014, in addition to the invasive Aedes species, we also identified all other mosquito specimens to the lowest possible taxonomic level. We caught 7,424 specimens and identified 10 mosquito taxa, including six Aedes, one Anopheles and three Culex taxa (Table 2). The most dominant taxon (97.1%) was the sibling species Culex pipiens/torrentium. Culex pipiens/torrentium was not only the most numerous but also the most widespread taxon being present across all BG-Sentinel traps with the exception of one single site (i.e. 22 out of 23). However, the BG-Sentinel trap placed at that site had no mosquitoes caught at all. A subset of 25 individuals from five different sites, one south ("Bellinzona-Sud") and three north ("Innenhof Swiss TPH", "A2 Neuenkirch-Nord" and "A1 Thurauen-Nord") of the Alps, measured with MALDI-TOF MS revealed that they were all Cx. pipiens s.s. Other more frequent taxa were Cx. hortensis, Anopheles plumbeus and Ae. japonicus (Table 2).

Table 2. Mosquito specimens sampled in the BG-Sentinel traps in 2014.

Species Sites Morphology MALDI-TOF MS Total
Culex pipiens/torrentium 22 7188 25* 7213
Culex hortensis 11 74 14 88
Anopheles plumbeus 7 49 9 58
Aedes japonicus 12 2 39 41
Aedes albopictus 2 0 7 7
Aedes vexans 2 0 7 7
Aedes geniculatus 2 0 4 4
Aedes cinereus/geminus 2 3 0 3
Aedes caspius 1 0 2 2
Culex territans 1 0 1 1
Total - 7316 108 7424

*All 25 individuals measured by MALDI-TOF MS were Culex pipiens s.s.

Aedes albopictus was mainly introduced along the national motorway A2 (i.e. European route E35) from south to north as highlighted by the increased frequency of both positive ovitraps (Fig 3A) and positive BG-Sentinel traps (Fig 3B). The frequency of ovitraps also indicates a similar, though less dominant role, for the alternative south-north route over the San Bernardino (Fig 3A). In contrast, both the ovitraps (Fig 4A) and the BG-sentinel traps (Fig 4B) show a concentration of Ae. japonicus around the initially described distribution area in the Canton of Aargau from 2008 [36]. As we go further away from this area the frequencies are decreasing. For both Ae. albopictus and Ae. japonicus the traps in the West were negative throughout the study period (Figs 3 and 4). When comparing side-by-side the situation in terms of the presence of Ae. albopictus and Ae. japonicus between 2013 and 2018, the picture above becomes even more apparent (Fig 5). Aedes albopictus was primarily present in the Canton of Ticino and occasionally introduced to the North in 2013, while being more frequently introduced along the south-north axis in 2018. Aedes japonicus was almost exclusively present in the midlands in 2013 and showed a wider distribution in 2018 when it was also found in the Canton of Ticino. In line with the increased proportion of positive ovitraps and egg numbers (Fig 2), the frequency of positive ovitraps in 2018 is a lot higher than it still was in 2013 (Fig 5). Intriguingly, we found both Ae. albopictus and Ae. japonicus at the highest site at an altitude of 1,064 m (i.e. A2 San Gottardo-Sud Stalvedro) as well as at the lowest site at 227 m (i.e. A2 Bellinzona-Sud), yet neither species was present in the traps set in the West of Switzerland.

Fig 3. Frequency of Aedes albopictus positive sites along the Swiss main traffic axes.

Fig 3

(A) Map showing the frequency of positive ovitraps per site. Each dot represents a site while the colour indicates how often the site was positive for Ae. albopictus between 2013 and 2018. Missing slats were excluded from the analysis. (B) Map showing the frequency of positive BG-Sentinel traps per site. Each dot represents a site while the colour indicates how often the site was positive for Ae. albopictus between 2014 and 2018. Missing BG-Sentinel traps were excluded from the analysis. Map source: Swiss Federal Office of Topography (swisstopo); Swiss Federal Statistical Office, Section Geoinformation (GEOSTAT) and Swiss Federal Office for Spatial Development (ARE).

Fig 4. Frequency of Aedes japonicus positive sites along the Swiss main traffic axes.

Fig 4

(A) Map showing the frequency of positive ovitraps per site. Each dot represents a site while the colour indicates how often the site was positive for Ae. japonicus between 2013 and 2018. Missing slats were excluded from the analysis. (B) Map showing the frequency of positive BG-Sentinel traps per site. Each dot represents a site while the colour indicates how often the site was positive for Ae. japonicus between 2014 and 2018. Missing BG-Sentinel traps were excluded from the analysis. Map source: Swiss Federal Office of Topography (swisstopo); Swiss Federal Statistical Office, Section Geoinformation (GEOSTAT) and Swiss Federal Office for Spatial Development (ARE).

Fig 5. Distribution and frequency of Aedes albopictus and Ae. japonicus along main Swiss traffic axes in 2013 and 2018.

Fig 5

Each circle represents a site while the colour and size of the circle indicates the frequency of positive ovitraps at that site. Missing slats were excluded from the analysis. Map source: Swiss Federal Office of Topography (swisstopo) and Swiss Federal Statistical Office, Section Geoinformation (GEOSTAT).

In addition to Ae. albopictus and Ae. japonicus we have also detected Ae. koreicus in ovitraps placed in the Canton of Ticino at the motorway service area "A2 Coldrerio" since 2015 and twice at the railway station in Chiasso in 2015 and 2017. In 2015 two sites north of the Alps, on the motorway service areas "A2 Teufengraben" and "A2 Neuenkirch-Süd", were also positive for Ae. koreicus (Fig 6). However, we did not find Ae. koreicus adults in the BG-sentinel traps.

Fig 6. Frequency of Aedes koreicus positive sites along the Swiss main traffic axes.

Fig 6

Each dot represents a site while the colour indicates the frequency of positive ovitraps per site between 2013 and 2018. Missing slats were excluded from the analysis. Map source: Swiss Federal Office of Topography (swisstopo); Swiss Federal Statistical Office, Section Geoinformation (GEOSTAT) and Swiss Federal Office for Spatial Development (ARE).

Discussion

The aim of this study was to monitor the presence and frequency of invasive Aedes mosquitoes at potential points of entry in Switzerland with a focus on motorway service areas. We found that the frequency of positive ovitraps has markedly increased between 2013 and 2018, mainly because of a surge in Ae. japonicus. While Ae. albopictus is consistently introduced along the national motorway A2 from south to north, the pattern for Ae. japonicus implies a more active, radial range expansion. Since 2015 we have also been recording the presence of Ae. koreicus, both south and north of the Alps.

Before our study, Ae. albopictus was already widespread in the southern parts of the Canton of Ticino following its introduction from Italy [28], but had not been reported from any other region in Switzerland north of the Alps. While the Alps may constitute a natural barrier to the dispersal of mosquitoes, until 2013, Switzerland also lacked a national surveillance programme; and hence introductions might have simply remained unnoticed. Indeed, in 2007, Ae. albopictus eggs had already been detected in the Upper Rhine Valley in Germany at a motorway service area on the A5 near the Swiss border [55], followed by additional reports from the same region in 2011 [56] and in 2012 [57]. The German motorway A5 is the extension of the Swiss motorway A2. Both motorways constitute sections of the European Route E35 that runs from Rome, Italy, in southern Europe to Amsterdam, the Netherlands, in the north-western part of the continent. Because Italy is regarded as the primary source for Ae. albopictus in Europe [25], it does not come as a surprise that, in addition to the positive sites in Germany, multiple sites in Switzerland along the A2 were also frequently positive. Likewise, the passive spread of Ae. albopictus from south to north would explain our repeated findings along the San Bernardino route A13, an alternative south-north passage way through Switzerland. A similar picture emerges from a study in western Austria (Tyrol) where service stations along the motorways coming from Italy were repeatedly positive [44]. Together these observations support the general notion that Ae. albopictus is primarily being passively spread by motorised vehicles from south to north along the main road axes, and that the Alps represent no physical barrier for its expansion in Central Europe.

In contrast to the prominent south-north pattern we do not see much evidence in our data for an Ae. albopictus dispersal along the west-east axis. The motorway service areas in Western Switzerland near Geneva remained negative throughout the study, despite the mosquito had already been well established in southern France before the present study and has been reported from multiple sites along the Rhone Valley as close as Geneva [58]. An explanation could be lower mosquito densities in France as compared to Italy, reduced traffic volumes between the infested areas in France and Western Switzerland when compared to the south-north circulation, fewer vehicles stopping at the motorway service areas included in our study, or a combination of these factors.

In contrast to Ae. albopictus, that shows a pattern consistent with passive dispersal through motorised vehicles, the distribution and frequency of sites positive for Ae. japonicus over the years imply a more active range expansion. In 2008, the initially colonised area was estimated at 1,400 km2, covering parts of Switzerland and bordering Germany [36]. Within that original range we had six sites in the present study, including the motorway service stations "A1 Kölliken-Nord", "A1 Kölliken-Süd ", "A1 Würenlos-Nord", "A1 Würenlos-Süd", "A1 Kempthal" and "Zürich Airport". Between 2013 and 2018, these sites were frequently positive for Ae. japonicus, while the sites at the periphery were positive depending on the distance away from the initial distribution area. Although passive distribution via traffic is generally assumed to be the chief mode of dispersal of invasive Aedes mosquitoes [59], our data for Ae. japonicus are more consistent with the hypothesis of active dispersal being the key driver. This would not exclude that passive dispersal along motorways may still take place as the more recent findings in the Canton of Ticino imply. Interestingly, a previous study of Ae. japonicus found that its larvae are more frequently present in rural than urban areas as compared to Ae. albopictus [60], which might reflect an adaptation allowing this species to disperse more actively across a heterogeneous landscape. Though population genetic studies would be more informative to test the hypothesis of active range expansion, the circumstantial evidence from this study supports the idea of active range expansion for Ae. japonicus.

In addition to Ae. japonicus we found Ae. koreicus in several of our ovitraps along the south-north Gotthard route. Given the few findings in our study the picture is still somewhat unclear, but this mosquito seems to be more present in the South of the country and, like Ae. albopictus, has likely been passively dispersed along the south-north axis through motorised vehicles driving up the motorway A2. This is in line with its first detection at the Swiss-Italian border in 2013 [40] and with previous reports from northern Italy [61]. Moreover, Ae. koreicus has also been repeatedly reported from Germany [30,62,63] and more recently from Austria [44]. Like the closely related Ae. japonicus, Ae. koreicus is a container-breeding mosquito species that is well adapted to a more temperate climate [34]; and hence we expect that this species, too, will become more widespread across Switzerland and the rest of Central Europe.

Although primarily used to trap host-seeking Ae. albopictus, the BG-Sentinel trap has also been found suitable for the surveillance of other adult mosquitoes in Europe [64]. With this in mind we also identified all other adult specimens that were collected in the BG-Sentinel traps to the lowest possible taxonomic level. However, we were only able to do this extra effort in 2014. In that year we identified 10 different taxa from about 40 known species in Switzerland [40, 65, 66]. Among the 10 taxa found in the BG-Sentinel traps the most dominant one was the sibling species pair Culex pipiens/torrentium. Culex pipiens/torrentium has frequently been described as the most abundant mosquito taxon in Switzerland [66, 67]. Further MALDI-TOF MS analysis of a subset of specimens taken from one site in Ticino and three sites north of the Swiss Alps identified Cx. pipiens s.s. only and no Cx. torrentium. These results are in line with a more comprehensive Swiss study by Wagner et al. [68] who found that Cx. torrentium shows very low relative abundances across suburban and natural areas north of the Swiss Alps. Culex hortensis was the second most abundant species, followed by An. plumbeus and Ae. japonicus. These species have also been observed at higher frequencies in Switzerland in previous studies [36,67].

Both the ovitraps and the BG-Sentinel traps were set during the putative peak activity period of Ae. albopictus from June to September, and it is possible that we might have missed introductions of invasive Aedes mosquitoes before or after this period. Besides, we were not able to identify every single egg to species level, so that the actual numbers of eggs per species have some uncertainties. Another point of consideration, primarily for the adult trapping, is that choices for the positioning of the BG-Sentinel traps were limited because we had to rely on the power supply from the mains to operate them. Moreover, the traps had to be well concealed from the public to avoid vandalism. Similarly, only a small subset of BG-Sentinel traps could be fitted with a CO2 bottle, meaning that they likely differed in their attraction to mosquitoes. Altogether, this might have introduced a sampling bias. Also, in 2013 we had to rely on ovitraps only. Therefore, a direct comparison between the two datasets is not warranted, however, where we have higher egg densities the BG-Sentinel traps are generally in agreement with the ovitraps.

As previously documented for Ae. albopictus [28,69] invasive Aedes mosquitoes escaping from vehicles upon stopping at motorway service areas may constitute critical points of entry for the early establishment of new populations, or potentially add to existing infestations, particularly if the points of entry are close to residential areas. In 2018 an attentive citizen reported an adult Ae. albopictus 300 m away from the motorway A1 service area "Gunzgen-Nord"—where ovitraps were repeatedly positive—suggesting that the mosquito has either escaped from a vehicle stopping there or its offspring have made their way to the village. A recent study suggests that newly hatched adult Ae. albopictus mosquitoes fly several hundred metres away from their breeding site to seek hosts [70]. Therefore, unless effective control measures are implemented, several sites north of the Alps are at risk of becoming starting points for the establishment of new populations.

The regions north of the Alps are likely to be more suitable for the establishment of permanent Ae. japonicus rather than Ae. albopictus populations due to the former being better adapted to temperate climates [71,72] and because of its extended phenology [39]. Similarly, Ae. koreicus might also be more adapted to the colder climate north of the Alps [41]. However, while many areas might not provide ideal habitats for Ae. albopictus because of temperature limits during the winter months, warmer regions such as the area around the lake of Geneva, the Upper Rhine Valley, including Basel, or at the shores of Lake Constance might still be suitable enough for the establishment of locally reproducing populations as habitat suitability models [71], microclimatic studies [73] and recent reports from Basel [74] and southern Germany suggest [75,76]. To shed more light into this question, future work should consider population genetic approaches to identify the sources of the Ae. albopictus specimens found north of the Alps.

From our results we conclude that Ae. albopictus and Ae. koreicus are being passively spread primarily along the European route E35, while Ae. japonicus is most likely expanding its range largely through active dispersal. Because of increasing introduction of invasive Aedes mosquitoes, control measures should be put in place to reduce the likelihood of their establishment from points of entry such as motorway service stations.

Supporting information

S1 Data. Original data set with egg counts for each wooden slat.

Each line corresponds to a single observation. "sitecode" = code of the sampling site; "trapid" = unique identifier of the trap; "year" = sampling year; "round" = sampling round (round 1 to round 6); "date" = date when the slat was recovered from the ovitrap; "status" = indicates whether the trap was functional or not ("1" = the trap was working ok, "0" = there was a problem with the trap); "n.eggs" = egg count; "n.maldi" = number of eggs measured with MALDI-TOF MS; "species" = mosquito species; "albopictus" = presence of Ae. albopictus eggs ("1" = yes, "0" = no); "japonicus" = presence of Ae. japonicus eggs ("1" = yes, "0" = no); "koreicus" = presence of Ae. koreicus eggs ("1" = yes, "0" = no); "geniculatus" = presence of Ae. geniculatus eggs ("1" = yes, "0" = no); "aedes" = presence of Aedes spp. eggs ("1" = yes, "0" = no); "site" = name of the sampling site; "sitetype" type of the sampling site ("Autobahn" = motorway service area, "Bahnhof" = railway station; "Flughafen" = airport, "Hafen" = commercial harbor, "Stadt" = city); "canton" = acronym of the Swiss canton (NUTS-3) where the sampling site was located; "long" = geographical longitude in the World Geodetic System format WGS84; "lat" = geographical latitude in the World Geodetic System format WGS84; "altitude" = altitude of the sampling site in metres.

(CSV)

S2 Data. Original data set from the BG-Sentinel traps.

Each line corresponds to a single observation. "sitecode" = code of the sampling site; "location" = name of the sampling site; "trapid" = unique identifier of the trap; "year" = sampling year; "round" = sampling round (round 1 to round 6); "CO2" = indicates whether the trap was equipped with CO2 (can be "With CO2" or "Without CO2"); "long" = geographical longitude in the World Geodetic System format WGS84; "lat" = geographical latitude in the World Geodetic System format WGS84; "date.set" = date when the trap was set; "date.control" = date when the catch bag was removed from the trap; "status" = indicates whether the trap was functional or not ("ok" = the trap was working ok, "Altered" = there was a problem with the trap); "species" = mosquito species; "n.adults" = adult count (from the same species and sex); "sex" = sex; "id.method" = method of species identification ("MALDI-TOF MS" = identification with MALDI-TOF MS, "Morphology" = morphological identification); "sitetype" = type of the sampling site ("Autobahn" = motorway service area, "Flughafen" = airport, "Hafen" = commercial harbor, "Stadt" = city); "canton" = acronym of the Swiss canton (NUTS-3) where the sampling site was located; "altitude" = altitude of the sampling site in metres.

(CSV)

Acknowledgments

This work would have not been possible without the support of many pairs of hands both in the field and the laboratory. For the hard work in collecting and replacing traps, enduring traffic jams, measuring mass spectra or spending endless hours in counting eggs we are extremely grateful to Valentina Alesi, Nikoleta Anicic, Leandro Balzarini, Anna-Paola Caminada, Alissa Cereghetti, Alison Crenna, Luca Davino, Sophie DeRespinis, Begoña Feijoó Fariña, Attila Giezendanner, Riccardo Hefti, Alida Kropf, Elian Kuhn, Diego Parrondo Montón, Natalia Rava, Laura Rieder, Andrea Tavasci and Seraina Vonzun. It was also a pleasure to work with Valentin Pflüger and Roxane Mouchet from Mabritec AG for the MALDI-TOF MS analysis. We would also like to thank Peter Lüthy for his initial encouragement to set-up a national surveillance programme for invasive mosquitoes in Switzerland. Last but not least, a big thank you to Basil Gerber and Thomas Probst from the Swiss Federal Office for the Environment for their continuous support and encouragement throughout the project.

Data Availability

All relevant data are within the manuscript and its Supporting Information files.

Funding Statement

This work received funding to PM, LE, LV, TS, VG, MG, MT and EF from the Swiss Federal Office for the Environment FOEN under the contract numbers 00.0303.PZ/M235-1640 and 00.0303.PZ/Q224-1811, and the pilot programme "Adaptation to climate change". The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Medlock JM, Hansford KM, Versteirt V, Cull B, Kampen H, Fontenille D, et al. An entomological review of invasive mosquitoes in Europe. Bull Entomol Res. 2015:1–27. [DOI] [PubMed] [Google Scholar]
  • 2.Brady OJ, Hay SI. The global expansion of dengue: How Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu Rev Entomol. 2020;65:191–208. 10.1146/annurev-ento-011019-024918 [DOI] [PubMed] [Google Scholar]
  • 3.Cleton N, Koopmans M, Reimerink J, Godeke GJ, Reusken C. Come fly with me: review of clinically important arboviruses for global travelers. J Clin Virol. 2012;55(3):191–203. 10.1016/j.jcv.2012.07.004 [DOI] [PubMed] [Google Scholar]
  • 4.Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: A review. Infect Genet Evol. 2019;67:191–209. 10.1016/j.meegid.2018.11.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11(14–15):1177–85. 10.1016/j.micinf.2009.05.005 [DOI] [PubMed] [Google Scholar]
  • 6.Mogi M, Armbruster PA, Tuno N, Aranda C, Yong HS. The climate range expansion of Aedes albopictus (Diptera: Culicidae) in Asia inferred from the distribution of Albopictus subgroup species of Aedes (Stegomyia). J Med Entomol. 2017;54(6):1615–25. 10.1093/jme/tjx156 [DOI] [PubMed] [Google Scholar]
  • 7.Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007;370(9602):1840–6. 10.1016/S0140-6736(07)61779-6 [DOI] [PubMed] [Google Scholar]
  • 8.Vairo F, Mammone A, Lanini S, Nicastri E, Castilletti C, Carletti F, et al. Local transmission of chikungunya in Rome and the Lazio region, Italy. PLoS One. 2018;13(12):e0208896 10.1371/journal.pone.0208896 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Grandadam M, Caro V, Plumet S, Thiberge J-M, Souarès Y, Failloux A-B, et al. Chikungunya virus, Southeastern France. J Emerg Infect Dis. 2011;17(5):910–3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Delisle E, Rousseau C, Broche B, Leparc-Goffart I, L’ambert G, Cochet A, et al. Chikungunya outbreak in Montpellier, France, September to October 2014. Euro Surveill. 2015;20(17):21108 10.2807/1560-7917.es2015.20.17.21108 [DOI] [PubMed] [Google Scholar]
  • 11.Calba C, Guerbois-Galla M, Franke F, Jeannin C, Auzet-Caillaud M, Grard G, et al. Preliminary report of an autochthonous chikungunya outbreak in France, July to September 2017. Euro Surveill. 2017;22(39). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Gjenero-Margan I, Aleraj B, Krajcar D, Lesnikar V, Klobučar A, Pem-Novosel I, et al. Autochthonous dengue fever in Croatia, August-September 2010. Euro Surveill. 2011;16(9). [PubMed] [Google Scholar]
  • 13.La Ruche G, Souarès Y, Armengaud A, Peloux-Petiot F, Delaunay P, Desprès P, et al. First two autochthonous dengue virus infections in metropolitan France, September 2010. Euro Surveill. 2010;15(39):19676 [PubMed] [Google Scholar]
  • 14.Marchand E, Prat C, Jeannin C, Lafont E, Bergmann T, Flusin O, et al. Autochthonous case of dengue in France, October 2013. Euro Surveill. 2013;18(50):20661 10.2807/1560-7917.es2013.18.50.20661 [DOI] [PubMed] [Google Scholar]
  • 15.Monge S, Garcia-Ortuzar V, Lopez Hernandez B, Lopaz Perez MA, Delacour-Estrella S, Sanchez-Seco MP, et al. Characterization of the first autochthonous dengue outbreak in Spain (August-September 2018). Acta Trop. 2020;205:105402 10.1016/j.actatropica.2020.105402 [DOI] [PubMed] [Google Scholar]
  • 16.Giron S, Franke F, Decoppet A, Cadiou B, Travaglini T, Thirion L, et al. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Euro Surveill. 2019;24(45). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Carrieri M, Bellini R, Maccaferri S, Gallo L, Maini S, Celli G. Tolerance thresholds for Aedes albopictus and Aedes caspius in Italian urban areas. J Am Mosq Control Assoc. 2008;24(3):377–86. 10.2987/5612.1 [DOI] [PubMed] [Google Scholar]
  • 18.Invasive Species Specialist Group. 100 of the World's Worst Invasive Alien Species 2020 [Available from: http://www.iucngisd.org/gisd/.
  • 19.Eritja R, Palmer JRB, Roiz D, Sanpera-Calbet I, Bartumeus F. Direct evidence of adult Aedes albopictus dispersal by car. Sci Rep. 2017;7(1):14399 10.1038/s41598-017-12652-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Adhami J, Reiter P. Introduction and establishment of Aedes (Stegomyia) albopictus skuse (Diptera: Culicidae) in Albania. J Am Mosq Control Assoc. 1998;14(3):340–3. [PubMed] [Google Scholar]
  • 21.Sabatini A, Raineri V, Trovato G, Coluzzi M. Aedes albopictus in Italia e possibile diffusione della specie nell’area mediterranea. Parassitologia. 1990;32(3):301–4. [PubMed] [Google Scholar]
  • 22.Dalla Pozza GL, Romi R, Severini C. Source and spread of Aedes albopictus in the Veneto region of Italy. J Am Mosq Control Assoc. 1994;10(4):589–92. [PubMed] [Google Scholar]
  • 23.Knudsen AB, Romi R, Majori G. Occurrence and spread in Italy of Aedes albopictus, with implications for its introduction into other parts of Europe. J Am Mosq Control Assoc. 1996;12(2 Pt 1):177–83. [PubMed] [Google Scholar]
  • 24.Romi R, Di Luca M, Majori G. Current status of Aedes albopictus and Aedes atropalpus in Italy. J Am Mosq Control Assoc. 1999;15(3):425–7. [PubMed] [Google Scholar]
  • 25.Sherpa S, Blum MGB, Capblancq T, Cumer T, Rioux D, Despres L. Unraveling the invasion history of the Asian tiger mosquito in Europe. Mol Ecol. 2019. [DOI] [PubMed] [Google Scholar]
  • 26.ECDC. Aedes albopictus—current known distribution: August 2019 [Available from: https://www.ecdc.europa.eu/en/publications-data/aedes-albopictus-current-known-distribution-august-2019.
  • 27.Flacio E, Lüthy P, Patocchi N, Guidotti F, Tonolla M, Peduzzi R. Primo ritrovamento di Aedes albopictus in Svizzera. Bollettino della Società ticinese di Scienze naturali. 2004;92(1–2):141–2. [Google Scholar]
  • 28.Flacio E, Engeler L, Tonolla M, Luthy P, Patocchi N. Strategies of a thirteen year surveillance programme on Aedes albopictus (Stegomyia albopicta) in southern Switzerland. Parasit Vectors. 2015;8:208 10.1186/s13071-015-0793-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Flacio E, Engeler L, Tonolla M, Müller P. Spread and establishment of Aedes albopictus in southern Switzerland between 2003 and 2014: an analysis of oviposition data and weather conditions. Parasit Vectors. 2016;9(1). 10.1186/s13071-016-1577-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Pfitzner WP, Lehner A, Hoffmann D, Czajka C, Becker N. First record and morphological characterization of an established population of Aedes (Hulecoeteomyia) koreicus (Diptera: Culicidae) in Germany. Parasit Vectors. 2018;11(1):662 10.1186/s13071-018-3199-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Martinet JP, Ferté H, Failloux AB, Schaffner F, Depaquit J. Mosquitoes of North-Western Europe as potential vectors of arboviruses: A Review. Viruses. 2019;11(11). 10.3390/v11111059 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Silaghi C, Beck R, Capelli G, Montarsi F, Mathis A. Development of Dirofilaria immitis and Dirofilaria repens in Aedes japonicus and Aedes geniculatus. Parasit Vectors. 2017;10(1):94 10.1186/s13071-017-2015-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Montarsi F, Ciocchetta S, Devine G, Ravagnan S, Mutinelli F, Frangipane di Regalbono A, et al. Development of Dirofilaria immitis within the mosquito Aedes (Finlaya) koreicus, a new invasive species for Europe. Parasit Vectors. 2015;8:177 10.1186/s13071-015-0800-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Marini G, Arnoldi D, Baldacchino F, Capelli G, Guzzetta G, Merler S, et al. First report of the influence of temperature on the bionomics and population dynamics of Aedes koreicus, a new invasive alien species in Europe. Parasit Vectors. 2019;12(1):524 10.1186/s13071-019-3772-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Cunze S, Koch LK, Kochmann J, Klimpel S. Aedes albopictus and Aedes japonicus—two invasive mosquito species with different temperature niches in Europe. Parasit Vectors. 2016;9(1):573 10.1186/s13071-016-1853-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Schaffner F, Kaufmann C, Hegglin D, Mathis A. The invasive mosquito Aedes japonicus in Central Europe. Med Vet Entomol. 2009;23(4):448–51. 10.1111/j.1365-2915.2009.00825.x [DOI] [PubMed] [Google Scholar]
  • 37.Schaffner F, Chouin S, Guilloteau J. First record of Ochlerotatus (Finlaya) japonicus japonicus (Theobald, 1901) in metropolitan France. J Am Mosq Control Assoc. 2003;19(1):1–5. [PubMed] [Google Scholar]
  • 38.Versteirt V, Schaffner F, Garros C, Dekoninck W, Coosemans M, Van Bortel W. Introduction and establishment of the exotic mosquito species Aedes japonicus japonicus (Diptera: Culicidae) in Belgium. J Med Entomol. 2009;46(6):1464–7. 10.1603/033.046.0632 [DOI] [PubMed] [Google Scholar]
  • 39.Koban MB, Kampen H, Scheuch DE, Frueh L, Kuhlisch C, Janssen N, et al. The Asian bush mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Europe, 17 years after its first detection, with a focus on monitoring methods. Parasit Vectors. 2019;12(1):109 10.1186/s13071-019-3349-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Suter T, Flacio E, Farina BF, Engeler L, Tonolla M, Muller P. First report of the invasive mosquito species Aedes koreicus in the Swiss-Italian border region. Parasit Vectors. 2015;8:402 10.1186/s13071-015-1010-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Versteirt V, De Clercq EM, Fonseca DM, Pecor J, Schaffner F, Coosemans M, et al. Bionomics of the established exotic mosquito species Aedes koreicus in Belgium, Europe. J Med Entomol. 2012;49(6):1226–32. 10.1603/me11170 [DOI] [PubMed] [Google Scholar]
  • 42.Capelli G, Drago A, Martini S, Montarsi F, Soppelsa M, Delai N, et al. First report in Italy of the exotic mosquito species Aedes (Finlaya) koreicus, a potential vector of arboviruses and filariae. Parasit Vectors. 2011;4:188 10.1186/1756-3305-4-188 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Bezzhonova OV, Patraman IV, Ganushkina LA, Vyshemirskiĭ OI, Sergiev VP. [The first finding of invasive species Aedes (Finlaya) koreicus (Edwards, 1917) in European Russia]. Meditsinskaia parazitologiia i parazitarnye bolezni. 2014(1):16–9. [PubMed] [Google Scholar]
  • 44.Fuehrer HP, Schoener E, Weiler S, Barogh BS, Zittra C, Walder G. Monitoring of alien mosquitoes in Western Austria (Tyrol, Austria, 2018). PLoS Negl Trop Dis. 2020;14(6):e0008433 10.1371/journal.pntd.0008433 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Kalan K, Šušnjar J, Ivović V, Buzan E. First record of Aedes koreicus (Diptera, Culicidae) in Slovenia. Parasitol Res. 2017;116(8):2355–8. 10.1007/s00436-017-5532-9 [DOI] [PubMed] [Google Scholar]
  • 46.Kurucz K, Kiss V, Zana B, Schmieder V, Kepner A, Jakab F, et al. Emergence of Aedes koreicus (Diptera: Culicidae) in an urban area, Hungary, 2016. Parasitol Res. 2016;115(12):4687–9. 10.1007/s00436-016-5229-5 [DOI] [PubMed] [Google Scholar]
  • 47.Suter TT, Flacio E, Feijoo Farina B, Engeler L, Tonolla M, Regis LN, et al. Surveillance and control of Aedes albopictus in the Swiss-Italian border region: Differences in egg densities between intervention and non-intervention areas. PLoS Negl Trop Dis. 2016;10(1):e0004315 10.1371/journal.pntd.0004315 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Schaffner F, Kaufmann C, Pfluger V, Mathis A. Rapid protein profiling facilitates surveillance of invasive mosquito species. Parasit Vectors. 2014;7:142 10.1186/1756-3305-7-142 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C, et al. Mosquitoes and Their Control. 2nd ed: Springer; 2010. 608 p. [Google Scholar]
  • 50.Gunay F, Picard M, Robert V. MosKeyTool, an interactive identification key for mosquitoes of Euro-Mediterranean. Version 2.1 ed2018. Available: www.medilabsecure.com/moskeytool
  • 51.Müller P, Pflüger V, Wittwer M, Ziegler D, Chandre F, Simard F, et al. Identification of cryptic Anopheles mosquito species by molecular protein profiling. PLoS One. 2013;8(2):e57486 10.1371/journal.pone.0057486 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Version 3.5.1, 2019. Available: https://www.R-project.org/
  • 53.Venables WN, Ripley BD. Modern applied statistics with S. 4th ed: Springer; 2002. 504 p. [Google Scholar]
  • 54.Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York: Springer Nature; 2016. 260 p. [Google Scholar]
  • 55.Pluskota B, Storch V, Braunbeck T, Beck M, Becker N. First record of Stegomyia albopicta (Skuse) (Diptera: Culicidae) in Germany. European Mosquito Bulletin. 2008;26:1–5. [Google Scholar]
  • 56.Werner D, Kronefeld M, Schaffner F, Kampen H. Two invasive mosquito species, Aedes albopictus and Aedes japonicus japonicus, trapped in south-west Germany, July to August 2011. Euro Surveill. 2012;17(4). 10.2807/ese.17.04.20067-en [DOI] [PubMed] [Google Scholar]
  • 57.Becker N, Geier M, Balczun C, Bradersen U, Huber K, Kiel E, et al. Repeated introduction of Aedes albopictus into Germany, July to October 2012. J Parasitol Res. 2012;112(4):1787–90. 10.1007/s00436-012-3230-1 [DOI] [PubMed] [Google Scholar]
  • 58.EID Méditerranée. Surveillance du moustique Aedes albopictus en France métropolitaine—Bilan 2012. Entente interdépartementale pour la démoustication du littoral méditerranéen; 2012.
  • 59.Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12(6):435–47. 10.1089/vbz.2011.0814 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Bartlett-Healy K, Unlu I, Obenauer P, Hughes T, Healy S, Crepeau T, et al. Larval mosquito habitat utilization and community dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae). J Med Entomol. 2012;49(4):813–24. 10.1603/me11031 [DOI] [PubMed] [Google Scholar]
  • 61.Montarsi F, Martini S, Dal Pont M, Delai N, Ferro Milone N, Mazzucato M, et al. Distribution and habitat characterization of the recently introduced invasive mosquito Aedes koreicus [Hulecoeteomyia koreica], a new potential vector and pest in north-eastern Italy. Parasit Vectors. 2013;6:292 10.1186/1756-3305-6-292 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Steinbrink A, Zotzmann S, Cunze S, Klimpel S. Aedes koreicus—a new member of the genus Aedes establishing in Germany? Parasitol Res. 2019;118(3):1073–6. 10.1007/s00436-019-06232-x [DOI] [PubMed] [Google Scholar]
  • 63.Werner D, Zielke DE, Kampen H. First record of Aedes koreicus (Diptera: Culicidae) in Germany. Parasitol Res. 2016;115(3):1331–4. 10.1007/s00436-015-4848-6 [DOI] [PubMed] [Google Scholar]
  • 64.Luhken R, Pfitzner WP, Borstler J, Garms R, Huber K, Schork N, et al. Field evaluation of four widely used mosquito traps in Central Europe. Parasit Vectors. 2014;7:268 10.1186/1756-3305-7-268 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Schaffner F, Mathis A. Mosquitoes (Diptera: Culicidae) and related hazards in Switzerland. Zürich: Institute of Parasitology, University of Zurich; 2011. [Google Scholar]
  • 66.Flacio E, Rossi-Pedruzzi A, Bernasconi-Casati E. Culicidae fauna from Canton Ticino and report of three new species for Switzerland. Journal of the Swiss Entomological Society. 2014;87(3–4):163–82. [Google Scholar]
  • 67.Schaffner F, Mathis A. Spatio-temporal diversity of the mosquito fauna (Diptera: Culicidae) in Switzerland. Zürich: Institute of Parasitology, University of Zürich; 2013. [Google Scholar]
  • 68.Wagner S, Guidi V, Torgerson PR, Mathis A, Schaffner F. Diversity and seasonal abundances of mosquitoes at potential arboviral transmission sites in two different climate zones in Switzerland. Med Vet Entomol. 2018;32(2):175–85. 10.1111/mve.12292 [DOI] [PubMed] [Google Scholar]
  • 69.Becker N, Schön S, Klein A-M, Ferstl I, Kizgin A, Tannich E, et al. First mass development of Aedes albopictus (Diptera: Culicidae)—its surveillance and control in Germany. J Parasitol Res. 2017;116(3):847–58. 10.1007/s00436-016-5356-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Vavassori L, Saddler A, Müller P. Active dispersal of Aedes albopictus: a mark-release-recapture study using self-marking units. Parasit Vectors. 2019;12(1):583 10.1186/s13071-019-3837-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Neteler M, Metz M, Rocchini D, Rizzoli A, Flacio E, Engeler L, et al. Is Switzerland suitable for the invasion of Aedes albopictus? PLoS One. 2013;8(12):e82090 10.1371/journal.pone.0082090 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Cunze S, Kochmann J, Klimpel S. Global occurrence data improve potential distribution models for Aedes japonicus japonicus in non-native regions. Pest Manag Sci. 2019. 10.1002/ps.5710 [DOI] [PubMed] [Google Scholar]
  • 73.Ravasi D, Guidi V, Flacio E, Luthy P, Perron K, Ludin S, et al. Investigation of temperature conditions in Swiss urban and suburban microhabitats for the overwintering suitability of diapausing Aedes albopictus eggs. Parasit Vectors. 2018;11(1):212 10.1186/s13071-018-2803-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Biebinger S. Überwachung und Bekämpfung der Asiatischen Tigermücke im Kanton Basel-Stadt 2019. Basel: Kantonales Laboratorium BS; 2020. [Google Scholar]
  • 75.Pluskota B, Jöst A, Augsten X, Stelzner L, Ferstl I, Becker N. Successful overwintering of Aedes albopictus in Germany. J Parasitol Res. 2016;115(8):3245–7. 10.1007/s00436-016-5078-2 [DOI] [PubMed] [Google Scholar]
  • 76.Walther D, Scheuch DE, Kampen H. The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) in Germany: Local reproduction and overwintering. Acta Trop. 2017;166:186–92. 10.1016/j.actatropica.2016.11.024 [DOI] [PubMed] [Google Scholar]
PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0008705.r001

Decision Letter 0

Amy C Morrison, Mariangela Bonizzoni

1 Jul 2020

Dear Dr Mueller,

Thank you very much for submitting your manuscript "Surveillance of invasive Aedes mosquitoes along Swiss traffic axes reveals different dispersal modes for Aedes albopictus and Ae. japonicus" for consideration at PLOS Neglected Tropical Diseases. As with all papers reviewed by the journal, your manuscript was reviewed by members of the editorial board and by several independent reviewers. The reviewers appreciated the attention to an important topic. Based on the reviews, we are likely to accept this manuscript for publication, providing that you modify the manuscript according to the review recommendations.

Please prepare and submit your revised manuscript within 30 days. If you anticipate any delay, please let us know the expected resubmission date by replying to this email.  

When you are ready to resubmit, please upload the following:

[1] A letter containing a detailed list of your responses to all review comments, and a description of the changes you have made in the manuscript. 

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out

[2] Two versions of the revised manuscript: one with either highlights or tracked changes denoting where the text has been changed; the other a clean version (uploaded as the manuscript file).

Important additional instructions are given below your reviewer comments.

Thank you again for your submission to our journal. We hope that our editorial process has been constructive so far, and we welcome your feedback at any time. Please don't hesitate to contact us if you have any questions or comments.

Sincerely,

Mariangela Bonizzoni

Associate Editor

PLOS Neglected Tropical Diseases

Amy Morrison

Deputy Editor

PLOS Neglected Tropical Diseases

***********************

Reviewer's Responses to Questions

Key Review Criteria Required for Acceptance?

As you describe the new analyses required for acceptance, please consider the following:

Methods

-Are the objectives of the study clearly articulated with a clear testable hypothesis stated?

-Is the study design appropriate to address the stated objectives?

-Is the population clearly described and appropriate for the hypothesis being tested?

-Is the sample size sufficient to ensure adequate power to address the hypothesis being tested?

-Were correct statistical analysis used to support conclusions?

-Are there concerns about ethical or regulatory requirements being met?

Reviewer #1: (No Response)

Reviewer #2: Methods are appropriate and statistical analyses are sound.

--------------------

Results

-Does the analysis presented match the analysis plan?

-Are the results clearly and completely presented?

-Are the figures (Tables, Images) of sufficient quality for clarity?

Reviewer #1: (No Response)

Reviewer #2: Results are in line with the objectives of the study and completely presented. Figures and tables are enough

--------------------

Conclusions

-Are the conclusions supported by the data presented?

-Are the limitations of analysis clearly described?

-Do the authors discuss how these data can be helpful to advance our understanding of the topic under study?

-Is public health relevance addressed?

Reviewer #1: (No Response)

Reviewer #2: Conclusions are supported by the results.

--------------------

Editorial and Data Presentation Modifications?

Use this section for editorial suggestions as well as relatively minor modifications of existing data that would enhance clarity. If the only modifications needed are minor and/or editorial, you may wish to recommend “Minor Revision” or “Accept”.

Reviewer #1: (No Response)

Reviewer #2: (No Response)

--------------------

Summary and General Comments

Use this section to provide overall comments, discuss strengths/weaknesses of the study, novelty, significance, general execution and scholarship. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. If requesting major revision, please articulate the new experiments that are needed.

Reviewer #1: The authors monitored alien Aedes mosquitoes along Swiss traffic axes with ovitraps (egg collection) and BG Sentinel traps (adults) – from June-September 2013-2018. Aedes albopictus, Ae. japonicus and Ae. koreicus were documented. Based on their results Ae. albopictus and Ae. koreicus are passively spread while Ae. japonicus is spreading actively.

This manuscript is of excellent quality and provides important information about the alien Aedes mosquito situation in Switzerland. It is also of high relevance for public health.

Some minor modifications are recommended (and I apologize that I mention our studies but it would be of interest to compare and discuss)

Line 20: You could also include Zika here

Line 38: These Aedes mosquitoes are mainly of relevance for human medicine

entire manuscript: Please unify – Ae. japonicus or Ae. japonicus japonicus

entire manuscript: use of invasive – We all know that Ae. albopictus is an invasive species - however, the status of invasiveness in the Central and Eastern Alpine regions remain unclear (outcompetition of indigenous mosquitoes beside establishment). Therefore, it is recommended to use potential invasive or alien

Fuehrer et al. (2020 – PLoS NTDs) published a study about these mosquitoes at high ways in the Eastern Alps region of Austria (Tyrol) a few days ago. It is recommended to compare results.

Line 118: Please provide information which BG-Sentinel generation was used

Line 228: New paragraph after koreicus

Change Culex pipiens s.s. to Culex pipiens complex

General question: Did you observe any altitude differences? We observed Ae. japonicus in mountainous areas above 850 m (Schoener et al. 2019)

Line 383: Change , to .

Line 407: Cx. torrentium abundance – change to “… north of the Swiss Alps” or modify – The statement is not true for the entire northern to the Alps regions (e.g. Zittra et al. 2016; “…. Under-representation of Cx. torrentium in carbon dioxide baited traps is commonly observed”).

Reviewer #2: The manuscript of Muller et al. reports a 6-years survey aimed at recording the potential presence of invasive mosquitoes (Aedes albopictus, Aedes koreicus and Aedes j. japonicus) in Switzerland at selected sites. The study is straightforward and properly conducted. It is evident the huge work done to obtain this set of data, which demonstrated its usefulness in detecting all the three invasive species, allowing also to hypothesize their spreading strategies through the country. I have only a few minor comments:

Lines 93-96: the introduction seems to me unbalanced in describing dispersal and invasiveness of Aedes albopictus while no information is given for the other two Aedes on which the manuscript is focused. I suggest a few more words about distribution and potential invasiveness of Ae. koreicus and Ae. japonicus in order to give a more complete picture of the potential risk of invasion in Switzerland.

Table 1: please explain in caption the meaning of the asterisk next to the number in BG sentinel column (I guess to highlight the traps with the presence of CO2 supply).

Lines 245-257: it could be interesting to know if the BG sentinel traps baited with BG lure+CO2 collected differently to the others with just the BG lure and if this affected data analysis in terms of detection of invasive species.

--------------------

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: Yes: Hans-Peter Fuehrer

Reviewer #2: No

Figure Files:

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

Data Requirements:

Please note that, as a condition of publication, PLOS' data policy requires that you make available all data used to draw the conclusions outlined in your manuscript. Data must be deposited in an appropriate repository, included within the body of the manuscript, or uploaded as supporting information. This includes all numerical values that were used to generate graphs, histograms etc.. For an example see here: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001908#s5.

Reproducibility:

To enhance the reproducibility of your results, PLOS recommends that you deposit laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see http://journals.plos.org/plosntds/s/submission-guidelines#loc-materials-and-methods

PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0008705.r003

Decision Letter 1

Amy C Morrison, Mariangela Bonizzoni

12 Aug 2020

Dear Dr Mueller,

We are pleased to inform you that your manuscript 'Surveillance of invasive Aedes mosquitoes along Swiss traffic axes reveals different dispersal modes for Aedes albopictus and Ae. japonicus' has been provisionally accepted for publication in PLOS Neglected Tropical Diseases.

Before your manuscript can be formally accepted you will need to complete some formatting changes, which you will receive in a follow up email. A member of our team will be in touch with a set of requests.

Please note that your manuscript will not be scheduled for publication until you have made the required changes, so a swift response is appreciated.

IMPORTANT: The editorial review process is now complete. PLOS will only permit corrections to spelling, formatting or significant scientific errors from this point onwards. Requests for major changes, or any which affect the scientific understanding of your work, will cause delays to the publication date of your manuscript.

Should you, your institution's press office or the journal office choose to press release your paper, you will automatically be opted out of early publication. We ask that you notify us now if you or your institution is planning to press release the article. All press must be co-ordinated with PLOS.

Thank you again for supporting Open Access publishing; we are looking forward to publishing your work in PLOS Neglected Tropical Diseases.

Best regards,

Mariangela Bonizzoni

Associate Editor

PLOS Neglected Tropical Diseases

Amy Morrison

Deputy Editor

PLOS Neglected Tropical Diseases

***********************************************************

PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0008705.r004

Acceptance letter

Amy C Morrison, Mariangela Bonizzoni

17 Sep 2020

Dear Dr Mueller,

We are delighted to inform you that your manuscript, "Surveillance of invasive Aedes mosquitoes along Swiss traffic axes reveals different dispersal modes for Aedes albopictus and Ae. japonicus," has been formally accepted for publication in PLOS Neglected Tropical Diseases.

We have now passed your article onto the PLOS Production Department who will complete the rest of the publication process. All authors will receive a confirmation email upon publication.

The corresponding author will soon be receiving a typeset proof for review, to ensure errors have not been introduced during production. Please review the PDF proof of your manuscript carefully, as this is the last chance to correct any scientific or type-setting errors. Please note that major changes, or those which affect the scientific understanding of the work, will likely cause delays to the publication date of your manuscript. Note: Proofs for Front Matter articles (Editorial, Viewpoint, Symposium, Review, etc...) are generated on a different schedule and may not be made available as quickly.

Soon after your final files are uploaded, the early version of your manuscript will be published online unless you opted out of this process. The date of the early version will be your article's publication date. The final article will be published to the same URL, and all versions of the paper will be accessible to readers.

Thank you again for supporting open-access publishing; we are looking forward to publishing your work in PLOS Neglected Tropical Diseases.

Best regards,

Shaden Kamhawi

co-Editor-in-Chief

PLOS Neglected Tropical Diseases

Paul Brindley

co-Editor-in-Chief

PLOS Neglected Tropical Diseases

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Data. Original data set with egg counts for each wooden slat.

    Each line corresponds to a single observation. "sitecode" = code of the sampling site; "trapid" = unique identifier of the trap; "year" = sampling year; "round" = sampling round (round 1 to round 6); "date" = date when the slat was recovered from the ovitrap; "status" = indicates whether the trap was functional or not ("1" = the trap was working ok, "0" = there was a problem with the trap); "n.eggs" = egg count; "n.maldi" = number of eggs measured with MALDI-TOF MS; "species" = mosquito species; "albopictus" = presence of Ae. albopictus eggs ("1" = yes, "0" = no); "japonicus" = presence of Ae. japonicus eggs ("1" = yes, "0" = no); "koreicus" = presence of Ae. koreicus eggs ("1" = yes, "0" = no); "geniculatus" = presence of Ae. geniculatus eggs ("1" = yes, "0" = no); "aedes" = presence of Aedes spp. eggs ("1" = yes, "0" = no); "site" = name of the sampling site; "sitetype" type of the sampling site ("Autobahn" = motorway service area, "Bahnhof" = railway station; "Flughafen" = airport, "Hafen" = commercial harbor, "Stadt" = city); "canton" = acronym of the Swiss canton (NUTS-3) where the sampling site was located; "long" = geographical longitude in the World Geodetic System format WGS84; "lat" = geographical latitude in the World Geodetic System format WGS84; "altitude" = altitude of the sampling site in metres.

    (CSV)

    S2 Data. Original data set from the BG-Sentinel traps.

    Each line corresponds to a single observation. "sitecode" = code of the sampling site; "location" = name of the sampling site; "trapid" = unique identifier of the trap; "year" = sampling year; "round" = sampling round (round 1 to round 6); "CO2" = indicates whether the trap was equipped with CO2 (can be "With CO2" or "Without CO2"); "long" = geographical longitude in the World Geodetic System format WGS84; "lat" = geographical latitude in the World Geodetic System format WGS84; "date.set" = date when the trap was set; "date.control" = date when the catch bag was removed from the trap; "status" = indicates whether the trap was functional or not ("ok" = the trap was working ok, "Altered" = there was a problem with the trap); "species" = mosquito species; "n.adults" = adult count (from the same species and sex); "sex" = sex; "id.method" = method of species identification ("MALDI-TOF MS" = identification with MALDI-TOF MS, "Morphology" = morphological identification); "sitetype" = type of the sampling site ("Autobahn" = motorway service area, "Flughafen" = airport, "Hafen" = commercial harbor, "Stadt" = city); "canton" = acronym of the Swiss canton (NUTS-3) where the sampling site was located; "altitude" = altitude of the sampling site in metres.

    (CSV)

    Attachment

    Submitted filename: renamed_47604.docx

    Data Availability Statement

    All relevant data are within the manuscript and its Supporting Information files.


    Articles from PLoS Neglected Tropical Diseases are provided here courtesy of PLOS

    RESOURCES