Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2020 Sep 20;40(9):1307–1312. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2020.09.13

纳米羟基磷灰石对牙本质表面矿化及吸附铅离子的作用

Effect of nanohydroxyapatite on surface mineralization in acid-etched dentinal tubules and adsorption of lead ions

Jianzhen YANG 1, Peiyan Yuan 1, Chengxia LIU 1, Ping LIU 1, Huili NING 1, Pingping XU 1,*
PMCID: PMC7544580  PMID: 32990241

Abstract

目的

研究纳米羟基磷灰石(nHA)对脱矿牙本质小管的表面矿化作用及对模拟污水中铅离子的吸附作用。

方法

选择牙冠完好无损、新鲜拔除的前磨牙和磨牙制作离体牙本质片各30个,使用10%的枸橼酸酸蚀处理牙本质片2 min,建立小管开放的牙本质敏感模型。脱矿牙本质片用随机数字表法分组,10片/组。空白对照组:蒸馏水刷洗;HA组:0.2 g HA刷洗;n HA组:0.2 g n HA刷洗。每天早晚分别用蒸馏水、0.2 g HA和0.2 g nHA刷洗牙本质片表面2 min,连续7 d,表面处理后扫描电镜(SEM)观察牙本质片表面情况,能谱仪(EDS)分析钙、磷原子百分比并采用SPSS20.0软件进行统计学分析。配制系列浓度的HA悬液和nHA悬液,分别取1 mL与50 mL初始浓度为1 mg/L的铅离子溶液反应24 h,电感耦合等离子发射光谱仪(ICP)测定上清液中铅离子浓度,计算铅离子吸附率及吸附能力。

结果

扫描电镜下空白对照组的牙本质片表面光滑,牙本质小管空虚。HA组的牙本质片表面为块状颗粒物覆盖,附着疏通,管径缩小。nHA组的表面堵塞物细腻、均质,附着紧密,牙本质小管管径明显缩小。经HA刷洗后可显著增加牙本质片表面钙、磷原子百分比,增加量为:nHA组>HA组>空白对照组(P < 0.000),差异具有统计学意义。在本实验的浓度范围内,HA对铅离子的吸附随浓度升高而下降,最高附率达83.01%,nHA对铅离子的吸附率随着浓度升高先升高后达吸附平衡,吸附率高达98.79%。并发现HA对铅离子的吸附能力倍数与其浓度倍数呈良好的线性相关关系。

结论

nHA较普通HA具有更好的脱矿牙本质表面矿化能力和铅离子吸附能力。

Keywords: 纳米羟基磷灰石, 牙本质过敏症, 表面矿化, 铅离子, 吸附


牙本质敏感症(DH)是口腔常见病和多发病之一,在人群中的发病率高达42%[1],并且趋向于年轻化[2]。近年来,抗敏活性成分如:氟化物、氯化锶、草酸钙、HA等因安全、有效而被广泛应用于抗敏产品中[3-5]。其中,HA是人牙和骨的重要组成,具有无毒无害、生物相容性好、生物活性高等优良特点,并可自然堵塞牙本质小管、促进表面再矿化,已成为抗敏界的新宠被学者们大量研究[6-10]

经济和社会的发展造福人类的同时,也使我们带来了重金属污染等环境问题。铅污染是最普遍的重金属污染之一,可损害人体各个系统和器官。研究表明,HA是一种优异的吸附剂,可吸附水和土壤中的重金属离子,尤其对铅离子具有良好的吸附效果[11-14],且不会造成二次污染,是一种绿色环保的吸附剂。将HA作为活性成分添加到牙膏中,在发挥其牙齿清洁、抗敏作用后,作为生活污水排放到环境中还能发挥其吸附重金属离子的作用,一举多得,也给大众的刷牙行为增添了环保意义。

目前,国内外对nHA抗敏作用的研究多是作为活性成分添加在牙膏、漱口水等口腔护理产品中,研究其脱敏效果[15-18]。对于纯HA的抗敏感作用研究较少,尤其对纯HA的表面再矿化作用研究不多。Besinis等[19-20]发现HA复合离子可使完全脱矿的牙本质发生再矿化,且颗粒直径越小,其再矿化能力越强。本课题组前期研究表明,不同粒径的HA对牙本质小管堵塞效果良好且耐磨性能佳[22],本课题进一步研究nHA对脱矿牙本质小管的表面再矿化作用及对铅离子的吸附性能,进一步探讨nHA的性能,为nHA构建环保型功效牙膏的应用提供理论支持。

1. 材料和方法

1.1. 主要实验器材及试剂

nHA及HA(北京高德威金属科技开发有限责任公司);带能谱S-3700N场发射扫描电子显微镜(Hitachi);电动牙刷(Oral B,P & G);电子天平(Sartorius);电感藕合等离子发射光谱仪(Leeman);硝酸铅(广州化学试剂厂);恒温水浴箱(天津路达)。

人工唾液的配制:0.4 g NaCl、0.4 g KCl、0.1 g NaH2PO4、0.005 g Na2S,2H2O、1 g Urea、0.795 g CaCl2,2H2O、1000 mL去离子水。溶液的pH值用0.01% HCl,0.05% NaOH调整至6.8(37 ℃)。

1.2. 对脱矿牙本质小管表面再矿化实验

1.2.1. 脱矿牙本质片的制备

于南方医科大学口腔医院口腔颌面外科门诊收集牙冠完好、无裂纹、无龋坏、未行任何处理的前磨牙及磨牙各30颗,要求拔牙时间在1月以内,患者知情同意。刮净软硬组织后浸泡于10%甲醛中性溶液中。

取冠部1.5 mm厚的牙本质,使用高速手机磨除并磨砂纸逐级抛光,最后制成表面平整、光滑、厚度约为1 mm的牙本质片,清洁后干燥备用。

牙本质片放入10%枸橼酸中处理2 min,取出后超声波清洗3次,10 min/次,得到脱矿牙本质片。

1.2.2. 实验处理

随机将30个前磨牙牙本质片空白对照组、HA组和nHA组。将0.2 g实验品润湿于牙本质片上后,电动牙刷刷洗每个牙本质片2 min,去离子水轻轻冲掉残留HA及nHA,空白对照组的牙本质片仅用电动牙刷醮蒸馏水刷洗。处理结束后,所有牙本质片分别保存在新鲜人工唾液中,并放入恒温水浴箱中37 ℃水浴。连续刷洗7 d,2次/d。

将30个磨牙牙本质片进行相同的分组及处理。

每组中随机选择8个牙本质片共24个,将牙本质片干燥,表面处理后行扫描电镜观察表面,能谱仪检测表面钙(Ca)、磷(P)元素原子百分比。

1.2.3. 统计学分析

应用SPSS20.0软件进行数据分析。Ca、P原子百分比数据以均数±标准差表示,采用Kruskall Wallis H法比较3组间的差异。检验水准为α=0.05。

1.3. 铅离子的吸附实验方法

1.3.1. 铅离子溶液的配制

电子天平称取1.599 g硝酸铅,加去离子水逐级溶解,并使用磁力搅拌器搅拌均匀,配成铅离子浓度为1 mg/L的溶液。

1.3.2. HA悬液的配制

电子天平称取nHA和普通HA各0.030 g,分别置于100 mL烧杯中,加双蒸水至标线,超声振荡3次,30 s/次,磁力搅拌器搅拌成均匀的混悬液,此时2种HA混悬液浓度均为0.6 g/L。移液枪分别吸取0.025、0.050、0.100、0.200、0.300、0.400、0.500、0.600、0.700、0.800 mL HA混悬液,再分别吸取0.975、0.950、0.900、0.800、0.700、0.600、0.500、0.400、0.300、0.200 mL双蒸水,两者混合后配制成浓度分别为0.015、0.03、0.06、0.12、0.18、0.24、0.30、0.36、0.42、0.48 g/L的HA混悬液和nHA悬液。

1.3.3. 铅离子吸附

常温常压下,将上述浓度梯度的HA悬液和nHA悬液中分别加入50 mL浓度为1 mg/L的铅离子溶液中,10份为1组。室温下静置反应24 h后离心、过滤,ICP测定滤液中残余铅离子浓度,计算铅离子吸附率,比较HA及nHA吸附铅离子的能力。

铅离子吸附率的计算公式如下:

1.3.3. 1[23-25]

P:吸附率(%)     Ct:水样中铅离子溶液浓度(mg/L)

Vt:反应体系的体积(L)     V0:未反应前铅离子溶液的体积(L)

C0:铅离子溶液的初始浓度(mg/L)

HA对铅离子的吸附能力计算公式:

1.3.3. 2[26-27]

q:吸附量(mg/g)     Ct:水样中铅离子溶液浓度(mg/L)

Vt:反应体系的体积(L)     V0:未反应前铅离子溶液的体积(L)

C0:铅离子溶液的初始浓度(mg/L)     m:HA的质量(g)

1.3.4. 线性相关关系

HA的浓度从小到大依次记为ρ1ρ2,···,ρ10;相应的吸附能力分别记Q1Q2,···,Q10

吸附能力倍数为

1.3.4. 3

浓度倒数倍数为

1.3.4. 4

2. 结果

2.1. 扫描电镜结果

扫描电镜下见空白对照组的牙本质小管呈开放状态,小管空虚,管间牙本质光滑,偶见杂质覆盖。经HA处理的牙本质片表面为颗粒物覆盖,牙本质小管管径明显变小,小管口为较疏松的块状颗粒物堵塞。nHA组的牙本质片牙本质小管管径明显缩小,管间牙本质为细腻、均质的颗粒物覆盖(图 1~2)。

1.

1

前磨牙组经HA处理7 d后牙本质片的扫描电镜图像

Scanning electron microscopy of dentin disks prepared from premolars after HA treatment for 7 days (Original magnification: ×5000).A: Negative control group; B: HAgroup; C: nHAgroup.

2.

2

磨牙组经HA处理7 d后牙本质片的扫描电镜图像

Scanning electron microscopy of dentin disks prepared from molars after HA treatment for 7 days (×5000). A: negative control group; B: HAgroup; C: nHAgroup.

2.2. 钙、磷原子百分比结果

因牙本质片处理后都存放于人工唾液中,所以HA组及nHA组牙本质片上高出的钙、磷原子均来源于刷洗的HA。牙本质片的钙、磷原子百分比结果如图 3所示:脱矿牙本质片经过HA处理后表面钙、磷原子百分比明显升高,均远远高于空白对照组,以nHA组最高(P < 0.05)。

3.

3

牙本质片上的钙、磷原子百分比情况

Percentage of calcium and phosphorus atoms in the dentin discs. **P < 0.01 vs blank control.

2.3. 牙本质片表面矿化结果的统计学分析

钙、磷原子百分比资料因方差不齐,使用非参数检验方法(Kruskall Wallis H法)进行统计学检验。不同组间的钙、磷原子百分比比较结果P < 0.05,前磨牙和磨牙Ca、P原子百分比的组间差异具有统计学意义(表 1)。根据平均秩次可得:nHA组>HA组>空白对照组。

1.

牙本质片处理7 d后钙、磷元素原子百分比的检测情况

Calcium and phosphorus atom percentages in the dentin discs after 7 days of treatment (n=8)

Group Average rank
Calcium Phosphorus
Premolar Molar Premolar Molar
Negative control 8.50 6.00 4.62 6.00
HA 12.75 11.00 13.94 11.50
n HA 20.25 20.50 18.94 20.00
H 19.860 17.360 16.891 15.920
P < 0.000 < 0.000 < 0.000 < 0.000

2.4. nHA对铅离子的吸附效果

nHA对铅离子的吸附情况如图 4所示:普通HA组对铅离子的吸附随着HA浓度的逐渐升高略有下降,吸附率为73.8%~3.01%。nHA组对铅离子的吸附率达86.79%以上,初始浓度时吸附率随着nHA浓度的升高逐渐升高,吸附率高达98.79%,当nHA浓度为0.12 g/L以上时,吸附率略有下降,吸附率围绕在96%上下波动,达到吸附平衡。

4.

4

nHA和HA对铅离子吸附率(静置1 d)

Lead ion adsorption rate of nHA and HA after reaction for 1 day.

2.5. nHA对铅离子吸附能力的线性相关关系

随着HA悬液浓度的增加,其对铅离子的吸附能力逐渐下降,并呈倍数关系(图 5)。通过研究HA对铅离子的吸附能力倍数与其浓度倒数倍数的关系(公式2和3),并进行线性拟合(图 6),HA对铅离子的吸附能力倍数与其浓度倒数倍数满足线性关系,两者之间具有良好的线性相关关系。

5.

5

nHA和HA悬液浓度与吸附量之间的关系

Relationship between HA concentration and adsorption quantity.

6.

6

HA浓度倒数倍数与吸附能力倍数关系图

Relationship between reciprocal of concentration multiples and adsorption capacity multiples of HA.

3. 讨论

3.1. nHA对脱矿牙本质片的表面矿化作用

离体牙本质片牙本质小管阻塞实验已成为研究抗牙本质过敏材料的金标准[8, 28]。研究证明牙本质小管中的液体流动由牙本质的表面特征决定[29]。因此,改变牙本质小管的直径可降低牙本质小管中的液体流动,从而缓解敏感症状。寻找能够完全或部分堵塞暴露的牙本质小管继而减少小管内液体流动的生物活性材料逐渐增加。这其中,nHA作为牙体硬组织的主要结构,具有极佳的生物活性,并可诱导细胞的自然反应和矿化过程。因此,nHA成为非常理想的天然堵塞牙本质小管的材料。研究表明,nHA独立或配合其他成分一起可以堵塞甚至楔入牙本质小管,且nHA的抗敏作用优于氟或精氨酸,因其能够在牙体硬组织表面形成仿生化的磷灰石和表面矿化作用[7-8]

HA是牙本质的矿物相,其中钙和磷含量的增加提示牙本质的再矿化[19]。本研究结果显示,脱矿牙本质片经过HA刷洗7 d后,SEM结果显示空白对照组的牙本质片表面空虚,而HA组和nHA组的表面均为颗粒物覆盖,管径明显缩小,EDS结果显示表面钙、磷原子百分比明显升高,远远高于空白对照组。在本实验设计的情况下,脱矿牙本质片上钙、磷只能来源于两个方面:一是通过刷洗进入牙本质小管内或残留在牙本质片上的HA,二是人工唾液。与空白对照组相比,HA组和nHA组的钙、磷升高更多,且具有统计学意义,这些多出的钙、磷只能是来源于HA本身。这是因为,刷洗的HA与牙本质中天然HA间存在着同质吸附作用,可沉积在暴露的小管表面达到封闭小管的作用[9]。且刷牙后的牙本质片浸泡于人工唾液中,表面残留的HA溶解时向溶液中释放出钙、磷离子,游离钙离子可与牙本质中的活性成分结合形成络合物沉积于牙本质上,促进牙本质表面再矿化[10]。学者们通过使用傅里叶变换红外光谱计、激光共聚焦等先进仪器检测牙本质片表面沉积物的波普峰值、pH等指标,分析得到沉积物是碳酸盐、正磷酸盐等类HA物质,说明牙本质表面发生了再矿化[28],而不是简单的HA残留。

扫描电镜结果显示nHA组在牙本质片上附着更均质、更密实,对牙本质小管的堵塞更紧密,对钙、磷原子百分比数据进行统计分析后也发现,再矿化能力均为:nHA组>HA组>空白对照组,前磨牙和磨牙组的结果一致。这说明nHA组的再矿化能力最强,与国内外研究结果一致[10, 23, 30-31]。这得益于:天然牙本质中HA也为纳米级,nHA粒子更接近天然牙本质中的HA,同质吸附作用更强;nHA粒径远较牙本质小管内径(900 nm~2.5 μm)小,不但能依靠同质相吸作用沉积在牙本质表面,还能借助粒径优势沉积在小管内部[23]。综上可见,nHA具有纳米尺寸效应,其高表面能及高生物活性使其较普通HA更易与牙本质结合并沉积在脱矿牙本质表面,从而具有更好的堵塞牙本质小管作用和再矿化能力[10, 28]

前期研究表明,HA对脱矿牙本质片具有很好的堵塞效果[22]。而本实验结果进一步表明,HA对对脱矿牙本质片具有很好的表面矿化效果。这说明,HA存在于脱矿牙本质片上和进入牙本质小管内,既可堵塞牙本质小管,同时HA本身钙、磷丰富,可以增加表面钙、磷原子百分比,并提供钙、磷来源,促进牙本质表面再矿化,两者相辅相成、共同促进,有效缓解牙本质敏感症。

3.2. nHA对模拟污水中铅离子的吸附作用

作为国家环保部优先控制排放的5种水体重金属污染物之一,铅废水是一种高毒性污染物。对于铅废水的防治,吸附法具有简单高效、成本低廉等特点,被公认为处理铅废水最有效、最经济的方法之一。人工合成的HA具有多孔结构、比表面积大等优点,对污水和土壤中的铅离子具有优良的吸附能力[11-13, 32]。本实验结果发现,HA对模拟污水中的潜力的吸附率达73.8%以上,尤其是nHA的吸附率高达98.76%。这是因为nHA具有表面效应和量子尺寸效应,它比普通HA具有更大的比表面积、更高的溶解度和表面能,从而对铅离子有更强的吸附能力。

本实验发现,随着HA悬液浓度的升高,HA对铅离子的吸附能力呈倍数降低。这是因为在铅离子总量一定的情况下,随着HA悬液浓度的逐渐升高,HA的量从不足到饱和再到过量,使得吸附量与浓度间呈现出回归曲线关系。通过拟合HA对铅离子的吸附能力倍数与其浓度倒数倍数的关系发现,两者具有良好的线性相关关系。这说明HA对铅离子的吸附量较大,吸附能力强,HA浓度的轻微改变即可引起吸附量的明显改变。所以,吸附能力倍数和浓度倒数倍数的线性关系可用于评价HA的吸附能力。

研究表明,HA对铅离子的吸附机理主要有离子交换、表面络合、溶解-沉淀,吸附作用稳定,不会二次污染[14, 32-33]。本实验中模拟污水中铅离子的浓度为1.0 g/L,为国家Ⅲ级排放标准的2倍,经HA吸附后,残余铅离子浓度 < 0.5 g/L,完全达到国家排放标准。说明HA,尤其是nHA是一种应用潜力很大的新型环境友好型功能材料。

综上所述,nHA具有更好的脱矿牙本质表面矿化能力和铅离子吸附能力,是一种良好的具有牙齿脱敏效果的生物活性材料和吸附重金属污染离子的环保功能材料。

本实验由同一人使用功率恒定的电动牙刷,以恒定的施力对牙本质片刷洗2 min,持续一周来模拟日常刷牙,避免了实验误差。刷洗后的牙本质片放于人工唾液中并37 ℃恒温水浴保存,很好地模拟了口腔内环境。因此,本实验结果对nHA的临床应用具有有一定的理论参考意义。本实验仍有不足。口腔环境复杂,唾液流速、磨耗、酸蚀等众多因素均会影响牙齿表面再矿化,且本实验只测定了7 d时间,对远期的表面再矿化结果未涉及。本实验仅研究了nHA对铅离子的吸附,对其他重金属离子及混合离子的吸附作用未涉及。这些都有待于进一步研究。

Biography

杨剑珍,博士,副主任医师,E-mail: yangjzh2010@163.com

Funding Statement

广东省医学科学技术研究基金项目(A2017540);广州市科技计划项目(201707010199)

Contributor Information

杨 剑珍 (Jianzhen YANG), Email: yangjzh2010@163.com.

徐 平平 (Pingping XU), Email: gdskqyykjk@163.com.

References

  • 1.West NX, Sanz M, Lussi A, et al. Prevalence of dentine hypersensitivity and study of associated factors: a european population-based cross-sectional study. J Dent. 2013;41(10):841–51. doi: 10.1016/j.jdent.2013.07.017. [West NX, Sanz M, Lussi A, et al. Prevalence of dentine hypersensitivity and study of associated factors: a european population-based cross-sectional study[J]. J Dent, 2013, 41(10): 841-51.] [DOI] [PubMed] [Google Scholar]
  • 2.Alcântara PM, Barroso NFF, Botelho AM, et al. Associated factors to cervical dentin hypersensitivity in adults: a transversal study. BMC Oral Health. 2018;18(1):155. doi: 10.1186/s12903-018-0616-1. [Alcântara PM, Barroso NFF, Botelho AM, et al. Associated factors to cervical dentin hypersensitivity in adults: a transversal study[J]. BMC Oral Health, 2018, 18(1): 155.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Parkinson CR, Hughes N, Hall C, et al. Three randomized clinical trials to assess the short-term efficacy of anhydrous 0.454% w/w stannous fluoride dentifrices for the relief of dentin hypersensitivity. Am J Dent. 2016;29(1):25–32. [Parkinson CR, Hughes N, Hall C, et al. Three randomized clinical trials to assess the short-term efficacy of anhydrous 0.454% w/w stannous fluoride dentifrices for the relief of dentin hypersensitivity[J].Am J Dent, 2016, 29(1): 25-32.] [PubMed] [Google Scholar]
  • 4.Lynch MC, Perfekt R, McGuire JA, et al. Potassium oxalate mouthrinse reduces dentinal hypersensitivity: a randomized controlled clinical study. JAm DentAssoc. 2018;149(7):608–18. doi: 10.1016/j.adaj.2018.02.027. [Lynch MC, Perfekt R, McGuire JA, et al. Potassium oxalate mouthrinse reduces dentinal hypersensitivity: a randomized controlled clinical study[J]. JAm DentAssoc, 2018, 149(7): 608-18.] [DOI] [PubMed] [Google Scholar]
  • 5.Medvecky L, Stulajterova R, Giretova M, et al. Effect of tetracalcium phosphate/monetite toothpaste on dentin remineralization and tubule occlusion in vitro. Dent Mater. 2018;34(3):442–51. doi: 10.1016/j.dental.2017.11.022. [Medvecky L, Stulajterova R, Giretova M, et al. Effect of tetracalcium phosphate/monetite toothpaste on dentin remineralization and tubule occlusion in vitro[J]. Dent Mater, 2018, 34(3): 442-51.] [DOI] [PubMed] [Google Scholar]
  • 6.Anand S, Rejula F, Sam JVG, et al. Comparative evaluation of effect of nano-hydroxyapatite and 8% arginine containing toothpastes in managing dentin hypersensitivity: double blind randomized clinical trial. Acta Medica (Hradec Kralove) 2017;60(3):114–9. doi: 10.14712/18059694.2018.3. [Anand S, Rejula F, Sam JVG, et al. Comparative evaluation of effect of nano-hydroxyapatite and 8% arginine containing toothpastes in managing dentin hypersensitivity: double blind randomized clinical trial[J].Acta Medica (Hradec Kralove), 2017, 60(3): 114-9.] [DOI] [PubMed] [Google Scholar]
  • 7.Kulal R, Jayanti I, Sambashivaiah S, et al. An in-vitro comparison of nano hydroxyapatite, novamin and proargin desensitizing toothpastes-A SEM study. J Clin Diagn Res. 2016;10(10):ZC51–ZC54. doi: 10.7860/JCDR/2016/18991.8649. [Kulal R, Jayanti I, Sambashivaiah S, et al. An in-vitro comparison of nano hydroxyapatite, novamin and proargin desensitizing toothpastes-A SEM study[J]. J Clin Diagn Res, 2016, 10(10): ZC51- ZC54.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Yu J, Yang HY, Li K, et al. A novel application of nanohydroxyapatite/ mesoporous silica biocomposite on treating dentin hypersensitivity: an in vitro study. J Dent. 2016;50:21–9. doi: 10.1016/j.jdent.2016.04.005. [Yu J, Yang HY, Li K, et al.A novel application of nanohydroxyapatite/ mesoporous silica biocomposite on treating dentin hypersensitivity: an in vitro study[J]. J Dent, 2016, 50: 21-9.] [DOI] [PubMed] [Google Scholar]
  • 9.毕 良佳, 李 虹, 刘 来发, et al. 羟磷灰石同质间吸附效果及对牙本质小管封闭效果的研究. 口腔医学研究. 2006;22(5):501–3. doi: 10.3969/j.issn.1671-7651.2006.05.012. [毕良佳, 李虹, 刘来发, 等.羟磷灰石同质间吸附效果及对牙本质小管封闭效果的研究[J].口腔医学研究, 2006, 22(5): 501-3.] [DOI] [Google Scholar]
  • 10.Daas I, Badr S, Osman E. Comparison between fluoride and nanohydroxyapatite in remineralizing initial enamel lesion: an in vitro study. J Contemp Dent Pract. 2018;19(3):306–12. doi: 10.5005/jp-journals-10024-2258. [Daas I, Badr S, Osman E. Comparison between fluoride and nanohydroxyapatite in remineralizing initial enamel lesion: an in vitro study[J]. J Contemp Dent Pract, 2018, 19(3): 306-12.] [DOI] [PubMed] [Google Scholar]
  • 11.Xing JF, Hu TT, Cang L, et al. Remediation of copper contaminated soil by using different particle sizes of apatite: a field experiment. Springerplus. 2016;5(1):1182. doi: 10.1186/s40064-016-2492-y. [Xing JF, Hu TT, Cang L, et al. Remediation of copper contaminated soil by using different particle sizes of apatite: a field experiment[J]. Springerplus, 2016, 5(1): 1182.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Li Q, Chen XJ, Chen X, et al. Cadmium removal from soil by fulvic acid-aided hydroxyapatite nanofluid. Chemosphere. 2019;215:227–33. doi: 10.1016/j.chemosphere.2018.10.031. [Li Q, Chen XJ, Chen X, et al. Cadmium removal from soil by fulvic acid-aided hydroxyapatite nanofluid[J]. Chemosphere, 2019, 215: 227-33.] [DOI] [PubMed] [Google Scholar]
  • 13.杨 剑珍, 申 晓青, 刘 成霞, et al. 不同粒径纳米羟基磷灰石牙膏对铅离子的吸附研究. 中山大学学报:自然科学版. 2016;55(4):68–74. doi: 10.13471/j.cnki.acta.snus.2016.04.012. [杨剑珍, 申晓青, 刘成霞, 等.不同粒径纳米羟基磷灰石牙膏对铅离子的吸附研究[J].中山大学学报:自然科学版, 2016, 55(4): 68-74.] [DOI] [Google Scholar]
  • 14.Xu HY, Yang L, Wang P, et al. Kinetic research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite. J Environ Manage. 2008;86(1):319–28. doi: 10.1016/j.jenvman.2006.12.011. [Xu HY, Yang L, Wang P, et al. Kinetic research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite[J]. J Environ Manage, 2008, 86(1): 319-28.] [DOI] [PubMed] [Google Scholar]
  • 15.Daood U, Fawzy AS. Minimally invasive high-intensity focused ultrasound (HIFU) improves dentine remineralization with hydroxyapatite nanorods. Dent Mater. 2020;36(3):456–67. doi: 10.1016/j.dental.2020.01.005. [Daood U, Fawzy AS. Minimally invasive high-intensity focused ultrasound (HIFU) improves dentine remineralization with hydroxyapatite nanorods[J]. Dent Mater, 2020, 36(3): 456-67.] [DOI] [PubMed] [Google Scholar]
  • 16.Toledano M, Muñoz-Soto E, Aguilera FS, et al. The mineralizing effect of zinc oxide-modified hydroxyapatite-based sealer on radicular dentin. Clin Oral Investig. 2020;24(1):285–99. doi: 10.1007/s00784-019-02938-5. [Toledano M, Muñoz-Soto E, Aguilera FS, et al. The mineralizing effect of zinc oxide-modified hydroxyapatite-based sealer on radicular dentin[J]. Clin Oral Investig, 2020, 24(1): 285-99.] [DOI] [PubMed] [Google Scholar]
  • 17.Thimmaiah C, Shetty P, Shetty SB, et al. Comparative analysis of the remineralization potential of CPP-ACP with Fluoride, Tri-Calcium Phosphate and Nano Hydroxyapatite using SEM/EDX-An in vitro study. J Clin Exp Dent. 2019;11(12):e1120–6. doi: 10.4317/jced.55941. [Thimmaiah C, Shetty P, Shetty SB, et al. Comparative analysis of the remineralization potential of CPP-ACP with Fluoride, Tri-Calcium Phosphate and Nano Hydroxyapatite using SEM/EDX-An in vitro study[J]. J Clin Exp Dent, 2019, 11(12): e1120-6.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.郑 娟, 谢 晓芳. 不同含量的羟基磷灰石牙膏对牙本质小管的封堵作用研究. 口腔护理用品工业. 2018;28(2):21–4. [郑娟, 谢晓芳.不同含量的羟基磷灰石牙膏对牙本质小管的封堵作用研究[J].口腔护理用品工业, 2018, 28(2): 21-4.] [Google Scholar]
  • 19.Besinis A, van Noort R, Martin N. Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles. Dent Mater. 2014;30(3):249–62. doi: 10.1016/j.dental.2013.11.014. [Besinis A, van Noort R, Martin N. Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles[J]. Dent Mater, 2014, 30(3): 249-62.] [DOI] [PubMed] [Google Scholar]
  • 20.Besinis A, van Noort R, Martin N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent Mater. 2012;28(9):1012–23. doi: 10.1016/j.dental.2012.05.007. [Besinis A, van Noort R, Martin N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles[J]. Dent Mater, 2012, 28(9): 1012-23.] [DOI] [PubMed] [Google Scholar]
  • 21.于 清华, 刘 红艳, 刘 志国. 纳米羟基磷灰石封闭牙本质小管扫描电镜观察. 中国医药(北京) 2015;(11):1663–6. doi: 10.3760/cma.j.issn.1673-4777.2015.11.029. [于清华, 刘红艳, 刘志国.纳米羟基磷灰石封闭牙本质小管扫描电镜观察[J].中国医药(北京). 2015(11):1663-6.] [DOI] [Google Scholar]
  • 22.杨 剑珍, 申 晓青, 刘 成霞, et al. 不同粒径和形貌的羟基磷灰石对牙本质小管的堵塞作用及耐磨性研究. 口腔疾病防治. 2017;25(5):288–93. doi: 10.12016/j.issn.2096-1456.2017.05.003. [杨剑珍, 申晓青, 刘成霞, 等.不同粒径和形貌的羟基磷灰石对牙本质小管的堵塞作用及耐磨性研究[J].口腔疾病防治, 2017, 25(5): 288- 93.] [DOI] [Google Scholar]
  • 23.Yuan PY, Liu SY, Lv Y, et al. Effect of a dentifrice containing different particle sizes of hydroxyapatite on dentin tubule occlusion and aqueous Cr (Ⅵ) sorption. Int J Nanomedicine. 2019;14:5243–56. doi: 10.2147/IJN.S205804. [Yuan PY, Liu SY, Lv Y, et al. Effect of a dentifrice containing different particle sizes of hydroxyapatite on dentin tubule occlusion and aqueous Cr (Ⅵ) sorption[J]. Int J Nanomedicine, 2019, 14: 5243-56.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Yuan PY, Shen XQ, Liu J, et al. Effects of dentifrice containing hydroxyapatite on dentinal tubule occlusion and aqueous hexavalent chromium cations sorption: a preliminary study. PLoS One. 2012;7(12):e45283. doi: 10.1371/journal.pone.0045283. [Yuan PY, Shen XQ, Liu J, et al. Effects of dentifrice containing hydroxyapatite on dentinal tubule occlusion and aqueous hexavalent chromium cations sorption: a preliminary study[J]. PLoS One, 2012, 7(12): e45283. DOI:10.1371/journal.pone.0045283.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.张 浩, 张 思文, 黄 晓佩. 羟基磷灰石合成及吸附铅离子研究. 广东化工. 2018;45(16):93–6. doi: 10.3969/j.issn.1007-1865.2018.16.041. [张浩, 张思文, 黄晓佩.羟基磷灰石合成及吸附铅离子研究[J].广东化工, 2018, 45(16): 93-6.] [DOI] [Google Scholar]
  • 26.Corami A, Mignardi S, Ferrini V. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. J Hazard Mater. 2007;146(1/2):164–70. doi: 10.1016/j.jhazmat.2006.12.003. [Corami A, Mignardi S, Ferrini V. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite[J]. J Hazard Mater, 2007, 146(1/2): 164-70.] [DOI] [PubMed] [Google Scholar]
  • 27.Corami A, Mignardi S, Ferrini V. Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. J Colloid Interface Sci. 2008;317(2):402–8. doi: 10.1016/j.jcis.2007.09.075. [Corami A, Mignardi S, Ferrini V. Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite[J]. J Colloid Interface Sci, 2008, 317(2): 402-8.] [DOI] [PubMed] [Google Scholar]
  • 28.Baglar S, Erdem U, Dogan M, et al. Dentinal tubule occluding capability of nano-hydroxyapatite; The in-vitro evaluation. Microsc Res Tech. 2018;81(8):843–54. doi: 10.1002/jemt.23046. [Baglar S, Erdem U, Dogan M, et al. Dentinal tubule occluding capability of nano-hydroxyapatite; The in-vitro evaluation[J]. Microsc Res Tech, 2018, 81(8): 843-54.] [DOI] [PubMed] [Google Scholar]
  • 29.Sena FJ. Dentinal permeability in assessing therapeutic agents. Dent Clin NorthAm. 1990;34(3):475–90. [Sena FJ. Dentinal permeability in assessing therapeutic agents[J]. Dent Clin NorthAm, 1990, 34(3): 475-90.] [PubMed] [Google Scholar]
  • 30.Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol. 2010;5(8):565–9. doi: 10.1038/nnano.2010.83. [Hannig M, Hannig C. Nanomaterials in preventive dentistry[J]. Nat Nanotechnol, 2010, 5(8): 565-9.] [DOI] [PubMed] [Google Scholar]
  • 31.胡 蓓蓓, 白 海, 贾 婉萍, et al. 纳米羟基磷灰石对邻面去釉后再矿化的效果. 口腔疾病防治. 2019;27(4):231–5. doi: 10.12016/j.issn.2096-1456.2019.04.005. [胡蓓蓓, 白海, 贾婉萍, 等.纳米羟基磷灰石对邻面去釉后再矿化的效果[J].口腔疾病防治, 2019, 27(4): 231-5.] [DOI] [Google Scholar]
  • 32.Wang YF, Li RZ, Liu WZ, et al. Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils. Environ Sci Pollut Res Int. 2019;26(26):26674–84. doi: 10.1007/s11356-019-05887-4. [Wang YF, Li RZ, Liu WZ, et al. Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils[J]. Environ Sci Pollut Res Int, 2019, 26(26): 26674-84.] [DOI] [PubMed] [Google Scholar]
  • 33.Liang SX, Xi XC, Ding L, et al. Immobilization mechanism of nanohydroxyapatite on lead in the ryegrass rhizosphere soil under root confinement. Bull Environ Contam Toxicol. 2019;103(2):330–5. doi: 10.1007/s00128-019-02665-3. [Liang SX, Xi XC, Ding L, et al. Immobilization mechanism of nanohydroxyapatite on lead in the ryegrass rhizosphere soil under root confinement[J]. Bull Environ Contam Toxicol, 2019, 103(2): 330-5.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES