Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2020 Sep 20;40(9):1332–1339. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2020.09.17

碱制法炮制可显著增强斑蝥的抗肿瘤作用

Alkaline processing of cantharidin can significanty improve the antitumor activity of cantharidin

Xian LI 1,2,3, Shanshan LI 1, Jinlong PANG 1, Fuhao HUANG 1, Bin GUO 1, Hao LIU 1,*
PMCID: PMC7544588  PMID: 32990225

Abstract

Objective

To assess the changes in the effects of cantharides after alkaline processing on proliferation, migration, invasion, and apoptosis of human lung cancer A549 cells.

Methods

Human non-small cell lung cancer A549 cells were treated with cantharis extract (CTE) from raw cantharides and alkali processed cantharis extract (ACE). The proliferation of the cells was detected with CCK-8 assay, and the cell migration and invasion were assessed using wound healing assay and Transwell assay, respectively. The expressions of MMP1 and MMP2 in the cells were detected using Western blotting, the contents of IFN-γ, IL-1β and TNF-α were measured with ELISA, and cell apoptosis was analyzed with annexinV/PI fluorescent staining.

Results

Both CTE and ACE significantly reduced the viability and inhibited the migration of A549 cells, and high-dose ACE produced a significantly stronger inhibitory effect on cell migration than high- dose CTE (P < 0.01). ACE showed more potent inhibitory effect than CTE on the invasion of A549 cells (P < 0.01). Both CTE and ACE inhibited the expressions of MMP1 and MMP2 and up-regulated the level of IFN-γ without significantly affecting the levels of IL-1β and TNF-α. Annexin V/PI staining showed that both CTE and ACE caused apoptosis of A549 cells, but ACE had a stronger proapoptotic effect.

Conclusion

Processing with sodium hydroxide can significantly improve the antitumor activity of cantharides, which inhibits the proliferation, migration and invasion of A549 cells possibly by down-regulating the expressions of MMP1 and MMP2, promoting apoptosis and increasing the level of IFN-γ.

Keywords: alkaline processed cantharis, apoptosis, inflammatory factors, migration, invasion


肺癌是临床常见恶性肿瘤之一,其发病率和死亡率居全球首位[1-3]。肺癌的西医治疗主要以放疗、化疗、手术、分子靶向治疗和免疫治疗为主,它们在提高肺癌临床疗效的同时,耐药性及毒副反应严重影响了患者的生存质量。因此针对肺癌应开展多学科的综合治疗,有助于改善肺癌患者生存状态[4-8]。长期的临床和实验研究发现,中医药在治疗肺癌方面疗效显著[9-11]

斑蝥是芫青科昆虫南方大斑蝥(Myiabris phalerata Pallas)或黄黑小斑蝥(Myiabris cichoriiLinnaeus)的干燥虫体。其性热、味辛,有大毒,具有破血逐瘀、散结消肿、攻毒蚀疮的功效[12],是我国最早发现具有抗肿瘤作用的中药之一,可用于肺癌[13]、食管癌[14]、膀胱癌[15]和结肠癌[16]等的治疗。因斑蝥毒性较强,必须经过炮制方可在临床上使用。斑蝥传统的炮制方法为米炒法,即通过降低药物中斑蝥素的含量达到降低毒性的目的。现代研究表明斑蝥素不仅是斑蝥的毒性成分更是其抗癌的活性成分[17]。鉴于斑蝥素双重性的这一特点,现代采用低浓度的药用氢氧化钠溶液碱制法炮制斑蝥,让斑蝥素在虫体内转化成斑蝥酸钠,充分提高斑蝥饮片的利用度。

目前关于碱制斑蝥的研究主要集中在炮制工艺的优化[18]和饮片质量控制[19-20]等方面,针对碱制斑蝥增强抗癌疗效的作用机制研究却鲜有报道。因此本实验选取人肺癌A549细胞,通过观察碱制法炮制后斑蝥对细胞增殖、迁移、侵袭的影响,以及对MMP1、MMP2蛋白表达和炎症因子IFN-γ、IL-1β、TNF-α水平的影响,初步阐明碱制斑蝥炮制方法的科学内涵,更好的指导碱制斑蝥炮制品在肺癌治疗中的临床应用。

1. 材料和方法

1.1. 药材与试剂

斑蝥药材购自安徽亳州,经蚌埠医学院李红梅老师鉴定为南方大斑蝥的干燥体。高糖DMEM培养基(Gibco)、胎牛血清(Gibco)、Annexin V细胞凋亡检测试剂盒(Bestbio)、CCK-8溶液(Biosharp)、Transwell、Matrigel基质胶(Corning)、ELISA Kit(Elabscience Biotechnology Co.Ltd)、DMSO(Amreso)、MMP1、MMP2、β-actin抗体(Cell Signaling Technology)、WBKLSO100底物显色试剂(Millipore)、BCA定量试剂盒(Beyotime)。

1.2. 仪器

酶联免疫检测仪(Thermo Fisher Scientific)、倒置显微镜(Olympus)、蛋白印迹系统(Bio-RAD)、二氧化碳孵育温箱(Thermo Fisher Scientific)、超低温冰箱(Thermo Fisher Scientific)、台式高速冷冻离心机(Sigma)、纯水机(Hi-tech Instruments Co.Ltd)、压力蒸汽消毒器(上海医用核子仪器厂)、电子天平(Sartorius)。

1.3. 细胞株

人肺癌A549细胞株,购于北纳生物,由安徽省生化药物研究工程技术中心冻存。

1.4. 方法

1.4.1. 样品制备

取斑蝥药材适量,剥去头、足、翅,备用。取净制后的生斑蝥饮片200 g,以6倍于生饮片的0.75% NaOH水溶液,50 ℃~60 ℃浸渍6 h,炮制,干燥,得碱制斑蝥的炮制品[20]

1.4.2. 药液制备

取生斑蝥、碱制斑蝥饮片各100 g,分别加5倍量水,浸泡1 h,煎煮1 h,过滤;滤渣加入3倍量水煎煮30 min,过滤,分别合并滤液,浓缩至含生药量5 g/mL浓度。取适量含生药5 g/mL的生斑蝥提取液(CTE)、碱制斑蝥提取液(ACE),经热压灭菌后,冷藏保存备用[21]

1.4.3. CCK-8法检测CTE与ACE对A549细胞增殖的影响

A549细胞以一定密度(1×106/孔)接种于96孔板后,继续培养,待细胞长至80%融合时,根据文献[22-23],设置CTE与ACE分组,分别给予CTE与ACE药液(0、1.25、2.5、5、10、20 μg/mL),设置5个复孔,培养24、48、72 h后,避光加入CCK-8溶液,继续培养2 h,酶标仪测量各孔的吸光值A450 nm

1.4.4. 划痕实验检测CTE与ACE对A549细胞迁移作用的影响

取6孔板,用记号笔在孔板底部划两道平行线,A549细胞以一定密度(12×105/孔)接种到6孔细胞培养板中,生长24 h后,单层细胞融合度应达到80%,不更换培养基,用新的黄枪头垂直辅助线轻轻的在单层培养细胞间划痕,平行划3道,与孔板底部记号笔画线垂直,且枪头尽量与板孔的底部垂直,不要倾斜。划1次换1枪头,用PBS轻轻的清洗板孔2次,以去除脱落细胞。根据CCK-8实验结果,设置CTE与ACE分组(0、1.25、2.5、5 μg/mL),并设置复孔,每孔添加不含血清新鲜培养基并分别给予CTE与ACE药液,设置复孔。放入37 ℃ 5% CO2培养箱,培养。按0 h,18 h取样,拍照。划痕迁移百分率=(初始划痕宽度-迁移后划痕宽度)/初始划痕宽度×100%。

1.4.5. Transwell检测CTE与ACE对A549细胞侵袭作用的影响

24孔培养板中放入细胞侵袭小室Transwell。将融解的Matrigel胶与无血清培养基以1:8混合,均匀铺至Transwell小室底部(上室面),置于37 ℃培养箱进行凝固约1~2 h,使其呈凝胶状。将生长至对数期的细胞消化,计数,无血清培养基稀释至一定比例,均匀接种至Transwell小室底部(5 × 104/室),再将Transwell小室放入加了10% FBS DMEM的孔板中培养;培养细胞24 h后,取出Transwell小室,用棉签擦拭小室内部细胞及残余的Matrigel胶,PBS清洗3次,多聚甲醛对小室底部背面穿过的细胞进行固定,结晶紫对其进行染色,镜检计数并分析作图。侵袭抑制率=(1-给药组平均侵袭细胞数/对照组平均侵袭细胞数)×100%。

1.4.6. Western-Blot检测MMP1和MMP2蛋白表达

取对数期生长细胞A549接种于60 mm培养皿中,每个皿加入3 mL含2×105细胞的新鲜培养液,于37 ℃,CO2体积分数为5%的恒温培养箱中培养24 h,弃去皿中培养液,并分别加入浓度为5 μmol/L的CTE和ACE培养液后置于恒温培养箱培养24 h,收集细胞并加入适量蛋白裂解液,于冰上裂解30 min后置于-20 ℃裂解过夜后,4 ℃低温离心机离心(12 000 r/min,30 min),提取上清液,使用BCA蛋白定量试剂盒进行蛋白定量并加入蛋白裂解液使各组蛋白浓度一致后于95 ℃煮沸使蛋白变性。每组取60 μg蛋白,进行SDS-PAGE电泳,电泳完成后转膜至PVDF膜,5%脱脂牛奶封闭4 h,TPBS洗膜3次,一抗孵育过夜后TPBS洗膜3次,二抗孵育2.5 h,TPBS洗膜3次后使用ECL试剂盒发光显影,凝胶成像系统获取图像。采用Image J测定各显示条带的灰度值,以目的条带与β-actin灰度值的比值为目的蛋白的相对表达量。

1.4.7. ELISA试剂盒检测CTE与ACE对A549细胞炎症因子水平的影响

A549细胞以一定密度接种到48孔细胞培养板中,生长24 h后,单层细胞融合度应达到70%~80%,加入CTE与ACE药液,给药24 h后,收集细胞上清,采用ELISA法对细胞上清炎症因子IFN-γ、TNF-α、IL-1β按试剂盒说明进行检测。30 min内使用全波长酶标仪检测最大吸光度A450 nm。最终检测到的IFN-γ、TNF-α、IL-1β以pg/mL的形式表示。

1.4.8. Annexin V/PI染色检测CTE与ACE对A549细胞凋亡的影响

A549细胞以一定密度(1×106)接种到24孔细胞培养板中,生长24 h后,单层细胞融合度应达到70%~80%,加入CTE与ACE药液,给药24 h后,弃去培养基,PBS清洗2遍,避光加入Annexin V-FITC染色15 min,后加入PI探针染色5 min后,加入PBS清洗2遍,洗去多余的探针,弃去PBS,加入4%多聚甲醛固定1 min。荧光显微镜下观察并拍照。

1.4.9. 统计学方法

所有数据均采用均数±标准差表示,采用Graphad Prism 7进行处理。两组数据采用t检验,多组数据比较采用方差分析,随后采用Newman-Keuls test检验,比较组间差异,P < 0.05为差异具有统计学意义。

2. 结果

2.1. CTE与ACE对A549细胞增殖的影响

不同浓度的CTE与ACE药液(0、1.25、2.50、5.00、10、20 μg/mL)加入到A549细胞中,孵育24、48、72 h。观察CTE与ACE对A549细胞增殖的影响。CTE与ACE均可显著抑制A549细胞的增殖(P < 0.05,图 1),且随着时间和浓度的增加抑制增殖作用增强,但二者之间差异无统计学意义。CTE对A549细胞作用24、48、72 h的IC50分别是4.13、0.51、0.42 μg/mL。ACE对A549细胞作用24、48、72 h的IC50分别是3.17、0.46、0.38 μg/mL。

1.

1

CTE和ACE对A549细胞增殖的抑制作用

CTE and ACE inhibit the proliferation of A549 cells. The proliferation of A549 cells was assessed with CCK-8 assay after the cells were incubated with CTE or ACE for 24 h (A), 48 h (B) or 72 h (C). Data are presented as Mean±SD. *P < 0.05 vs 0 μg/mL for CTE, P < 0.05 vs 0 μg/mL for ACE.

2.2. CTE与ACE对A549细胞迁移作用的影响

划痕实验观察CTE与ACE对A549细胞迁移能力的影响。与对照组相比,非毒剂量下CTE和ACE对A549细胞迁移具有一定的抑制作用,但无显著差异。CTE高浓度组可明显抑制A549细胞的迁移,ACE中浓度组以及高浓度组均可显著抑制A549细胞的迁移。且与CTE高浓度组相比,ACE高浓度组抑制A549细胞迁移的作用更强,抑制作用差异具有统计学意义(P < 0.05,表 1图 2)。

1.

CTE和ACE对A549细胞迁移的影响

Wound healing assay of A549 cells incubated with CTE and ACE (Mean±SD, n=3)

Group Concentration (μg/mL) Migration rate (%)
*P < 0.05 vs control, P < 0.05 vs CTE 5 μg/mL group.
Control 0 1.09±0.11
1.25 0.84±0.17
CTE 2.5 0.86±0.08
5 0.68±0.15*
1.25 0.95±0.09
ACE 2.5 0.75±0.09*
5 0.44±0.06*△

2.

2

CTE和ACE对A549细胞迁移的影响

Wound healing assay of A549 cells incubated with CTE and ACE for 18 h. A: Wound healing assay, B: Quantitative analysis of the results. *P < 0.05 vs control, P < 0.05.

2.3. CTE与ACE对A549细胞侵袭作用的影响

Transwell结果显示,不同浓度的CTE与ACE作用于A549细胞,随着给药浓度增加,细胞侵袭能力明显减弱(P < 0.05)。与对照组相比,CTE组的侵袭抑制率分别是33.1%、57.2%、69.9%。ACE组的侵袭抑制率分别是29.5%、67.5%、72.8%,与CTE组相比,细胞侵袭抑制作用更强,但差异无统计学意义(表 2图 3)。

2.

CTE和ACE对A549细胞侵袭的影响

CTE and ACE inhibits the invasion of A549 cells (Mean± SD, n=3)

Group Concentration (μg/mL) Invasion cell numbers
*P < 0.05 vs control.
Control 0 836.00±103.18
1.25 496.00±8.72*
CTE 2.5 318.67±12.06*
5 226.67±13.32*
1.25 525.33±12.86*
ACE 2.5 246.00±6.00*
5 198.00±8.54*

3.

3

CTE和ACE对A549细胞侵袭的影响

CTE and ACE inhibits the invasion of A549 cells as assessed with Transwell assay (Original magnification: × 40). A: Transwell assay; B: Quantitative analysis of the results. Data were presented as Mean±SD. *P < 0.05 vs control.

2.4. CTE与ACE对A549细胞侵袭迁移相关蛋白表达的影响

Western blot结果表明,5 μg/mLCTE与ACE作用于A549细胞24 h后,MMP1和MMP2蛋白表达量明显下降,且ACE组与CTE组相比,差异具有统计学意义(图 4)。

4.

4

CTE和ACE对A549细胞MMP1和MMP2表达的影响

MMP1 and MMP2 expressions detected by Western blotting in A549 cells incubated with CTE or ACE for 24 h. *P < 0.05.

2.5. CTE与ACE对A549细胞IL-1β、TNF-α、IFN-γ表达的影响

ELISA结果显示,给予不同浓度的CTE与ACE后,炎症因子IFN-γ的表达均随药物浓度增大而上调,且ACE组的上调作用更为显著,差异具有显著性。IL-1β、TNF-α则未随药物浓度的变化发生显著性差异(表 3图 5)。

3.

CTE和ACE对A549细胞IFN-γ、IL-1β和TNF-α表达的影响

IFN-γ, IL-1β and TNF-α of A549 cells were measured by ELISA kits after treated with CTE or ACE (Mean±SD, n=3)

Group Concentration (μg/mL) IFN-γ (pg/mL) IL-1β (pg/mL) TNF-α (pg/mL)
*P < 0.05 vs control, P < 0.05 vs CTE 2.5 μg/mL group.
Control 0 615.91±23.68 4.82±0.41 6.33±0.75
1.25 672.82±20.60 4.76±0.55 6.05±0.80
CTE 2.5 748.82±27.07* 4.09±0.25 5.86±0.58
5 968.27±27.24* 3.85±0.59 5.76±0.92
1.25 783.18±26.56* 4.52±0.63 5.19±0.72
ACE 2.5 1061.18±88.62*△ 4.58±0.54 5.94±0.82
5 1303.91±34.21*△ 3.73±0.57 4.81±0.92

5.

5

CTE和ACE对A549细胞IFN-γ、IL-1β和TNF-α表达的影响

Levels of IFN- γ, IL-1β and TNF-α measured by ELISA in A549 cells treated with CTE or ACE for 24 h. A: IFN-γ expression, B: IL-1β expression, C: TNF-α expression. *P < 0.05.

2.6. CTE与ACE对A549细胞凋亡作用的影响

A549细胞与CTE与ACE药液共孵育24h后,采用Annexin V/PI染色,观察细胞凋亡情况。如图 6所示,早期凋亡细胞膜呈绿色荧光(白色箭头所示),晚期凋亡细胞核呈红色荧光且细胞膜呈绿色荧光(红色箭头所示)。给予CTE与ACE药液后,A549细胞的红绿荧光均显著增加。

6.

6

Annexin V/PI染色检测CTE和ACE对A549细胞凋亡的影响

Annexin V/PI staining for detecting apoptotic A549 cells after treatment with CTE or ACE for 24 h. The fluorescence images were taken by fluorescence microscopy in 3 independent experiments (×200).

3. 讨论

现代药理与毒理研究表明斑蝥体内含有的斑蝥素既是其抗肿瘤活性成分,又是其引起肝肾胃中毒甚至坏死的毒性成分。传统米炒法通过加热使斑蝥素部分升华,降低含量,从而使其毒性降低。碱制法是使斑蝥素直接在虫体内转化成斑蝥酸钠,最大限度保持斑蝥的抗癌活性。为进一步探讨碱制法炮制对斑蝥抗肿瘤作用的影响,我们开展了以下实验研究。

本实验通过CCK-8实验,发现CTE与ACE均对A549细胞具有增殖抑制作用。划痕实验中,低剂量CTE与ACE对A549细胞具有一定的抑制作用,随药物浓度增大,ACE组明显降低了A549细胞的迁移率,与CTE组相比,作用效果更强。Transwell实验发现,CTE与ACE均可抑制A549细胞的侵袭,并且随着药物浓度的增加,抑制作用更为显著。

基质金属蛋白酶家族(MMPs)是一组需要钙离子和锌离子等作为辅助因子的蛋白酶家族,能够靶向生长因子、细胞表面受体等多种胞外蛋白,参与多种生物学过程。MMPs能够降解多种细胞外基质蛋白成分,从而破坏细胞屏障,促进肿瘤细胞的侵袭迁移[24]。有研究表明,MMP1能够靶向纤维状胶原进行降解,并且能够降解细胞外基质中的其他蛋白,如明胶、纤连蛋白等[25-26]。同时MMP1对趋化因子等具有活性,参与肿瘤细胞增殖、侵袭迁移过程中的组织重塑,因此MMP1在肿瘤细胞侵袭迁移中发挥了重要作用[27]。MMP2是基质金属蛋白酶家族的另一成员,对血管基底膜中的胶原具有降解作用,促进肿瘤组织新生血管的形成[28]。还有研究表明MMP2还可以通过激活ERK信号通路,参与肿瘤细胞的侵袭和迁移,而抑制MMP2有助于抑制肿瘤细胞的侵袭迁移[29-30]。大量研究表明MMP1、MMP2通过调节多种信号通路参与肺癌的发生发展和转移[31-33]。本研究发现CTE和ACE降低MMP1以及MMP2的表达,提示CTE和ACE可能对肺癌的侵袭迁移具有抑制作用,且ACE作用相对更强。

炎症因子的异常表达在肿瘤的发生发展中发挥着重要的作用。大量研究表明,IFN-γ在抗肿瘤反应中起了重要作用,并且诱导PDL-1的表达,通过JAK/STAT3、PI3K/AKT等信号通路,诱导癌细胞死亡发生铁死亡、细胞外trap细胞死亡等多种形式的细胞死亡[34-37]。IL-1β是肺癌中另一个重要的炎症因子。肺癌中IL-1β通常会大量表达,参与肿瘤细胞的发生和发展[38-39],特异性的抑制NF-κB促进pro-IL-1β扩增,从而使IL-1β高表达并促进内皮细胞增殖,为肿瘤的进展提供有利条件,抑制IL-1β具有潜在的抑制癌症作用,可能是癌症治疗的一个靶点[40-41]。而有的研究表明,IL-1β可以使转移启动癌细胞处于于ZEB1阳性分化状态,阻止转移启动癌细胞产生高增殖的E-cadherin阳性后代,从而抑制癌细胞的增殖和转移[42]。有研究表明TNF-α通过激活caspase-8和caspase-9促进肺癌细胞凋亡[43]。此外TNF-α还可以通过激活RIP 1诱导细胞坏死[44]。Tanaka等[45]研究表明,TNF-α可以激活NF-κB,而激活的NF-κB又可以进一步促进TNF-α的分泌,从而增加MMPs的释放,促进癌细胞的转移和侵袭。本研究采用ELISA法检测A549细胞IFN-γ、IL-1β和TNF-α的表达水平,值得注意的是,CTE和ACE均可显著的促进IFN-γ表达的作用,且ACE促进IFN-γ表达的作用与CTE相比更强,差异具有显著性,但二者对IL-1β和TNF-α的表达,没有显著影响。提示我们,CTE和ACE可能特异性的通过调控INF-γ的表达而发挥作用。而通过Annexin V/PI染色实验发现,CTE和ACE均能诱导A549细胞的凋亡。

综上所述,碱制斑蝥在抑制A549细胞迁移侵袭和促进A549凋亡方面比生斑蝥具有更强的作用效果,且碱制斑蝥上调炎症因子IFN-γ的作用更显著。

这可能是碱制法炮制后斑蝥抗肿瘤作用增强的主要途径。通过本实验我们阐明了碱制法炮制斑蝥的科学内涵,后续课题组将依据以上实验结果,围绕相关信号通路及蛋白进一步探讨碱制斑蝥抑制A549细胞迁移侵袭以及诱发铁死亡的作用机制,为碱制斑蝥炮制品在肺癌临床治疗中的合理应用,提供实验依据。

Biography

李娴,博士,副教授,E-mail: lixian0813@126.com

Funding Statement

国家自然科学基金(81372899);安徽省自然科学基金(1908085QH37);安徽省教育厅高校优秀青年人才支持计划项目(gxyq2019037);蚌埠医学院横向课题(2019-BYHX-03)

Supported by National Natural Science Foundation of China (81372899)

Contributor Information

李 娴 (Xian LI), Email: lixian0813@126.com.

刘 浩 (Hao LIU), Email: liuhao6886@foxmail.com.

References

  • 1.Groome PA, Bolejack V, Crowley JJ, et al. The IASLC Lung Cancer Staging Project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2(8):694–705. doi: 10.1097/JTO.0b013e31812d05d5. [Groome PA, Bolejack V, Crowley JJ, et al. The IASLC Lung Cancer Staging Project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours[J]. J Thorac Oncol, 2007, 2(8): 694-705.] [DOI] [PubMed] [Google Scholar]
  • 2.Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492. [Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.] [DOI] [PubMed] [Google Scholar]
  • 3.陈 万青, 张 思维, 邹 小农. 中国肺癌发病死亡的估计和流行趋势研究. 中国肺癌杂志. 2010;13(5):488–93. [陈万青, 张思维, 邹小农.中国肺癌发病死亡的估计和流行趋势研究[J].中国肺癌杂志, 2010, 13(5): 488-93.] [Google Scholar]
  • 4.Lemjabbar-Alaoui H, Hassan OU, Yang YW, et al. Lung cancer: Biology and treatment options. Biochim Biophys Acta. 2015;1856(2):189–210. doi: 10.1016/j.bbcan.2015.08.002. [Lemjabbar-Alaoui H, Hassan OU, Yang YW, et al. Lung cancer: Biology and treatment options[J]. Biochim Biophys Acta, 2015, 1856(2): 189-210.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Redman JM, Gulley JL, Madan RA. Combining immunotherapies for the treatment of prostate cancer. Urol Oncol. 2017;35(12):694–700. doi: 10.1016/j.urolonc.2017.09.024. [Redman JM, Gulley JL, Madan RA. Combining immunotherapies for the treatment of prostate cancer[J]. Urol Oncol, 2017, 35(12): 694-700.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Xia LL, Liu YY, Wang Y. PD-1/PD-L1 blockade therapy in advanced non- small- cell lung cancer: current status and future directions. Oncologist. 2019;24(Suppl 1):S31–41. doi: 10.1634/theoncologist.2019-IO-S1-s05. [Xia LL, Liu YY, Wang Y. PD-1/PD-L1 blockade therapy in advanced non- small- cell lung cancer: current status and future directions[J]. Oncologist, 2019, 24(Suppl 1): S31-41.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wan YC, Dai NN, Tang ZL, et al. Small-molecule Mcl-1 inhibitors: Emerging anti-tumor agents. Eur J Med Chem. 2018;146:471–82. doi: 10.1016/j.ejmech.2018.01.076. [Wan YC, Dai NN, Tang ZL, et al. Small-molecule Mcl-1 inhibitors: Emerging anti-tumor agents[J]. Eur J Med Chem, 2018, 146: 471-82.] [DOI] [PubMed] [Google Scholar]
  • 8.Loi M, Desideri I, Greto D, et al. Radiotherapy in the age of cancer immunology: Current concepts and future developments. Crit Rev Oncol Hematol. 2017;112:1–10. doi: 10.1016/j.critrevonc.2017.02.002. [Loi M, Desideri I, Greto D, et al. Radiotherapy in the age of cancer immunology: Current concepts and future developments[J]. Crit Rev Oncol Hematol, 2017, 112: 1-10.] [DOI] [PubMed] [Google Scholar]
  • 9.徐 振晔, 杨 宇飞. 肺癌中西医综合治疗. 北京: 人民卫生出版社; 2002. pp. 8–10. [徐振晔, 杨宇飞.肺癌中西医综合治疗[M].北京:人民卫生出版社, 2002: 8-10.] [Google Scholar]
  • 10.单 孟俊, 张 丽媛, 游 捷. 中医辨证疗法联合化疗治疗老年晚期非小细胞肺癌患者随机对照研究. 中国中西医结合杂志. 2018;38(2):163–7. [单孟俊, 张丽媛, 游捷.中医辨证疗法联合化疗治疗老年晚期非小细胞肺癌患者随机对照研究[J].中国中西医结合杂志, 2018, 38(2): 163-7.] [Google Scholar]
  • 11.吴 琼茜, 刘 苓霜, 姜 怡, et al. 中医辨证疗法联合埃克替尼治疗晚期非小细胞肺癌疗效观察. 中国中西医结合杂志. 2017;37(9):1054–8. [吴琼茜, 刘苓霜, 姜怡, 等.中医辨证疗法联合埃克替尼治疗晚期非小细胞肺癌疗效观察[J].中国中西医结合杂志, 2017, 37(9): 1054-8.] [Google Scholar]
  • 12.国家药典委员会, 中国药典, 一部[M].北京: 中国医药出版社, 2015: 331.
  • 13.张 卫东, 赵 惠儒, 阎 影, et al. 斑蝥素诱导人肺癌A549细胞凋亡及其分子机制的研究. 中华肿瘤杂志. 2005;27(6):330–4. [张卫东, 赵惠儒, 阎影, 等.斑蝥素诱导人肺癌A549细胞凋亡及其分子机制的研究[J].中华肿瘤杂志, 2005, 27(6):330-4.] [PubMed] [Google Scholar]
  • 14.梁 枫, 王 明艳, 许 冬青. 斑蝥酸钠诱导人食管癌Eca109细胞凋亡实验研究. 中国中医药信息杂志. 2007;14(3):22–3. [梁枫, 王明艳, 许冬青.斑蝥酸钠诱导人食管癌Eca109细胞凋亡实验研究[J].中国中医药信息杂志, 2007, 14(3): 22-3.] [Google Scholar]
  • 15.刘 春霞, 马 建国. 斑蝥酸钠对膀胱癌EJ细胞株毒性作用的研究. 江苏大学学报:医学版. 2010;20(5):395–7, 407. [刘春霞, 马建国.斑蝥酸钠对膀胱癌EJ细胞株毒性作用的研究[J].江苏大学学报:医学版, 2010, 20(5): 395-7, 407.] [Google Scholar]
  • 16.王 军辉, 李 国鹏, 吴 君辉. 斑蝥酸钠维生素B6注射液在晚期结直肠癌患者中的应用. 现代医药卫生. 2010;26(6):844–5. [王军辉, 李国鹏, 吴君辉.斑蝥酸钠维生素B6注射液在晚期结直肠癌患者中的应用[J].现代医药卫生, 2010, 26(6): 844-5.] [Google Scholar]
  • 17.方 莲花, 杜 冠华. 中药斑蝥素的历史认识与评价. 中药药理与临床. 2018;34(5):150–2. [方莲花, 杜冠华.中药斑蝥素的历史认识与评价[J].中药药理与临床, 2018, 34(5): 150-2.] [Google Scholar]
  • 18.李 瑞, 刘 娜, 罗 怀浩, et al. 斑蝥5种炮制方法对其指标成分含量的影响. 时珍国医国药. 2018;29(7):1620–2. [李瑞, 刘娜, 罗怀浩, 等.斑蝥5种炮制方法对其指标成分含量的影响[J].时珍国医国药, 2018, 29(7): 1620-2.] [Google Scholar]
  • 19.李 济森, 刘 石涛, 王 平, et al. 斑蝥素衍生化活性及毒性规律研究进展. 中草药. 2019;50(7):1734–8. [李济森, 刘石涛, 王平, 等.斑蝥素衍生化活性及毒性规律研究进展[J].中草药, 2019, 50(7): 1734-8.] [Google Scholar]
  • 20.刘 艳芳, 赵 丽娜, 张 振凌, et al. HPLC法测定碱制斑蝥中斑蝥素的含量. 中华中医药学刊. 2010;28(3):487–8. [刘艳芳, 赵丽娜, 张振凌, 等. HPLC法测定碱制斑蝥中斑蝥素的含量[J].中华中医药学刊, 2010, 28(3): 487-8.] [Google Scholar]
  • 21.张 丽华, 陈 燕, 彭 雨舒, et al. 中药苦参水提液抑制Th17细胞分化的研究. 中药新药与临床药理. 2020;31(3):251–6. [张丽华, 陈燕, 彭雨舒, 等.中药苦参水提液抑制Th17细胞分化的研究[J].中药新药与临床药理, 2020, 31(3): 251-6.] [Google Scholar]
  • 22.Wang WJ, Wu MY, Shen M, et al. Cantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the β-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib. Int J Oncol. 2015;47(5):1912–22. doi: 10.3892/ijo.2015.3156. [Wang WJ, Wu MY, Shen M, et al. Cantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the β-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib[J]. Int J Oncol, 2015, 47(5): 1912-22.] [DOI] [PubMed] [Google Scholar]
  • 23.王 贤英, 杨 琼芳, 谢 香菊. 不同提取方法对斑蝥中斑蝥素含量测定的影响. 中成药. 2010;32(5):871–2. [王贤英, 杨琼芳, 谢香菊.不同提取方法对斑蝥中斑蝥素含量测定的影响[J].中成药, 2010, 32(5): 871-2.] [Google Scholar]
  • 24.Ye RR, Tan CP, Chen BC, et al. Zinc-containing metalloenzymes: inhibition by metal-based anticancer agents. Front Chem. 2020;8:402. doi: 10.3389/fchem.2020.00402. [Ye RR, Tan CP, Chen BC, et al. Zinc-containing metalloenzymes: inhibition by metal-based anticancer agents[J]. Front Chem, 2020, 8: 402.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ren ZL, Cui N, Zhu ML, et al. Placental growth factor reverses decreased vascular and uteroplacental MMP-2 and MMP-9 and increased MMP-1 and MMP-7 and collagen types I and IV in hypertensive pregnancy. Am J Physiol Heart Circ Physiol. 2018;315(1):H33–47. doi: 10.1152/ajpheart.00045.2018. [Ren ZL, Cui N, Zhu ML, et al. Placental growth factor reverses decreased vascular and uteroplacental MMP-2 and MMP-9 and increased MMP-1 and MMP-7 and collagen types I and IV in hypertensive pregnancy[J]. Am J Physiol Heart Circ Physiol, 2018, 315(1): H33-47.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Tan HW, Chen ZS, Chen F, et al. Tryptase promotes the profibrotic phenotype transfer of atrial fibroblasts by PAR2 and PPARγ pathway. Arch Med Res. 2018;49(8):568–75. doi: 10.1016/j.arcmed.2018.12.002. [Tan HW, Chen ZS, Chen F, et al. Tryptase promotes the profibrotic phenotype transfer of atrial fibroblasts by PAR2 and PPARγ pathway[J]. Arch Med Res, 2018, 49(8): 568-75.] [DOI] [PubMed] [Google Scholar]
  • 27.Robert S, Gicquel T, Bodin A, et al. Characterization of the MMP/ TIMP imbalance and collagen production induced by IL-1β or TNF- α release from human hepatic stellate cells. PLoS One. 2016;11(4):e0153118. doi: 10.1371/journal.pone.0153118. [Robert S, Gicquel T, Bodin A, et al. Characterization of the MMP/ TIMP imbalance and collagen production induced by IL-1β or TNF- α release from human hepatic stellate cells[J]. PLoS One, 2016, 11 (4): e0153118.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Xia P, Huang MC, Zhang YT, et al. NCK1 promotes the angiogenesis of cervical squamous carcinoma via Rac1/PAK1/MMP2 signal pathway. Gynecol Oncol. 2019;152(2):387–95. doi: 10.1016/j.ygyno.2018.11.013. [Xia P, Huang MC, Zhang YT, et al. NCK1 promotes the angiogenesis of cervical squamous carcinoma via Rac1/PAK1/MMP2 signal pathway[J]. Gynecol Oncol, 2019, 152(2): 387-95.] [DOI] [PubMed] [Google Scholar]
  • 29.Li J, Guo YW, Duan LL, et al. AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling. Oncotarget. 2017;8(20):33694–703. doi: 10.18632/oncotarget.16624. [Li J, Guo YW, Duan LL, et al. AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling[J]. Oncotarget, 2017, 8(20): 33694-703.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Winerdal ME, Krantz D, Hartana CA, et al. Urinary bladder cancer tregs suppress MMP2 and potentially regulate invasiveness. Cancer Immunol Res. 2018;6(5):528–38. doi: 10.1158/2326-6066.CIR-17-0466. [Winerdal ME, Krantz D, Hartana CA, et al. Urinary bladder cancer tregs suppress MMP2 and potentially regulate invasiveness[J]. Cancer Immunol Res, 2018, 6(5): 528-38.] [DOI] [PubMed] [Google Scholar]
  • 31.Liu K, Xu SH, Chen Z, et al. TRPM7 overexpression enhances the cancer stem cell-like and metastatic phenotypes of lung cancer through modulation of the Hsp90α/uPA/MMP2 signaling pathway. BMC Cancer. 2018;18(1):1167. doi: 10.1186/s12885-018-5050-x. [Liu K, Xu SH, Chen Z, et al. TRPM7 overexpression enhances the cancer stem cell-like and metastatic phenotypes of lung cancer through modulation of the Hsp90α/uPA/MMP2 signaling pathway[J]. BMC Cancer, 2018, 18(1): 1167.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Sauter W, Rosenberger A, Beckmann L, et al. Matrix metallo-proteinase 1 (MMP1) is associated with early-onset lung cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(5):1127–35. doi: 10.1158/1055-9965.EPI-07-2840. [Sauter W, Rosenberger A, Beckmann L, et al. Matrix metallo-proteinase 1 (MMP1) is associated with early-onset lung cancer[J]. Cancer Epidemiol Biomarkers Prev, 2008, 17(5): 1127-35.] [DOI] [PubMed] [Google Scholar]
  • 33.Morishita A, Gerber A, Gow CH, et al. Cell specific matrix metalloproteinase-1 regulates lung metastasis synergistically with smoke exposure. J Cancer Res Forecast. 2018;1(2):1014. [Morishita A, Gerber A, Gow CH, et al. Cell specific matrix metalloproteinase-1 regulates lung metastasis synergistically with smoke exposure[J]. J Cancer Res Forecast, 2018, 1(2): 1014.] [PMC free article] [PubMed] [Google Scholar]
  • 34.Gao Y, Yang JJ, Cai YX, et al. IFN- γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling. Int J Cancer. 2018;143(4):931–43. doi: 10.1002/ijc.31357. [Gao Y, Yang JJ, Cai YX, et al. IFN- γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling[J]. Int J Cancer, 2018, 143(4): 931-43.] [DOI] [PubMed] [Google Scholar]
  • 35.Zhang XH, Zeng YY, Qu QX, et al. PD- L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int J Clin Oncol. 2017;22(6):1026–33. doi: 10.1007/s10147-017-1161-7. [Zhang XH, Zeng YY, Qu QX, et al. PD- L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer[J]. Int J Clin Oncol, 2017, 22(6): 1026-33.] [DOI] [PubMed] [Google Scholar]
  • 36.Wang WM, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4. doi: 10.1038/s41586-019-1170-y. [Wang WM, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569 (7755): 270-4.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Lin CF, Chen CL, Chien, et al. Oxidative stress facilitates IFN- γ-induced mimic extracellular trap cell death in A549 lung epithelial cancer cells. PLoS One. 2016;11(8):e0162157. doi: 10.1371/journal.pone.0162157. [Lin CF, Chen CL, Chien, et al. Oxidative stress facilitates IFN- γ-induced mimic extracellular trap cell death in A549 lung epithelial cancer cells[J]. PLoS One, 2016, 11(8): e0162157.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Vikhreva P, Petrova V, Gokbulut T, et al. TAp73 upregulates IL-1β in cancer cells: Potential biomarker in lung and breast cancer? Biochem Biophys Res Commun. 2017;482(3):498–505. doi: 10.1016/j.bbrc.2016.10.085. [Vikhreva P, Petrova V, Gokbulut T, et al. TAp73 upregulates IL-1β in cancer cells: Potential biomarker in lung and breast cancer[J]? Biochem Biophys Res Commun, 2017, 482(3): 498-505.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Terlizzi M, Colarusso C, Popolo A, et al. IL-1α and IL-1β-producing macrophages populate lung tumor lesions in mice. Oncotarget. 2016;7(36):58181–92. doi: 10.18632/oncotarget.11276. [Terlizzi M, Colarusso C, Popolo A, et al. IL-1α and IL-1β-producing macrophages populate lung tumor lesions in mice[J]. Oncotarget, 2016, 7(36): 58181-92.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.McLoed AG, Sherrill TP, Cheng DS, et al. Neutrophil-derived IL-1β impairs the efficacy of NF-κB inhibitors against lung cancer. Cell Rep. 2016;16(1):120–32. doi: 10.1016/j.celrep.2016.05.085. [McLoed AG, Sherrill TP, Cheng DS, et al. Neutrophil-derived IL-1β impairs the efficacy of NF-κB inhibitors against lung cancer[J]. Cell Rep, 2016, 16(1): 120-32.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Jenkins BJ. Potential efficacy of interleukin-1β inhibition in lung cancer. Lancet. 2017;390(10105):1813–4. doi: 10.1016/S0140-6736(17)32289-4. [Jenkins BJ. Potential efficacy of interleukin-1β inhibition in lung cancer[J]. Lancet, 2017, 390(10105): 1813-4.] [DOI] [PubMed] [Google Scholar]
  • 42.Castano Z, San Juan BP, Spiegel A, et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol. 2018;20(9):1084–97. doi: 10.1038/s41556-018-0173-5. [Castano Z, San Juan BP, Spiegel A, et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization[J]. Nat Cell Biol, 2018, 20(9): 1084-97.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.You BR, Han BR, Park WH. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells. Oncotarget. 2017;8(11):17726–37. doi: 10.18632/oncotarget.14628. [You BR, Han BR, Park WH. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells[J]. Oncotarget, 2017, 8(11): 17726-37.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Lin X, Chen QS, Huang C, et al. CYLD promotes TNF-α-induced cell necrosis mediated by RIP-1 in human lung cancer cells. Mediators Inflamm. 2016;2016:1542786. doi: 10.1155/2016/1542786. [Lin X, Chen QS, Huang C, et al. CYLD promotes TNF-α-induced cell necrosis mediated by RIP-1 in human lung cancer cells[J]. Mediators Inflamm, 2016, 2016: 1542786.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Tanaka T, Imamura T, Yoneda M, et al. Enhancement of active MMP release and invasive activity of lymph node metastatic tongue cancer cells by elevated signaling via the TNF-α-TNFR1- NF-κB pathway and a possible involvement of angiopoietin-like 4 in lung metastasis. Int J Oncol. 2016;49(4):1377–84. doi: 10.3892/ijo.2016.3653. [Tanaka T, Imamura T, Yoneda M, et al. Enhancement of active MMP release and invasive activity of lymph node metastatic tongue cancer cells by elevated signaling via the TNF-α-TNFR1- NF-κB pathway and a possible involvement of angiopoietin-like 4 in lung metastasis[J]. Int J Oncol, 2016, 49(4): 1377-84.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES