Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2020 Sep 20;40(9):1325–1331. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2020.09.16

靶向TUG1的mir-29c-3p通过调节CAPN7的表达影响膀胱癌细胞的迁移和侵袭

Mir-29c-3p targeting TUG1 affects migration and invasion of bladder cancer cells by regulating CAPN7 expression

Gan YU 1, Hui ZHOU 1, Kai XU 2, Lirong MENG 3, Bin LANG 3,*
PMCID: PMC7544590  PMID: 32990242

Abstract

目的

探讨长链非编码RNA TUG1影响膀胱癌细胞迁移和侵袭的机制。

方法

逆转录实时定量PCR检测膀胱癌组织和细胞中TUG1和mir-29c-3p的表达水平。在膀胱癌细胞系T24细胞中利用RNA干扰技术下调TUG1的表达后Transwell检测细胞的迁移和侵袭能力的变化,并检测CAPN7的表达水平。在膀胱癌细胞系T24细胞中利用mir-29c-3p类似物过表达mir-29c-3p后在转录及转录后水平检测CAPN7的表达变化。功能回复试验验证CAPN7及TUG1对膀胱癌细胞迁移和侵袭的影响。

结果

TUG1和mir-29c-3p在膀胱癌细胞和组织中分别表达升高(P=0.01)及减低(P < 0.01),同时它们的表达呈现负相关关系(P=0.0109,r2=0.4295)。TUG1表达下调后可以抑制膀胱癌细胞T24的迁移和侵袭能力(P < 0.01)。mir-29c-3p过表达后可以下调CAPN7的表达水平,CAPN7的表达水平与TUG1在膀胱癌中呈正相关关系(P=0.0139,r2=0.4081),荧光素酶报告试验验证了mir-29c-3p可同时靶向调节TUG1及CAPN7,功能回复试验验证了TUG1可以正向调节CAPN7的表达及其对膀胱癌细胞迁移和侵袭的影响(P < 0.01)。

结论

靶向TUG1的mir-29c-3p可通过调节CAPN7的表达影响膀胱癌细胞的迁移和侵袭。

Keywords: 膀胱癌, TUG1, 迁移, 侵袭, CAPN7, miR-29c-3p


膀胱癌作为泌尿系常见肿瘤,其发病率逐年上升[1-2]。其病理类型以移行上皮癌为主,外科治疗根据肿瘤浸润程度选择经尿道膀胱肿瘤切除或全膀胱切除[3-4],术后化疗,在一定程度上可以降低膀胱癌的复发率和致死率[5]

长链非编码RNA可以影响DNA的甲基化或者乙酰化,或者在转录及转录后水平影响其靶基因的表达,此外还有通过与RNA结合蛋白结合影响蛋白质的功能,参与染色质的重构或者作为内源性竞争性RNA参与调解人类肿瘤的发生发展[6-7]。TUG1是定位在22q22上的ENSG00000253352编码的一大小为7.6 kb大小的长链非编码RNA,已有研究报道了其在多种人类肿瘤中的肿瘤促进作用[8-9],TUG1可以通过发挥某些小分子RNA的循环池存在调节特定小分子RNA的靶标基因的表达从而影响肿瘤的发生发展,但是在膀胱癌中的类似的分子机制并没有阐明[10]。我们在前期实验中已经明确了TUG1在膀胱癌中呈现高表达,同时其表达与mir-29c-3p的表达呈现负相关关系,且已经有研究证明了mir-29c-3p在人类肿瘤中的肿瘤抑制作用[11-12],我们假定TUG1可与mir-29c-3p相互调节并作为内源竞争性RNA调节膀胱癌的发生发展。首先验证了TUG1在对膀胱癌中的迁移和侵袭促进作用,并进一步研究其对mir-29c-3p及CAPN7的调节作用,从而验证靶向TUG1的mir-29c-3p可以通过调节CAPN7的表达影响膀胱癌细胞的迁移和侵袭。

1. 材料和方法

1.1. 材料

1.1.1. 临床组织及细胞系来源

取自于华中科技大学同济医学院附属同济医院泌尿外科临床标本,并经同济医院泌尿外科病理科病理确诊为移行上皮癌组织。细胞系来源及培养:购买自ATCC,5637,T24及J82细胞应用含有10%胎牛血清的完全培养基RPMI 1640培养基培养。HT1376细胞应用含有10%胎牛血清的完全培养基MEM培养基培养。培养条件为37 ℃ 5% CO2环境中。

1.1.2. 试剂及病毒来源

人工化学合成的单链或者双联RNA,TUG1的siRNA及其相应对照,相关引物购买自上海吉凯公司;CAPN7一抗、二抗由国内试剂公司代购;转染试剂购买自美国Thermo的Lipofectamine 3000;靶向TUG1的DNA序列被插入空载质粒Plko.1中,序列分别为shTUG1-1,5'-GACTACCTTCCCTGTGCTAT T-3'以及shTUG1-2,5'-CTGATTGCTGAGTGTTCA C-3'。慢病毒载体以及慢病毒包装载体pRSVRev,pMD2.G和pCMVVSVG应用Lipofectamine 3000被转至HEK293T细胞中,转染72 h后,收集包装好的病毒,根据细胞感染复数给予相对应的病毒液感染细胞72 h后备用。TRIzol(Invitrogen)提取细胞及组织总RNA,实时定量PCR相关试剂(TOYOBO)(Roche),PCR检测系统(Applied Biosystems)ViiA 7 Dx PCR系统。DNA提取试剂盒(QIAGEN)。

1.2. 实验分组

实验细胞为膀胱癌细胞系T24,根据不同的实验目的,在功能实验及功能回复实验中分别分为sh-LacZ及-NC+sh-TUG1组。在荧光素酶报告实验中分别分为sh-LacZ+inhibitor/mimics NC组,sh-TUG1+inhibitor/ mimics NC组,sh-TUG1+mir-29c-3p inhibitor/mimics组及sh-LacZ+mir-29c-3p inhibitor/mimics组;CAPN7 3'UTR-WT + mir-29c-3p mimics/inhibitor组,CAPN7 3'UTR-WT +mimics/inhibitor NC组,CAPN7 3'UTRMUT + mir-29c-3p mimics/inhibitor组及CAPN7 3'UTR-MUT+mimics/inhibitor NC组.

1.3. RNA提取及Real-Time qRT-PCR

TRIzol(Invitrogen)提取细胞及组织总RNA,实时定量PCR相关试剂(TOYOBO)(Roche),提取及实验方法根据试剂公司提供的方法操作,PCR检测系统(Applied Biosystems)ViiA 7 Dx PCR系统。DNA提取试剂盒(QIAGEN)提取及实验方法根据试剂公司提供的方法操作。

1.4. Western blot

首先利用NP40提取出细胞蛋白,在10%的SDSPAGE胶中电泳分离并转自PVDF膜上。5%的脱脂奶粉非特异性封闭2 h后,一抗4 ℃下孵育过夜,所有的抗体(按照1:1000稀释),孵育过夜后应用TBST溶液漂洗6~8 h后二抗在37 ℃中孵育1 h后ECL-plus检测系统检测结果。

1.5. 荧光素酶报告实验

将膀胱癌细胞T24按照每孔8000个种至24孔培养板中,共转染100 ng购买自PROMEGA公司的包含了CAPN7的野生型或者突变型的3'UTR的psiCHECK2荧光素酶载体以及100 nmol/L的mir-29c-3p mimics,inhibitor以及相应的阴性对照。转染48 h后酶标仪检测检测荧光信号并记录分析。

1.6. 细胞迁移和侵袭

严格按照实验设计分组消化获得细胞悬液后种于24孔板transwell小室中,每孔1×104于细胞培养箱培养16~18 h后,弃细胞培养基后应用甲醇固定细胞10 min,之后应用0.5%的结晶紫染色细胞15 min后擦拭去掉未能迁移和侵袭的细胞,利用100倍显微镜观察并分析结果。

1.7. 统计学方法

用SPSS 18.0统计学软件进行统计学分析,符合正态分布的总体数据两组之间的比较采用t检验,3组数据之间的两两比较采用方差分析,以P < 0.05为有统计学差异。

2. 结果

2.1. TUG1与mir-29c-3p在膀胱癌中分别表达升高及减低,且其表达呈现负相关关系

430例样本中,TUG1在膀胱肿瘤中表达升高(P=0.0027,图 1A)。之后在10对临床膀胱癌组织,癌旁正常组织和膀胱癌细胞系RT4,5637,T24,J82及HT1376中分别检测TUG1和mir-29c-3p的表达,发现TUG1在膀胱癌中表达呈现明显的升高趋势(P < 0.01,图 1B),mir-29c-3p在膀胱癌中表达呈现明显下降趋势(P < 0.01,图 1C)其中T24细胞中表达变化最为明显;通过对其表达相关分析发现在我们检测的膀胱癌细胞和组织中mir-29c-3p和TUG1呈负相关关系(R2=0.4295,P=0.0109,图 1D)。

1.

1

膀胱癌中TUG1及mir-29c-3p的基础表达及其相关关系

Expression of TUG1 and mir-29c-3p and their correlation in bladder cancer. A: Expression of TUG1 in normal (blue dots) and bladder cancer tissues (red dots); B: Expression of TUG1 detected in bladder cancer tissues and cell lines by qRTPCR; C: Expression of mir-29c-3p detected in bladder cancer tissues and cell lines by qRT-PCR; D: Negative correlation between the expression level of TUG1 and mir-29c-3p in bladder cancer tissues.

2.2. 下调膀胱癌细胞系T24中TUG1的表达可以抑制细胞的迁移和侵袭

利用RNA干扰技术下调TUG1的表达后发现T24细胞的迁移和侵袭能力均有明显的下调,通过量化分析后得知迁移和侵袭抑制率分别为51.12%及44.27%,具有明显的统计学差异(P < 0.01,图 2)。

2.

2

在膀胱癌细胞系中下调TUG1的表达后观察细胞迁移和侵袭能力的变化

Changes of cell migration and invasion ability of bladder cancer T24 cells with TUG1 knockdown (Original magnification: ×40). **P < 0.01.

2.3. 检测分别上调mir-29c-3p和下调TUG1的表达后CAPN7的表达变化

通过westernblot检测发现了过表达mir-29c-3p可以明显抑制CAPN7的表达(P < 0.01,图 3A)。同时在膀胱癌细胞系T24中利用RNA干扰技术下调TUG1的表达后,发现CAPN7的表达明显被抑制,下调TUG1的表达可以明显抑制CAPN7的表达(图 3BP < 0.01)。分析411例样本发现TUG1与CAPN7在膀胱肿瘤中表达呈现正相关关系(P < 0.01,r=0.408,图 3C)。膀胱癌细胞和组织中CAPN7和TUG1呈正相关关系(r2=0.4081,P=0.0139,图 3D)如所示。

3.

3

在膀胱癌细胞系T24中分别上调mir-29c-3p和下调TUG1的表达后检测CAPN7的表达变化

CAPN7 expression in bladder cancer T24 cells with mir-29c-3p overexpression and TUG1 knockdown. A: Expression of CAPN7 mRNA and protein in T24 cells overexpressing miR-29c-3p detected by real- time PCR and Western blotting, respectively; B: Western blotting showing CAPN7 expression in T24 cells after transfection with shRNAs for TUG1 or shLacZ. The expression of CAPN7 mRNAin T24 cells after transfection with shRNAs for TUG1 or sh-LacZ was detected by realtime PCR; C, D: Positive correlation between the expression level of TUG1 and CAPN7 in bladder cancer tissues. **P < 0.01.

2.4. 荧光素酶报告实验验证TUG1可以通过mir-29c-3p调节CAPN7的表达

共转染野生型报告质粒和mir-29c-3p mimics后发现荧光素酶信号明显减弱,而转染突变型报告质粒则荧光素酶信号无明显变化(图 4AP < 0.01);共转染野生型报告质粒和mir-29c-3pinhibitor后发现荧光素酶信号明显增强,而转染突变型报告质粒则荧光素酶信号无明显变化(图 4BP < 0.01);图 4C提示mir-29c-3p与CAPN7 3'UTR结合位点位于第134~140个碱基序列中,同时显示突变位点;下调TUG1的表达可以部分回复mir-29c-3p inhibitor的荧光素酶信号增强作用(图 4DP < 0.01);下调TUG1的表达同时上调mir-29c-3p的表达可更进一步的降低荧光素酶荧光信号(图 4EP < 0.01)。

4.

4

Mir-29c-3p可以直接靶向调节CAPN7,同时TUG1可以正向调节CAPN7的表达

Mir-29c-3p directly targets CAPN7 and positively regulate the expression of CAPN7. A, B: Luciferase reporter assay showing that miR-29c-3p binds to the wild-type or mutant 3'UTR of CAPN7. Relative luciferase activity was plotted as the Mean±SE of three independent experiments; C: Putative target sites in the 3'UTR of CAPN7; D: Luciferase reporter assay showing that knockdown of TUG1 partially abrogated the promotion of the luciferase signal by miR-29c-3p inhibitor, and TUG1 knockdown and miR-29c-3p overexpression decreases the luciferase signal further. **P < 0.01.

2.5. 功能回复试验验证TUG1的肿瘤促进作用可以受CAPN7调节

在细胞T24中同时上调CAPN7及下调TUG1的表达,相对于单独下调TUG1组细胞的迁移和侵袭能力明显增强,而相对于未处理组细胞的迁移和侵袭能力则较弱(图 5BP < 0.01);同时上调CAPN7及下调TUG1后发现CAPN7的表达相对于单独下调TUG1组有明显增加(图 5CP < 0.01)。

5.

5

功能回复试验以及TUG1对CAPN7的表达影响

Function recovery test and the effect of TUG1 on the expression of CAPN7. A, B: Transwell assay of cell migration and invasion of the cells; C: Expression of CAPN7 in T24 cells after co-transfection with sh-TUG1 and LentiCAPN7 detected by real-time PCR. **P < 0.01.

3. 讨论

本研究验证了TUG1可以通过与mir-29c-3p结合影响彼此之间的表达从而影响mir-29c-3p靶标基因CAPN7的表达调节膀胱癌细胞的迁移和侵袭。TUG1作为第一个被发现的新的视黄醛基因被证明了在多种人类肿瘤中通过肿瘤生长相关基因相互作用或者再定位发挥着癌基因样作用[13]。此外,TUG1还可以与多种小分子RNA相互调节在多种人类肿瘤中发挥重要作用,Long报道了在恶性黑素瘤中,长链非编码RNATUG1可通过TUG1/miR-129-5p/星形细胞升高基因1(AEG-1)轴促进肿瘤生长和转移[14],同时长链非编码RNA TUG1亦可通过靶向miR-145-5p/ROCK1轴参与喉癌的发生发展[15]。TUG1可通过与miR-221相互作用调节PTEN的表达影响非小细胞肺癌的化疗敏感性[16],在其他人类肿瘤中诸如胰腺癌[17],甲状腺癌[18],乳腺癌[19],结直肠癌[20]及前列腺癌[21]等中发挥重要作用。

而TUG1在此前膀胱肿瘤的研究中亦有部分报道,Han[22]报道了尿路上皮癌中TUG1的差异性高表达,并可通过调节HMGB1的表达影响尿路上皮肿瘤的放疗敏感性[23],或通过调节Nrf2的表达影响膀胱肿瘤对阿霉素的化疗敏感性[24],Robert[25]团队报道了长链非编码RNA TUG1的过表达可预测高侵袭性肌肉膀胱癌的不良预后,促进癌细胞的增殖和迁移,而在膀胱肿瘤中TUG1与小分子RNA相互作用的研究中,长链非编码RNA TUG1与miR-145之间的双负反馈环促进人膀胱癌细胞上皮向间充质转化和放射耐受[26],Liu发现了TUG1在膀胱癌中通过TUG1-miR-142/Zeb2途径发挥肿瘤促进作用[27]而此前的我们的研究也证明了TUG1亦可在膀胱癌中通过表观沉默miR-194-5p来调控CCND2,从而促进顺铂耐药[28],说明TUG1在膀胱癌中发挥着重要的生物学功能,进一步深入研究TUG1在膀胱癌中的作用具有重要价值。本实验中我们也检测了TUG1在膀胱癌中的表达,验证了此前TUG1在膀胱癌中的部分研究结论,通过膀胱癌细胞系中TUG1的表达情况,我们选择表达差异性较大的膀胱癌细胞系T24作为研究载体,更大程度的实现T24差异性表达从而有利于后续实验的进行。有研究发现通过抑制miR-29c可上调TUG1从而促进膀胱癌细胞的增殖、迁移和侵袭[29],而众所周知,细胞生物学行为的改变一般的都伴随着细胞体内某些或某种蛋白水平的变化,Wang报道了长链非编码RNA TUG1从其靶基因RGS1中招募miR-29c-3p,促进黑色素瘤细胞的增殖和转移[30]。我们有理由提出假设,膀胱癌中TUG1及miR-29c-3p相互影响过程中伴随着某些基因蛋白水平的变化,从而引出miR-29c-3p的预测靶标基因之一CAPN7,在T24中过表达mir-29c-3p后发现CAPN7在转录及翻译水平均显著降低,结合荧光素酶报道实验证明了mir-29c-3p可以直接靶向抑制CAPN7及TUG1,并发现了TUG1及CAPN7的正相关关系,此外功能回复实发现CAPN7可以部分模拟TUG1在膀胱癌中迁移和侵袭促进作用验证了TUG1及CAPN7功能的相似性;说明了TUG1可以作为内源性竞争性RNA通过mir-29c-3p的桥接作用直接靶向调节CAPN7的表达从而影响膀胱癌的生物学行为。

Biography

余淦,博士,E-mail: cdyi1987@126.com

Funding Statement

澳门理工学院科研项目(RP/ESS_01/2017);广东省自然科学基金(2017A030313499)

Contributor Information

余 淦 (Gan YU), Email: cdyi1987@126.com.

郎 斌 (Bin LANG), Email: blang@ipm.edu.mo.

References

  • 1.Li KW, Lin TX, Huang J, et al. Current status of diagnosis and treatment of bladder cancer in China-analyses of Chinese bladder cancer consortium database. Asian J Urol. 2015;2(2):63–9. doi: 10.1016/j.ajur.2015.04.016. [Li KW, Lin TX, Huang J, et al. Current status of diagnosis and treatment of bladder cancer in China-analyses of Chinese bladder cancer consortium database[J].Asian J Urol, 2015, 2 (2), 63-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Anthony P, Leslie KB. Trimodality therapy for bladder cancer: modern management and future directions. Curr Opin Urol. 2019;29(3):210–5. doi: 10.1097/MOU.0000000000000601. [Anthony P, Leslie KB. Trimodality therapy for bladder cancer: modern management and future directions[J]. Curr Opin Urol, 2019, 29(3): 210-5.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Maite H. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253–61. doi: 10.1038/nm.3981. [Maite H. The emerging role of lncRNAs in cancer[J]. Nat Med, 2015, 21(11), 1253-61.] [DOI] [PubMed] [Google Scholar]
  • 4.Timur M, Ananya C. The role of biomarkers in bladder preservation management of muscle-invasive bladder cancer. World J Urol. 2019;37(9):1767–72. doi: 10.1007/s00345-018-2480-7. [Timur M, Ananya C. The role of biomarkers in bladder preservation management of muscle-invasive bladder cancer[J]. World J Urol. 2019, 37(9): 1767-72.] [DOI] [PubMed] [Google Scholar]
  • 5.Yoshida T, Kates M, Fujita K, et al. Predictive biomarkers for drug response in bladder cancer. Int J Urol. 2019;26(11):1044–53. doi: 10.1111/iju.14082. [Yoshida T, Kates M, Fujita K, et al. Predictive biomarkers for drug response in bladder cancer[J]. Int J Urol, 2019, 26(11): 1044-53.] [DOI] [PubMed] [Google Scholar]
  • 6.Y uG, Yao WM, Ye ZQ, et al. LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray. PLoS One. 2012;7(8):e42377. doi: 10.1371/journal.pone.0042377. [YuG, Yao WM, Ye ZQ, et al. LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray[J]. PLoS One, 2012, 7 (8): e42377.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kevin C W, Howard Y C. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14. doi: 10.1016/j.molcel.2011.08.018. [Kevin C W, Howard Y C. Molecular mechanisms of long noncoding RNAs[J]. Mol Cell, 2011, 43 (6): 904-14.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Arunoday B, Milad S, Subhrangsu SM. Long noncoding RNA and cancer:A new paradigm. Cancer Res. 2017;77(15):3965–81. doi: 10.1158/0008-5472.CAN-16-2634. [Arunoday B, Milad S, Subhrangsu SM. Long noncoding RNA and cancer:A new paradigm[J]. Cancer Res, 2017, 77(15): 3965-81.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–63. doi: 10.1016/j.ccell.2016.03.010. [Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways[J]. Cancer Cell, 2016, 29(4): 452-63.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Niu YC, Ma F, Huang WM, et al. Long noncoding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2. Mol Cancer. 2017;16(1):5. doi: 10.1186/s12943-016-0575-6. [Niu YC, Ma F, Huang WM, et al. Long noncoding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2[J]. Mol Cancer, 2017, 16 (1): 5.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Yan B, Guo Q, Fu FJ, et al. The Role of miR-29b in cancer: regulation, function, and signaling. Onco Targets Ther. 2015;8:539–48. doi: 10.2147/OTT.S75899. [Yan B, Guo Q, Fu FJ, et al. The Role of miR-29b in cancer: regulation, function, and signaling[J]. Onco Targets Ther, 2015, 8, 539-48.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Schmitt MJ, Margue C, Kreis S, et al. MiRNA-29: A microRNA family with tumor-suppressing and immune-modulating properties. Curr Mol Med. 2013;13(4):572–85. doi: 10.2174/1566524011313040009. [Schmitt MJ, Margue C, Kreis S, et al. MiRNA-29: A microRNA family with tumor-suppressing and immune-modulating properties[J]. Curr Mol Med, 2013, 13(4): 572-85.] [DOI] [PubMed] [Google Scholar]
  • 13.Nicole AR, Seth B. New meaning in the message: noncoding RNAs and their role in retinal development. Dev Dyn. 2009;238(9):2103–14. doi: 10.1002/dvdy.21844. [Nicole AR, Seth B. New meaning in the message: noncoding RNAs and their role in retinal development[J]. Dev Dyn, 2009, 238 (9): 2103-14.] [DOI] [PubMed] [Google Scholar]
  • 14.Long JW, Qiqige M, Qimige W, et al. Long noncoding RNA taurineupregulated gene1 (TUG1) promotes tumor growth and metastasis through TUG1/Mir-129-5p/astrocyte-elevated gene-1 (AEG-1) axis in malignant melanoma. Med Sci Monit. 2018;24:1547–59. doi: 10.12659/MSM.906616. [Long JW, Qiqige M, Qimige W, et al. Long noncoding RNA taurineupregulated gene1 (TUG1) promotes tumor growth and metastasis through TUG1/Mir-129-5p/astrocyte-elevated gene-1 (AEG-1) axis in malignant melanoma[J]. Med Sci Monit, 2018, 24: 1547-59.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Zhuang SF, Liu FX, Wu PP. Upregulation of long noncoding RNA TUG1 contributes to the development of laryngocarcinoma by targeting miR-145-5p/ROCK1 axis. J Cell Biochem. 2019;120(8):13392–402. doi: 10.1002/jcb.28614. [Zhuang SF, Liu FX, Wu PP. Upregulation of long noncoding RNA TUG1 contributes to the development of laryngocarcinoma by targeting miR-145-5p/ROCK1 axis[J]. J Cell Biochem, 2019, 120 (8):13392-402.] [DOI] [PubMed] [Google Scholar]
  • 16.Guo SH, Zhang L, Zhang YH, et al. Long non-coding RNA TUG1 enhances chemosensitivity in non-small cell lung cancer by impairing microRNA-221-dependent PTEN inhibition. Aging (Albany NY) 2019;11(18):7553–69. doi: 10.18632/aging.102271. [Guo SH, Zhang L, Zhang YH, et al. Long non-coding RNA TUG1 enhances chemosensitivity in non-small cell lung cancer by impairing microRNA-221-dependent PTEN inhibition[J]. Aging (Albany NY), 2019, 11(18): 7553-69.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Lu YB, Tang L, Zhang ZP, et al. Long noncoding RNA TUG1/miR- 29c axis affects cell proliferation, invasion, and migration in human pancreatic cancer. Dis Marker. 2018:6857042. doi: 10.1155/2018/6857042. [Lu YB, Tang L, Zhang ZP, et al. Long noncoding RNA TUG1/miR- 29c axis affects cell proliferation, invasion, and migration in human pancreatic cancer[J]. Dis Marker, 2018: 6857042.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lei HW, Ga oY, Xu XY. LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim Biophys Sin (Shanghai) 2017;49(7):588–97. doi: 10.1093/abbs/gmx047. [Lei HW, GaoY, Xu XY. LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145[J]. Acta Biochim Biophys Sin (Shanghai), 2017, 49(7): 588-97.] [DOI] [PubMed] [Google Scholar]
  • 19.Tang TL, Cheng YG, She Q, et al. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother. 2018;107:338–46. doi: 10.1016/j.biopha.2018.07.076. [Tang TL, Cheng YG, She Q, et al. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer[J]. Biomed Pharmacother, 2018, 107: 338-46.] [DOI] [PubMed] [Google Scholar]
  • 20.Li CF, Gao YJ, Li YC, et al. TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis. Biochem Biophys Res Commun. 2017;491(2):552–7. doi: 10.1016/j.bbrc.2017.03.042. [Li CF, Gao YJ, Li YC, et al. TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis[J]. Biochem Biophys Res Commun, 2017, 491(2): 552-7.] [DOI] [PubMed] [Google Scholar]
  • 21.Yang B, Tang XD, Wang ZX, et al. TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a. Biosci Rep. 2018;38(5):BSR20180677. doi: 10.1042/BSR20180677. [Yang B, Tang XD, Wang ZX, et al.TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a[J]. Biosci Rep, 2018, 38(5): BSR20180677.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Han YH, Liu YC, Gui YT, et al. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol. 2013;107(5):555–9. doi: 10.1002/jso.23264. [Han YH, Liu YC, Gui YT, et al. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder[J]. J Surg Oncol, 2013, 107(5): 555-9.] [DOI] [PubMed] [Google Scholar]
  • 23.Jiang HJ, Hu XG, Zhang HZ, et al. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat Oncol. 2017;12(1):65. doi: 10.1186/s13014-017-0802-3. [Jiang HJ, Hu XG, Zhang HZ, et al. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression[J]. Radiat Oncol, 2017, 12(1): 65.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sun ZL, Huang G, Cheng HP, et al. Transcription factor Nrf2 induces the up-regulation of lncRNA TUG1 to promote progression and adriamycin resistance in urothelial carcinoma of the bladder. Cancer Manag Res. 2019;11:6079–90. doi: 10.2147/CMAR.S200998. [Sun ZL, Huang G, Cheng HP, et al. Transcription factor Nrf2 induces the up-regulation of lncRNA TUG1 to promote progression and adriamycin resistance in urothelial carcinoma of the bladder[J]. Cancer Manag Res, 2019, 11: 6079-90.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Robert L, Renata K, Jaroslav J, et al. Overexpression of long noncoding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer. Tumour Biol. 2016;37(10):13385–90. doi: 10.1007/s13277-016-5177-9. [Robert L, Renata K, Jaroslav J, et al. Overexpression of long noncoding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer[J]. Tumour Biol, 2016, 37(10): 13385-90.] [DOI] [PubMed] [Google Scholar]
  • 26.Tan JM, Qiu KF, Li MY, et al. ouble-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett. 2015;589(20 Pt B):3175–81. doi: 10.1016/j.febslet.2015.08.020. [Tan JM, Qiu KF, Li MY, et al. ouble-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells[J]. FEBS Lett, 2015, 589(20 Pt B): 3175-81.] [DOI] [PubMed] [Google Scholar]
  • 27.Liu Q, Liu H, Cheng HP. Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells. Onco Targets Ther. 2017;10:2461–71. doi: 10.2147/OTT.S124595. [Liu Q, Liu H, Cheng HP. Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells[J]. Onco Targets Ther, 2017, 10: 2461-71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Yu G, Zhou H, Yao W, et al. lncRNA TUG1 promotes cisplatin resistance by regulating CCND2 via epigenetically silencing miR- 194-5p in bladder cancer. Mol Ther Nucleic Acids. 2019;7(16):257–71. doi: 10.1016/j.omtn.2019.02.017. [Yu G, Zhou H, Yao W, et al. lncRNA TUG1 promotes cisplatin resistance by regulating CCND2 via epigenetically silencing miR- 194-5p in bladder cancer[J]. Mol Ther Nucleic Acids, 2019, 7(16): 257-71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Guo P, Zhang GH, Meng JL, et al. Upregulation of long noncoding RNA TUG1 promotes bladder cancer cell proliferation, migration, and invasion by inhibiting miR-29c. Oncol Res. 2018;26(7):1083–91. doi: 10.3727/096504018X15152085755247. [Guo P, Zhang GH, Meng JL, et al. Upregulation of long noncoding RNA TUG1 promotes bladder cancer cell proliferation, migration, and invasion by inhibiting miR-29c[J]. Oncol Res, 2018, 26(7): 1083-91.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Wang YQ, Liu G, Ren L, et al. Long non-coding RNA TUG1 recruits miR-29c-3p from its target gene RGS1 to promote proliferation and metastasis of melanoma cells. Int J Oncol. 2019;54(4):1317–26. doi: 10.3892/ijo.2019.4699. [Wang YQ, Liu G, Ren L, et al. Long non-coding RNA TUG1 recruits miR-29c-3p from its target gene RGS1 to promote proliferation and metastasis of melanoma cells[J]. Int J Oncol, 2019, 54(4): 1317-26.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES