Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2020 Oct 8;10:16814. doi: 10.1038/s41598-020-73476-4

Cooperative rescue of a juvenile capuchin (Cebus imitator) from a Boa constrictor

Katharine M Jack 1,, Michaela R Brown 1, Margaret S Buehler 1, Saul Cheves Hernadez 2, Nuria Ferrero Marín 2, Nelle K Kulick 1, Sophie E Lieber 1
PMCID: PMC7544904  PMID: 33033278

Abstract

The threat of predation by snakes is considered to have played a significant role in the evolution of primate sensory systems and behavior. However, we know relatively little about individual and group responses given the rarity of observed predation events. Here we report an observed (filmed) predation attempt by an adult Boa constrictor (~ 2 m) on a juvenile white-faced capuchin (Cebus imitator) in the Sector Santa Rosa of the Área de Conservación Guanacaste, Costa Rica. The snake caught the juvenile monkey on the ground during a terrestrial play session. When the victim screamed, the alpha male, alpha female, and another adult female ran to the scene, physically attacked the snake (with bites and hits), and pulled the victim to safety. Most group members participated in the vocal mobbing of the snake both during and after the attack. Based on the outcomes of this predation attempt and published reports of other B. constrictor attacks on primates, the coordinated efforts of ≥ 2 group members is needed for a successful rescue. This observation adds to our growing knowledge of cooperative group behavior and its importance in predator defense.

Subject terms: Zoology, Ecology, Behavioural ecology, Community ecology, Tropical ecology, Evolution, Anthropology, Evolutionary theory, Sexual selection, Social evolution

Introduction

Predation is considered a major selective force leading to group living in many animal species1, including primates 24, though documented predation attempts are rare. Isbell5 suggested that the threat of predation specifically by snakes played a crucial role in shaping primate behavior and sensory systems. Given the wide geographic overlap between primates and snakes, it is not surprising that primates also developed an array of anti-predator behaviors that increase snake detection, such as vigilance behaviors, and deter predation, such as predator-specific alarm calls6 and predator mobbing7. This latter tactic involves animals attacking a predator vocally (repeated alarm calls) and/or physically (e.g., hitting, biting, or throwing items at a predator) rather than running away7. In many species, mobbing behavior is cooperative (involving multiple group members), alerts other individuals to the location of predators, and can drive predators away and discourage future hunting in the area8. Though effective in many cases, predator mobbing, particularly with non-ambush predators, does have potential costs as it can result in the injury or death of individual participants9. Mobbing ambush predators, such as constricting snakes, is a relatively common behavior for primates as it is much less risky and the hunting success of ambush predators is greatly reduced once they are detected7. Here we report on an observed predation attempt by a Boa constrictor on a juvenile white-faced capuchin (Cebus imitator) and the subsequent mobbing and rescue by group members.

Despite the assumed threat snakes pose on primates, there are few published observations of predation events. Based on these limited reports, the consequences of snake predation events are usually fatal. Of course, the efficacy of defensive tactics will differ when individuals are attacked by venomous or constricting snakes. Attempting to rescue a group member is more dangerous if a snake is venomous, as it could easily envenomate and kill multiple individuals and there is little an individual and/or their group members can do to save an envenomated individual. Four attacks on wild primates by venomous snakes have been observed and published, with the victim dying in all instances1012. However, in the case of attacks by constricting snakes, escapes can occur with the aid of group members, as the risk of engaging a constricting snake is much lower once the snake begins coiling around the victim. Indeed, of the 16 documented predation events on primates by constricting snakes (14 Boidae, 2 Pythonidae), seven reported interventions involving one or more group members physically interacting with the predator (“rescue attempts”) (Table 1). Five of these interventions resulted in the successful release and survival of the victim. Note that four additional predation attempts were documented, but we are excluding these from analyses as the observers did not witness the initial attack and response of group members or humans intervened in the attack to save the primate victim. To our knowledge, these are the only published accounts of predation attempts on primates by snakes.

Table 1.

Description of published constricting snake attacks on non-human primates.

Primate Snake Victim Group response Source
Platyrrhines
Alouatta puruensis Boa constrictor Adult female (died, failed rescue) Calls from many group members and attack from 1 female 34
Callicebus discolor Boa constrictor Adult (died) Calls only 36
Cebus imitator Boa constrictor Small juvenile (died) Calls from many group members and stick dropping, no physical attack 37
Cebus imitator Boa constrictor Small juvenile (rescued) Calls from all group members and attack from 3 individuals 14
Cebus imitator Boa constrictor Juvenile (rescued) Calls from all group members and physical attack from 3 to 4 group members This paper
Callithrix penicillata Boa constrictor 2 juveniles (died) failed rescue Calls from some members and physical attack from 2 individuals, though the 2nd only participated for a few seconds 35
Chiropotes satanas utahicki Boa constrictor Adult female (died) Calls only 38
Saguinus mystax Boa constrictor Subadult male (rescued) Calls, mobbing, and physical attack from 2 adults 51
Saguinus mystax Eunectes murinus Adult female (died) Calls only 39
Other primates
Propithecus coquereli Acrantophis madagascariensis Adult female (rescued) Calls and physical attack from > 3 adults (up to 8 but exact number is unclear) 52
Microcebus murinus Sanzina malagascariensis Adult male (rescued) Calls from some group members and physical attack from 3 individuals 53
Tarsius spectrum Python reticulatus Unknown (died, failed rescue) Calls from some group members and 1 individual bit the snake once 33
Other constricting snake predations: (excluded from discussion due to lack of data or human intervention)
Saimiri sciureus Corallus hortulanus Adult female (died) Unknown. Predation observed as snake was swallowing 54
Propithecus verreauxis coquereli Acrantophis madagascariensis Adult female (rescued by humans) Calls only. Individual freed by human observer. Author suggested the victim would have died without intervention 40
Nycticebus coucang Python reticulatus Adult male (died) Predation was assumed (not observed). Python was found with an ingested radio collar 55
Hapalemur griseus griseus Sanzinia madascariensis Adult (died) Unknown. Predation was observed as snake was swallowing 56

Here, we add to these limited observations by reporting an attempted predation, and successful rescue, of a juvenile white-faced capuchin (Cebus imitator) by a Boa constrictor in the Sector Santa Rosa (SSR) of the Área de Conservación Guanacaste, Costa Rica. Our team was filming a terrestrial play session prior to the predation attempt, thereby enabling us to capture the details of the group response to the attack on film. The capuchins at SSR encounter snakes at a rate of 2.85/100 h of observation and cooperative mobbing of snakes is common13. Usually, several group members will cooperate in the mobbing by directing loud alarm calls and/or threat vocalizations towards the predator while engaging in threatening facial and branch shaking displays1417. However, they do not usually come into direct contact with snakes and maintain a safe distance while threatening the predator (Fig. 1). Given the potential costs of directly engaging with a deadly snake7, and the rarity with which this type of behavior has been observed and/or reported, additional observations are critical for cross-species comparisons on variation in individual and group responses to predation. Such data will collectively advance our understanding of snake predation pressures and their selective role in the evolution of primate sociality and cooperative behavior.

Figure 1.

Figure 1

An alpha male and a subadult male white-faced capuchin cooperatively threaten a Boa constrictor in the SSR, Costa Rica. Photo by Jeffrey A. Rinderknecht, courtesy of Valerie Schoof.

Methods

The SSR white-faced capuchins have been under intensive investigation since 1983, and members of multiple study groups are individually known and habituated18. The capuchins in SSR reside in groups ranging from 5 to 35 members and include multiple related females, multiple immigrant males, and their offspring18. SSR comprises approximately 100 km2 of deciduous tropical dry forest located 30 km south of the Nicaraguan border. SSR experiences distinct wet and dry seasons, with nearly all of the annual rainfall (avg. 1,792 mm) occurring in the wet season between mid-May and mid-November18. The predation attempt reported here took place on July 17, 2019, during the yearly veranillo, the characteristic dry period that occurs for several weeks during each wet season in July and/or August19. Our observations were made on the Los Valles (LV) group, which has been the focus of intensive research from 1991-present. At the time of the observation, group size was 25, including 4 adult males (≥ 10 years), 8 adult females (≥ 6 years), 4 large juveniles (4–6 years), 4 small juveniles (1–2 years), and 5 infants (≤ 1 year). White-faced capuchins are largely arboreal, though they spend considerable time both foraging and playing on or near the ground20.

The video was captured on an iPhone XS Max at 1080p HD at 30 frames per second (fps) (see https://drive.google.com/file/d/1sJeNZkgZ7iffzPHz_4Gsr0MrwtVPxbKl/view?usp=sharing). Video recording (by SEL) began 0:28 s prior to the first scream by the victim, marking the beginning of the attack. The video was analyzed using Adobe Premiere Rush to slow down the footage to 20% speed during the moment of attack, release, and aftermath. Additionally, we analyzed the video in QuickTime using the frame by frame function. Figure 2 is a screen shot from the video.

Figure 2.

Figure 2

Screen shot from video of the rescue attempt (recorded by Sophie Lieber). Alpha male HP (center back) biting the boa, adult female TH (center front) actively pulling the victim from the snake, and three group members alarm calling at the scene. Note: many more were in attendance but out of the image frame.

Ethics statement

All research conducted in Santa Rosa and reported in this paper was authorized by the Costa Rican Ministry of the Environment, Energy and Technology (MINAET), and complied with protocols approved by Tulane’s Institutional Animal Care and Use Committee (IACUC).

Results

Intermittent video recording of the group had been occurring for two hours prior to capturing the boa attack on video on July 17, 2019. The entire duration of the B. constrictor (boa herein) attack on the victim was less than 20 s, measured from when the screams started (0:28:82 in the video) to when the victim was released (0:47:19). Information on the key participants in the predation attempt and rescue are presented in Table 2.

Table 2.

Key participants involved in the rescue.

Name code Age-sex (age years) Rank Kinship
PW Adult male (13.5) Subordinate Immigrant
HP Adult male (10) Alpha Immigrant
SS (with 3 month old infant on her back) Adult female (23) Alpha Mother of TH and OR
TH Adult female (11) Subordinate Daughter of SS
OR (70% certainty) Adult female (14) Subordinate Daughter of SS
Victim Large Juvenile (~ 6) Immature Possibilities include the niece of SS, son of OR/grandson of SS, or son of CR (female unrelated to other participants)

At 11:26 am, an unidentified large juvenile (~ 6 years) was caught by an approximately 2 m long boa while engaged in a terrestrial play session. The individual ID is based on the victim’s body size in comparison to the known monkeys involved in the rescue. We were unable to definitively ID the victim due to the fast paced action of the attack, the obscured view in the video, and the victim’s quick flight from the scene following its release from the snake. Here we provide a time-stamped account of the events. While we made every attempt to ID all of the individuals involved, even with reviewing the film frame by frame, we were unable to confirm all IDs due to the fast action of the event. We provide individual IDs only for those animals that we were able to distinguish with 100% certainty.

0:00:00–0:28:81 The majority of group juveniles and several adults were engaged in a play session that involved reciprocating chases, running along the ground, and jumping up and down between tree trunks, vines, and the ground.

0:28:82—Screams of the victim are heard and the camera is directed towards him/her. The victim’s screams can be heard throughout the duration of the attack.

0:29:88—First snake alarm call is sounded; adult male PW, who was sitting on the ground 1.5 m from the boa (separated by vines and green vegetation), jumped from the ground up to a branch about one meter above the snake and began to alarm call while facing the snake.

0:34:62—Alpha male (HP) runs along the ground up to the boa and immediately makes contact with the snake (possibly biting it).

0:35:85—Alpha female (SS), with her 3 month old infant clinging to her back, follows on the ground after HP and also approaches the snake and victim.

0:38:52—SS jumps up to the branch with PW and both continue alarm calling at the boa.

0:38:53—Adult female TH (11 year old daughter of SS) runs on the ground and joins HP and the boa (the boa is between the two monkeys). HP hits, scratches, and possibly bites the snake and TH also appears to bite the snake several times and pulls at the victim.

0:44:13—An unidentified adult female (possibly OR, the daughter of SS and sister of TH) with an infant on her back approaches the snake to the left of HP, alarm calling and possibly hitting the snake.

0:44:16—HP lunges forward and bites the boa. The unidentified adult female with the infant retreats up the tree behind HP.

0:45:65—HP holds the snake with both hands and bites it. Blood is visible on the snake after the bite. TH is actively pulling the victim from the snake (Fig. 2).

0:46:33—SS approaches the group on the ground, PW (still on the branches to the right of the snake) lunges down the tree closer to the snake.

0:47:25—SS joins the adult female in pulling the victim as HP releases his bite from the snake.

0:47:19—The victim’s screams cease as it escapes from the snake and rolls out, knocking over SS and her infant, and runs quickly from the scene.

0:47:61—HP removes his hands from the snake and retreats, jumping into the overhead tree and joining another group member in threatening the snake (vocal and facial threats).

0:48:17—TH pulls herself up to vine directly above her (and beside the snake). She sits and alarm calls and directs facial threats towards the snake.

0:51:36—SS jumps up to tree on the right, rejoining PW. They both alarm call and threaten the snake.

0:57:02—TH bends closer to the snake, emits one last facial threat and then runs along the vine away from the snake, and out of the video frame. At this time the snake begins moving away from the location of the attack.

Note, shown in the linked video: at 2:03:09—Adult female CH, three adult males (HP, HG, and BY) and an unidentified large juvenile actively threatening from a tree directly over the snake as they watch it move off and settle under some foliage and branches about 3 m away from the attack location. The snake remained motionless in this location, although it was still somewhat visible. The group remained in the area and continued to alarm call and direct threats and branch shaking towards the snake, well past the end of the video at 3:39 s. Approximately 20 min after filming ended, the group moved off to forage and our team followed the monkeys, leaving the snake behind.

Following the attack, several drops of blood were observed on the ground where the attack took place. Though we cannot know for certain that the blood was from the boa, there was blood visible on the snake following the bites by HP, who had fresh blood on his left hand and shoulder immediately following the event. HP showed no sign of injury after the rescue or in the days following the attack, thus we suspect that the blood on HP was from the snake. All other group members appeared to be unharmed, as none showed any injuries or issues with movement following the event.

Discussion

Cooperative predator defense has been observed in a variety of animals, including small birds (Hirundo rustica21, Malurus coronatus22, Manorina melanocephala23), lobster (Panulirus argus24), giant otters (Pteronura brasiliensis25), and meerkats (Suricata suricatta26). However, cooperative rescues from predatory attacks, like the case we describe here, are rarely observed in wild vertebrates and to our knowledge, have only been reported for primates (Table 1; see also Ref.27), humpback whales (Megaptera novaeagliae28), banded mongoose (Miunfos mungo29), and possibly dolphins (Delphinidae30). These rescue behaviors are considered a special form of cooperation as they involve one or more individuals putting themselves at risk to aid another, with no guarantee that the outcome will be successful, and no direct gain for the rescuer(s)31,32.

Our observations described here clearly highlight the efficacy of cooperative predator mobbing to rescue a group member. Similar to Perry et al.14, we observed that with combined effort in the trees and on the ground, the group surrounded the snake and attacked from multiple angles while simultaneously pulling the victim loose. When taken together, these two observations provide strong evidence that rescue behaviors are part of the normal behavioral repertoire for C. imitator. This cooperation renders it difficult for the snake to defend itself and continue to hold the victim. In examining the published reports on constricting snake attacks on primates (Table 1), the coordinated attack by multiple group members to rescue a groupmate appears to be the key to a successful rescue. In all five successful snake predation rescues, the victim was released only after multiple group members (≥ 2) physically attacked the snake. In the three unsuccessful rescue attempts, the physical attack by group members was minimal, with one case involving only a single bite to the snake from one individual33, another case in which a single female hit the snake 4–10 times with her hands34, and in the final case a single individual jumped on the snake intermittently for 30 seconds and was joined by a second individual for the last few jumps35. In the four remaining cases of constricting snake predations for which sufficient observations were made, the group response was limited to alarm calls and the victim did not survive3639. Similarly in the constricting snake predation attempt on a sifaka described by Burney40, group members only sounded alarm calls and observers were certain the victim would have perished without their intervention. While the number of recorded constricting snake attacks on wild primates remains low, collectively they illustrate that group mobbing behavior accompanied by physical aggression and the combined efforts from multiple individuals can be effective in saving group members.

Why individuals cooperate has been a central question in behavioral ecology, particularly in cases where they risk their own lives to help others. Indeed in 2005, the evolution of cooperative behavior was identified as one of the “top-25 big questions facing science over the next quarter century”41. Kinship certainly promotes cooperative behaviors (e.g.42), and in the boa rescue described by Perry et al.14, the victim’s mother was the main participant in the physical attack of the snake along with the group’s alpha male. Though we were unable to definitively identify the victim of the attack in our observation, we can limit the possibilities to just three large juvenile group members. Two of these three were closely related to the three adult females who most actively participated in the rescue.

While we cannot determine if kinship was a motivating factor for the adult females who rescued the victim, we know that none of the possible victims were related to the alpha male (he was not a member of the group during the period when any of the potential victims were sired). In the event described here, the alpha male was the most active participant in the defensive attack. It is doubtful that the victim would have escaped without his intervention, similar to the rescue reported by Perry et al.14. Within seconds of the victim’s screams, the alpha male ran to the scene and physically attacked the snake while a low-ranking, subordinate male (PW), who was right next to the boa when the attack occurred, only alarm called. Though anecdotal, these observations support the broader trend of alpha males as principal protectors of their groups. Alpha male capuchins are the most vigilant group members and the most active during interactions with predators and extragroup conspecifics43,44. They also maintain testosterone levels that are significantly higher than subordinate males4547. These extreme concentrations are not necessary for reproductive function, as subordinate males with lower concentrations are capable of siring offspring48,49. These high levels of testosterone likely enable alpha male capuchins to remain alert and quickly to respond to threats55,56, which in this case the alpha male did even prior to siring offspring in the group.

Observations of group responses to predation events, though rare, clearly support the hypothesis that predation has been a strong selective force driving sociality in primates (e.g.50). While Isbell5 argued that the coevolution of snakes and primates have strongly influenced the evolution of primate visual systems, observations of cooperative group rescues of victims from constricting snakes further supports the strong role these predators have had in shaping primate behavior and sociality. Given that such cooperative rescues have now been reported for platyrrhines, tarsiers, and strepsirrhines but not in cercopithecines or hominoids, the large bodied primates, indicates that the threat of constricting snakes may have been a particularly strong selective force in early primate evolution when primates were small bodied and, therefore, more susceptible to fall prey to constricting snakes.

Acknowledgements

We thank the Costa Rican National Park Service and administrative team in Sector Santa Rosa of the Área de Conservación Guanacaste (especially Roger Blanco Segura and Maria Marta Chavarria) for supporting our research and for their assistance with permits and logistics over four decades. This project was funded by grants from Tulane’s Newcomb Institute (KMJ), Stone Center for Latin American Studies (KMJ and MSB), Committee on Research (KMJ), SLA Lurcy Faculty Research Fund (KMJ), Department of Anthropology’s Kenneth J. Opat Fund (MRB, NKK and SEL), and the Dean Jean Danielson Memorial Scholarship Fund (NKK). We thank the two anonymous reviewers for their assistance in improving this manuscript.

Author contributions

S.E.L. recorded the predation event described in this manuscript. K.M.J., M.R.B., M.S.B., N.F.M., N.K.K., and S.E.L. wrote the manuscript text. M.S.B. and K.M.J. prepared Tables 1 and 2. K.M.J., S.C.H., and N.F.M. analyzed the video recording of the event. All authors reviewed the manuscript. K.M.J. is the senior author and assumes all responsibility for the team’s contributions to the manuscript.

Data availability

All data relevant to this publication have been presented or supplied in the pubished manuscript.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Alexander RD. The evolution of social behavior. Annu. Rev. Ecol. Syst. 1974;5:325–383. doi: 10.1146/annurev.es.05.110174.001545. [DOI] [Google Scholar]
  • 2.Wrangham RW. An ecological model of female-bonded primate groups. Behaviour. 1980;75:262–300. doi: 10.1163/156853980X00447. [DOI] [Google Scholar]
  • 3.van Schaik CP, van Noordwijk MA, de Boer RJ, den Tonkelaar I. The effect of group size on time budgets and social behaviour in wild long-tailed macaques (Macaca fascicularis) Behav. Ecol. Sociobiol. 1983;13:173–181. doi: 10.1007/BF00299920. [DOI] [Google Scholar]
  • 4.Sterck EHM, Watts DP, van Schaik CP. The evolution of female social relationships in non-human primates. Behav. Ecol. Sociobiol. 1997;41:291–309. doi: 10.1007/s002650050390. [DOI] [Google Scholar]
  • 5.Isbell LA. The Fruit, the Tree, and the Serpet: Why We See So Well. Cambridge: Harvard University Press; 2009. [Google Scholar]
  • 6.Seyfarth RM, Cheney DL, Marler P. Vervet monkey alarm calls: semantic communication in a free-ranging primate. Anim. Behav. 1980;28:1070–1094. doi: 10.1016/S0003-3472(80)80097-2. [DOI] [Google Scholar]
  • 7.Crofoot MC. Why Mob? Reassessing the costs and benefits of primate predator harassment. Folia Primatol. 2012;83:252–273. doi: 10.1159/000343072. [DOI] [PubMed] [Google Scholar]
  • 8.Carlson NV, Healy SD, Templeton CN. Mobbing. Curr. Biol. 2018;28:R1081–R1082. doi: 10.1016/j.cub.2018.06.025. [DOI] [PubMed] [Google Scholar]
  • 9.Tórrez L, Robles N, González A, Crofoot MC. Risky business? Lethal attack by a jaguar sheds light on the costs of predator mobbing for capuchins (Cebus capucinus) Int. J. Primatol. 2012;33:440–446. doi: 10.1007/s10764-012-9588-1. [DOI] [Google Scholar]
  • 10.Corrêa HKM, Coutinho PEG. Fatal attack of a pit viper, Bothrops jararaca, on an infant buffy-tufted ear marmoset (Callithrix aurita) Primates. 1997;38:215–217. doi: 10.1007/BF02382010. [DOI] [Google Scholar]
  • 11.Foerster S. Two incidents of venomous snakebite on juvenile blue and Sykes monkeys (Cercopithecus mitis stuhlmanni and C. m. albogularis) Primates. 2008;49:300–303. doi: 10.1007/s10329-008-0098-x. [DOI] [PubMed] [Google Scholar]
  • 12.Ferrari SF, Beltrão-Mendes R. Do snakes represent the principal predatory threat to callitrichids? Fatal attack of a viper (Bothrops leucurus) on a common marmoset (Callithrix jacchus) in the Atlantic Forest of the Brazilian Northeast. Primates. 2011;52:207–209. doi: 10.1007/s10329-011-0260-8. [DOI] [PubMed] [Google Scholar]
  • 13.Rose LM, et al. Interspecific interactions between Cebus capucinus and other species: data from three Costa Rican sites. Int. J. Primatol. 2003;24:759–796. doi: 10.1023/A:1024624721363. [DOI] [Google Scholar]
  • 14.Perry S, Manson JH, Dower G, Wikberg E. White-faced capuchins cooperate to rescue a groupmate from a Boa constrictor. Folia Primatol. 2003;74:109–111. doi: 10.1159/000070008. [DOI] [PubMed] [Google Scholar]
  • 15.van Schaik CP, van Noordwijk MA. The special role of male Cebus monkeys in predation avoidance and its effect on group composition. Behav. Ecol. Sociobiol. 1989;24:265–276. doi: 10.1007/BF00290902. [DOI] [Google Scholar]
  • 16.Fragaszy DM, Visalberghi E, Fedigan LM. The Complete Capuchin: The Biology of the Genus Cebus. Cambridge: Cambridge University Press; 2004. [Google Scholar]
  • 17.Meno W, Coss RG, Perry S. Development of snake-directed antipredator behavior by wild white-faced capuchin monkeys: I. Snake-species discrimination. Am. J. Primatol. 2013;75:281–291. doi: 10.1002/ajp.22106. [DOI] [PubMed] [Google Scholar]
  • 18.Fedigan LM, Jack KM. Tracking neotropical monkeys in Santa Rosa: lessons from a regenerating Costa Rican dry forest. In: Kappeler PM, Watts D, editors. Long-Term Field Studies of Primates. Berlin: Springer; 2012. pp. 165–184. [Google Scholar]
  • 19.Campos FA. A synthesis of long-term environmental change in Santa Rosa, Costa Rica. In: Kalbitzer U, Jack KM, editors. Primate Life Histories, Sex Roles, and Adaptability. Berlin: Springer; 2018. pp. 331–358. [Google Scholar]
  • 20.Rose LM. Sex differences in diet and foraging behavior in white-faced capuchins (Cebus capucinus) Int. J. Primatol. 1994;15:95–114. doi: 10.1007/BF02735236. [DOI] [Google Scholar]
  • 21.Shields WM. Factors affecting nest and site fidelity in adirondack barn swallows (Hirundo rustica) Auk. 1984;101:780–789. doi: 10.2307/4086904. [DOI] [Google Scholar]
  • 22.Teunissen N, Kingma SA, Peters A. Predator defense is shaped by risk, brood value and social group benefits in a cooperative breeder. Behav. Ecol. 2020;31:761–771. doi: 10.1093/beheco/araa012. [DOI] [Google Scholar]
  • 23.Kennedy RAW, Evans CS, McDonald PG. Individual distinctiveness in the mobbing call of a cooperative bird, the noisy miner Manorina melanocephala. J. Avian Biol. 2009;40:481–490. doi: 10.1111/j.1600-048X.2008.04682.x. [DOI] [Google Scholar]
  • 24.Briones-Fourzán P, Pérez-Ortiz M, Lozano-Álvarez E. Defense mechanisms and antipredator behavior in two sympatric species of spiny lobsters, Panulirus argus and P. guttatus. Mar. Biol. 2006;149:227–239. doi: 10.1007/s00227-005-0191-2. [DOI] [Google Scholar]
  • 25.Leuchtenberger C, Almeida SB, Andriolo A, Crawshaw PG. Jaguar mobbing by giant otter groups. Acta Ethol. 2016;19:143–146. doi: 10.1007/s10211-016-0233-4. [DOI] [Google Scholar]
  • 26.Graw B, Manser MB. The function of mobbing in cooperative meerkats. Anim. Behav. 2007;74:507–517. doi: 10.1016/j.anbehav.2006.11.021. [DOI] [Google Scholar]
  • 27.Boesch C. The effects of leopard predation on grouping patterns in forest chimpanzees. Behaviour. 1991;117:220–242. doi: 10.1163/156853991X00544. [DOI] [Google Scholar]
  • 28.Pitman RL, et al. Humpback whales interfering when mammal-eating killer whales attack other species: Mobbing behavior and interspecific altruism? Mar. Mammal Sci. 2017;33:7–58. doi: 10.1111/mms.12343. [DOI] [Google Scholar]
  • 29.Gusset M. Banded together: a review of the factors favouring group living in a social carnivore, the banded mongoose Mungos mungo (Carnivora: Herpestidae) Mammalia. 2007;71:80–82. doi: 10.1515/MAMM.2007.008. [DOI] [Google Scholar]
  • 30.Johnson C, Norris KS. Delphinid social organisation and social behavior. In: Schusterman RJ, Thomas JA, Wood G, editors. Dolphin Cognition and Behavior: a Comparative Approach. Mahwah: Lawrence Erlbaum Associates; 1986. pp. 335–346. [Google Scholar]
  • 31.Hollis KL, Nowbahari E. Toward a behavioral ecology of rescue behavior. Evol. Psychol. 2013;11:647–664. doi: 10.1177/147470491301100311. [DOI] [PubMed] [Google Scholar]
  • 32.Nowbahari E, Hollis KL. Distinguishing between rescue, cooperation and other forms of altruistic behavior. Commun. Integr. Biol. 2010;3:77–79. doi: 10.4161/cib.3.2.10018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Gursky S. Predation on a wild spectral tarsier (Tarsius spectrum) by a snake. Folia Primatol. 2002;73:60–62. doi: 10.1159/000060422. [DOI] [PubMed] [Google Scholar]
  • 34.Quintino EP, Bicca-Marques JC. Predation of Alouatta puruensis by Boa constrictor. Primates. 2013;54:325–330. doi: 10.1007/s10329-013-0377-z. [DOI] [PubMed] [Google Scholar]
  • 35.Teixeira DS, et al. Fatal attack on black-tufted-ear marmosets (Callithrix penicillata) by a Boa constrictor: a simultaneous assault on two juvenile monkeys. Primates. 2016;57:123–127. doi: 10.1007/s10329-015-0495-x. [DOI] [PubMed] [Google Scholar]
  • 36.Cisneros-Heredia DF, León-Reyes A, Seger S. Boa constrictor predation on a Titi monkey, Callicebus discolor. Neotrop. Primates. 2005;13:11–12. doi: 10.1896/1413-4705.13.3.11. [DOI] [Google Scholar]
  • 37.Chapman CA. Boa constrictor predation and group response in white-faced Cebus monkeys. Biotropica. 1986;18:171–172. doi: 10.2307/2388761. [DOI] [Google Scholar]
  • 38.Ferrari SF, Pereira WLA, Santos RR, Veiga LM. Fatal attack of a Boa constrictor on a bearded saki (Chiropotes satanas utahicki) Folia Primatol. 2004;75:111–113. doi: 10.1159/000076272. [DOI] [PubMed] [Google Scholar]
  • 39.Heymann EW. A field observation of predation on a moustached tamarin (Saguinus mystax) by an anaconda. Int. J. Primatol. 1987;8:193–195. doi: 10.1007/BF02735163. [DOI] [Google Scholar]
  • 40.Burney DA. Sifaka predation by a large boa. Folia Primatol. 2002;73:144–145. doi: 10.1159/000064793. [DOI] [PubMed] [Google Scholar]
  • 41.Pennisi E. How did cooperative behavior evolve. Science. 2005;309:93. doi: 10.1126/science.309.5731.93. [DOI] [PubMed] [Google Scholar]
  • 42.Foster KR, Wenseleers T, Ratnieks FLW. Kin selection is the key to altruism. Trends Ecol. Evol. 2006;21:57–60. doi: 10.1016/j.tree.2005.11.020. [DOI] [PubMed] [Google Scholar]
  • 43.Fedigan LM, Jack KM. Neotropical primates in a regenerating Costa Rican dry forest: a comparison of howler and capuchin population patterns. Int. J. Primatol. 2001;22:689–713. doi: 10.1023/A:1012092115012. [DOI] [Google Scholar]
  • 44.Gould L, Fedigan LM, Rose LM. Why be vigilant? The case of the alpha animal. Int. J. Primatol. 1997;18:401–414. doi: 10.1023/A:1026338501110. [DOI] [Google Scholar]
  • 45.Schoof VAM, Jack KM. Rank-based differences in fecal androgen and cortisol levels in male white-faced capuchins, Cebus capucinus, in the Santa Rosa Sector, Area de Conservacíon Guanacaste, Costa Rica. Am. J. Primatol. 2009;71:76. [Google Scholar]
  • 46.Schaebs FS, Perry SE, Cohen D, Mundry R, Deschner T. Social and demographic correlates of male androgen levels in wild white-faced capuchin monkeys (Cebus capucinus) Am. J. Primatol. 2017;79:79. doi: 10.1002/ajp.22653. [DOI] [PubMed] [Google Scholar]
  • 47.Jack KM, et al. Hormonal correlates of male life history stages in wild white-faced capuchin monkeys (Cebus capucinus) Gen. Comp. Endocrinol. 2014;195:58–67. doi: 10.1016/j.ygcen.2013.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Godoy I, Vigilant L, Perry SE. Inbreeding risk, avoidance and costs in a group-living primate, Cebus capucinus. Behav. Ecol. Sociobiol. 2016;70:1601–1611. doi: 10.1007/s00265-016-2168-1. [DOI] [Google Scholar]
  • 49.Wikberg EC, et al. Inbreeding avoidance and female mate choice shape reproductive skew in capuchin monkeys (Cebus capucinus imitator) Mol. Ecol. 2017;26:653–667. doi: 10.1111/mec.13898. [DOI] [PubMed] [Google Scholar]
  • 50.Van Schaik CP. Why are diurnal primates living in groups? Behaviour. 1983;87:120–144. doi: 10.1163/156853983X00147. [DOI] [Google Scholar]
  • 51.Tello NS, Huck M, Heymann EW. Boa constrictor attack and successful group defence in moustached tamarins, Saguinus mystax. Folia Primatol. 2002;73:146–148. doi: 10.1159/000064795. [DOI] [PubMed] [Google Scholar]
  • 52.Gardner CJ, Radolalaina P, Rajerison M, Greene HW. Cooperative rescue and predator fatality involving a group-living strepsirrhine, Coquerel’s sifaka (Propithecus coquereli), and a Madagascar ground boa (Acrantophis madagascariensis) Primates. 2015;56:127–129. doi: 10.1007/s10329-015-0462-6. [DOI] [PubMed] [Google Scholar]
  • 53.Eberle M, Kappeler PM. Mutualism, reciprocity, or kin selection? Cooperative rescue of a conspecific from a boa in a nocturnal solitary forager the gray mouse lemur. Am. J. Primatol. 2008;70:410–414. doi: 10.1002/ajp.20496. [DOI] [PubMed] [Google Scholar]
  • 54.Ribeiro-Júnior MA, Ferrari SF, Lima JRF, da Silva CR, Lima JD. Predation of a squirrel monkey (Saimiri sciureus) by an Amazon tree boa (Corallus hortulanus): even small Boids may be a potential threat to small-bodied platyrrhines. Primates. 2016;57:317–322. doi: 10.1007/s10329-016-0545-z. [DOI] [PubMed] [Google Scholar]
  • 55.Wiens F, Zitzmann A. Predation on a wild slow loris (Nycticebus coucang) by a reticulated python (Python reticulatus) Folia Primatol. 1999;70:362–364. doi: 10.1159/000021719. [DOI] [PubMed] [Google Scholar]
  • 56.Raktondravony D, Goodman SM, Soarimalala V. Predation on Hapalemur griseus griseus by Boa manditra (Boidae) in the littoral forest of eastern Madagascar. Folia Primatol. 1998;69:405–408. doi: 10.1159/000021662. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All data relevant to this publication have been presented or supplied in the pubished manuscript.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES