Abstract
A new species of Kerkia, K. briani Rysiewska & Osikowski, sp. nov. is described from the spring Polički Studenac Vrelo (Crkvina), adjacent to the Trebišnjica River (Bosnia and Herzegovina) collected with Bou-Rouch technique, pumped from an interstitial habitat 50 cm below the bottom of the spring. The shell, female reproductive organs, and the penis are described and illustrated. Mitochondrial cytochrome oxidase subunit I (COI) and nuclear histone H3 partial sequences confirm the distinctness of the new species, and molecularly based phylogenetic relationships of Kerkia are briefly presented.
Keywords: Balkans, cytochrome oxidase, Gastropoda , histone, interstitial, molecular taxonomy, morphology, stygobiont
Introduction
Mud snails Hydrobiidae are very small or minute snails, whose shells are often approximately 1 mm high. They inhabit surface and subterranean freshwater habitats, although some can also be found in brackish and even marine environments. The family comprises more than 400 extant genera (Kabat and Hershler 1993), many of which are stygobionts. The Balkans, especially their western region, harbours the world’s most diverse stygobiont malacofauna (e.g., Culver and Sket 2000; Culver 2012). The minute dimensions of those snails, coupled with low population densities (e.g., Culver and Pipan 2009, 2014), result in very poor knowledge of their biology, speciation, and taxonomy. A few specimens are sometimes flooded out of the substrate to the surface. Otherwise, extensive pumping of the interstitial habitats, applying the Bou and Rouch technique sometimes result in more numerous living specimens.
Radoman (1978) established the genus Kerkia Radoman, 1978, with the type species Hauffenia kusceri Bole, 1961, known only from the cave Krška jama in Slovenia. He described morphology and anatomy of those minute snails, clinging to the rocks in the underground section of the sinking river Krka (Radoman 1973, 1978, 1983). Later, another species of the genus, K. brezicensis Bodon & Cianfanelli, 1996, was described from a karstic spring at the entry to Dvorce village, southeast of Brežice in Slovenia. Hauffenia jadertina Kuščer, 1933 from the source of the river Jadro near Split in Croatia, as well as H. jadertina sinjana Kuščer, 1933 from a spring Zužino Vrelo in the Cetina valley also in Croatia, based on their anatomy, were synonymised and transferred to the genus Kerkia by Beran et al. (2014), who also described a new species Kerkia kareli Beran, Bodon & Cianfanelli, 2014, from an old well near Povljana on island Pag in Croatia. They provided descriptions and illustrations of the shells, protoconchs, radulae, and soft part morphology and anatomy as well for all the three Croatian taxa. Rysiewska et al. (2017) demonstrated molecular distinctness of those species of Kerkia.
In September of 2019, in the spring Polički Studenac Vrelo (Crkvina), adjacent to the Trebišnjica River, we found Emmericia expansilabris Bourguignat, 1880, Sadleriana sp., Anagastina vidrovani (Radoman, 1973), and Ancylus recurvus Martens, 1873. Pumping of the interstitial fauna from sediments below the spring resulted in the collection of a few most probably stygophilic Radomaniola, but also the typically stygobiont Montenegrospeum Pešić & Glöer, 2013 and Kerkia. The representatives of the latter genus did not belong to any species known so far, and in the present paper we describe this new species and discuss its relationships.
Materials and methods
The snails were collected at the spring Polički Studenac Vrelo (Crkvina), adjacent to the Trebišnjica River (42°42'46.4"N, 18°21'54.5"E), near Trebinje, Bosnia and Herzegovina (Fig. 1). The spring, situated at the right bank of the river (Fig. 2A, B) was in the form of a small shallow pool surrounded by a wall made of stones, with a gravel bottom (Fig. 2C). The Bou–Rouch method (Bou and Rouch 1967) was used to sample interstitial fauna below the spring bottom, at the depth of ca. 50 cm. The tube was inserted in the substrate five times, and 20 litres were pumped each time. Samples were sieved through 500 μm sieve and fixed in 80% analytically pure ethanol, replaced two times, and later sorted. Next, the snails were put in fresh 80% analytically pure ethanol and kept in -20 °C temperature in a refrigerator.
Figure 1.
Localities of Kerkia used for phylogeny.
Figure 2.
Type locality of Kerkia briani sp. nov.: A, B River Trebišnjica with the spring Polički Studenac Vrelo at its right bank C the spring from where interstitial snails were pumped.
The shells were photographed with a Canon EOS 50D digital camera, under a Nikon SMZ18 microscope. The dissections were done under a Nikon SMZ18 microscope with dark field, equipped with Nikon DS-5 digital camera, whose captured images were used to draw anatomical structures with a graphic tablet. Measurements of the shell (Fig. 3) were taken using ImageJ image analysis software (Rueden et al. 2017).
Figure 3.
Measurements of the shell.
Snails for molecular analysis were fixed in 80% ethanol, changed twice, and later stored in 80% ethanol. DNA was extracted from whole specimens; tissues were hydrated in TE buffer (3 × 10 min), total genomic DNA was extracted with the SHERLOCK extraction kit (A&A Biotechnology), and the final product was dissolved in 20 μl of tris-EDTA (TE) buffer. The extracted DNA was stored at -80 °C at the Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków (Poland).
DNA coding for mitochondrial cytochrome oxidase subunit I (COI) and nuclear histone 3 (H3) were sequenced. Details of PCR conditions, primers used, and sequencing are given in Szarowska et al. (2016b). Sequences were initially aligned in the MUSCLE (Edgar 2004) programme in MEGA 6 (Tamura et al. 2013) and then checked in BIOEDIT 7.1.3.0 (Hall 1999). Uncorrected p-distances were calculated in MEGA 6. The estimation of the proportion of invariant sites and the saturation test (Xia 2000; Xia et al. 2003) were performed using DAMBE (Xia 2013). In the phylogenetic analysis additional sequences from GenBank were used as reference (Table 1). The data were analysed using approaches based on Bayesian Inference (BI) and Maximum Likelihood (ML). We applied the GTR model whose parameters were estimated by RaxML (Stamatakis 2014). The Bayesian analyses were run using MrBayes v. 3.2.3 (Ronquist et al. 2012) with defaults of most priors. Two simultaneous analyses were performed, each with 10,000,000 generations, with one cold chain and three heated chains, starting from random trees and sampling the trees every 1,000 generations. The first 25% of the trees were discarded as burn-in. The analyses were summarised as a 50% majority-rule tree. The Maximum Likelihood analysis was conducted in RAxML v. 8.2.12 (Stamatakis 2014) using the ‘RAxML-HPC v.8 on XSEDE (8.2.12)’ tool via the CIPRES Science Gateway (Miller et al. 2010). Two species delimitation methods were performed: Poisson Tree Processes (PTP) (Zhang et al. 2013) and Automatic Barcode Gap Discovery (ABGD). The PTP approach was run using the web server https://species.h-its.org/ptp/, with 100 000 MCMC generations, 100 thinning and 0.1 burn-in. We used RAxML output phylogenetic tree. The ABGD approach using the web server (http://www.abi.snv.jussieu.fr/public/abgd/abgdweb.html) and the default parameters.
Table 1.
Taxa used for phylogenetic analyses with their GenBank accession numbers and references.
| Species | COI/H3 GB numbers | References |
|---|---|---|
| Agrafia wiktori Szarowska & Falniowski, 2011 | JF906762/MG543158 | Szarowska and Falniowski 2011/Grego et al. 2017) |
| Alzoniella finalina Giusti & Bodon, 1984 | AF367650 | Wilke et al. 2001 |
| Amnicola limosus (Say, 1817) | AF213348 | Wilke et al. 2000b |
| Anagastina zetavalis (Radoman, 1973) | EF070616 | Szarowska 2006 |
| Avenionia brevis berenguieri (Draparnaud, 1805) | AF367638 | Wilke et al. 2001 |
| Belgrandia thermalis (Linnaeus, 1767) | AF367648 | Wilke et al. 2001 |
| Belgrandiella kuesteri (Boeters, 1970) | MG551325/MG551366 | Osikowski et al. 2018 |
| Bithynia tentaculata (Linnaeus, 1758) | AF367643 | Wilke et al. 2001 |
| Bythinella cretensis Schütt, 1980 | KT353689 | Szarowska et al. 2016a |
| Bythinella hansboetersi Glöer & Pešić, 2006 | KT381101 | Osikowski et al. 2015 |
| Bythiospeum acicula (Hartmann, 1821) | KU341350/ MK609536 | Richling et al. 2016/Falniowski et al. 2019 |
| Bythiospeum alzense Boeters, 2001 | KU341355 | Richling et al. 2016 |
| Ecrobia maritima (Milaschewitsch, 1916) | KX355835/MG551322 | Osikowski et al. 2016/Grego et al. 2017 |
| Daphniola louisi Falniowski & Szarowska, 2000 | KM887915 | Szarowska et al. 2014c |
| Dalmatinella fluviatilis Radoman, 1973 | KC344541 | Falniowski and Szarowska 2013 |
| Emmericia expansilabris Bourguignat, 1880 | KC810060 | Szarowska and Falniowski 2013a |
| Erhaia jianouensis (Y.-Y. Liu & W.-Z. Zhang, 1979) | AF367652 | Wilke et al. 2001 |
| Fissuria boui Boeters, 1981 | AF367654 | Wilke et al. 2001 |
| Graecoarganiella parnassiana Falniowski & Szarowska, 2011 | JN202352 | Falniowski and Szarowska 2011 |
| Graziana alpestris (Frauenfeld, 1863) | AF367641 | Wilke et al. 2001 |
| Grossuana angeltsekovi Glöer & Georgiev, 2009 | KU201090 | Falniowski et al. 2016 |
| Hauffenia michleri (Kuščer, 1932) | KT236156/KY087878 | Falniowski and Szarowska 2015/ Rysiewska et al. 2017 |
| Heleobia maltzani (Westerlund, 1886) | KM213723/ MK609534 | Szarowska et al. 2014b/ Falniowski et al. 2019 |
| Horatia klecakiana Bourguignat 1887 | KJ159128 | Szarowska and Falniowski 2014 |
| Hydrobia acuta (Draparnaud, 1805) | AF278808 | Wilke et al. 2000a |
| Iglica cf. gracilis (Clessin, 1882) | MH720985/ MH721003 | Hofman et al. 2018 |
| Iglica hellenica Falniowski & Sarbu, 2015 | KT825581/MH721007 | Falniowski and Sarbu 2015/Hofman et al. 2018 |
| Islamia zermanica (Radoman, 1973) | KU662362/MG551320 | Beran et al. 2016/Grego et al. 2017 |
| Kerkia jadertina (Kuščer, 1933) | KY087868/KY087885 | Rysiewska et al. 2017 |
| Kerkia jadertina sinjana (Kuščer, 1933) | KY087873-74/ KY087890-91 | Rysiewska et al. 2017 |
| Kerkia kareli Beran, Bodon & Cianfanelli, 2014 | KY087875-77/ KY087892-94 | Rysiewska et al. 2017 |
| Kerkia kusceri (Bole, 1961) | KY087867/KY087884 | Rysiewska et al. 2017 |
| Kerkia sp. Ljubač | KY087872/KY087889 | Rysiewska et al. 2017 |
| Littorina littorea (Linnaeus, 1758) | KF644330/KP113574 | Layton et al. 2014/Neretina 2014, unpublished |
| Littorina plena Gould, 1849 | KF643257 | Layton et al. 2014 |
| Lithoglyphus prasinus (Küster, 1852) | JX073651 | Falniowski and Szarowska 2012 |
| Marstoniopsis insubrica (Küster, 1853) | AF322408 | Falniowski and Wilke 2001 |
| Moitessieria cf. puteana Coutagne, 1883 | AF367635/MH721012 | Wilke et al. 2001/ Hofman et al. 2018 |
| Montenegrospeum bogici (Pešić & Glöer, 2012) | KM875510/MG880218 | Falniowski et al. 2014/Grego et al. 2018 |
| Paladilhiopsis grobbeni Kuščer, 1928 | MH720991/MH721014 | Hofman et al. 2018 |
| Peringia ulvae (Pennant, 1777) | AF118302 | Wilke and Davis 2000 |
| Pomatiopsis lapidaria (Say, 1817) | AF367636 | Wilke et al. 2001 |
| Pontobelgrandiella sp. Radoman, 1978 | KU497024/MG551321 | Rysiewska et al. 2016/Grego et al. 2017 |
| Pseudamnicola chia (E. von Martens, 1889) | KT710656 | Szarowska et al. 2016b |
| Pseudorientalia Radoman, 1973 – Lesvos | KJ920490 | Szarowska et al. 2014a |
| Radomaniola curta (Küster, 1853) | KC011814 | Falniowski et al. 2012 |
| Sadleriana fluminensis (Küster, 1853) | KF193067 | Szarowska and Falniowski 2013b |
| Sadleriana robici (Clessin, 1890) | KF193071 | Szarowska and Falniowski 2013b |
| Salenthydrobia ferrerii Wilke, 2003 | AF449213 | Wilke 2003 |
| Sarajana apfelbecki (Brancsik, 1888) | MN031432 | Hofman et al. 2019 |
| Tanousia zrmanjae (Brusina, 1866) | KU041812 | Beran et al. 2015 |
| Tricula sp. Benson, 1843 | AF253071 | Davis et al. 1998 |
Results
Systematic part
Family Hydrobiidae Stimpson, 1865
Subfamily Sadlerianinae Szarowska, 2006
Genus Kerkia Radoman, 1978
Kerkia briani
Rysiewska & Osikowski sp. nov.
AC9D969E-0270-5EF6-B518-2949909E4588
http://zoobank.org/1F772BD0-3172-42E7-B559-EEA20773BCF1
Figure 4.
Holotype of Kerkia briani. Scale bar: 0.5 mm.
Figure 5.
Shell variability of Kerkia briani, labels the same as in the molecular trees. Scale bar: 0.5 mm.
Figure 6.
Renal and pallial section of the female reproductive organs of Kerkia briani: A the loop of oviduct in its normal position and the loop of the rectum B the loop of oviduct moved to show the receptaculum seminis and duct of bursa. Abbreviations: bc – bursa copulatrix, cbc – duct of bursa, ga – albuminoid gland, gn – nidamental gland, gp – gonoporus, ov – oviduct, ovl – loop of renal oviduct, rec – rectum, rs – receptaculum seminis. Scale bars: 1 mm.
Figure 7.

Penis of Kerkia briani. Abbreviation: vd – vas deferens.Scale bar: 1 mm.
Holotype.
Ethanol-fixed specimen (Fig. 4), spring Polički Studenac Vrelo (Crkvina), adjacent to the Trebišnjica River (42°42'46.4"N, 18°21'54.5"E), close to Trebinje (Bosnia and Herzegovina interstitially in the gravel 50 cm below the bottom of the spring. It is deposited in the Museum of Natural History of the University of Wroclaw, Poland, signature: MNHW-1350.
Paratypes.
Twelve paratypes, ethanol-fixed, in the collection of the Department of Malacology of Jagiellonian University.
Diagnosis.
Shell minute, nearly planispiral, distinguished from K. kusceri by its lower aperture of the shell and smaller non-glandular outgrowth on the left side of the penis, and from K. jadertina and K. kareli by its higher aperture of the shell and bigger the non-glandular outgrowth on the left side of the penis.
Description.
Shell (Fig. 4) up to 0.77 mm high and 1.39 mm broad, nearly planispiral, whitish, translucent, thin-walled, consisted of approximately five whorls, growing rapidly and separated by moderately deep suture. Spire low and flat, body whorl large. Aperture prosocline, nearly circular in shape, peristome complete and thin, somewhat swollen, in contact with the wall of the body whorl; umbilicus wide, with the earlier whorls visible inside. Shell surface smooth, growth lines hardly visible.
Measurements of holotype, sequenced, and illustrated shells: see Table 2. Shell variability slight (Fig. 5).
Table 2.
Shell measurements (in mm) of Kerkia briani. For explanation of the symbols A–H, see Fig. 3.
| A | B | C | D | E | F | G | H | |
|---|---|---|---|---|---|---|---|---|
| holotype | 0.77 | 1.39 | 0.87 | 0.62 | 0.60 | 1.09 | 0.41 | 0.97 |
| 2D44 | 0.72 | 1.12 | 0.73 | 0.54 | 0.55 | 0.93 | 0.37 | 0.75 |
| 2F59 | 0.73 | 1.26 | 0.82 | 0.54 | 0.55 | 0.95 | 0.41 | 0.80 |
| 2F62 | 0.72 | 1.35 | 0.86 | 0.57 | 0.57 | 1.03 | 0.36 | 0.73 |
| 2F70 | 0.67 | 1.12 | 0.72 | 0.52 | 0.48 | 0.97 | 0.40 | 0.72 |
| 2F71 | 0.75 | 1.37 | 0.85 | 0.46 | 0.60 | 1.02 | 0.41 | 0.84 |
| M | 0.73 | 1.27 | 0.81 | 0.54 | 0.56 | 1.00 | 0.39 | 0.80 |
| SD | 0.034 | 0.123 | 0.067 | 0.053 | 0.044 | 0.059 | 0.023 | 0.094 |
| Min | 0.67 | 1.12 | 0.72 | 0.46 | 0.48 | 0.93 | 0.36 | 0.72 |
| Max | 0.77 | 1.39 | 0.87 | 0.62 | 0.60 | 1.09 | 0.41 | 0.97 |
Soft parts morphology and anatomy. Body white, without pigment, with no eyes. The ctenidium with twelve short lamellae, osphradium short and broad. Rectum forming characteristic broad loop (Fig. 6A). The female reproductive organs (Fig. 6A, B) with a long, moderately broad loop of renal oviduct and relatively big spherical bursa copulatrix (Fig. 6A) with a long bent duct (Fig. 6B), and one distal receptaculum seminis, long and worm-shaped. The penis (Fig. 7) elongated triangular, with a rather sharp tip and small non-glandular outgrowth on its left side, the vas deferens inside running in zigzags.
Derivatio nominis.
The specific epithet briani refers to our friend Brian Lewarne, Honorary Science Officer of The Devon Karst Research Society, and the Director for “Proteus Project in the Trebišnjica River Basin”, deeply devoted to the protection of Proteus as well as the study and protection of the subterranean habitats in Bosnia and Herzegovina.
Distribution and habitat.
Known from the type locality only.
Molecular distinctness and relationships of Kerkia briani
We obtained six new sequences of COI (479 bp, GenBank Accession Numbers MT780191–MT780196), and six new sequences of H3 (309 bp, GenBank Accession Numbers MT786730–MT786735). The tests by Xia et al. (2003) for COI and H3 revealed no saturation. Phylograms were constructed for COI, H3 and for combined COI-H3 dataset. In all analyses, the topologies of the resulting phylograms were identical in both the ML and BI. The ABGD and PTP approaches gave the same results (Fig. 8).
Figure 8.
Maximum Likelihood tree inferred from mitochondrial COI. Bootstrap supports above 60% with corresponding Bayesian probabilities are given.
The sequences of the Kerkia briani formed distinct clade on COI, H3 as well as combined phylograms (Fig. 8). At the same time all Kerkia sequences formed distinct linage with five different species. The p-distance of Kerkia briani with other Kerkia species varied from 0.123 to 0.146 for COI and from 0.007 to 0.023 for H3 (Table 2). The sister clade of Kerkia (bootstrap support 98%) were Islamia Radoman, 1973, Pontobelgrandiella Radoman, 1978, Belgrandiella Wagner, 1927, Montenegrospeum Pešić & Glöer, 2013, Hauffenia Pollonera, 1898, and Agrafia Szarowska & Falniowski, 2011 (Fig. 8, the tree for concatenated COI and H3 sequences).
Table 3.
p-distances between Kerkia mOTUs for the COI (below diagonal) and H3 genes.
| mOTU – A | mOTU – B | mOTU – C | mOTU – D | mOTU – E | |
|---|---|---|---|---|---|
| mOTU – A | – | 0.010 | 0.007 | 0.010 | 0.023 |
| mOTU – B | 0.135 | – | 0.017 | 0.020 | 0.033 |
| mOTU – C | 0.126 | 0.124 | – | 0.010 | 0.023 |
| mOTU – D | 0.146 | 0.138 | 0.124 | – | 0.013 |
| mOTU – E | 0.123 | 0.110 | 0.095 | 0.093 | – |
Discussion
Following the terminology of Hershler and Ponder (1998), the habitus of the shell of Kerkia is depressed valvatiform (trochiform) or just planispiral. However, the latter term should not be used, since there is no planispiral shell in any recent gastropod (e.g., Falniowski 1993). The ctenidium, osphradium, and loop of oviduct are as in the other species of Kerkia (Bodon et al. 2001; Beran et al. 2014). The female reproductive organs are also typical of Kerkia (Radoman 1978, 1983; Bodon et al. 2001; Beran et al. 2014). The single receptaculum seminis is situated distally, in the position of rs1 after Radoman (1973, 1983). The penis is similar to that described and drawn by Radoman (1978, 1983), Bodon et al. (2001), and Beran et al. (2014), but the outgrowth of its left side in K. briani is smaller than in K. kusceri, but larger than that in K. jadertina and K. kareli (in the latter the outgrowth is nearly vestigial).
Falniowski (1987) demonstrated high variability of the shell, but also of the morphology and anatomy of the soft parts in the Truncatelloidea. In the latter, miniaturisation is one more a source of slight morphological diversity, decreasing the number of possible taxonomically useful characters (Falniowski 2018); in this regard, Szarowska and Falniowski (2008) stressed the narrow limits of morphology-based taxonomy within the Truncatelloidea. On the other hand, Szarowska (2006) demonstrated that such simple structures like the outgrowths on the penis and bursae/receptacula in the female reproductive organs are surprisingly evolutionary stable in position, although not in size and shape, whose variability – physiologically, ontogenetically, and artifactually (as a result of fixation of the snails) based – is striking. Moreover, problems can increase with taxa living in habitats of limited accessibility (such as caves and/or interstitial habitats) for which molecular studies often reveal numerous species but only a few or single living specimens of each species could be found. Thus, the anatomy is basic in distinction of the families and even genera, but the stable and reliable differences between congeneric species are hardly observable. However, the molecular distinctness of Kerkia briani is clear.
Finally, it has to be pointed out that K. briani inhabits the southernmost locality of Kerkia, expanding the range of the genus ca. 190 km ESE.
Supplementary Material
Acknowledgments
The study was supported by a grant from the National Science Centre 2017/25/B/NZ8/01372 to AF.
Citation
Hofman S, Rysiewska A, Osikowski A, Falniowski A (2020) A new species of Kerkia Radoman, 1978 (Caenogastropoda, Hydrobiidae) from Bosnia and Herzegovina. ZooKeys 973: 17–33. https://doi.org/10.3897/zookeys.973.52788
Funding Statement
Polish National Science Centre
References
- Beran L, Bodon M, Cianfanelli S. (2014) Revision of “Hauffenia jadertina” Kuščer 1933, and description of a new species from Pag island, Croatia (Gastropoda: Hydrobiidae). Journal of Conchology 41: 585–601. [Google Scholar]
- Beran L, Hofman S, Falniowski A. (2015) Tanousia zrmanjae (Brusina, 1866) (Caenogastropoda: Truncatelloidea: Hydrobiidae): A living fossil. Folia Malacologica 23: 263–271. 10.12657/folmal.023.022 [DOI] [Google Scholar]
- Beran L, Osikowski A, Hofman S, Falniowski A. (2016) Islamia zermanica (Radoman, 1973) (Caenogastropoda: Hydrobiidae): morphological and molecular distinctness. Folia Malacologica 24: 25–30. 10.12657/folmal.024.004 [DOI] [Google Scholar]
- Bodon M, Cianfanelli S. (1996) A new valvatoid-shelled stygobiont hydrobiid from Slovenia (Gastropoda: Prosobranchia: Hydrobiidae). Basteria 60: 19–26. [Google Scholar]
- Bodon M, Giovannelli MM. (1994) A new Hydrobiidae species of the subterranean waters of Friuli (NE Italy) (GastropodaProsobranchia). Basteria 58: 233–244. [Google Scholar]
- Bodon M, Manganelli G, Giusti F. (2001) A survey of the European valvatiform hydrobiid genera, with special reference to Hauffenia Pollonera, 1898 (Gastropoda: Hydrobiidae). Malacologia 43: 103–215. [Google Scholar]
- Bole J. (1961) Nove Hidrobide (Gastropoda) iz podzemeljskih voda zahodnega Balkana. Biološki Vestnik 9: 59–69. [Google Scholar]
- Bole J. (1967) Polži iz freatičnih voda Jugoslavije [Die Schnecken aus den phreatischen Gewässern Jugoslawiens]. Razprave, IV. razred SAZU, Ljubljana 10: 109–120. [Google Scholar]
- Bou C, Rouch R. (1967) Un nouveau champ de recherches sur la faune aquatique souterraine. Comptes Rendus de’l Académie des Sciences Series III Sciences 265: 369–370. [Google Scholar]
- Culver DC. (2012) Mollusks. In: White WB, Culver DC. (Eds) Encyclopaedia of Caves (2nd Ed.). Academic Press, New York, 512–517. 10.1016/B978-0-12-383832-2.00074-8 [DOI]
- Culver DC, Pipan T. (2009) The Biology of Caves and Other Subterranean Habitats. Oxford University Press, Oxford, 254 pp. [Google Scholar]
- Culver DC, Pipan T. (2014) Shallow Subterranean Habitats. Ecology, Evolution and Conservation. Oxford University Press, Oxford, 258 pp 10.1093/acprof:oso/9780199646173.001.0001 [DOI] [Google Scholar]
- Culver DC, Sket B. (2000) Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62: 11–17. [Google Scholar]
- Davis GM, Wilke T, Spolsky C, Qiu C-P, Qiu D-C, Xia M-Y, Zhang Y, Rosenberg G. (1998) Cytochrome Oxidase I-based Phylogenetic Relationships among the Pomatiopsidae, Hydrobiidae, Rissoidae and Truncatellidae (Gastropoda: Caenogastropoda: Rissoacea). Malacologia 40: 251–266. [Google Scholar]
- Edgar RC. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. 10.1093/nar/gkh340 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falniowski A. (1987) Hydrobioidea of Poland (Prosobranchia: Gastropoda). Folia Malacologica 1: 1–122. 10.12657/folmal.001.001 [DOI] [Google Scholar]
- Falniowski A. (1993) Gastropod Phylogenetic Torsion – Arising of a Class. Folia Malacologica 5: 25–60. 10.12657/folmal.005.002 [DOI] [Google Scholar]
- Falniowski A. (2018) Species Distinction and Speciation in Hydrobioid Gastropods (Mollusca: Caenogastropoda: Truncatelloidea). HSOA Archives of Zoological Studies 1: 1–6. 10.24966/AZS-7779/100003 [DOI] [Google Scholar]
- Falniowski A, Georgiev D, Osikowski A, Hofman S. (2016) Radiation of Grossuana Radoman, 1973 (Caenogastropoda: Truncatelloidea) in the Balkans. Journal of Molluscan Studies 82: 305–313. 10.1093/mollus/eyv062 [DOI] [Google Scholar]
- Falniowski A, Pešić V, Glöer P. (2014) Montenegrospeum Pešić et Glöer, 2013: a representative of Moitessieriidae? Folia Malacologica 22: 263–268. 10.12657/folmal.022.023 [DOI]
- Falniowski A, Prevorčnik S, Delić T, Alther R, Altermatt F, Hofman S. (2019) Monophyly of the Moitessieriidae Bourguignat, 1863 (Caenogastropoda: Truncatelloidea). Folia Malacologica 27: 61–70. 10.12657/folmal.027.005 [DOI] [Google Scholar]
- Falniowski A, Sarbu S. (2015) Two new Truncatelloidea species from Melissotrypa Cave in Greece (Caenogastropoda). ZooKeys 530: 1–14. 10.3897/zookeys.530.6137 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falniowski A, Szarowska M. (2011) A new genus and new species of valvatiform hydrobiid (Rissooidea; Caenogastropoda) from Greece. Molluscan Research 31(3): 189–199. [Google Scholar]
- Falniowski A, Szarowska M. (2012) Species distinctness of Lithoglyphus prasinus (Küster, 1852) (Rissooidea: Caenogastropoda). Folia Malacologica 20: 99–104. 10.2478/v10125-012-0019-x [DOI] [Google Scholar]
- Falniowski A, Szarowska M. (2013) Phylogenetic relationships of Dalmatinella fluviatilis Radoman, 1973 (Caenogastropoda: Rissooidea). Folia Malacologica 21: 1–7. 10.12657/folmal.021.001 [DOI] [Google Scholar]
- Falniowski A, Szarowska M. (2015) Species distinctness of Hauffenia michleri (Kuščer, 1932) (Caenogastropoda: Truncatelloidea: Hydrobiidae). Folia Malacologica 23: 193–195. 10.12657/folmal.023.016 [DOI] [Google Scholar]
- Falniowski A, Szarowska M, Glöer P, Pešić V. (2012) Molecules vs morphology in the taxonomy of the Radomaniola/Grossuana group of Balkan Rissooidea (Mollusca: Caenogastropoda). Journal of Conchology 41: 19–36. [Google Scholar]
- Falniowski A, Wilke T. (2001) The genus Marstoniopsis (Rissooidea: Gastropoda): intra- and intergeneric phylogenetic relationships. Journal of Molluscan Studies 67: 483–488. 10.1093/mollus/67.4.483 [DOI] [Google Scholar]
- Folmer O, Black M, Hoeh W, Lutz RA, Vrijenhoek RC. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299. [PubMed] [Google Scholar]
- Grego J, Glöer P, Rysiewska A, Hofman S, Falniowski A. (2018) A new Montenegrospeum species from south Croatia (Mollusca: Gastropoda: Hydrobiidae). Folia Malacologica 26: 25–34. 10.12657/folmal.026.004 [DOI] [Google Scholar]
- Grego J, Hofman S, Mumladze L, Falniowski A. (2017) Agrafia Szarowska et Falniowski, 2011 (Caenogastropoda: Hydrobiidae) in the Caucasus. Folia Malacologica 25: 237–247. 10.12657/folmal.025.025 [DOI] [Google Scholar]
- Hall TA. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. [Google Scholar]
- Hershler R, Ponder WF. (1998) A review of morphological characters of hydrobioid snails. Smithsonian Contributions to Zoology 600: 1–55. 10.5479/si.00810282.600 [DOI] [Google Scholar]
- Hofman S, Osikowski A, Rysiewska A, Grego J, Glöer P, Dmitrović D, Falniowski A. (2019) Sarajana Radoman, 1975 (Caenogastropoda: Truncatelloidea): premature invalidation of a genus. Journal of Conchology 43: 407–418. [Google Scholar]
- Hofman S, Rysiewska A, Osikowski A, Grego J, Sket B, Prevorčnik S, Zagmajster M, Falniowski A. (2018) Phylogenetic relationships of the Balkan Moitessieriidae (Caenogastropoda: Truncatelloidea). Zootaxa 4486: 311–339. 10.11646/zootaxa.4486.3.5 [DOI] [PubMed] [Google Scholar]
- Kabat AR, Hershler R. (1993) The prosobranch snail family Hydrobiidae (Gastropoda: Rissooidea): review of classification and supraspecific taxa. Smithsonian Contributions to Zoology 547: 1–94. 10.5479/si.00810282.547 [DOI] [Google Scholar]
- Layton KK, Martel AL, Hebert PD. (2014) Patterns of DNA barcode variation in Canadian marine molluscs. PLoS ONE 9 (4), E95003 (2014). 10.1371/journal.pone.0095003 [DOI] [PMC free article] [PubMed]
- Miller MA, Pfeiffer W, Schwartz T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov, New Orleans, LA, 1–8. 10.1109/GCE.2010.5676129 [DOI]
- Osikowski A, Georgiev D, Hofman S, Falniowski A. (2015) Does the genetic structure of spring snail Bythinella (Caenogastropoda, Truncatelloidea) in Bulgaria reflect geological history? ZooKeys 518: 67–86. 10.3897/zookeys.518.10035 [DOI] [PMC free article] [PubMed]
- Osikowski A, Hofman S, Georgiev D, Kalcheva S, Falniowski A. (2016) Aquatic snails Ecrobia maritima (Milaschewitsch, 1916) and E. ventrosa (Montagu, 1803) (Caenogastropoda: Hydrobiidae) in the east Mediterranean and Black Sea. Annales Zoologici 66: 477–486. 10.3161/00034541ANZ2016.66.3.012 [DOI] [Google Scholar]
- Osikowski A, Hofman S, Rysiewska A, Sket B, Prevorčnik S, Falniowski A. (2018) A case of biodiversity overestimation in the Balkan Belgrandiella A. J. Wagner, 1927 (Caenogastropoda: Hydrobiidae): molecular divergence not paralleled by high morphological variation. Journal of Natural History 52: 323–344. 10.1080/00222933.2018.1424959 [DOI] [Google Scholar]
- Radoman P. (1973) New classification of fresh and brackish water Prosobranchia from the Balkans and Asia Minor. Posebna Izdanja, Prirodnego Museja Beograd 32: 1–30. [Google Scholar]
- Radoman P. (1978) Neue Vertreter der Gruppe Hydrobioidea von der Balkanhalbinsel. Archiv für Molluskenkunde 109: 27–44. [Google Scholar]
- Radoman P. (1983) Hydrobioidea a superfamily of Prosobranchia (Gastropoda). I Systematics. Monographs of Serbian Academy of Sciences and Arts in Beograd 547, Department of Sciences 57: 1–256.
- Richling I, Malkowsky Y, Kuhn Y, Niederhöfer H-J, Boeters HD. (2016) A vanishing hotspot – impact of molecular insights on the diversity of Central European Bythiospeum Bourguignat, 1882 (Mollusca: Gastropoda: Truncatelloidea). Organisms Diversity and Evolution 17: 67–85. 10.1007/s13127-016-0298-y [DOI] [Google Scholar]
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. (2012) Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. 10.1093/sysbio/sys029 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18: 529. 10.1186/s12859-017-1934-z [DOI] [PMC free article] [PubMed]
- Rysiewska A, Georgiev D, Osikowski A, Hofman S, Falniowski A. (2016) Pontobelgrandiella Radoman, 1973 (Caenogastropoda: Hydrobiidae): A recent invader of subterranean waters? Journal of Conchology 42: 193–203.
- Rysiewska A, Prevorčnik S, Osikowski A, Hofman S, Beran L, Falniowski A. (2017) Phylogenetic relationships in Kerkia and introgression between Hauffenia and Kerkia (Caenogastropoda: Hydrobiidae). Journal of Zoological Systematics and Evolutionary Research 55(2): 106–117. 10.1111/jzs.12159 [DOI] [Google Scholar]
- Stamatakis A. (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. 10.1093/bioinformatics/btu033 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szarowska M. (2006) Molecular phylogeny, systematics and morphological character evolution in the Balkan Rissooidea (Caenogastropoda). Folia Malacologica 14: 99–168. 10.12657/folmal.014.014 [DOI] [Google Scholar]
- Szarowska M, Falniowski A. (2008) There is no philosopher’s stone: coup de grace for the morphology-based systematics in the rissooidean gastropods? 5th Congress of the European Malacological Societies, Ponta Delgada: 28.
- Szarowska M, Falniowski A. (2011) An unusual, flagellum-bearing hydrobiid snail (Gastropoda: Rissooidea: Hydrobiidae) from Greece, with descriptions of a new genus and a new species. Journal of Natural History 45: 2231–2246. 10.1080/00222933.2011.591067 [DOI] [Google Scholar]
- Szarowska M, Falniowski A. (2013a) Phylogenetic relationships of the Emmericiidae (Caenogastropoda: Rissooidea). Folia Malacologica 21: 67–72. 10.12657/folmal.021.007 [DOI] [Google Scholar]
- Szarowska M, Falniowski A. (2013b) Species distinctness of Sadleriana robici (Clessin, 1890) (Gastropoda: Rissooidea). Folia Malacologica 21: 127–133. 10.12657/folmal.021.016 [DOI] [Google Scholar]
- Szarowska M, Falniowski A. (2014) Horatia Bourguignat, 1887: is this genus really phylogenetically very close to Radomaniola Szarowska, 2006 (Caenogastropoda: Truncatelloidea)? Folia Malacologica 22: 31–39. 10.12657/folmal.022.003 [DOI]
- Szarowska M, Hofman S, Osikowski A, Falniowski A. (2014a) Divergence preceding island formation among Aegean insular populations of the freshwater snail genus Pseudorientalia (Caenogastropoda: Truncatelloidea). Zoological Science 31: 680–686. 10.2108/zs140070 [DOI] [PubMed] [Google Scholar]
- Szarowska M, Hofman S, Osikowski A, Falniowski A. (2014b) Heleobia maltzani (Westerlund, 1886) (Caenogastropoda: Truncatelloidea: Cochliopidae) from Crete and species-level diversity of Heleobia Stimpson, 1865 in Europe. Journal of Natural History 48: 2487–2500. 10.1080/00222933.2014.946109 [DOI] [Google Scholar]
- Szarowska M, Hofman S, Osikowski A, Falniowski A. (2014c) Daphniola Radoman, 1973 (Caenogastropoda: Truncatelloidea) at east Aegean islands. Folia Malacologica 22: 269–275. 10.12657/folmal.022.021 [DOI] [Google Scholar]
- Szarowska M, Osikowski A, Hofman S, Falniowski A. (2016a) Do diversity patterns of the spring-inhabiting snail Bythinella (Gastropoda, Bythinellidae) on the Aegean Islands reflect geological history? Hydrobiologia 765: 225–243. 10.1007/s10750-015-2415-x [DOI]
- Szarowska M, Osikowski A, Hofman S, Falniowski A. (2016b) Pseudamnicola Paulucci, 1878 (Caenogastropoda: Truncatelloidea) from the Aegean Islands: a long or short story? Organisms Diversity and Evolution 16: 121–139. 10.1007/s13127-015-0235-5 [DOI]
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. 10.1093/molbev/mst197 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilke T. (2003) Salenthydrobia gen. nov. (Rissooidea: Hydrobiidae): a potential relict of the Messinian Salinity Crisis. Zoological Journal of the Linnean Society 137: 319–336. 10.1046/j.1096-3642.2003.00049.x [DOI] [Google Scholar]
- Wilke T, Davis GM. (2000) Infraspecific mitochondrial sequence diversity in Hydrobia ulvae and Hydrobia ventrosa (Hydrobiidae: Rissoacea: Gastropoda): Do their different life histories affect biogeographic patterns and gene flow? Biological Journal of the Linnean Society 70: 89–105. 10.1006/bijl.1999.0388 [DOI]
- Wilke T, Davis GM, Falniowski A, Giusti F, Bodon M, Szarowska M. (2001) Molecular systematics of Hydrobiidae (Mollusca: Gastropoda: Rissooidea): testing monophyly and phylogenetic relationships. Proceedings of the Academy of Natural Sciences of Philadelphia 151: 1–21. 10.1635/0097-3157(2001)151[0001:MSOHMG]2.0.CO;2 [DOI]
- Wilke T, Davis GM, Gong X, Liu HX. (2000b) Erhaia (Gastropoda: Rissooidea): phylogenetic relationships and the question of Paragonimus coevolution in Asia. American Journal of Tropical Medicine and Hygiene 62: 453–459. 10.4269/ajtmh.2000.62.453 [DOI] [PubMed] [Google Scholar]
- Wilke T, Falniowski A. (2001) The genus Adriohydrobia (Hydrobiidae: Gastropoda): polytypic species or polymorphic populations? Journal of Zoological Systematics and Evolutionary Research 39: 227–234. 10.1046/j.1439-0469.2001.00171.x [DOI]
- Wilke T, Rolán E, Davis GM. (2000a) The mudsnail genus Hydrobia s. s. in the northern Atlantic and western Mediterranean: a phylogenetic hypothesis. Marine Biology 137: 827–833. 10.1007/s002270000407 [DOI] [Google Scholar]
- Xia X. (2000) Data analysis in molecular biology and evolution. Kluwer Academic Publishers, Boston, Dordrecht & London, 280 pp. [Google Scholar]
- Xia X. (2013) DAMBE: A comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30: 1720–1728. 10.1093/molbev/mst064 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia X, Xie Z, Salemi M, Chen L, Wang Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7. 10.1016/S1055-7903(02)00326-3 [DOI] [PubMed] [Google Scholar]
- Zhang J, Kapli P, Pavlidis P, Stamatakis A. (2013) A General Species Delimitation Method with Applications to Phylogenetic Placements. Bioinformatics 29: 2869–2876. 10.1093/bioinformatics/btt499 [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.







