Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2020 Oct 6:2020.10.05.20206953. [Version 1] doi: 10.1101/2020.10.05.20206953

Scalable, effective, and rapid decontamination of SARS-CoV-2 contaminated N95 respirators using germicidal ultra-violet C (UVC) irradiation device

Raveen Rathnasinghe, Robert F Karlicek, Michael Schotsaert, Mattheos A Koffas, Brigitte Arduini, Sonia Jangra, Bowen Wang, Jason L Davis, Mohammed Alnaggar, Anthony Costa, Richard Vincent, Adolfo Garcia-Sastre, Deepak Vashishth, Priti Balchandani
PMCID: PMC7553180  PMID: 33052360

Abstract

Importance: Particulate respirators such as N95 masks are an essential component of personal protective equipment (PPE) for front-line workers. This study describes a rapid and effective UVC irradiation system that would facilitate the safe re-use of N95 respirators and provides supporting information for deploying UVC for decontamination of SARS-CoV-2 during the COVID19 pandemic. Objective: To assess the inactivation potential of the proposed UVC germicidal device as a function of time by using 3M 8211 - N95 particulate respirators inoculated with SARS-CoV-2. Design: A germicidal UVC device to deliver tailored UVC dose was developed and snippets (2.5cm2) of the 3M-N95 respirator were inoculated with 106 plaque-forming units (PFU) of SARS-CoV-2 and were UV irradiated. Different exposure times were tested (0-164 seconds) by fixing the distance between the lamp (10 cm) and the mask while providing an exposure of at least 5.43 mWcm-2. Setting: The current work is broadly applicable for healthcare-settings, particularly during a pandemic such as COVID-19. Participants: Not applicable. Main Outcome(s) and Measure(s): Primary measure of outcome was titration of infectious virus recovered from virus-inoculated respirator pieces after UVC exposure. Other measures included the method validation of the irradiation protocol, using lentiviruses (biosafety level-2 agent) and establishment of the germicidal UVC exposure protocol. Results: An average of 4.38x103 PFUml-1(SD 772.68) was recovered from untreated masks while 4.44x102 PFUml-1(SD 203.67), 4.00x102 PFUml-1(SD 115.47), 1.56x102 PFUml-1(SD 76.98) and 4.44x101 PFUml-1(SD 76.98) was recovered in exposures 2s,6s,18s and 54 seconds per side respectively. The germicidal device output and positioning was monitored and a minimum output of 5.43 mWcm-2 was maintained. Infectious SARS-CoV-2 was not detected by plaque assays (minimal level of detection is 67 PFUml-1) on N95 respirator snippets when irradiated for 120s per side or longer suggesting 3.5 log reduction in 240 seconds of irradiation. Conclusions and Relevance: A scalable germicidal UVC device to deliver tailored UVC dose for rapid decontamination of SARS-CoV-2 was developed. UVC germicidal irradiation of N95 snippets inoculated with SARS-CoV-2 for 120s per side resulted in 100% (3.5 log in total) reduction of virus. These data support the reuse of N95 particle-filtrate apparatus upon irradiation with UVC and supports use of UVC-based decontamination of SARS-CoV-2 virus during the COVID19 pandemic.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES