Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2020 Oct 13;10:17088. doi: 10.1038/s41598-020-74096-8

The non-Newtonian maxwell nanofluid flow between two parallel rotating disks under the effects of magnetic field

Ali Ahmadian 1, Muhammad Bilal 2, Muhammad Altaf Khan 3,4,, Muhammad Imran Asjad 5
PMCID: PMC7553997  PMID: 33051520

Abstract

The main feature of the present numerical model is to explore the behavior of Maxwell nanoliquid moving within two horizontal rotating disks. The disks are stretchable and subjected to a magnetic field in axial direction. The time dependent characteristics of thermal conductivity have been considered to scrutinize the heat transfer phenomena. The thermophoresis and Brownian motion features of nanoliquid are studied with Buongiorno model. The lower and upper disk's rotation for both the cases, same direction as well as opposite direction of rotation is investigated. The subsequent arrangement of the three dimensional Navier Stoke’s equations along with energy, mass and Maxwell equations are diminished to a dimensionless system of equations through the Von Karman’s similarity framework. The comparative numerical arrangement of modeled equations is further set up by built-in numerical scheme “boundary value solver” (Bvp4c) and Runge Kutta fourth order method (RK4). The various physical constraints, such as Prandtl number, thermal conductivity, magnetic field, thermal radiation, time relaxation, Brownian motion and thermophoresis parameters and their impact are presented and discussed briefly for velocity, temperature, concentration and magnetic strength profiles. In the present analysis, some vital characteristics such as Nusselt and Sherwood numbers are considered for physical and numerical investigation. The outcomes concluded that the disk stretching action opposing the flow behavior. With the increases of magnetic field parameter M the fluid velocity decreases, while improving its temperature. We show a good agreement of the present work by comparing with those published in literature.

Subject terms: Mathematics and computing, Applied mathematics, Computer science, Scientific data

Introduction

The study of the fluid flow on the surface of rotating disk has got great attentions around the globe from the researcher’s due to its many applications in practical problems. Electric power generating system, rotating machinery, co rotating turbines, chemical process and computer storage, in the field of aerodynamics engineering, geothermal industry, for lubrication purposes, over the surface of rotating disk the fluid flow is widely applicable. Von Karman's1 examined the solution of Navier stoke's equations by considering an appropriate transformation. Further, he used the fluid flow over the rotating frame for the first time. The Von Karman's problem and its solution numerically have been discussed by Cochran2. Also, he used two series expansion by solving the limitation in the Von Karman's work. Sheikholeslami et al.3 used numerical technique for the solution of nanofluid flow over an inclined rotating disk. During the rotation of the disk, Millsaps and Pahlhausen4 studied the heat transport characteristic. The electric field in radial direction has been considered by Turkyilmazoglu5, where the heat transfer phenomena in magnetohydro-dynamic (MHD) fluid flow has been investigated. Under the transverse magnetic field influence, Khan et al.6 considered the non-Newtonian Powell-Eyring fluid over the rotating disk surface. The entropy generation due to porosity of rotating disk in MHD flow has been investigated by Rashidi et al7. Hayat et al.8 scrutinized the transfer of heat with viscous nanoliquid among two stretchable rotating sheets. The thermal conductivity that depends on temperature in Maxwell fluid over a rotating disk has been studied by Khan et al.9. Batchelor10 was the first researcher, who discussed the fluid flow between the gaps of the rotating frame. The influence of blowing with wall transpiration, suction and mixed convection has investigated by Yan and Soong11. Recently Shuaib et al12. studied the fractional behavior of fluid flow through a flexible rotating disk with mass and heat characteristics.

The attention of researcher’s is increasing towards nanofluid studies day by day due to its many applications in technology that binging facilities in many industrial process of heat transfer. The applications of nanofluid are in drugs delivery, power generation, micromanufactoring process, metallurgical sectors, and thermal therapy, etc. Choi13 is a researcher who worked for the first time on nanofluid, where he considered it for cooling and coolant purpose in technologies. He found from his work that in a base fluid (water, oil and blood, etc.) by adding the nanoparticles, the heat transfer of thermal conductivity becomes more effective. Using the idea of Choi's idea, many researchers investigated and obtained results using the nanofluids14,15. A concentric circular pipe with slip flow has been discussed in Turkyilmazoglu16. By using finite element method (FEM), Hatami et al.17 finds the solution for the heat transfer in nanofluid with free natural convective in a circular cavity. The Cattaner-Christov heat flux and thermal radiation for an unsteady squeezing MHD flow has been considered by Ganji and Dogonchi18. They considered the heat of transfer of the nanofluid among two plates. Dilan et al.19 studied nanofluids effective viscosity based on suspended nanoparticles. A carbon nanotubes based multifunctional hybrid nanoliquid has been considered by Rossella20. The influence of SWCNTs on human epithelial tissues is studied by Kaiser et al21. Hussanan et al.22 examined the Oxide nanoparticles for the enhancement of energy in engine nanofluids, kerosene oil and water. Saeed et al.23 examined nanofluid to improve the heat transfer rate and reduce time for food processing in the industry. Some recent studies related to heat and mass transfer through nanofluids are examined by many researchers2428.

To study the behavior, impact and properties of magnetic field over viscous fluids is known as MHD. Salt water, plasmas and electrolytes are the examples of magnetofluids. . In the present era, the researchers and investigators are taking very keen interest in this field. A lot of work has been done in this area. The tectonic applications of MHD in engineering, chemistry, physics, industrial tackle and in many other fields, for instance, pumps, bearings, MHD generators and boundary layer control are contrived by the intercourse of conducting fluid and magnetic field. In affiliation with these applications, the work of numerous explores has been deliberated. The most essential and consequential challenge is the hydro magnetic behavior of boundary layers with the magnetic field transversely along the moving surfaces or fixed surfaces.Hannes Alfén29 was the first one to innovate the MHD field. In 1970 he received the Nobel Prize in physics because of his innovation in MHD field. In Medical Sciences the applications of MHD fluid flow in distinguishable configuration pertinent to human body parts are very fascinating and tectonic in the scientific area. The important applications of MHD in peristaltic flow, pulsatile flow, simple flow and drug delivery are explored by Rashidi et al30. The numerical solution has been presented by Nadeem et al.31 for the nanoparticles with different base fluids with slip and MHD effect. Khatsayuk et al.32 has explored the numerical simulation of MHD vortex technology and its verification is also ensured. The main of letters portrays casting principle into the electromagnetic mold to invoke small diameter ingots33. Deng and W. M. Liu et al.3437 have presented the numerical and theoretical analysis in a rotating Bose–Einstein of the quantized vortices condensate with modulated interaction in anharmonic and harmonic potentials. They further scrutinized the nonlinear matter of the quasi-2D Bose–Einstein condensates with nonlinearity in the harmonic potential. They concluded that all of the Bose–Einstein condensates have discrete energies with an arbitrary number of localized non-linear matter waves, which are the exact solutions of the mathematical Gross-Pitaevskii equation.

Our inspiration of the present work is to analyze and model the Maxwell nano liquid flow within two stretchable coaxially rotating disks. The second priority is to initiate three dimensional Maxwell equation along with the Navier stokes equation for such type of flow and set up an arrangement for temperature, concentration, velocity and magnetic strength profile. For comparative results the built-in numerical scheme bvp4c and RK4 are opting. We have extended the idea of Ahmed ET al.38 and portrayed this mathematical model. The commitments flow factors on velocity, temperature, concentration, pressure and magnetic strength profile are studied and via graphical and in tabulated form. In the next section, the problem will be formulated and discussed.

Mathematical formulation of the problem

We assumed the nanoliquid steady motion within, the two horizontal parallel rotating disks. The disks are stretchable and subjected to magnetic field B0 in axial direction. The upper disk is considered at a constant position z = d, while the lower disk is at z = 0. The stretching rate and velocity during rotation are S1,Ω1, while stretching rate and rotation velocity of upper disk are S2,Ω2. The concentration and temperature of the lower and upper disk are respectively given by C1,C2 hand T1,T2. The geometry of the considered problem is shown in Fig. 1. The governing equation of nanofluid flows are9,39

ur+ur+wz=0, 1
uur+wuz-u2r=-1ρPr+ν(22ur2+2uz2+r(wz)+2rur-2ur2)-λ1(u22ur2+w22uz2+2uwr(uz)-2uvrvr-2vwrvz+uv2r2+v2rur)-σ2B0ρ(u+wλ1u2), 2
uvr+wvz-uvr=ν(22vr2+vr2+2uz2+1rvr)-λ1(u22vr2+w22vz2+2uwr(vz)-2uvrvr-2vwruz-2u2vr2+v2rvr)-σ2B0ρ(v+wλ1v2), 3
uwr+wwz=-1ρPz+ν(r(uz)+2wr2+1ruz+1rwr+22wz2)-λ1(u22wr2+2vz2+2uwr(wz)+v2rwr), 4
(ρcp)f(uTr+wTz)=k(T)rTr+r(k(T)Tr)+r(k(T)Tz)+(ρcp)p[DB(TzCz+TrCr)+DTT2{(Tz)2+(Tr)2}], 5
uCr+wCz=DB(2Cr2+1rCr+2Cz2)+DBT2(2Tr2+1rTr+2Tz2), 6
-wBrz-Brwz+uBzz+Bzuz+1σμ2(2Brr2+2Brz2+1rBrr-Brr2)=0, 7
-uBθr-Bθur+vBrr+Brvr+vBzz+Bzvz-wBθz-Bθwz+1σμ2(2Bθr2+2Bθz2+1rBθr-Bθr2)=0, 8
wBrr+Brwr+1rwBr-uBzr+Bzur-1ruBz+1σμ2(2Bzr2+2Bzz2+1rBzr)=0, 9

where T represent the fluid temperature. The nanofluid heat capacity and base fluid specific heat are ρCpnf and ρCpf respectively. The heat flux q is defined as

q=-Tk(T), 10

Figure 1.

Figure 1

Geometry of the problem.

In which variable thermal conductivity kT can be written as9

k(T)=k(1+εT-T2T1-T2). 11

ε Is the parameter of variable thermal conductivity and k is the fluid thermal conductivity.

The boundary conditions are:

u=s1r,v=ω1r,w=0,T=T1,C=C1,Br=0,Bz=0atz=0u=s2r,v=ω2r,w=0,T=T2,C=C2,Br=dM02R,Bz=-αM0,atz=d. 12

Transformation

The transformation, which are adopted to make the system of PDE dimensionless are as follow38:

u=rΩ1f(η),v=rΩ1g(η),w=-2dΩ1f(η),η=zdp=ρΩ1v(P(η)+12r2d2),Θ(η)=T-T1T1-T2,ϕ(η)=C-C1C1-C2Br=rΩM0M(η),Bθ=rΩM0N(η),Bz=M0(2νfΩ)M(η). 13

The required dimensionless form of the system of differential equations given in Eqs. (19) are:

f=Re((f)2-g2-2ff)-Re(4fff-4fgg)+MRe(f-2β1ff)-Λ1-4Reβ1f2 14
g=-2Re(fg-fg)-Reβ1(4ffg+4ffg)+MRe(g-2β1fg)1-4Reβ1f2 15
P=-2f-Re(4ff-8β1f2f), 16
Θ=-2RePrfΘ-εΘ2-PrNbΘΦ+PrNtΘ21+εΘ 17
Φ=-2ReScfΦ-NtNbΘ, 18
M=-2ReBt(Mf+fM-fM-Mf), 19
N=2ReBt(Mg-fN), 20

with condition

f(0)=0,f(0)=S1,g(0)=1,P(0)=1,Θ(0)=1,Φ(0)=1,M(0)=0,N(0)=0,atη=0f(1)=0,f(1)=S2,g(1)=Ω,Θ(1)=0,Φ(1)=0,M(1)=1,N(1)=1,atη=d 21

The magnetic field M, Deborah number β1, lower and upper disks stretching parameters S1 and S2, parameter of Brownian motion Nb, Reynolds number Re, thermophoresis parameter Nt and Schmidth number Sc are defined as:

M=σB02ρΩ1,β1=λ1Ω1,S1=s1Ω1,S2=s2Ω2,Nb=DBC1-C2ρcppνρcpf,Nt=DBT1-T2ρcppνT2ρcpf,Re=Ω1d2ν,Sc=νDB. 22

Sherwood and Nusselt numbers

The mass and rate of heat transfer for both disks can be illustrated as38:

Shr1=-hkC1-C2Cz,Nur1=-hkT1-T2Tz,atz=0,Shr2=-hkC1-C2Cz,Nur2=-hkT1-T2Tz,atz=d. 23

The dimensionless form of Sherwood and Nusselt numbers can be written as

Shr1=-Φ0,Nur1=-Θ0,Shr2=-Φ1,Nur2=-Θ1. 24

Graphical interpretation

Results and discussions

The governing equations of Non-Newtonian Maxwell nanofluid flow problem has been solved numerically using bvp4c scheme after using Karman’s scaling approach. In this section the results are illustrated through tables and Figures to visualize the impact of different physical constraints on velocity, pressure, concentration, temperature and magnetic strength profile. Both cases of disks rotation, same Ω=0.5 and in opposite direction Ω=-0.5 of rotation has been sketched in Figs. 2, 3, 4, 5, 6, 7, 8. The entire calculation has been performed by keeping the values of constraints as Re = 4.0, M = 0.3, Nb=Nt = 0.3, β1 = 0.2, S1=S2 = 0.4, ε = 0.1 and Sc = 3.0.

Figure 2.

Figure 2

β1 impact on axial fη, radial fη and azimuthal velocity gη, temperature Θη and pressure profile Pη, for S2, when S1 = 0.0. dashed lines for Ω = 0.5 and lines for Ω =  − 0.5.

Figure 3.

Figure 3

M impact on an axial fη, radial fη and azimuthal velocity gη and temperature profile Θη, for S2, when S1 = 0.0. dashed lines for Ω = 0.5 and lines for Ω =  − 0.5.

Figure 4.

Figure 4

Re impact on axial fη, radial fη and azimuthal velocity gη, temperature profile Θη and pressure profile Pη, for S2, when S1 = 0.0. dashed lines for Ω = 0.5 and lines for Ω =  − 0.5.

Figure 5.

Figure 5

S2 impact on axial fη, radial fη and azimuthal velocity gη and temperature profile Θη, for S2, when S1 = 0.0. dashed lines for Ω = 0.5 and lines for Ω =  − 0.5.

Figure 6.

Figure 6

S2 impact on axial fη, radial fη and azimuthal velocity gη and temperature profile Θη, for S2, when S1 = 0.5. dashed lines for Ω = 0.5 and lines for Ω =  − 0.5.

Figure 7.

Figure 7

ε and Pr impact on temperature profile Θη, while Nt and Sc on concentration profile, for S2, when S1 = 0.0. dashed lines for Ω = 0.5 and lines for Ω =  − 0.5.

Figure 8.

Figure 8

Bt and Rem impact on magnetic strength profile Mη for S2, when S1 = 0.0. dashed lines for Ω = 0.5 and lines for Ω =  − 0.5.

Figure 2a–e are plotted, in order to illustrate the influence of Deborah number β1 on axial velocity profile fη, radial fη and azimuthal velocity gη, temperature Θη and pressure profile Pη respectively. The fluid behaves as a solid substance with high Deborah number β1 shown in Fig. 2a. That’s why axial velocity reduces with the increases of β1. The fluid with low Deborah number possess less elastic property and vice versa illustrated in Fig. 2b,c. So the radial velocity and azimuthal velocity reduces with the improvement of β1. The fluid temperature is rises with β1 shown in Fig. 2d. The pressure profile of fluid decline with the rising values of Deborah number β1 Fig. 2e.

Figure 3a–d demonstrate the behavior of axial velocity profile fη, radial fη, azimuthal velocity gη and the temperature Θη versus magnetic parameter M. The axial velocity and radial velocity decline with the effects of magnetic parameter M see Fig. 3a,b. Because the magnetic field creates some resistive forces, which oppose the fluid velocity and as a result axial and radial velocity reduces. The same trend has been received of azimuthal velocity via M Fig. 3c. By the enhancement of magnetic strength on the fluid flow generate friction, which produces some amount of heat and as a result the average temperature of the fluid increases which is given in Fig. 3d.

The dominance of Reynolds number against axial velocity, radial and azimuthal velocity is elaborated in Fig. 4a–c. Figure 4d elaborated to observe that the temperature field decline with the rising credit of Reynolds number Re. The pressure profile of fluid also decline with the rising values of Reynolds number Fig. 4e.

The two different cases for S2, when the lower disk stretching rate is S1=0 and when it is S1=0.5 have been sketched in Figs. 5a,b and 6a,b. In both cases the axial and radial velocity of fluid decreases with the improving values of S2. While in azimuthal velocity an opposite seen has been observed, because by increasing stretching rate S2 the kinematics energy of fluid increases which enhanced the azimuthal velocity gη illustrated in Figs. 5c and 6c. Figures 5d and 6d are sketched to observe the upper disk stretching impact versus temperature profile, while keeping the lower disk stretching rate S1=0 and S1=0.5 respectively. When the disk stretch the fluid particle above the disk surface get some space and become relaxed for a while, as a result their temperature reduce, which causes the average temperature of fluid to reduce.

Figure 7a,b is drawn in order to reveal the impact of the parameters ε and Pr which represent respectively thermal conductivity and Brandt number on temperature field Θη. From Fig. 7a, it is obvious that by increasing the thermal conductivity parameter ε, the temperature field will improve. Figure 7b demonstrate the inverse relation of Prandtl number Pr versus temperature profile, physically large Prandtl fluid have less thermal diffusivity while less Prandtl fluid have always high thermal diffusivity, that’s why the temperature field and Prandtl number has inverse relation. Figure 7c,d are plotted to examine the influence of thermophoresis parameter Nt and Schmidth number Sc on Φη. The mass transfer rate reduces with the improvement of both thermophoresis parameter Nt and Schmidth number Sc.

The dominant behavior of Batchlor number Bt versus magnetic field has been illustrated in Fig. 8a. When Batchlor number is large, a less current will generates high induced magnetic field Mη, while the opposite trend has been observed with the magnetic Reynolds number on magnetic field in Fig. 8b. The enhancement of Reynolds number reduces the magnetic fields Mη.

Table 1 shows the comparison of our work with that in Turkyilmazoglu12, Ahmed et al.38 and Rogers and Lance40 for different values of rotation parameter Ω, in case when S1=S2=0. Table 2 is displayed for numerical outcomes of Reynolds number and rotation parameter Ω, while keeping the upper plate stretching rate S2=0 and lower plate S1=0.5. The results in Table 2 are also compared with published work12. For the validity of the results two well-known best numerical approaching techniques Runge Kutta order four method and boundary value solver are compared in Table 3. The numerical outputs for Sherwood number Shr1 and Nusselt number Nur1 at lower disk are plotted in Table 3. By varying Prandtl number, thermal conductivity, magnetic field, Reynolds number, thermophoresis and upper disk stretching parameters, the Nusselt number for lower Nur1 and upper disks Nur2 are also calculated. In Table 4. the Nusselt number for lower Nur1 and upper disks Nur2 are calculated by varying Prandtl number, thermal conductivity, magnetic field, Reynolds number, thermophoresis and upper disk stretching parameters.

Table 1.

For various valued of rotation parameter Ω the comparison of -G0,-F0 and Λ has been shown for the case when S2=S1=0.

Ω  − 1.0  − 0.8  − 0.3 0.0 0.50
F0
Ref.40 0.06667000 0.08384000 0.10385000 0.09987000 0.06653000
Ref.12 0.06667313 0.08384206 0.10385088 0.09987221 0.06653419
Ref.38 0.06667358 0.08384164 0.10385000 0.09987146 0.06653400
Present 0.06667723 0.08384354 0.10386000 0.09988248 0.06653500
-G0
Ref.40 2.00094000 1.80258000 1.30432000 1.00438000 0.50251000
Ref.12 2.00094215 1.80257847 1.30432355 1.00437756 0.50251351
Ref.38 2.00094200 1.80257800 1.30432300 1.00437700 0.50251350
Present 2.00095250 1.80259000 1.30433300 1.00438600 0.50251750
Λ
Ref.40 0.19993000 0.17184000 0.20636000 0.29924000 0.57458000
Ref.12 0.19992538 0.17185642 0.20635721 0.29923645 0.57457342
Ref.38 0.19992651 0.17185728 0.20635898 0.29923784 0.57457377
Present 0.19997752 0.17186723 0.20635981 0.29923843 0.57457499

Table 2.

The comparison of -G0,-F0 and Λ for different values of Re and Ω in case, when S1=0.5,S2=0.0.

Re Ω F0 -G0
Ref.12 Present Ref.12 Present
0  − 0.5  − 2.00000007  − 2.00000000 1.50000000 1.50000000
10  − 0.5  − 1.60562889  − 1.60563754 3.40116128 3.40117328
0 0.0  − 2.00000007  − 2.00000000 1.00000000 1.00000000
10 0.0  − 1.44561724  − 1.44561896 2.56217438 2.56218932
0 0.5  − 2.00000007  − 2.0000000 0.50000000 0.50000000
10 0.5  − 1.89459839  − 1.89459945 1.50020105 1.50022800

Table 3.

The comparison of RK4 and Bvp4c for Sherwood Shr1 and Nusselt number Nur1 at the lower disk, when M=1.2,Sc=3.0,Pr=3.0,Nt=Nb=0.3,Re=4.0,β1=0.2,S1=S2=0.5.

Shr1 Nur1
Pr Bvp4c RK4 Sc Bvp4c RK4
2.0 0.8718294 0.8718295 2.0 1.557996 1.557995
3.0 0.7999895 0.7999895 2.5 1.631221 1.631220
4.0 0.7290099 0.7290098 3.0 1.696949 1.696949
5.0 0.6632382 0.6632380 3.5 1.785639 1.785639

Table 4.

The Nusselt numbers at lower Nur1 and upper Nur2 disks respectively, when S1=0.5,Ω=0.5,β1=0.2,Sc=1.0,Nb=0.3.

S2 M Re Pr ε Nt Nur1 Nur2
0.0 2.0 6.0 2.5 0.5 0.2 0.969396 1.444753
0.3 0.829980 1.906798
0.6 0.715537 2.419063
0.0 1.0 0.996962 1.393135
1.5 0.982571 1.422293
2.0 0.969396 1.444753
2.0 0.0 0.722765 1.828593
3.0 0.867816 1.586953
6.0 0.922574 1.379949
6.0 1.0 0.957529 1.3392912
3.0 0.982961 1.486556
5.0 0.997661 1.569729
2.0 0.0 1.149913 1.069889
0.3 0.926457 1.335418
0.6 0.947561 1.498999
0.5 0.2 0.969396 1.444753
0.4 0.848575 1.682722
0.6 0.739949 0.938282

Conclusion

The present numerical model is intended to explore the behavior of Non-Newtonian (Maxwell) nanoliquid moving within two stretchable rotating disks subjected to axial magnetic field. The disks are separated from each other by fixed distance. The time dependent characteristics of thermal conductivity have been considered to scrutinize the heat transfer phenomena. The thermophoresis and Brownian motion features of nanoliquid are studied with Buongiorno model. The system of equations is solved numerically through Runge Kutta order four method and bvp4c. The concluded outputs are listed as:

  • The rising credit of thermophoresis and Brownian motion positively affects the temperature field.

  • It is examined that by varying the upper disk stretching, the axial flow changes its behavior to upper form lower disk.

  • A significant change in tangential velocity and slight enhancement in temperature profile are observed with the rising values of upper disk stretching rate.

  • The temperature field is enhanced with the variation in thermal conductivity and magnetic field parameters.

  • The transfer of mass and heat rate is inclined at the lower disk surface with the Schmidth number.

  • When the upper disk stretching rate become zero, the heat transport rate decline at lower disk surface, while incline at upper disk with the parameter ε (thermal conductivity).

  • The radial, axial and azimuthal velocity decreases while temperature field increases with varying of β1 (Deborah number).

Acknowledgements

This work was supported by the Ministry of Education, Malaysia under LRGS grant with Number: LRGS/1/2019/UKM-UKM/5/2.

List of symbols

ε

Thermal conductivity

Λ

Pressure gradient parameter

g

Transform azimuthal velocity

q

Heat flux

σ

Fluid electric conductivity

η

Dimensionless variable

Rd

Radiation parameter

Ω1

Rotation rate of lower disk

DB

Brownian diffusion coefficient

K(T)

Variable thermal conductivity

ρ

Fluid density

λ1

Relaxation time parameter

Nb

Brownian motion parameter

DB

Brownian diffusion coefficient

V

Kinematic viscosity

T

Temperature

DT

Coefficient of thermophoretic diffusion

Sc

Schmidt number

T1

Temperature of Lower disk

Bt

Batclor number

Φ,Θ

Transform concentration & temperature

r, Θ, z

Cylindrical coordinate system

Cp

Specific heat

M

Magnetic parameter

P

Pressure

Ω

Rotation parameter

d

Vertical distance between disks

J

Current density

B0

Strength of magnetic field

Ω2

Rotation rate of upper disk

Nabla

Nabla

Pr

Prandtl number

C

Concentration

β1

Deborah number

Nt

Thermophoresis parameter

DT

Thermophoretic diffusion coefficient.

μ

Dynamic viscosity

V

Velocity vector

k

Thermal conductivity

Re

Reynolds number

T2

Temperature of upper disk

Rem

Magnetic Reynolds number

f, f

Transform axial and radial velocity

u, v, w

Velocity components

Appendix

Solution methodology

For the solution of the model numerically, we convert the high order system into a system of first order system of differential equations which can be easily solved by the method of Runge–Kutta order four schemes. In order to convert the system the following scales are considered:χ1=f,χ2=f,χ3=f,χ4=g,χ5=g,χ6=P,χ7=θ,χ8=θ,χ9=ϕ,χ10=ϕ,M=χ11,M=χ12,M=χ13,M=χ14,N=χ15,N=χ16.

χ1=χ2,χ2=χ3,χ3=Re(χ22-χ42-2χ1χ3)-Re(4χ1χ2χ3-4χ1χ4χ5)+M1Re(χ2-2β1χ1χ3)-Λ1-4Reβ1χ12,χ4=χ5,χ5=-2Re(χ1χ5-χ2χ4)-Reβ1(4χ1χ2χ5-4χ1χ4χ3)+M1Re(χ4-2β1χ1χ5)-Λ1-4Reβ1χ12,χ6=-2χ3-Re(4χ1χ2-8β1χ12χ3),χ7=χ8χ8=-2RePrχ1χ8-εχ82-PrNbχ8χ10+PrNtχ821+εχ7,χ9=χ10,χ10=-2ReScχ1χ10-NtNbχ8,χ11=χ12,χ12=χ13,χ13=χ14,χ14=-2ReBt(χ11χ3+χ3χ12-χ1χ14-χ13χ2),χ15=χ16,χ16=-2ReBt(χ11χ5-χ1χ16). 25

The transform conditions are:

χ1(0)=0,χ2(0)=S1,χ4(0)=1,χ6(0)=1,χ7(0)=1,χ9(0)=1,χ12(0)=0,χ15(0)=0,atη=0χ1(1)=0,χ2(1)=S2,χ4(1)=Ω,χ7(1)=0,χ9(1)=0,χ12(1)=1,χ15(1)=1,atη=d 26

Author contributions

M. B and M.A.K. wrote the original manuscript and obtained the theoretical as well as the numerical solutions. A. A and M.I.A verified the results. M. B. M. A. K, A. A. and M. I. revised the results and approved the final draft of the work.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Von Kármán T. Uber laminar und turbulent Reibung. Z. Angew. Math. Mech. 1921;1:233–252. doi: 10.1002/zamm.19210010401. [DOI] [Google Scholar]
  • 2.Cochran, W. G. The flow due to a rotating disc. In Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 30, No. 3. 365–375 (Cambridge University Press, 1934)
  • 3.Sheikholeslami M, Hatami M, Ganji DD. Numerical investigation of nanofluid spraying on an inclined rotating disk for cooling process. J. Mol. Liq. 2015;211:577–583. doi: 10.1016/j.molliq.2015.07.006. [DOI] [Google Scholar]
  • 4.Millsaps K, Pohlhausen K. Heat transfer by laminar flow from a rotating plate. J. Aeronaut. Sci. 1952;19(2):120–126. doi: 10.2514/8.2175. [DOI] [Google Scholar]
  • 5.Turkyilmazoglu M. Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk. Int. J. Eng. Sci. 2012;51:233–240. doi: 10.1016/j.ijengsci.2011.09.011. [DOI] [Google Scholar]
  • 6.Khan NA, Aziz S, Khan NA. MHD flow of Powell-Eyring fluid over a rotating disk. J. Taiwan Inst. Chem. Eng. 2014;45(6):2859–2867. doi: 10.1016/j.jtice.2014.08.018. [DOI] [Google Scholar]
  • 7.Rashidi MM, Kavyani N, Abelman S. Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties. Int. J. Heat Mass Transf. 2014;70:892–917. doi: 10.1016/j.ijheatmasstransfer.2013.11.058. [DOI] [Google Scholar]
  • 8.Hayat T, Nazar H, Imtiaz M, Alsaedi A. Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks. Appl. Math. Mech. 2017;38(12):1663–1678. doi: 10.1007/s10483-017-2289-8. [DOI] [Google Scholar]
  • 9.Khan M, Ahmed J, Ahmad L. Application of modified Fourier law in von Kármán swirling flow of Maxwell fluid with chemically reactive species. J. Braz. Soc. Mech. Sci. Eng. 2018;40(12):573. doi: 10.1007/s40430-018-1490-0. [DOI] [Google Scholar]
  • 10.Batchelor GK. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech. Appl. Math. 1951;4(1):29–41. doi: 10.1093/qjmam/4.1.29. [DOI] [Google Scholar]
  • 11.Yan WM, Soong CY. Mixed convection flow and heat transfer between two co-rotating porous disks with wall transpiration. Int. J. Heat Mass Transf. 1997;40(4):773–784. doi: 10.1016/0017-9310(96)00183-4. [DOI] [Google Scholar]
  • 12.Shuaib M, Bilal M, Khan MA, Malebary SJ. Fractional analysis of viscous fluid flow with heat and mass transfer over a flexible rotating disk. Comput. Model. Eng. Sci. 2020;123(1):377–400. [Google Scholar]
  • 13.Choi, S. U. & Eastman, J. A. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab., IL (United States) (1995).
  • 14.Buongiorno, J. Convective transport in nanofluids (2006).
  • 15.Kuznetsov A, Nield DA. Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 2011;50(5):712–717. doi: 10.1016/j.ijthermalsci.2011.01.003. [DOI] [Google Scholar]
  • 16.Turkyilmazoglu M. Anomalous heat transfer enhancement by slip due to nanofluids in circular concentric pipes. Int. J. Heat Mass Transf. 2015;85:609–614. doi: 10.1016/j.ijheatmasstransfer.2015.02.015. [DOI] [Google Scholar]
  • 17.Hatami M, Song D, Jing D. Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition. Int. J. Heat Mass Transf. 2016;98:758–767. doi: 10.1016/j.ijheatmasstransfer.2016.03.063. [DOI] [Google Scholar]
  • 18.Dogonchi AS, Ganji DD. Investigation of MHDnanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. J. Mol. Liq. 2016;220:592–603. doi: 10.1016/j.molliq.2016.05.022. [DOI] [Google Scholar]
  • 19.Udawattha DS, Narayana M, Wijayarathne UP. Predicting the effective viscosity of nanofluids based on the rheology of suspensions of solid particles. J. King Saud Univ. Sci. 2019;31(3):412–426. doi: 10.1016/j.jksus.2017.09.016. [DOI] [Google Scholar]
  • 20.Arrigo R, Bellavia S, Gambarotti C, Dintcheva NT, Carroccio S. Carbon nanotubes-based nanohybrids for multifunctional nanocomposites. J. King Saud Univ. Sci. 2017;29(4):502–509. doi: 10.1016/j.jksus.2017.09.007. [DOI] [Google Scholar]
  • 21.Kaiser JP, Buerki-Thurnherr T, Wick P. Influence of single walled carbon nanotubes at subtoxical concentrations on cell adhesion and other cell parameters of human epithelial cells. J. King Saud Univ. Sci. 2013;25(1):15–27. doi: 10.1016/j.jksus.2012.06.003. [DOI] [Google Scholar]
  • 22.Hussanan A, Salleh MZ, Khan I, Shafie S. Convection heat transfer in micropolarnanofluids with oxide nanoparticles in water, kerosene and engine oil. J. Mol. Liq. 2017;1(229):482–488. doi: 10.1016/j.molliq.2016.12.040. [DOI] [Google Scholar]
  • 23.Salari, S. & Jafari, S. M. Application of nanofluids for thermal processing of food products. Trends Food Sci. Technol. (2020).
  • 24.Naqvi, S. M. R. S., Muhammad, T. & Asma, M. Hydromagnetic flow of Cassonnanofluid over a porous stretching cylinder with Newtonian heat and mass conditions. Phys. A Stat. Mech. Appl. 123988 (2020).
  • 25.Sohail, M. & Naz, R. (2020). Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterbynanofluid in stretching cylinder. Phys. A Stat. Mech. Appl. 124088.
  • 26.Xu C, Xu S, Wei S, Chen P. Experimental investigation of heat transfer for pulsating flow of GOPs-water nanofluid in a microchannel. Int. Commun. Heat Mass Transfer. 2020;110:104403. doi: 10.1016/j.icheatmasstransfer.2019.104403. [DOI] [Google Scholar]
  • 27.Reddy, P. S. & Sreedevi, P. Impact of chemical reaction and double stratification on heat and mass transfer characteristics of nanofluid flow over porous stretching sheet with thermal radiation. Int. J. Ambient Energy 1–26 (just-accepted) (2020).
  • 28.Rafique K, Anwar MI, Misiran M, Khan I, Sherif ESM. The implicit keller box scheme for combined heat and mass transfer of brinkman-type micropolarnanofluid with brownian motion and thermophoretic effect over an inclined surface. Appl. Sci. 2020;10(1):280. doi: 10.3390/app10010280. [DOI] [Google Scholar]
  • 29.Alfvén H. Existence of electromagnetic-hydrodynamic waves. Nature. 1942;150(3805):405–406. doi: 10.1038/150405d0. [DOI] [Google Scholar]
  • 30.Rashidi S, Esfahani JA, Maskaniyan M. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies. J. Magn. Magn. Mater. 2017;439:358–372. doi: 10.1016/j.jmmm.2017.05.014. [DOI] [Google Scholar]
  • 31.Abbas N, Malik MY, Nadeem S. Stagnation flow of hybrid nanoparticles with MHD and slip effects. Heat Trans. Asian Res. 2020;49(1):180–196. doi: 10.1002/htj.21605. [DOI] [Google Scholar]
  • 32.Khatsayuk, M., Timofeev, V. & Demidovich, V. (2020). Numerical simulation and verification of MHD-vortex. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering.
  • 33.Pervukhin, M. V., Timofeev, V. N., Usynina, G. P., Sergeev, N. V., Motkov, M. M. & Gudkov, I. S. Mathematical modeling of MHD processes in the casting of aluminum alloys in electromagnetic mold. In IOP Conference Series: Materials Science and Engineering. Vol. 643, No. 1, 012063 (IOP Publishing, 2019)
  • 34.Wang DS, Hu XH, Hu J, Liu WM. Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity. Phys. Rev. A. 2010;81(2):025604. doi: 10.1103/PhysRevA.81.025604. [DOI] [Google Scholar]
  • 35.Ji AC, Liu WM, Song JL, Zhou F. Dynamical creation of fractionalized vortices and vortex lattices. Phys. Rev. Lett. 2008;101(1):010402. doi: 10.1103/PhysRevLett.101.010402. [DOI] [PubMed] [Google Scholar]
  • 36.Li L, Li Z, Malomed BA, Mihalache D, Liu WM. Exact soliton solutions and nonlinear modulation instability in spinor Bose-Einstein condensates. Phys. Rev. A. 2005;72(3):033611. doi: 10.1103/PhysRevA.72.033611. [DOI] [Google Scholar]
  • 37.Wang DS, Song SW, Xiong B, Liu WM. Quantized vortices in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction. Phys. Rev. A. 2011;84(5):053607. doi: 10.1103/PhysRevA.84.053607. [DOI] [Google Scholar]
  • 38.Ahmed J, Khan M, Ahmad L. Swirling flow of Maxwell nanofluid between two coaxially rotating disks with variable thermal conductivity. J. Braz. Soc. Mech. Sci. Eng. 2019;41(2):97. doi: 10.1007/s40430-019-1589-y. [DOI] [Google Scholar]
  • 39.Khan M, Ahmed J, Ahmad L. Chemically reactive and radiative von Kármán swirling flow due to a rotating disk. Appl. Math. Mech. 2018;39(9):1295–1310. doi: 10.1007/s10483-018-2368-9. [DOI] [Google Scholar]
  • 40.Lance GN, Rogers MH. The axially symmetric flow of a viscous fluid between two infinite rotating disks. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1962;266(1324):109–121. [Google Scholar]

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES