Skip to main content
Biomolecules logoLink to Biomolecules
. 2020 Sep 22;10(9):1353. doi: 10.3390/biom10091353

MiRNA Profiles of Extracellular Vesicles Secreted by Mesenchymal Stromal Cells—Can They Predict Potential Off-Target Effects?

Timo Z Nazari-Shafti 1,2,3,*,, Sebastian Neuber 1,2,3,, Ana G Duran 1,3,4,, Vasileios Exarchos 1,5, Christien M Beez 3, Heike Meyborg 1, Katrin Krüger 6, Petra Wolint 7, Johanna Buschmann 7, Roland Böni 8, Martina Seifert 3,9, Volkmar Falk 1,2,3,5,6, Maximilian Y Emmert 1,2,3,10,11,*
PMCID: PMC7565205  PMID: 32971982

Abstract

The cardioprotective properties of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are currently being investigated in preclinical studies. Although microRNAs (miRNAs) encapsulated in EVs have been identified as one component responsible for the cardioprotective effect of MSCs, their potential off-target effects have not been sufficiently characterized. In the present study, we aimed to investigate the miRNA profile of EVs isolated from MSCs that were derived from cord blood (CB) and adipose tissue (AT). The identified miRNAs were then compared to known targets from the literature to discover possible adverse effects prior to clinical use. Our data show that while many cardioprotective miRNAs such as miR-22-3p, miR-26a-5p, miR-29c-3p, and miR-125b-5p were present in CB- and AT-MSC-derived EVs, a large number of known oncogenic and tumor suppressor miRNAs such as miR-16-5p, miR-23a-3p, and miR-191-5p were also detected. These findings highlight the importance of quality assessment for therapeutically applied EV preparations.

Keywords: mesenchymal stromal cells, extracellular vesicles, microRNA, oncomiR, tumor suppressor, cardioprotection, adipose tissue, cord blood

1. Introduction

Mesenchymal stromal cells (MSCs) have been extensively studied in preclinical and clinical trials over the past few decades for their promising capabilities in regenerative medicine [1]. There is consensus that MSCs cannot regenerate damaged human heart tissue. However, preclinical studies showed that MSCs may provide cardioprotective effects after myocardial damage by modulating the immune response, promoting neoangiogenesis, and reducing fibrosis in the myocardial scar [2]. The therapeutic efficacy of MSCs is mainly attributed to their paracrine secretion of various growth factors, chemokines, cytokines, and extracellular vehicles (EVs) [3]. Studies in rodents and pigs showed a reduction in scar size after a single injection of MSCs after myocardial injury [4,5]. In clinical trials, the results regarding the therapeutic effect of MSCs after single treatments in patients with myocardial infarction are more inconsistent [6]. Potential issues associated with the use of MSCs include:

  • (i)

    the difficulty in generating a consistent source of cells with a stable phenotype,

  • (ii)

    a significant first-pass effect due to entrapment of large cells in the lung and liver microvasculature, and

  • (iii)

    patient-specific comorbidities in autologous applications [7].

In addition, less than 2% of the injected human cells remain at the target site after 60 min [8]. In a porcine model of acute myocardial ischemia, intramyocardial injections resulted in a retention rate of just over 10% after 60 min [9]. Furthermore, the same study showed that less than 1% of the engrafted cells were still present four weeks after transplantation. This, in turn, means that the release time of the cardioprotective MSC secretome at the site of injury is significantly shorter than the overall process of myocardial remodeling, which prompted scientists to further investigate the secretome of MSCs, specifically MSC-derived EVs. In general, EVs are membranous nanoparticles produced by cells that are divided into three categories based on their biosynthesis: apoptotic bodies, microvesicles, and exosomes [10]. All of them are considered intercellular messengers that, when stimulated, can transmit biological signals through the blood and lymphatic system to neighboring cells and distant tissues. Proteins, messengerRNAs (mRNAs), and microRNAs (miRNAs) partially encapsulated and protected by the lipid membrane of EVs act as the biological mediators between cells. In fact, gain-of-function and loss-of-function assays have demonstrated that miRNAs transported by EVs are primarily responsible for the cardioprotective effect of MSCs [11]. MiRNAs are short nucleotide sequences of 18–22 base pairs that can bind to the 3′ untranslated region of their target mRNAs, either to interfere with their transport to the ribosome or to prevent their translation at the ribosomal site [12]. Because of their short length, miRNAs usually target more than one mRNA, making specific target prediction difficult. To date, more than 150 miRNAs have been identified in MSC-derived EVs [13]. Although there are some differences in the miRNA profile depending on the source of MSCs, a number of cardioprotective miRNAs have been identified that are commonly transported by EVs from various MSC tissue origins [14]. MiRNAs encapsulated in EVs have several functions including regulation of cell physiology, proliferation, cell differentiation, and apoptosis. For example, they can regulate the expression of members of the hypoxia-inducible factor family, which are important for the modulation of vascular sprouting in the setting of hypoxia, via the RNA interference pathway [15]. Furthermore, miRNAs can also target mRNAs that regulate fibrosis and fibroblast activation, such as tissue growth factor-beta (TGF-beta) and members of the SMAD family [16].

Since it was shown that EVs isolated from MSCs can recapitulate the cardioprotective effects of their parent cells, it was hypothesized that the use of EVs may offer significant advantages over their cellular counterparts due to a higher safety profile, lower immunogenicity, and the inability to directly induce tumors [17]. However, whereas many preclinical studies use multiple direct myocardial injections to deliver EVs, this strategy may not be optimal for many patients in clinical practice. Direct access to the heart (i.e., intracoronary or intramyocardial) is achieved either through catheter-based techniques or by cardiovascular surgery, and both methods are associated with a risk of complications. In turn, a single intramyocardial injection may not be sufficient to improve tissue remodeling after a myocardial injury due to the short half-life of EVs and patient-associated comorbidities that can reduce the intrinsic wound healing capacity seen in healthy animal subjects. As a result, several groups are currently investigating methods for intravenous application of EVs that would allow for sufficient titers of therapeutic EVs in myocardial tissues [18,19]. Despite their small size, EVs, like other lipid-based nanoparticles, undergo a significant first-pass effect with accumulation in the liver and lung tissue [19]. While several teams are currently working on targeted delivery strategies for EVs, another pharmacological component must also be considered: application of EVs over long periods translates into the systemic application of a considerable amount of miRNAs, despite their short half-life of less than 24 h [20]. In the field of cancer biology, a multitude of studies describe the role of miRNAs in cancer progression, transformation, and metastasis. In this context, miRNAs are divided into three classes:

  • (i)

    oncogenic miRNAs,

  • (ii)

    tumor suppressor miRNAs, and

  • (iii)

    miRNAs with a dual role in cancer progression.

However, to the best of our knowledge, likely due to the limited number of preclinical trials with systemic EV applications, their miRNA cargo was not analyzed in connection with possible off-target effects. In particular, the presence or absence of pro-oncogenic miRNAs in EV preparations has not been conclusively proven. These potential risks need to be assessed for the clinical use of EVs, especially when treating patients with undetected tumors or predispositions to tumor development. The aim of the present study was therefore to characterize the miRNA cargo of EVs isolated from two clinically relevant MSC sources (i.e., cord blood (CB) and adipose tissue (AT)) and then to compare the EV miRNA cargo to well-known miRNAs involved in cancer biology.

2. Materials and Methods

2.1. Cell Isolation and Cell Culture

Human AT-derived MSCs were isolated from patients undergoing liposuction, as described previously [21]. Four donors (three female, one male, mean age 41.8 ± 9.3 years) were included in this study. None of the lipoaspirate donors were obese (body mass index was below 25 for all donors) and none of the donors reported any medical conditions at the time of liposuction. CB-derived MSCs were isolated from CB of four healthy newborns (two female, two male) at the Charité University Hospital Berlin, as described elsewhere [22]. Neither mother nor infant suffered from any medical conditions at the time of donation. All procedures were approved by the local medical ethics committees (Charité University Hospital Ethics Committee, registration number EA2/178/13; Cantonal Ethics Committee Zurich, registration number KEK-ZH 2010-0476/0) and written consent was obtained from patients or relatives. All MSCs were cultured in MesenPRO RS medium (Life Technologies, Grand Island, NY, USA, catalog no. 12747-010) containing 10% fetal bovine serum (FBS; Life Technologies, Carlsbad, CA, USA, catalog no. 10270106), 1% penicillin/streptomycin (P/S; Merck Millipore, Burlington, MA, USA, catalog no. A2213), and 2 ng/mL recombinant human fibroblast growth factor-basic (FGF-b; PeproTech, Hamburg, Germany, catalog no. 100-18C) in a humidified atmosphere of 5% carbon dioxide at 37 °C.

2.2. EV Isolation

EVs were isolated from MSC-conditioned medium using (i) sequential ultracentrifugation (UC) or (ii) the exoEasy Maxi Kit (Qiagen, Hilden, Germany, catalog no. 76064) according to the manufacturer’s instructions. Briefly, MSCs were expanded to a confluence of about 80% and washed once with Dulbecco’s phosphate-buffered saline (DPBS, Dulbecco’s phosphate-buffered saline; Life Technologies, Bleiswijk, The Netherlands, catalog no. 14190-144). The cells were switched to Dulbecco’s modified eagle medium (DMEM 1X)-GlutaMAX (Life Technologies, Paisley, United Kingdom, catalog no. 21885-025) containing 10% exosome-depleted FBS (Life Technologies, Bleiswijk, The Netherlands, catalog no. A2720803), 1% P/S, and 2 ng/mL FGF-b for 48 h, followed by a transfer to starvation medium (DMEM 1X-GlutaMAX supplemented with 1% P/S and 2 ng/mL FGF-b) for 24 h. For the isolation of EVs using sequential UC, the supernatant of approximately 3 × 107 cells at early passages (passages 5–7) was processed according to the protocol of Beez et al. [23]. For the isolation of EVs using the Qiagen kit, an MSC-conditioned medium of approximately 3 × 106 cells at early passages was collected and centrifuged at 2000× g for 15 min at 4 °C (Allegra X-15R Centrifuge, Beckman Coulter, Indianapolis, IN, USA). The supernatant was decanted and filtered using a 0.2 μm syringe filter (Sartorius, Hanover, Germany, catalog no. 16534) to remove any remaining cell debris and large aggregates. Thereafter, 8 mL of the filtered solution were mixed with 8 mL XBP buffer by gently inverting the tube. The mixture was transferred to the exoEasy spin column, centrifuged at 500× g for 1 min at room temperature (R.T) and the flow-through was discarded. Then, the bound EVs were washed with 10 mL XWP buffer and centrifuged at 5000× g for 5 min to remove residual buffer from the column. To elute EVs, 0.5 mL XE buffer was added and the column was centrifuged at 500× g for 5 min to collect the eluate, which was re-applied to the same column and centrifuged at 5000× g for 5 min. Final EV preparations were transferred to low-binding tubes (Sarstedt, Numbrecht, Germany, catalog no. 72.706.600) and stored at −80 °C until further use.

2.3. Nanoparticle Tracking Analysis (NTA) and Total Protein Analysis

Particle concentration and size distribution of EV preparations were examined using the ZetaView instrument (Particle Metrix, Inning, Germany). Particles were automatically tracked and sized based on Brownian motion and the diffusion coefficient. The NTA measurement conditions were as follows: temperature = 26.6 ± 2.2 °C, viscosity = 0.87  ± 0.04 cP, frames per second = 30, and measurement time = 75 s. Sample videos were analyzed using NTA software (ZetaView, Particle Metrix, Inning, Germany, version 8.04.02).

Total protein content of EV preparations was determined using the commercially available Bicinchoninic Acid (BCA) Protein Assay Kit with bovine serum albumin as a standard (Thermo Scientific, catalog no. 23227). Briefly, 20 µL of samples or standards were mixed with 200 µL of freshly made BCA working reagent and incubated for 30 min at 50 °C. Absorbance was measured at 560 nm with a Mithras LB940 plate reader (Berthold Technologies, Pforzheim, Germany) and analyzed with MikroWin 2000 software (Mikrotek Laborsysteme, Overath, Germany, version 4.41).

2.4. Transmission Electron Microscopy (TEM)

Isolated EV preparations were stained according to the protocol of Théry et al. [24] and morphologically evaluated at the electron microscopy (EM,) facility of the Charité—Universitätsmedizin Berlin. Briefly, 20 µL of MSC-derived EVs were first placed on formvar carbon-coated copper EM grids (Plano, Wetzlar, Germany, catalog no. G2430N) for 20 min. Then, the samples were incubated for 20 min in 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, USA, catalog no. 15714), followed by 5 min in 1% glutaraldehyde (Serva, Heidelberg, Germany, catalog no. 23114). After several washing steps with water, the samples were stained for 10 min in a freshly prepared solution of 4% uranyl acetate (Serva, Heidelberg, Germany, catalog no. 77870) and 2% methylcellulose (Sigma-Aldrich, St. Louis, MO, USA, catalog no. M-6385). Imaging was performed using the Leo 906 microscope (Carl Zeiss, Oberkochen, Germany), equipped with ImageSP Viewer software (SYS-PROG, Minsk, Belarus, version 1.2.7.11).

2.5. Immunofluorescence Staining and Flow Cytometry

Expression of surface molecules was measured as described before [23]. Briefly, 2 µg of MSC-derived EV protein were incubated with 15 µL of 4 μm aldehyde/sulfate latex beads (Thermo Fisher, catalog no. A37304) for 15 min at R.T. The sample volume was filled up to 1 mL with DPBS and incubated for 1 h at R.T with gentle shaking. Thereafter, samples were centrifuged for 10 min at 300× g, and after discarding the supernatant, samples were washed once with 1% fetal calf serum in DPBS (flow cytometry buffer). Next, the beads loaded with EVs were incubated with the following fluorescence-conjugated antibodies: anti-CD9/FITC (BioLegend, San Diego, CA, USA, catalog no. 312104), anti-CD63/PE (BioLegend, San Diego, CA, USA, catalog no. 353004), anti-CD73/APC (BioLegend, San Diego, CA, USA, catalog no. 344006), anti-CD81/FITC (BioLegend, San Diego, CA, USA, catalog no. 349504), anti-HLA-ABC/PE (BioLegend, catalog no. 311405), or anti-HLA-DR/APC (BioLegend, San Diego, CA, USA, catalog no. 307610), each at a dilution of 1:25 in flow cytometry buffer. After 30 min at 4 °C, the beads were washed twice with flow cytometry buffer, fixed with flow cytometry buffer supplemented with 0.5% PFA, and stored at 4 °C until measurement using a MACSQuant VYB flow cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany). Beads incubated with antibodies but no EVs served as negative controls, respectively. Analysis was performed using FlowJo software (Tree Star, Ashland, OR, USA, version 10.6.1).

2.6. MiRNA Analysis

MiRNA was extracted from 200 µL of isolated EVs using the miRNeasy Mini Kit (Qiagen, Hilden, Germany, catalog no. 74104) according to the manufacturer’s instructions. The RNA quantity and purity were assessed with the Agilent 2100 Bioanalyzer system (Agilent Technologies, Waldbroon, Germany). Reverse transcription (RT) was performed using the miRCURY LNA Universal cDNA Synthesis Kit II (Exiqon-Qiagen, Hilden, Germany, catalog no. 203301). RT thermocycling parameters were as follows: 42 °C for 60 min and 95 °C for 5 min. Quantitative polymerase chain reaction (qPCR) was performed using the miRCURY LNA Universal RT microRNA PCR system (Exiqon-Qiagen, catalog no. 339340) with 752 known human miRNAs and 3 interplate calibrators and 1 spike-in miRNA as an internal control. All primer/probe sets for miRNAs were custom designed by the supplier. Three extraction controls and two cDNA synthesis controls were additionally used as indicated by the provider. Two real-time qPCR amplifications were performed for each RT reaction. Reactions were performed according to the manufacturers’ instructions using a LightCycler 480 II system (Roche, Rotkreuz, Switzerland). QPCR thermocycling conditions were as follows: 95 °C for 10 min, followed by 40 cycles at 95 °C for 10 s and 60 °C for 1 min. Melt curve analysis was performed between 60 and 95 °C at a ramp rate of 0.11 °C/s. After interpolation calibration, the examined miRNAs were classified into three categories:

  • (i)

    miRNAs with mean corrected CT (CTcorr) values below 30.00 were considered as detected with certainty,

  • (ii)

    miRNAs with mean CTcorr values between 30.00 and 32.99 were considered as detected with uncertainty, and

  • (iii)

    miRNAs with mean CTcorr values equal or greater than 33.00 were considered as not detected.

All analyzed miRNAs and their expression values are listed in Supplementary Materials Table S1. The obtained CT values of miRNAs were normalized using the geNorm method, which calculates a normalization factor based on multiple reference miRNAs [25]. In brief, the arithmetic mean of the CT values of miRNAs that were stably expressed across all samples, namely hsa-miR-1260a, hsa-miR-125b-5p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-24-3p, hsa-miR-221-3p, hsa-let-7i-5p, hsa-miR-199a-3p, and hsa-miR-100-5p, were subtracted from CTcorr values to calculate delta CT (dCT) values for every sample. In order to plot miRNA expression on heatmaps, Z-scores were determined from logarithmically transformed dCT values for each miRNA. The Z-scores were calculated as a numerical measurement of the mean value group with z = (x − μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation. Finally, heatmaps of miRNAs were created with the gplots package of RStudio (version 1.3.959).

2.7. Literature Search for miRNAs

A systematic literature search was conducted for all miRNAs with a low mean CTcorr value (≤29.99) in both CB- and AT-MSC-derived EVs. Pubmed, Medline, and Scopus were used as search engines with the following search terms: “name of miRNA”, “name of miRNA” AND “heart”, “name of miRNA” AND “fibrosis”, “name of miRNA” AND “cancer”, “name of miRNA” AND “fibroblasts”, “name of miRNA” AND “endothelial cells”, “name of miRNA” AND “angiogenesis”, “name of miRNA” AND “immunomodulation”, “name of miRNA” AND “macrophages”, “name of miRNA” AND “t-cells”, and “name of miRNA” AND “immune cells”. For published miRNA targets, only studies were considered that confirmed miRNA targets by luciferase reporter assays or gain- and loss-of-function experiments. The findings are summarized in Appendix A Table A1, Table A2 and Table A3.

2.8. Statistical Analysis

GraphPad Prism (GraphPad Software, San Diego, CA, USA, versions 6.0 and 8.3.0) was used for performing data analysis and generating graphs. The statistical significance of differences in EV particle concentration, total protein amount, and surface marker expression was determined by the Mann–Whitney test; a p-value of less than 0.05 was considered significant. All miRNA data are shown as median with interquartile range, if not indicated otherwise. Data were tested with Shapiro–Wilk test for normal distribution. Statistical differences between two groups with only one variable in paired observations were determined either with the Wilcoxon matched-pairs signed rank test for non-parametric samples or with the unpaired t-test for parametric samples. Results were considered significant with * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results

3.1. Characterization of EVs

All EVs were harvested from the supernatants of in vitro-cultured CB- and AT-MSCs, which were derived from tissues of four healthy subjects each. Although isolated from different sources, both MSC lines showed a typical spindle-shaped cell morphology under EV biogenesis conditions (Figure 1). The mean number of EV particles obtained was 7.1 ± 1.2 × 1010 per mL for CB-MSC-derived EVs and 5.5 ± 0.5 × 1010 per mL for AT-MSC-derived EVs (Figure 2A), but this difference was not significant (p = 0.057). Similarly, protein concentrations between EVs from CB- and AT-MSCs were not statistically significant (p = 0.343), with mean values of 27.9 ± 7.4 and 35.0 ± 8.7 µg/mL protein (Figure 2B). Quantitative analysis of EV diameters demonstrated an asymmetrical distribution, with a mean diameter of 132.7 ± 12.1 nm for EVs from CB-MSCs and a mean diameter of 123.9 ± 6.6 nm for EVs from AT-MSCs (Figure 2C), indicating the presence of exosomes, which are typically 40 to 150 nm in diameter [26]. Furthermore, both EV variants, which were isolated with the Qiagen kit, exhibited typical cup-like shapes as observed by TEM (Figure 3A,B). In comparison, EVs isolated by sequential UC showed a similar shape (Figure 3C,D). However, in contrast to the EVs isolated by UC, the EVs isolated by Qiagen membrane affinity columns were covered by a corona that bound larger amounts of uranyl acetate (Figure 3A,B, red triangles). EVs isolated by sequential UC have not been further examined because this manuscript focuses on EVs isolated by the Qiagen exoEasy Maxi Kit due to its excellent scalability, which is needed for the production of large EV amounts for clinical application. Next, we analyzed the isolated EV preparations for selected membrane proteins that have been associated with EVs in the past. Regardless of the cell source, it was possible to detect on all EV preparations CD9, CD63, and CD81, with CD9 exhibiting the highest normalized mean fluorescence intensities (MFIs) (Figure 4). Interestingly, all of the aforementioned markers tended to have higher values in AT-MSC-derived EVs than in CB-MSC-derived EVs, while only CD63 levels were significantly higher (p = 0.029). Figure 4 also shows that CD73 was only detected in EVs from AT-MSCs, but not from CB-MSCs. Since it was hypothesized that MSC-derived EVs do not carry human leukocyte antigens (HLAs) and are therefore less immunogenic [23], we also included HLA-ABC and HLA-DR in the flow cytometry analysis. Our data indicate that EVs from CB-MSCs did not exhibit a signal for HLA-ABC and HLA-DR (Figure 4). For EVs from AT-MSCs, HLA-ABC was also not present, while HLA-DR was detected in small amounts (Figure 4). In sum, these results indicated that the isolated EVs contained exosomes.

Figure 1.

Figure 1

Cord blood (CB)- and adipose tissue mesenchymal stromal cells (AT-MSCs) maintain their spindle-shaped morphology under extracellular vesicles (EV) biogenesis conditions. MSCs were expanded to a confluence of about 80%, washed with Dulbecco’s phosphate-buffered saline and cultivated for 48 h in exosome-depleted medium. Then, the cells were switched to starvation medium for 24 h to derive the conditioned medium for EV isolation. Representative bright-field images of cell morphology of CB-MSCs (A) and AT-MSCs (B) were taken by phase-contrast microscopy at the time of EV isolation. Bars, 200 µm.

Figure 2.

Figure 2

Particle number, protein amount and size distribution of EVs isolated from CB- and AT-MSCs. Particle concentration (A) and size distribution (C) of EV preparations were measured by nanoparticle tracking analysis. Protein content (B) was determined by the bicinchoninic acid assay. In (AC), the results are mean values ± standard deviation (SD) obtained from four different donors per cell type.

Figure 3.

Figure 3

Identification of EV-like structures via transmission electron microscopy. CB- and AT-MSC-derived EVs shown in (A,B) were isolated using the Qiagen exoEasy Maxi Kit, and CB- and AT-MSC-derived EVs shown in (C,D) were isolated using sequential ultracentrifugation. All EVs exhibit the expected cup-like shape, an artefact of the fixation method. In (A,B), EVs are covered with phosphate-rich matter, and red triangles indicate structures in which covered EVs were detected. In (C,D), exemplary EVs are indicated by blue triangles. In (AD), enlarged regions of selected EVs are shown on that top right.

Figure 4.

Figure 4

CB- and AT-MSC-derived EVs display a distinct surface marker profile. Detection of the surface marker proteins CD9, CD63, CD73, CD81, HLA-ABC, and HLA-DR using flow cytometry on EV preparations. The data are presented as means ± SD of normalized mean fluorescence intensities (MFIs), which were calculated as the ratio of the geometric MFI of EV samples (beads + EVs + antibodies) to control samples (beads + antibodies). Statistical analysis was performed by the Mann-Whitney test with * p < 0.05. ND indicates not detected. EVs from four different donors per cell type were included.

3.2. MiRNA Profile of CB- and AT-MSC-Derived EVs

Of the 752 miRNAs examined in this study, 117 were detected with certainty according to the guidelines of the Qiagen-Exiqon miRCURY LNA Universal RT microRNA PCR system. Based on these miRNAs, a heatmap was created (Figure 5). The grouping of donors shows a consistent clustering with only one outlier per group (CB_MSC_4 and AT-MSC_4). Interestingly, the expression profile of EV surface markers for these donors also differed from the other donors in the same group. For further analysis, all miRNAs with mean CTcorr values below 33.00 in at least one group were included. Following this, 205 miRNAs were detected in EV samples, while the majority of miRNAs (547) were not detected (Figure 6). From our analysis, 76 miRNAs were highly expressed in CB-MSC-derived EVs and 80 miRNAs were strongly expressed in AT-MSC-derived EVs with mean CTcorr values of less than 30.00. Intriguingly, among them, 66 miRNAs were found in EVs from both MSC sources. Only 10 were uniquely highly expressed in CB-MSC-derived EVs, namely let-7d-5p, miR-30a-5p, miR-106b-5p, miR-107, miR-136-5p, miR-140-3p, miR-181b-5p, miR-320b, and miR-320c, and miR-342-3p, and 14 were uniquely highly expressed in AT-MSC-derived EVs, namely miR-10b-5p, miR-29b-3p, miR-138-5p, miR-148a-3p, miR-185-5p, miR-210-3p, miR-424-3p, miR-424-5p, miR-433-3p, miR-484, miR-503-5p, miR-663b, miR-874-3p, and miR-940. Furthermore, 100 and 103 miRNAs in CB-MSC-derived EVs and AT-MSC-derived EVs, respectively, which showed mean CTcorr values of 30.00 to 32.99, were considered to be low expressed. To visualize differential miRNA expression profiles, a heatmap of all miRNAs that were significantly different in expression between CB- and AT-MSC-derived EVs was created, showing a clear clustering of CB-MSC-EV-miRNAs and AT-MSC-EV-miRNAs (Figure 7, 44 miRNAs). Overall, the differences in expression after normalization did not exceed a two-fold increase or decrease for almost all miRNAs, except for miR-10b-5p (8.23-fold higher in AT-MSC-derived EVs), miR-103a-3p (3.35-fold higher in CB-MSC-derived EVs), miR-222-5p (8.28-fold higher in AT-MSC-derived EVs), miR-376a-3p (2.45-fold higher in CB-MSC-derived EVs), miR-663a (7.68-fold higher in AT-MSC-derived EVs), and miR-1260a (2.87-fold higher in AT-MSC-derived EVs). Three miRNAs were only found to be highly expressed in AT-MSC-derived EVs, but were absent in CB-MSC-derived EVs, namely miR-148a-3p, miR-424-3p, miR-503-5p. In sum, CB- and AT-MSC-derived EVs are similar in their miRNA composition, with the exception of a small number of miRNAs.

Figure 5.

Figure 5

Heatmap and dendrograms of all microRNAs (miRNAs) detected with certainty according to the guidelines of the Qiagen-Exiqon miRCURY LNA Universal RT microRNA PCR system. Sample IDs are shown on the x-axis. Samples with similar miRNA expression are clustered together. The heatmap was generated by RStudio and 2dCT was used for data input. Z-scores of more than zero indicate a higher expression of miRNAs in one sample compared to the others; Z-scores of less than zero indicate the opposite.

Figure 6.

Figure 6

Venn diagram of miRNAs found in CB- and AT-MSC-derived EVs. In total, 752 miRNAs were analyzed and categorized according to mean CTcorr values. High miRNA expression means CTcorr value ≤ 29.99; low miRNA expression means CTcorr value = 30.00–32.99. Five hundred and forty-seven miRNAs were not detected in EVs from CB-MSCs or in EVs from AT-MSCs (mean CTcorr value ≥ 33.00).

Figure 7.

Figure 7

Heatmap and dendrograms of miRNAs that were significantly changed in AT-MSC-derived EVs compared to CB-MSC-derived EVs. Sample IDs are shown on the x-axis. Samples with similar miRNA expression are clustered together. The heatmap was generated by RStudio and 2dCT was used for data input. Z-scores of more than zero indicate a higher expression of miRNAs in one sample compared to the others; Z-scores of less than zero indicate the opposite.

3.3. Classification of miRNAs: Tumor Suppressor miRNAs, Oncogenic miRNAs, and Cardioprotective miRNAs

We then conducted a literature research (Figure 8) to group all 66 miRNAs found at high levels in both CB- and AT-MSC-derived EVs based on their function. As indicated in Figure 9, the majority of identified miRNAs have a well-known role as tumor suppressor. We also found many miRNAs, such as miR-103a-3p, miR-151a-5p, and miR-191-5p, which are known oncogenic miRNAs (oncomiRs). Interestingly, we also identified a large number of miRNAs (26) known to act both as oncomiRs and as tumor suppressor. The EV samples examined in this study also showed positive hits for well-known cardioprotective miRNAs, such as miR-21-3p, miR-22-3p, miR-26a-5p, and miR-125b-5p. While having cardioprotective properties, most of them are also associated with oncogenic and tumor suppressor properties. In summary, these data indicate that both CB- and AT-MSC-derived EVs not only transfer a certain set of miRNAs that are involved in one particular mechanism, but rather a multitude of miRNAs that are linked to several biochemical processes, including tumor suppression, tumorigenesis, and cardioprotection.

Figure 8.

Figure 8

Diagram of literature search rules applied for all miRNAs with a low mean CTcorr value (≤ 29.99) in both CB- and AT-MSC-derived EVs. Search terms were “name of miRNA”, “name of miRNA” AND “heart”, “name of miRNA” AND “cancer”, “name of miRNA” AND “fibrosis”, “name of miRNA” AND “endothelial cells”, “name of miRNA” AND “angiogenesis”, “name of miRNA” AND “immunomodulation”, “name of miRNA” AND “macrophages”, “name of miRNA” AND “t-cells”, and “name of miRNA” AND “immune cells”.

Figure 9.

Figure 9

Venn diagram of selected miRNAs based on their function. Gray, tumor suppressor miRNAs; yellow, oncogenic miRNAs; red, cardioprotective miRNAs. With the exception of miR-1260a, all miRNAs with a low mean CTcorr value (≤29.99) in both CB- and AT-MSC-derived EVs were included. MiR-1260a could not be included, as no targets were described in the literature so far. Further details on these miRNAs are given in Table A1, Table A2 and Table A3.

4. Discussion

4.1. EV Phenotype

Overall, the EVs analyzed in our study showed the expected proteins to be present in both CB- and AT-MSCs, such as the tetraspanins CD9, CD63, and CD81. The latter was present in significantly lower amounts in EVs from CB-MSCs than in EVs from AT-MSCs, an observation that was not made in other comparative studies before. The phenomenon that EVs from MSCs have only little or no HLAs present on their surface and therefore have a low immunogenicity [23] was confirmed in our study, since HLA-ABC was not found in both CB- and AT-MSC-derived EVs. Furthermore, HLA-DR was not detected in CB-MSC-derived EVs and it was only slightly above the detection level for the flow cytometry assay in AT-MSC-derived EVs. Consequently, the phenotype of the EVs might reflect the low expression of HLA molecules of the parent CB- and AT-MSCs.

It is known that the isolation method can significantly influence the composition of miRNAs in EV preparations [26,27]. To date, there is a multitude of different EVs isolation protocols available [28], and an ideal isolation method for clinical use remains to be determined. In this study, EVs were isolated using a commercially available EV isolation kit from Qiagen. In contrast to protocols using sequential UC to isolate EVs, this kit is more appropriate for scaling up the production of EVs. Initially, we performed side-to-side comparisons for the isolation of EVs using sequential UC and Qiagen membrane affinity columns. A similar comparison reported by the group of Streanska et al. [29] demonstrated that both methods lead to EVs with encapsulated miRNAs. However, they found differences in EV size and surface protein expression depending on the isolation method. While in their study, they were not able to detect the tetraspanins CD63 and CD81 using the Qiagen kit for EV isolation, we were able to detect tetraspanins such as CD9, CD63 and CD81, considered as typical EV markers. It should be noted, however, that we performed flow cytometry analysis, whereas the others used the Western blot. Furthermore, TEM analysis revealed that EVs isolated by the Qiagen kit were coated with either proteins or nucleic acids. For this experiment, EVs were incubated with uranyl acetate to stain phosphate groups of the lipid membrane. However, the presence of phosphate-rich proteins or nucleic acids in the so-called EV corona can also result in strong staining. We therefore hypothesize that the structures surrounding the EVs are most likely a mixture of proteins and nucleic acids. In line with this, the group of Varga et al. [30] has recently shown that EVs in vivo are also surrounded by a variety of different proteins that are not integrated in their own membrane. Furthermore, Jeppesen et al. [26] were able to separate a protein fraction from a pure vesicle fraction and they demonstrated that different EV isolation methods impact the EV-miRNA composition. Our data suggest that the Qiagen membrane affinity method produces EVs with an intact corona, indicating that miRNAs may also be bound to proteins in the corona. However, it cannot be conclusively determined whether the analyzed miRNAs were encapsulated, bound to co-isolated proteins, or bound within the EV protein corona. Studies that have so far investigated the therapeutic potential of EVs did not purify the EVs in their in vivo models prior to injection. Therefore, regardless of the isolation method, co-purified miRNAs will be injected together with the EV fraction. However, when EVs are used clinically, it is expected that additionally administered miRNAs could also play a role in the cardioprotective mechanism. It is therefore of importance to validate the miRNA profiles for each isolation method before conducting downstream experiments or even clinical studies. A more in depth analysis of the isolated EVs might have answered this question, but would be beyond the scope of this project.

4.2. MiRNA Profile

As mentioned above, miRNA analysis of EVs derived from CB- and AT-MSCs showed that a large number of detected miRNAs play an important role in tumor biology. Due to the multiple targets a miRNA can have, it is difficult to predict all possible targets of each miRNA. In this study, we therefore only reviewed targets that were confirmed already by other groups through in vitro assays. Since the PCR array used in our experiment focused on cellular miRNAs, which play a well-known role in cancer biology, it is not surprising that most miRNAs (547 out of 752) were not detected in the EV samples. Our data show a biological variability that is expected from human-derived samples [31]: EV samples derived from both CB- and AT-MSCs contain one outlier in terms of their surface marker configuration and their miRNA profiles (Figure 4 and Figure 7). Due to the small number of donors examined in this study, the effect of donor-specific confounding factors (e.g., gender, age, or race) on the miRNA profiles cannot be determined. Our literature search revealed that most studies focused on the therapeutic aspect of miRNAs of MSC-derived EVs. Only a few studies made the data of their miRNA arrays publicly available [32,33,34]. Additionally, the role of MSC-derived miRNAs in cancer biology has been discussed and investigated by other groups. Even here, however, only few groups made all collected data available for secondary analysis. In the case of AT-MSCs, one group has investigated the role of AT-MSC-derived EVs in the development and treatment of osteoarthritis [32,33]. In both publications, the raw data of the miRNA array were made available by the authors. A side-to-side comparison revealed that 71.0% and 73.3% of the 65 highest expressed miRNAs in both data sets were identical to the miRNAs found in our EV samples. The discrepancy could be explained by the difference in treatment of AT-MSCs at time of isolation and the isolation method itself.

4.2.1. Anti-fibrotic Signaling via Suppression of the TGF-Beta Pathway

MiRNAs were initially examined in the context of cancer biology. Target search was therefore biased and provided a greater number of miRNAs related to cancer than, for instance, to cardioprotection. However, some miRNAs with cardioprotective properties often interfere with proteins that are also regulated in cancer cells. For instance, miRNAs that advantageously modulate fibrosis and activation of fibroblasts usually target either the mRNA of proteins in the TGF-beta/SMAD-axis or promoter and receptor mRNAs that modulate cell cycle activation. Typically, miRNA-mediated suppression of TGF-beta signaling leads to decreased fibrosis in different tissues [35]. Both CB-and AT-MSC-derived EVs contain sets of miRNAs that target TGF-beta receptors directly or downstream signaling proteins such as SMAD proteins. In the context of TGF-beta signaling, SMAD2, 3, and 4 are the downstream promoters that can activate pro-fibrotic gene expression in multiple tissues including the heart [36]. MiR-16-5p (−1.03-fold change, p = 0.84), miR-23a-3p (−1.14-fold change, p = 0.99), and miR-130a-3p (−1.11-fold change, p = 0.75), which showed no difference in relative amounts for the comparison of CB-MSC-derived EVs to AT-MSC-derived EVs, all target the SMAD mRNA directly and exhibit an anti-fibrotic, and in most cancers, a tumor suppressor effect [37,38,39]. At the same time, miR-130a-3p can also act as an oncomiR in esophageal cancer by inhibiting the expression of SMAD4 [40], which incidentally leads to a tumor suppressor effect in hepatoma cells [38]. This dual role of miRNAs in cancer biology is well known and shows the complexity of gene expression regulation via RNA interference [41]. Similarly, while miR-130a-3p suppresses fibrosis in hepatic steatosis by suppressing the TGF-beta receptors 1 and 2 [37], the suppression of TGF-beta receptor 3 by miR-23b-3p and miR-27b-3p in atrial fibroblasts leads to increased fibrosis in the context of atrial fibrillation [42]. This underlines that, similar to the effect of miRNAs in cancer, a dual role of miRNAs and thus potential off-target effects can be hypothesized. It also highlights that adverse effects, such as increased fibrosis, may depend on the presence of miRNA clusters. For the EV samples investigated in the present study, both miR-23b-3p and miR-27b-3p were found with mean CTcorr values of 25.2 ± 1.4 and 25.5 ± 1.1 versus 27.4 ± 0.9 and 27.2 ± 1.1 in CB- and AT-MSC-derived EVs, respectively.

4.2.2. Role of miRNA-Mediated Mammalian Target of Rapamycin (mTOR) Suppression

The miRNA target analysis also revealed that some miRNAs found in CB- and AT-MSC-derived EVs target mTOR or mTOR-associated proteins, including miR-99b/a, miR-100-5p, miR-143-3p, miR-199a-5p/3p, and miR-199b-5p. MTOR is a protein kinase that regulates cell growth, autophagy, and cell survival [43]. Since activation of mTOR plays a crucial role in maintaining growth and inducing metastasis in many cancers, it has been intensively studied as a potential target for cancer therapy [44]. For all of the miRNAs mentioned, overexpression in cancer cell lines led to the induction of apoptosis and autophagy. Interestingly, miR-100-5p can also suppress angiogenesis by preventing cell proliferation in vascular smooth muscle cells, an effect that could counteract a potential cardioprotective effect [45]. Similarly, both miR-143-3p and miR-199a-3p can increase apoptosis during hypoxic or inflammatory injury in kidney and synovial cells, respectively [46,47]. One could therefore postulate that miRNAs that inhibit mTOR signaling are unproblematic in the context of promoting preexisting tumors at the time of EV therapy. However, further studies are needed to elucidate whether MSC-derived EVs suppress mTOR signaling and how this affects the injured heart. There is some evidence that mTOR plays an important role in the activation of cell autophagy in myocardial injuries, which can prevent cell apoptosis and necrosis in the myocardial scar [48]. In the EV samples examined in this work, at least six miRNAs were found that can target mTOR or mTOR signaling related protein mRNAs (Table A1, Table A2 and Table A3). A prolonged exposure to EVs containing these miRNAs may therefore either aggravate myocardial injury by increasing apoptosis in the early stages of myocardial infarction or improve wound healing and remodeling via autophagy.

4.2.3. OncomiRs in MSC-Derived EVs

At least six MSC-EV-miRNAs found in the present study are known oncomiRs, namely miR-24-3p, miR-92a-3p, miR-103a-3p, 151a-5p, miR-191-5p, and miR-423-3p. Remarkably, miR-24-3p and miR-423-3p were also associated with cardioprotective properties. Most of these miRNAs target proteins of the Wnt signaling pathway and/or the phosphatase and tensin homolog deleted from chromosome ten (PTEN) protein (Table A1, Table A2 and Table A3). PTEN is an intracellular membrane-bound phosphatase that hydrolyzes phosphatidylinositol (3,4,5)-trisphosphate to phosphatidylinositol (4,5)-bisphosphate and therefore reduces phosphoinositide-dependent kinase-1- and AKT-mediated activation of cell cycle progression and anti-apoptotic signaling [49]. It is a well-described tumor suppressor and often affected by mutations in various cancers. MiR-103a, for example, targets PTEN in endothelial cells and promotes proliferation and thus angiogenesis [50]. At the same time, miRNA-103a acts as an inhibitor of Wnt signaling in squamous cell carcinoma and promotes cell proliferation [51]. Similarly, the inhibition of Wnt signaling is also promoted by miR-92a and miR-221-3p, which in turn also inhibits PTEN expression in esophageal, gastric, and pancreatic cancer [52,53,54]. While Wnt signaling inhibition and PTEN inhibition are desirable targets for miR-10b-5p, miR-27b-3p, and miR-103a-3p in the context of cardioprotection [50,55,56], this may also promote progression of undetected tumors in recipients of EVs containing miRNAs.

5. Conclusions

The administration of MSC-derived EVs containing miRNAs offers a promising therapeutic approach for cardiovascular disease due to their proposed cardioprotective effects. In the present work, we have isolated EVs from two clinically relevant MSC sources, i.e., CB and AT, using membrane affinity columns and analyzed their miRNA cargo by qRT-PCR. Our data show that EVs from CB- and AT-MSCs are similar in their miRNA composition. Although a large number of miRNAs found in EVs from both MSC sources have been associated with cardioprotective properties, our literature research for known miRNA targets has revealed that they may also play a critical role in the tumor biology of various cancers. Given that EVs and miRNAs have a half-life of less than 24 h, a single administration of EVs may not be sufficient to improve tissue remodeling after a myocardial injury and multiple EV administrations would be required. However, this procedure, in turn, could lead to the accumulation of miRNAs in patients with early-stage cancers that may not have been recognized prior to treatment. Therefore, careful screening of patients for preexisting neoplasms prior to EV administration is important to reduce the risk of potential side effects that could facilitate or even worsen existing tumors. Further reports and functional studies are needed to evaluate both the therapeutic and adverse effects of EVs and their transported miRNAs, depending on the dose and duration of treatment.

Acknowledgments

We thank the Core Facility for Electron Microscopy of the Charité—Universitätsmedizin Berlin for support in acquisition and analysis of the data.

Supplementary Materials

The following are available online at https://www.mdpi.com/2218-273X/10/9/1353/s1, Table S1: Analyzed miRNAs and their expression values.

Appendix A

Table A1.

MiRNAs that are known tumor suppressors (TS). Selected miRNAs are also involved in cardioprotection (CP). Targets are given for each miRNA, with no claim to completeness. Pubmed IDs (PMIDs) are given as references when no DOI numbers are available.

MiRNA Function MiRNA Name CB-MSC-EV
[dCT ± SD]
AT-MSC-EV
[dCT ± SD]
Fold Difference p-Value Confirmed Target GeneGLOBE ID Cell/Tissue/Cancer Type MiRNA Cluster Biological Effect Reference
TS miR-127-3p 4.05 ± 0.24 4.98 ± 0.72 –1.9 0.03 BCL6 fibroblasts proliferation inhibition in senescent fibroblasts doi:10.1371/journal.pone.0080266
KMT5a chondrocytes proliferation inhibition in osteoarthritis doi:10.1016/j.bbrc.2018.06.104
MMP13 chondrocytes enhances proliferation of chondrocytes in osteoarthritis doi:10.1111/jcmm.14400
ITGA6 osteosarcoma tumor suppressor (cell growth, invasion) doi:10.1002/iub.1710
KIF3B squamous cell carcinoma tumor suppressor (cell growth) doi:10.26355/eurrev_201901_16877
KIF3B pancreatic beta cells proliferation inhibition, diabetes doi:10.18632/aging.101835
TS, CP miR-30c-5p 4.01 ± 0.5 4.84 ± 0.38 –1.7 0.04 PAI1 breast cancer suppression of vasculogenesis doi:10.1172/JCI123106
CTGF cardiac fibroblasts miR-133 cardioprotection (anti-fibrotic) doi:10.1161/CIRCRESAHA.108.182535
TGFB1, TGFBR2 cardiac fibroblasts suppression of fibrosis doi:10.1111/jcmm.13548
CTGF fibroblasts suppression of cardiac and renal fibrosis doi:10.1016/j.jdiacomp.2015.12.011
ADAM19 colorectal carcinoma tumor suppressor (cell proliferation) doi:10.1371/journal.pone.0120698
SNAI1 squamous cell carcinoma tumor suppressor (cell proliferation) doi:10.1016/j.biopha.2017.12.095
BCL9 prostate cancer tumor suppressor (Wnt signaling suppression, cell proliferation) doi:10.3892/ol.2016.4161
TS miR-99b-5p 4.45 ± 0.46 5.45 ± 0.18 –2.01 0.02 mTOR, AKT, IGF1 hepatocytes promotes hepatitis B virus replication doi:10.1111/cmi.12709
mTOR, AKT, IGF1 gastric cancer tumor suppressor (cell autophagy) doi:10.3892/ol.2018.9269
IGF1 keratinocytes cell proliferation doi:10.1016/j.biopha.2015.07.013
PI2K, AKT7, mTOR cervical cancer tumor suppressor (cell proliferation) doi:10.1002/jcp.27645
TS miR-376a-3p 3.76 ± 0.47 5.05 ± 0.51 –2.45 0.01 c-MYC non-small cell lung carcinoma tumor suppressor (cell proliferation, invasion) doi:10.1002/cbin.10828
COA1, PDIA6 giant cell tumor miR-127-3p tumor suppressor (cell proliferation, invasion) doi:10.1016/j.canlet.2017.08.029
NRP1 breast cancer tumor suppressor (tumor progression) doi:10.2147/OTT.S173416
COA1, GLE1, PDIA6 giant cell tumor miR-127-3p tumor suppressor (tumor progression) doi:10.3390/cancers11122019
TS mir-376c-3p 3.98 ± 0.35 4.85 ± 0.57 –1.81 0.03 HOXB7 squamous cell carcinoma tumor suppressor (cell proliferation) doi:10.1016/j.biopha.2017.04.050
BCL2, SYF2 gastric cancer tumor suppressor (cell proliferation) doi:10.1155/2016/9604257
CKD1 neuroblastoma cells tumor suppressor (cell proliferation) doi:10.3892/ol.2018.9431
HB-EGF medullary thyroid carcinoma tumor suppressor (cell proliferation) doi:10.5114/aoms.2019.85244
TS let-7b-5p 3.03 ± 0.8 1.98 ± 0.36 2.07 0.04 FAS macrophages inhibits clearance of mycobacterium tuberculosis doi:10.1093/femsle/fny040
KIAA1377 squamous cell carcinoma tumor suppressor (cell proliferation, invasion) doi:10.1002/cbin.11136
IGF1R multiple melanoma tumor suppressor (cell proliferation, enhances apoptosis) doi:10.1093/abbs/gmu089
CDC25B, CDK1 hepatocellular carcinoma tumor suppressor (cell proliferation, metastasis) doi:10.1002/jcb.29477
TS miR-193b-3p 3.16 ± 0.45 2.21 ± 0.16 1.93 0.003 MORC4 breast cancer tumor suppressor (cell proliferation, enhances apoptosis) doi:10.1002/jcb.27751
p21-AK2 ovarian carcinoma tumor suppressor (cell autophagy) doi:10.1016/j.biopha.2017.11.086
HDAC3 brain suppression of NFkB signaling, reduction of inflammation in brain injury doi:10.1186/s12974-020-01745-0
CKD1, AJUBA, HEG1 lung cancer tumor suppressor (cell proliferation, metastasis) doi:10.1042/BSR20190634
TGFB1 liver decreases fibrosis doi:10.1111/jcmm.14210
TS mir-143-3p 3.28 ± 0.49 3.48 ± 0.51 –1.15 0.6 LIMK1 breast cancer tumor suppressor (tumor progression) PMID: 28559978
FOSL2 osteosarcoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1038/s41598-017-18739-3
BMPR2 bone marrow-derived MSCs promotes cartilage differentiation doi:10.26355/eurrev_201812_16649
IGF1R, IGFBP5 synovial cells promotes inflammation and increases apoptosis in RA doi:10.3892/etm.2018.5907
BCL2, IGF1R squamous cell carcinoma tumor suppressor (tumor progression) doi:10.1016/j.bbrc.2019.08.075
TS, CP miR-199a-3p 1.92 ± 0.96 1.1 ± 0.45 1.82 0.16 ITGB8 ovarian carcinoma tumor suppressor (chemoresistance) doi:10.3892/or.2018.6259
GRP78 non-small cell lung carcinoma miR-495
(low detection)
tumor suppressor (tumor progression) doi:10.1016/j.gene.2017.03.032
DDIT4, ING4 cardiomyocytes miR-214 cardioprotective (inhibit cardiomyocyte apoptosis during injury) doi:10.1152/ajpheart.00807.2015
mTOR kidney induces injury induced apoptosis doi:10.1002/jcb.29030
AXL osteosarcoma tumor suppressor (tumor progression) PMID: 25520864
mTOR endometrial endometrioid adenocarcinoma tumor suppressor (cell autophagy) PMID: 31966798
KL kidney activation of NFkB signaling in lupus nephritis doi:10.1016/j.molimm.2018.10.003
SMAD1 prostate cancer tumor suppressor (cell proliferation, invasion) doi:10.18632/oncotarget.17191
mTOR hepatocellular carcinoma tumor suppressor (chemosensitivity) doi:10.1186/s13046-019-1512-5
AGAP2 glioma cells tumor suppressor (tumor progression) doi:10.18632/aging.102092
PTGIS endothelial cells miR-199a-5p nitrovasodilatator resistance doi:10.1161/CIRCULATIONAHA.117.029206
CD44 hepatocellular carcinoma tumor suppressor (cell proliferation) doi:10.1016/j.bbrc.2010.10.130
SOCS7, STAT3 kidney suppress renal fibrosis doi:10.1038/srep43409
TS, CP miR-199a-5p 2.63 ± 0.92 2.35 ± 0.65 1.22 0.68831 AA1B monocytes inhibits differentiation doi:10.1189/jlb.1A0514-240R
MAP3K11 non-small cell lung carcinoma tumor suppressor (tumor progression) doi:10.7150/jca.29426
SNAI1 papillary thyroid carcinoma tumor suppressor (tumor progression) doi:10.1016/j.bbrc.2018.02.051
HIF1A hemangioma cells tumor suppressor (cell proliferation, autophagy) doi:10.1177/0394632017749357
CCR7 bladder cancer tumor suppressor (metastasis) doi:10.1186/s12894-016-0181-3
ETS1 breast cancer tumor suppressor (cell invasion) doi:10.1111/cas.12952
CLTC hepatocellular carcinoma tumor suppressor (tumorigenesis) doi:10.1002/cbf.3252
PIAS3 cervical cancer tumor suppressor (metastasis, suppresses epithelial–mesenchymal transition) doi:10.1002/jcb.28631
ROCK1 colorectal carcinoma tumor suppressor (cell proliferation, metastasis) doi:10.1177/1533034618775509
ECE1 spinal cord nerves inhibition of ischemia-reperfusion injury doi:10.1007/s10571-018-0597-2
TET2 osteoblasts promote differentiation doi:10.1016/j.gene.2019.144193
DDR1 brain protect against ischemia-reperfusion injury doi:10.1016/j.wneu.2019.07.203
DRAM1 acute myeloid leukemia tumor suppressor (chemosensitivity) doi:10.1155/2019/5613417
CDH1 squamous cell carcinoma tumor suppressor (cell invasion) doi:10.3892/ol.2016.4602
MAP4K3 hepatocellular carcinoma let-7c tumor suppressor (invasion, metastasis) doi:10.18632/oncotarget.14623
ATF6, GRP78 cardiomyocytes downregulation in myocardial hypoxic preconditioning doi:10.1007/s13105-018-0657-6
MAP3K11 esophageal cancer tumor suppressor (cell proliferation) doi:10.18632/oncotarget.6752
ZEB1 ovarian ectopic endometrial stromal cell inhibition of epithelial–mesenchymal transition doi:10.1007/s43032-019-00016-5
HIF1A, OSGIN2 sarcoma tumor suppressor (tumor progression) doi:10.3892/ol.2016.5320
PHLPP1 colorectal carcinoma tumor suppressor (chemosensitivity) doi:10.1517/14728222.2015.1057569
BIP kidney protect against ischemia-reperfusion injury doi:10.1096/fj.201801821R
WNT2 urothelial cells inhibiting smooth muscle cell proliferation doi:10.1074/jbc.M114.618694
MAGT1 gliomal cells tumor suppressor (tumor progression) doi:10.1002/jcb.28791
CD44, SIRT1 squamous cell carcinoma tumor suppressor (repress stemness) doi:10.1080/15384101.2019.1689482
KL gastric cancer oncomiR (promotes tumor progression) doi:10.1186/1471-2407-14-218
Mrz 08 gliomal cells tumor suppressor (tumor progression) doi:10.26355/eurrev_201909_18858
JunB cardiomyocytes promotes apoptosis in the failing heart) doi:10.1038/s41598-018-24932-9
CAV1 lung promotes lung fibrosis doi:10.1371/journal.pgen.1003291
NFKB ovarian carcinoma tumor suppressor (cell proliferation, invasion) doi:10.3892/ol.2018.9170
SIRT1, ENOS endothelial cells promotes migration and tube formation doi:10.1007/s00705-013-1744-1
HIF1A prostate adeno-carcinoma tumor suppressor (tumor progression) doi:10.18632/oncotarget.18315
TS, CP miR-99a-5p 4.11 ± 0.87 4.32 ± 0.33 –1.15 0.49 mTOR urothelial carcinoma tumor suppressor (cell autophagy) doi:10.2147/OTT.S114276
HOXA1 smooth muscle cells cardioprotective (inhibits smooth muscle cell proliferation and atherosclerosis) doi:10.1016/j.lfs.2019.116664
mTOR bladder cancer tumor suppressor (cell proliferation) doi:10.1002/jcb.27318
NOX4 oral cancer tumor suppressor (cell proliferation, invasion, metastasis) doi:10.4149/neo_2017_503
CDC25A breast cancer tumor suppressor (tumor progression) doi:10.3390/genes11040369
TS miR-16-5p 1.76 ± 0.43 1.81 ± 0.33 –1.03 0.84 AKT3 breast cancer tumor suppressor (tumor progression) doi:10.1042/BSR20191611
SMAD3 chordoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1038/s41419-018-0738-z
PIK3R1 fibroblasts inhibits proliferation doi:10.3390/ijms20051036
ANXA11 hepatocellular carcinoma tumor suppressor (cell proliferation, metastasis) doi:10.1186/s13046-019-1188-x
MYCN neuroblastoma cells miR-15a-5p,
miR-15b-5p
tumor suppressor (tumor progression) doi:10.1002/1878-0261.12588
IGA2 colorectal carcinoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1002/jcp.28747
SESN1 myoblasts myoblast differentiation and proliferation doi:10.1038/s41419-018-0403-6
BACH2 gingival epithelial cells miR-145-5p induce apoptosis PMID: 32509061
SMAD3 chondrocytes promotes osteoarthritis doi:10.2174/1381612821666150909094712
CARM cervical cancer tumor suppressor (promotes radiosensitivty) doi:10.1111/pin.12867
VEGFA MSCs suppresses osteogenic potential of MSCs doi:10.18632/aging.103223
VEGFA breast cancer tumor suppressor (cell proliferation, invasion, autophagy) doi:10.18632/oncotarget.20398
VEGFA colorectal carcinoma tumor suppressor (cell proliferation, invasion, autophagy) doi:10.1016/j.omtn.2020.03.006
EPT1 preadipocytes promotes differentiation doi:10.1016/j.bbrc.2019.04.179
TS, CP miR-22-3p 2.52 ± 0.7 1.83 ± 0.31 1.62 0.09 HMGB1 arterial smooth muscle cells inhibits atherosclerosis doi:10.1159/000480212
MAPK14 brain prevents Alzheimer’s disease doi:10.2174/1567202616666191111124516
WRNIP1 small cell lung cancer tumor suppressor (radiosensitivity) doi:10.1002/jcb.29032
AE1 retinoblastoma tumor suppressor (cell proliferation) doi:10.1016/j.biopha.2018.06.038
EIF4EBP3 cervical cancer oncomiR (tumuorogenesis doi:10.7150/ijms.21645
PTEN kidney suppresses sepsis-induced kidney injury doi:10.1042/BSR20200527
AKT3 Wilm’s tumor tumor suppressor (cell growth) doi:10.26355/eurrev_202006_21493
SP1 hepatocellular carcinoma tumor suppressor (cell proliferation, invasion, metastasis) PMID: 27904693
SIRT1 peridontal stem cells increases proliferation and differentiation doi:10.1002/cbin.11271
PTAFR cardiac fibroblasts cardioprotective (reduces activation of cardiac fibroblasts) doi:10.26355/eurrev_202004_20869
YAP1 non-small cell lung carcinoma tumor suppressor (tumor progression) doi:10.1111/1759-7714.13280
DDIT4 glioblastoma tumor suppressor (cell proliferation) doi:10.1016/j.neulet.2020.134896
SIRT1 ectopic endometrial cells enhances proliferation and invasion doi:10.26355/eurrev_202001_20033
FTO MSCs promotes osteogenic differentiation doi:10.1186/s13287-020-01707-6
NFIB gastric cancer tumor suppressor (tumor progression) doi:10.4149/neo_2020_190418N350
TS miR-152-3p 4.42 ± 0.66 5.16 ± 0.62 –1.9 0.09 SOS1 glioblastoma tumor suppressor (chemosensitivity) doi:10.2147/OTT.S210732
p27 chronic myeloid leukemia oncomiR (tumorigenesis) doi:10.26355/eurrev_201812_16646
KLF4 prostate cancer tumor suppressor (tumor progression) doi:10.1002/jcb.28984
FOXF1 fibroblasts promotes cell proliferation, invasion and extracellular matrix production doi:10.1016/j.lfs.2019.116779
CDK8 hepatocellular carcinoma tumor suppressor (cell proliferation) doi:10.1016/j.prp.2019.03.034
TMEM97 prostate cancer tumor suppressor (tumor progression) doi:10.1186/s13148-018-0475-2
SPIN1 breast cancer miR-148 tumor suppressor (chemosensitivity) doi:10.1186/s13046-018-0748-9
PIK3CA breast cancer tumor suppressor (tumor progression) doi:10.3727/096504017x14878536973557
TS, CP miR-145-5p 1.55 ± 0.65 1.90 ± 0.37 –1.28 0.3 FLT1 trophoblast promote cell proliferation, invasion doi:10.1016/j.lfs.2019.117008
KLF4 lung promotes chronic obstructive pulmonary disease doi:10.1016/j.cbi.2019.01.011
CD40 cardiomyocytes cardioprotection (in ischemia-reperfusion injury) doi:10.1007/s11010-017-2982-4
KLF5 gastric cancer tumor suppressor (tumor progression) doi:10.1002/jcp.27525
TAGLN2 bladder cancer tumor suppressor (cell proliferation, invasion, metastasis) doi:10.3892/ol.2018.9436
SOX2 breast cancer tumor suppressor (tumor progression) doi:10.1016/j.jss.2018.11.030
RHBDD1 colorectal carcinoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1016/j.biocel.2019.105641
FSCN1 squamous cell carcinoma tumor suppressor (tumor progression) doi:10.1016/j.ymthe.2018.09.018
TPT1 prolactinoma tumor suppressor (chemosensitivity) doi:10.1007/s40618-018-0963-4
TGFB1 vascular smooth muscle cells inhibits proliferation doi:10.12659/MSM.910986
TLR4 melanoma tumor suppressor (cell autophagy) doi:10.1002/jcb.28388
SEMA3A AT-MSCs suppresses osteogenic potential of MSCs doi:10.1007/s11626-019-00318-7
AKAP12 prostate cancer tumor suppressor (chemosensitivity) doi:10.1111/jcmm.13604
SMAD2/3 hepatocellular carcinoma reduces extracellular matrix production doi:10.1016/j.bbrc.2019.11.040
MTDH squamous cell carcinoma tumor suppressor (tumor progression) doi:10.1177/1533033819850189
NRAS melanoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1002/cam4.1030
MTDH non-small cell lung carcinoma tumor suppressor (tumor progression) doi:10.1096/fj.201701237RR
TS miR-193a-5p 4.52 ± 0.67 4.35 ± 0.23 1.13 0.82 CDK8 leukemia tumor suppressor (cell proliferation, apoptosis) doi:10.3892/ijmm.2020.4671
COL1A1 colorectal carcinoma tumor suppressor (inhibits epithelial–mesenchymal transition) doi:10.2147/OTT.S255485
COL1A1 colorectal carcinoma tumor suppressor (inhibits epithelial–mesenchymal transition) doi:10.3389/fonc.2020.00850
HOXA1 breast cancer tumor suppressor (tumor progression) doi:10.18632/aging.103123
HOXA7 ovarian carcinoma tumor suppressor (cell proliferation, apoptosis) doi:10.4149/neo_2020_190730N687
CCNE1 esophageal cancer tumor suppressor (tumor progression) doi:10.1007/s13402-019-00493-5
ERBB2 colorectal carcinoma tumor suppressor (tumor progression) doi:10.2147/CMAR.S234620
SRSF6 pancreatic cancer oncomiR (metastasis) PMID: 32064152
DPEP1 hepatoblastoma tumor suppressor (tumor progression) doi:10.1038/s41419-019-1943-0
TS, CP miR-20a-5p 4.83 ± 0.27 4.72 ± 0.93 1.08 0.58 ABCA1 artery smooth muscle cells promotes cell proliferation and migration doi:10.1002/jbt.22589
PTEN endothelial cells pro-angiogenic, inhibits autophagy and apoptosis doi:10.1038/s41419-020-02745-x
ERBB2 hepatocellular carcinoma miR-17-5p tumor suppressor (metastasis) doi:10.7150/thno.41365
TGFBR2 liver anti-fibrotic doi:10.3389/fonc.2020.00107
STAT3 endometrial carcinoma tumor suppressor (inhibits epithelial–mesenchymal transition, invasion) PMID: 31949657
STAT3 bronchial epithelial cells suppresses apoptosis doi:10.1016/j.mcp.2019.101499
SRCIN1 osteoclasts promote proliferation and differentiation doi:10.1002/cam4.2454
TGFB1 endothelial cells anti-angiogenic doi:10.1002/jcp.29111
TS, CP miR-29c-3p 3.27 ± 0.92 2.48 ± 0.99 1.73 0.28 STAT3 cardiac fibroblasts cardioprotection (inhibits cell proliferation) doi:10.23736/S0031-0808.20.03975-0
TNFAIP1 neuroblastoma cells oncomiR (inhibits apoptosis) doi:10.1007/s11064-020-03096-x
FOS lens epithelial cells inhibits epithelial–mesenchymal transition doi:10.1016/j.biopha.2020.110290
VEGFA colorectal carcinoma tumor suppressor (inhibit angiogenesis) doi:10.1186/s13046-020-01594-y
TFAP2C T-cell acute lymphoblastic leukemia miR-29b-3p tumor suppressor (cell proliferation) doi:10.1016/j.bbrc.2020.03.170. Epub 2020
NFAT brain inhibit inflammation in Parkinson’s disease doi:10.1111/gtc.12764
CCNA2 esophageal cancer tumor suppressor (cell proliferation, migration, and invasion) doi:10.3389/fbioe.2020.00075
TRIM31 hepatocellular carcinoma tumor suppressor (tumor progression) doi:10.3892/or.2020.7469
FOXP1 ovarian carcinoma tumor suppressor (chemosensitivity) doi:10.1080/15384101.2019
TS, CP miR-30d-5p 4.70 ± 0.44 5.43 ± 0.63 1.66 0.09 SIRT1 cardiomyocytes cardioprotection (inhibits hypoxia induced apoptosis) PMID: 32098921
SMAD2 ovarian granulosa cells promotes apoptosis doi:10.3892/etm.2019.8184
NT5E prostate cancer tumor suppressor (cell proliferation, migration) doi:10.1089/cbr.2018.2457
RUNX2 colon cancer tumor suppressor (tumor progression) PMID: 29552759
TS miR-320a 2.51 ± 0.58 2.64 ± 0.20 –1.09 0.60 CXCL9 synovial cells suppress cell proliferation doi:10.3389/fphys.2020.00441
SIRT4 ovaries prevent premature ovarian insufficiency doi:10.1016/j.omtn.2020.05.013
HIF1A endometrial carcinoma tumor suppressor (anti-angiogenic) doi:10.1016/j.yexcr.2020.112113
SMAD5 bone marrow-derived MSCs promote osteogenic differentiation doi:10.26355/eurrev_202003_20648
ANRIL papillary thyroid carcinoma tumor suppressor (tumorigenesis) doi:10.1016/j.prp.2020.152856
LOX1 endothelial cells inhibit apoptosis upon low-density lipoprotein exposure doi:10.1007/s11010-020-03688-9
CPEB1 osteosarcoma tumor suppressor (invasion, migration) doi:10.1002/cam4.2919
TXNRD1 osteosarcoma tumor suppressor (cell proliferation, migration) doi:10.1080/15384047.2019.1702405
FOXM1 hepatocellular carcinoma tumor suppressor (inhibits epithelial–mesenchymal transition, tumor progression) doi:10.3390/biom10010020
PBX3 gastric cancer tumor suppressor (tumor progression) doi:10.4251/wjgo.v11.i10.842
PKCG cancer tumor suppressor (cell invasion) doi:10.1038/s41419-019-1921-6
MAFB retina promotes diabetic retinopathy doi:10.18632/aging.101962
MAPK synovial cells promote apoptosis, inhibit proliferation doi:10.26355/eurrev_201903_17228
IGFR1 endometrial carcinoma tumor suppressor (tumor progression) doi:10.3892/ijmm.2019.4051
TS miR-361-5p 4.82 ± 0.92 5.33 ± 0.31 –1.43 0.34 ITGB1 cervical cancer tumor suppressor (cell proliferation) doi:10.1007/s43032-019-00008-5
FOXO1 chondrocytes promotes apoptosis and inhibits cell proliferation doi:10.1186/s12920-019-0649-6
SDCBP gastric cancer tumor suppressor (tumor progression) doi:10.1097/CAD.0000000000000846
WT1 hepatocellular carcinoma tumor suppressor (tumorigenesis) doi:10.26355/eurrev_201910_19277
ABCA1 vascular smooth muscle cells inhibits proliferation PMID: 31312370
CLDN8 retinoblastoma tumor suppressor (cell proliferation, promotes apoptosis) doi:10.1007/s00381-019-04199-9
VEGFA hemangioma cells tumor suppressor (anti-angiogenic) doi:10.1016/j.bbrc.2019.03.084
FOXM1 cervical cancer tumor suppressor (tumor progression) doi:10.1080/21691401.2019.1577883
FOXM1 osteosarcoma tumor suppressor (tumorigenesis) doi:10.1002/jcp.28026
SIRT1 liver promotes hepatosteatosis doi:10.1016/j.metabol.2018.08.007
SND1 glioma cells tumor suppressor (invasion, migration) doi:10.2147/OTT.S171539
MMP3, MMP9, VEGF gastric cancer tumor suppressor (inhibits epithelial–mesenchymal transition, tumor progression) doi:10.1016/j.gene.2018.06.095
RQCD1 breast cancer tumor suppressor (invasion, migration) doi:10.17305/bjbms.2018.3399
ROCK1 papillary thyroid carcinoma tumor suppressor (tumor progression) doi:10.1016/j.biopha.2018.03.122
RPL22L1 ovarian carcinoma tumor suppressor (tumorigenesis) PMID: 31938372
FOXM1 gastric cancer tumor suppressor (chemoresistance) doi:10.18632/oncotarget.23513
FGFR1, MMP1 breast cancer tumor suppressor (cell proliferation, metastasis, metabolism) doi:10.1186/s13046-017-0630-1
FOXM1 lung cancer tumor suppressor (tumor progression) doi:10.4149/neo_2017_406
TWIST1 glioma cells tumor suppressor (inhibits epithelial–mesenchymal transition) doi:10.3892/or.2017.5406
TS miR-708-5p 5.32 ± 0.62 5.41 ± 0.72 –1.06 0.94 PGE2 lung cancer tumor suppressor (tumorigenesis) doi:10.18632/oncotarget.27614
CTNNB1 colon cancer tumor suppressor (tumor progression) doi:10.1016/j.biopha.2020.110292
TLR4 macrophages immunomodulation of controlling inflammatory factors doi:10.26355/eurrev_201909_19019
ZEB1 osteosarcoma tumor suppressor (cell proliferation, invasion) doi:10.3892/mmr.2019.10013
URGCP pancreatic ductal adenocarcinoma tumor suppressor (tumor progression) doi:10.1016/j.prp.2019.01.026
TS let-7c-5p 3.67 ± 1.01 3.94 ± 0.38 –1.21 0.43 TGFBR1 kidney chronic kidney disease doi:10.1155/2020/6960941
PBX3 squamous cell carcinoma tumor suppressor (tumor progression) doi:10.1186/s12943-020-01215-4
CMYC hepatocellular carcinoma tumor suppressor (cell proliferation) doi:10.1016/j.bbrc.2019.09.091
HMGA2 dental pulp stem cells promotes osteogenic differentiation doi:10.1111/1440-1681.13059
DMP1MNF dental pulp stem cells inhibits inflammation doi:10.12659/MSM.909093
NAP1L1 hepatocellular carcinoma tumor suppressor (cell proliferation, migration) doi:10.1016/j.canlet.2018.08.024
TS let-7e-5p 4.48 ± 1.39 5.18 ± 0.15 –1.63 0.28 CCR7 squamous cell carcinoma tumor suppressor (cell proliferation, metastasis) doi:10.7150/jca.29536
FASLG endothelial progenitors prevents deep vein thrombosis doi:10.1016/j.thromres.2015.12.020
RCN1 nasopharyngeal carcinoma tumor suppressor (cell autophagy) doi:10.1152/ajpcell.00352.2019
TS let-7g-5p 4.69 ± 1.15 4.60 ± 0.52 1.07 0.84 HMGA2 glioblastoma tumor suppressor (tumor progression) doi:10.1111/jcmm.14884
IGF1R nasopharyngeal carcinoma tumor suppressor (cell migration, invasion) doi:10.12659/MSM.914555
PRKCA mammary cells regulates differentiation doi:10.1002/jcp.27676
VSIG4 glioblastoma tumor suppressor (inhibits epithelial–mesenchymal transition) doi:10.3892/or.2016.5098
TS, CP let-7i-5p 1.14 ± 0.89 1.39 ± 0.93 –1.19 0.72 GALE glioblastoma tumor suppressor (cell proliferation, metastasis) doi:10.2147/CMAR.S221585
HMGA1 bladder cancer tumor suppressor (cell proliferation, metastasis) doi:10.1186/s12894-019-0485-1
CCND2, E2F2 cardiomyocytes cardioprotection (promotes proliferation after injury) doi:10.1042/CS20181002
KLK6 colon cancer tumor suppressor (cell proliferation, metastasis) doi:10.3892/or.2018.6577

Table A2.

MiRNAs that are known oncomiRs (O). Selected miRNAs are also involved in cardioprotection (CP). Targets are given for each miRNA, with no claim to completeness. Pubmed IDs (PMIDs) are given as references when no doi numbers are available.

MiRNA Function MiRNA Name CB-MSC-EV [dCT ± SD] AT-MSC-EV [dCT ± SD] Fold Difference p-Value Confirmed Target GeneGLOBE ID Cell/Tissue/Cancer Type MiRNA Cluster Biological Effect Reference
O, CP miR-100-5p 1.11 ± 0.67 2.05 ± 0.28 –1.9 0.05 ANGPT2 hepatocellular carcinoma suppression of angiogenesis doi:10.1002/path.4804
p53 pancreatic ductal adenocarcinoma oncomiR (promotes cell growth) doi:10.1038/s41467-018-03962-x
mTOR endometrial carcinoma miR-199a-3p, miR-199b-5p tumor suppressor (cell autophagy) PMID: 31966798
mTOR breast cancer tumor suppressor (anti-angiogenic) doi:10.1007/s13402-017-0335-7
mTOR osteosarcoma tumor suppressor (cell autophagy) doi:10.26355/eurrev_201809_15913
mTOR vascular smooth muscle cells suppression of angiogenesis doi:10.1161/CIRCULATIONAHA.110.000323
O miR-151a-5p 4.0 ± 0.38 5.09 ± 0.2 –2.14 0.007 CDH1 non-small cell lung carcinoma oncomiR (promotes epithelial–mesenchymal transition, proliferation, invasion) doi:10.1038/oncsis.2017.66
p53 nasopharyngeal carcinoma oncomiR (promotes cell proliferation, invasion) doi:10.1042/BSR20191357
O miR-103a-3p 2.49 ± 0.64 4.24 ± 0.18 –3.35 0.02 APC/APC2 colorectal carcinoma miR-1872
(not tested)
oncomiR (activator of Wnt signaling, cell proliferation) doi:10.1002/jcb.26357
CDK5 bladder cancer miR-107 oncomiR (promotes cell proliferation, invasion) doi:10.1038/emm.2015.39
CDK6 AT-MSCs inhibit proliferation doi:10.1038/srep30919
GPRC5A prostate cancer oncomiR, tumor suppressor (depending on cancer type) doi:10.1261/rna.045757.114
CDH11, NR3C1 squamous cell carcinoma oncomiR (promotes cell proliferation) doi:10.26355/eurrev_202006_21505
PTEN endothelial progenitor cells promotes migration and angiogenesis doi:10.1016/j.avsg.2019.10.048
SNRK glomerular endothelial cells promotes NFkB/p65 activation, renal inflammation and fibrosis doi:10.1038/s41467-019-11515-z
O miR-191-5p 3.25 ± 0.42 4.26 ± 0.42 –2.01 0.02 SOX4 breast cancer oncomiR (promotes cell proliferation) doi:10.1261/rna.060657.117
EGR1, UBE2D3 hepatocellular carcinoma oncomiR (promotes cell proliferation) PMID: 31933962
EGR1 osteosarcoma oncomiR (activates PI3K/AKT pathway, proliferation, invasion) doi:10.26355/eurrev_201905_17783
ENOS, MMP1, MMP9 endothelial cells antiangiogenic doi:10.1096/fj.201601263R
O miR-92a-3p 3.05 ± 0.75 3.12 ± 0.26 –1.05 0.67 WNT5A chondrocytes enhance chondrogenesis doi:10.1186/s13287-018-1004-0
PTEN squamous cell carcinoma oncomiR (promotes cell proliferation, metastasis) doi:10.3892/ijmm.2019.4258
CDH1 glioma cells oncomiR (promotes tumor progression) doi:10.3390/ijms17111799
PTEN pancreatic cancer oncomiR (promotes cell proliferation, invasion) doi:10.11817/j.issn.1672-7347.2020.180459
O, CP miR-423-3p 4.49 ± 0.12 4.47 ± 0.14 1.01 0.83 RAP2C cardiomyocytes cardioprotection (in ischemic postconditioning secreted by cardiac fibroblast-EVs) doi:10.1093/cvr/cvy231
p21CIP1, WAF1 colorectal carcinoma oncomiR (promotes cell growth) doi:10.1159/000430230
PANX2 glioma cells oncomiR (promotes tumor progression) PMID: 29928399
ADIPOR2 laryngeal cancer oncomiR (promotes tumor progression) PMID: 25337209
O, CP miR-21-5p -0.90 ± 0.52 -0.78 ± 0.82 –1.09 0.98 FASLG hepatocellular carcinoma oncomiR (chemoresitance) doi:10.1089/dna.2018.4529
CCR7 chondrosarcoma tumor suppressor (tumor progression) doi:10.1080/03008207.2019.1702650
TIAM1 colon cancer tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1159/000493457
PDCD4 breast cancer oncomiR (chemoresitance) doi:10.4149/neo_2018_181207N930
BCL2, TLR4 macrophages regulates mycobacterial survival doi:10.1002/1873-3468.13438
SET, TAF-IA lung adenocarcinoma oncomiR (promotes tumor progression) doi:10.1016/j.lfs.2019.06.014
RAB11A neurons neuroprotection during traumatic brain injury doi:10.12659/MSM.915727
PTEN, PDCD4 lung anti-apoptotic during ischemia-reperfusion injury doi:10.1016/j.ejphar.2019.01.022
SOX7 non-small cell lung carcinoma oncomiR (chemoresitance) doi:10.2147/OTT.S146423
TGFB1 non-small cell lung carcinoma oncomiR (promotes cell proliferation) doi:10.3892/etm.2018.6752
CHL1 colon adenocarcinoma oncomiR (promotes cell proliferation, invasion) doi:10.1186/s10020-018-0034-5
PTEN, PDCD4 lung cancer oncomiR (promotes cell proliferation, metastasis m2 polarization) doi:10.1186/s13046-019-1027-0
SMAD7 non-small cell lung carcinoma oncomiR (promotes tumor progression) doi:10.2147/OTT.S172393
PI3K cardiomyocytes cardioprotection (improves contractility) doi:10.1161/CIRCRESAHA.118.312420
SPRY1 joints suppresses angiogenesis and matrix degeneration doi:10.1186/s13075-020-2145-y
PDCD4 squamous cell carcinoma oncomiR (anti-apoptotic) doi:10.3892/etm.2019.7970
MASPIN endothelial cells suppresses angiogenesis and proliferation doi:10.1080/09168451.2018.1459179
CDKN2C melanoma oncomiR (promotes cell proliferation) doi:10.1002/2211-5463.12819
CCL1, TIMP3 neurons inhibits neuropathic pain development doi:10.1002/jcb.28920
SMAD7 fibroblasts promote fibrosis in tendon injury doi:10.1016/j.omtn.2018.11.006
FASLG cardiomyocytes cardioprotection (in ischemia-reperfusion injury) doi:10.1042/BSR20190597
WWC2 lung adenocarcinoma oncomiR (promotes cell proliferation, metastasis) doi:10.3233/CBM-201489
PTEN, mTOR brain protects against seizure damage doi:10.1016/j.eplepsyres.2018.05.001
SMAD7 fibroblasts activation of spinal fibrosis doi:10.7150/ijbs.24074
PDCD4 osteosarcoma oncomiR (promotes cell proliferation, metastasis) doi:10.3892/ijo.2017.4127
HMSH2 non-small cell lung carcinoma oncomiR (chemoresitance) doi:10.1159/000481839
PTEN smooth muscle cells promotes proliferation and remodeling doi:10.3390/ijms20040875
MAPK10 breast cancer oncomiR (promotes tumor progression) doi:10.1042/BSR20181000
PTEN fibroblasts prevents radiation-induced autophagy doi:10.1038/s41374-019-0323-9
CADM1 tongue cancer oncomiR (chemoresitance) doi:10.1007/s00109-016-1417-0
O, CP miR-34a-5p 3.49 ± 1.45 2.09 ± 0.84 2.65 0.23 NOTCH1 cardiomyocytes cardiotoxic doi:10.31083/j.rcm.2019.03.545
BCL2 endothelial cells hypoxia induced autophagy doi:10.1002/jcb.29207
ZEB1 cardiomyocytes aggravates hypoxia induced apoptosis doi:10.1515/hsz-2018-0195
ACSL1 hepatocytes increases hepatic triglyceride and cholesterol levels doi:10.3390/ijms20184420
SIRT1 kidney promotes injury induced fibrosis doi:10.1038/s41419-018-0527-8
SIRT1 kidney promotes injury induced fibrosis doi:10.1016/j.bbrc.2017.12.048
DLL1 osteosarcoma oncomiR (chemoresitance) doi:10.1038/srep44218
AGTR1 osteosarcoma oncomiR (chemoresitance) doi:10.1186/s12885-016-3002-x
CD117 osteosarcoma oncomiR (chemoresitance) doi:10.18632/oncotarget.8546
PD-L1 ovarian carcinoma oncomiR (chemoresitance) doi:10.4149/neo_2019_190202N106
BCL2 ovarian carcinoma oncomiR (promotes cell proliferation) doi:10.2147/OTT.S142446
O miR-15b-5p 4.41 ± 0.46 4.88 ± 1.04 –1.38 0.69 AKT3 arteries inhibits ateriogenesis, angiogenesis doi:10.1161/ATVBAHA.116.308905
PAQR3 gastric cancer oncomiR (promotes metastasis) doi:10.3892/or.2017.5673
AXIN2 hepatocellular carcinoma oncomiR (promotes cell proliferation, invasion) doi:10.3892/ol.2019.11056
RECK prostate cancer oncomiR (tumorigenesis) doi:10.3892/ol.2019.11056
SEMA3A podocytes repressing apoptosis and inflammation in high glucose injury doi:10.1002/jcp.28691
PDK4 osteosarcoma oncomiR (promotes cell proliferation) doi:10.1016/j.bbrc.2018.08.035
BMPR1A cardiomyocytes promotes doxorubicin induced injury doi:10.1007/s12012-018-9495-6
HPSE2 breast cancer oncomiR (promotes cell proliferation, metastasis) doi:10.3389/fonc.2020.00108
O miR-17-5p 5.57 ± 0.15 5.34 ± 0.62 1.10 0.57 BAMBI nasopharyngeal carcinoma oncomiR (promotes angiogenesis) doi:10.7150/jca.30757
ETV1 breast cancer tumor suppressor (cell proliferation) doi:10.1186/s12885-017-3674-x
RBL2, E2F4 pancreatic cancer oncomiR (promotes cell proliferation) doi:10.1016/j.canlet.2017.09.044
ANKH fibroblasts increased ostegenesis doi:10.1016/j.omtn.2019.10.003
BRCC2 osteosarcoma oncomiR (promotes cell growth) doi:10.3892/or.2016.4542
NTN4 breast cancer oncomiR (promotes metastasis, invasion) PMID: 31933983
SKSI1 osteosarcoma oncomiR (promotes epithelial–mesenchymal transition) doi:10.1002/jcb.27832
SMAD7 fibroblasts promotes liver fibrosis doi:10.1111/jcmm.14432
TGFB2 cervical cancer oncomiR (promotes cell proliferation) doi:10.26355/eurrev_201804_14712
E2F1 granulosa cells promotes cell proliferation doi:10.1111/rda.13551
SMAD5 myoblasts miR-106b-5p promotes osteogenic differentiation doi:10.1016/j.yexcr.2016.07.010
MFN2 satellite cells modulates mitochondrial function PMID: 31198013
P21 nasopharyngeal carcinoma oncomiR (promotes cell proliferation) doi:10.1002/cam4.863
HOXB13 prostate cancer oncomiR (promotes tumor progression) doi:10.1186/s12935-019-0994-8
P21 astrocytes inhibits apoptosis during hypoxia doi:10.1186/s12935-019-0994-8
CMYC hepatocellular carcinoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1007/s13277-015-4355-5
VEGFA endothelial cells mitigates endometriosis doi:10.1007/s12038-020-00049-y
TMOD1 gastric cancer oncomiR (tumorigenesis) doi:10.26355/eurrev_201907_18430
SMAD7 osteoblasts promotes osteogenic differentiation doi:10.1038/emm.2014.43
RUNX3 gastric cancer oncomiR (promotes cell proliferation, metastasis) doi:10.1016/j.biopha.2020.110246
SOCS6 gastric cancer oncomiR (promotes cell proliferation) doi:10.1016/j.febslet.2014.04.036
PTEN thyroid cancer oncomiR (promotes cell proliferation) doi:10.4149/neo_2019_190110N29
PTEN, GAINT7 hepatocellular carcinoma oncomiR (tumorigenesis) doi:10.1242/jcs.122895
PIK3R1 squamous cell carcinoma tumor suppressor (cell autophagy) doi:10.1007/s10620-012-2400-4
P21/PTEN smooth muscle cells promotes hypoxia induced proliferation doi:10.1186/s12931-018-0902-0
SMAD7 nasal epithelial cells aggravates inflammatory response doi:10.1186/s12860-018-0152-5
TGFB2 gastric cancer oncomiR (promotes cell proliferation) doi:10.18632/oncotarget.8946
HBP1 breast cancer oncomiR (promotes metastasis, invasion) doi:10.1007/s10549-010-0954-4
SMAD7 hepatic stellate cells activates stellate cells doi:10.1038/labinvest.2015.58
O, CP miR-21-3p 5.28 ± 1.27 3.89 ± 1.01 2.26 0.26 SPRY1 fibroblasts promotes wound healing doi:10.18632/aging.103610
MAT2B brain attenuate ischemia-reperfusion injury doi:10.3325/cmj.2019.60.439
PTEN vascular smooth muscle cells promote migration and proliferation (pro-atherogenic) doi:10.7150/thno.37357
VEGFA granulosa cells inhibits autophagy doi:10.1530/REP-19-0285
TGS4 retinal pigment epithelial cells modulates apoptosis and inflammation doi:10.1111/1440-1681.13142
AKT, CDK2 kidney regulates metabolic alterations in acute kidney injury doi:10.1155/2019/2821731
P53 multiple cancers oncomiR (inhibit apoptosis) doi:10.1016/j.abb.2019.05.026
PTEN liver cancer oncomiR (inhibit apoptosis) doi:10.2147/CMAR.S183328
HDAC1 epithelium inhibits influenca virus replication doi:10.3389/fcimb.2018.00175
SORBS2 cardiomyocytes promoted myocardial dysfunction in sepsis doi:10.1016/j.yjmcc.2016.03.014
HDAC1 cardiomyocytes cardioprotection (suppression of myocardial hypertrophy) doi:10.1093/cvr/cvu254
O miR-663a 4.43 ± 0.38 1.49 ± 1.06 7.68 0.02 MYL9 osteosarcoma oncomiR (tumorigenesis) doi:10.1177/0960327120937330
TGFB1 liver reduces hepatic stellar cell activation doi:10.1155/2020/3156267
ZBTB7A osteosarcoma oncomiR (inhibits apoptosis) doi:10.1016/j.canlet.2019.01.046
TGFB1 hepatocellular carcinoma tumor suppressor (cell proliferation, invasion) doi:10.1186/s12885-018-5016-z
NFIX spermatogonial stem cells promote proliferation and inhibit apoptosis doi:10.1016/j.omtn.2018.05.015
EMP3 gallbladder cancer oncomiR (tumor progression) doi:10.1016/j.canlet.2018.05.022
O miR-664a-3p 4.67 ± 1.55 4.77 ± 0.54 –1.07 0.44 FHL1 lung Progression of chronic obstructive pulmonary disease doi:10.2147/COPD.S224763
FOXP3 gastric cancer oncomiR (tumorigenesis) doi:10.1111/cpr.12567

Table A3.

MiRNAs that are known for their tumor suppressor and oncogenic potential (TS/O). Selected miRNAs are also involved in cardioprotection (CP). Targets are given for each miRNA, with no claim to completeness. Pubmed IDs (PMIDs) are given as references when no doi numbers are available.

MiRNA Function MiRNA Name CB-MSC-EV [dCT ± SD] AT-MSC-EV [dCT ± SD] Fold Difference p-Value Confirmed Targets GeneGLOBE ID Cell/Tissue/Cancer Type MiRNA Cluster Biological Effect Reference
TS/O miR-31-3p 4.93 ± 0.56 5.08 ± 0.49 –1.11 0.64 RASA1 colorectal carcinoma oncomiR (promotes cell proliferation, tumor progression) doi:10.1074/jbc.M112.367763
SEMA4C cervical cancer tumor suppressor (chemoresistance) doi:10.1038/s41598-019-54177-z
TIAM1 colorectal carcinoma miR-21 oncomiR (promotes epithelial–mesenchymal transition, invasion) doi:10.1074/jbc.M110.160069
TS/O miR-199b-5p 4.39 ± 1.5 3.73 ± 0.43 1.58 0.53 HER2 osteosarcoma oncomiR (promotes tumor progression) PMID: 30610808
STON2 papillary thyroid carcinoma tumor suppressor (metastasis, suppresses epithelial–mesenchymal transition) doi:10.1002/iub.1889
DYRK1A, NOTCH1, JAG1 promotes pathological myocardial remodeling doi:10.1016/j.ncrna.2016.12.002
KLK10 cervical cancer oncomiR (promotes cell proliferation, metastasis) doi:10.1016/j.bbrc.2018.05.165
mTOR endometrial endometrial adenocarcinoma miR-100-5p, miR-199a-3p tumor suppressor (cell autophagy) PMID: 31966798
GSK3B monocytes inhibition of NFkB signaling, anti-inflammatory doi:10.1007/s10753-018-0799-2
JAG1 ligamentum flavum cells inhibition of osteogenic differentiation doi:10.1111/jcmm.13047
CAV1 non-small cell lung carcinoma oncomiR (promotes cell proliferation) doi:10.1038/s41419-019-1740-9
ALK1 breast cancer tumor suppressor (angiogenesis) doi:10.3389/fgene.2019.01397
DDR1 breast cancer tumor suppressor (cell proliferation, invasion, metastasis) doi:10.3892/ol.2018.9255
BICC1 oral cancer miR-101-3p
(not detected)
tumor suppressor (cell autophagy) doi:10.1016/j.mcp.2020.101567
MLK pancreatic beta cells increases cell proliferation doi:10.2174/2211536605666160607082214
JAG1, DDR1 colorectal carcinoma tumor suppressor (cell proliferation, invasion) doi:10.1002/path.5238
PODXL, DDR1 acute myeloid leukemia tumor suppressor (cell proliferation) doi:10.1002/ajh.23129
HES1 medulloblastoma tumor suppressor (impairs cancer stem cell function) doi:10.1371/journal.pone.0004998
ITGA3 squamous cell carcinoma miR-199a-3p/5p tumor suppressor (cell proliferation) doi:10.1111/cas.13298
TS/O miR-221-3p 1.25 ± 0.67 0.65 ± 0.25 1.51 0.11 AXIN2 - miR-15b-5p oncomiR (promotes cell proliferation, invasion) doi:10.3892/ol.2019.11056
THBS2 squamous cell carcinoma oncomiR (promotes angiogenesis) doi:10.1007/s10456-019-09665-1
SDF1 cartilage prevent cartilage degradation in osteoarthritis doi:10.1007/s00109-017-1516-6
VASH1 squamous cell carcinoma oncomiR (promotes metastasis) doi:10.1038/s41388-018-0511-x
THBS1 trophoblast promotes invasion and proliferation doi:10.1016/j.biopha.2018.10.009
JAK3 macrophages regulates M1 to M2 transition doi:10.3389/fimmu.2019.03087
ARF4 epithelial ovarian cancer tumor suppressor (cell proliferation, metastasis) doi:10.1016/j.bbrc.2017.01.002
THBS2 squamous cell carcinoma oncomiR (promotes metastasis) doi:10.1038/s41419-017-0077-5
MMP22 macrophages prevent low-density lipoprotein-induced oxidative stress doi:10.1002/jcb.27917
EIF5A2 medulloblastoma tumor suppressor (cell proliferation, enhances apoptosis) doi:10.1080/09168451.2018.1553604
PTEN gastric cancer oncomiR (promotes tumor progression) doi:10.3727/096504016 × 14756282819385
TIMP3 retina promotes microvascular dysfunction doi:10.1007/s00424-020-02432-y
PARP1 breast cancer tumor suppressor (tumor progression) doi:10.18632/oncotarget.21561
RB1 pancreatic cancer oncomiR (chemoresistance) doi:10.1007/s13277-016-5445-8
JNK1, TGFBR1, ETS-1 cardiac fibroblasts cardioprotective (inhibits fibroblast activation) doi:10.1161/HYPERTENSIONAHA.117.10094
TS/O, CP miR-25-3p 4.52 ± 0.53 4.8 ± 0.13 –1.21 0.33 BTG2 breast cancer tumor suppressor (cell proliferation) doi:10.1186/s12943-017-0754-0
PTEN retinoblastoma oncomiR (promotes tumor progression) doi:10.1016/j.biopha.2019.109111
FBXW7, DKK3 glioma cells oncomiR (promotes cell proliferation, metastasis) doi:10.3892/etm.2019.7583
BTG2 breast cancer oncomiR (promotes cell proliferation, metastasis) doi:10.1155/2019/7024675
SEMA4C cervical cancer tumor suppressor (suppresses EMT) doi:10.1111/cas.13104
ADAM10 endothelial cells inhibit NFkB Signaling and reduces inflammation doi:10.3389/fimmu.2019.02205
EZH2 cardiomyocytes cardioprotective (inhibit cardiomyocyte apoptosis during injury) doi:10.1080/0886022X.2020.1745236
TS/O miR-23b-3p 0.73 ± 0.69 1.02 ± 0.26 –1.23 0.307825 SIRT1 lens epithelial cells reduces apoptosis in oxidative stress doi:10.1002/jcb.29270
TGFBR3 atrial fibroblasts miR-27b-3p promote atrial fibrosis in atrial fibrillation doi:10.1111/jcmm.14211
CB1R gastric cancer miR-130a-5p
(not detected)
tumor suppressor (cell proliferation) doi:10.2147/OTT.S181706
ANXA2 pancreatic ductal adenocarcinoma tumor suppressor (cell proliferation) doi:10.1159/000494468
ETS1 hepatocytes downregulate Apo(a) expression doi:10.1002/cbin.10896
PGC1A osteosarcoma oncomiR (promotes cell proliferation) doi:10.1038/s41419-019-1614-1
EBF3 squamous cell carcinoma oncomiR (promotes cell proliferation, metastasis) doi:10.1093/abbs/gmy049
ZEB1 hepatocellular carcinoma tumor suppressor (suppresses epithelial–mesenchymal transition) doi:10.1016/j.gene.2018.05.061
CMET cervical cancer tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1038/s41598-020-60143-x
ATG12, HMGB2 gastric cancer tumor suppressor (chemosensitivity) doi:10.1038/cddis.2015.123
HS6ST2 chondrocytes enhances matrix degradation in osteoarthritis doi:10.1038/s41419-018-0729-0
TGIF1 keratinocytes regulation of keratinocyte differentiation doi:10.1111/exd.13119
PTEN renal cancer oncomiR (promotes cell proliferation) doi:10.1371/journal.pone.0050203
TS/O, CP miR-27b-3p 2.97 ± 0.79 2.77 ± 0.5 1.15 0.84 TGFBR3 atrial fibroblasts miR-27b-3p promote atrial fibrosis in atrial fibrillation doi:10.1111/jcmm.14211
HOXA10 colorectal carcinoma oncomiR (promotes cell invasion, metastasis) doi:10.1042/BSR20191087
CBLB, GRB2 breast cancer tumor suppressor (cell proliferation, chemoresistance) doi:10.1038/s41419-017-0211-4
WNT3A atrial fibroblasts cardioprotection (reduces atrial fibrosis during atrial fibrillation) doi:10.1155/2019/5703764
MARCH7 endometrial carcinoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1093/abbs/gmz030
SMAD7 endothelial cells suppresses endothelial cell proliferation and migration in Kawasaki disease doi:10.1159/000492354
HIPK2 chondrocytes inhibits apoptosis in rheumatoid arthritis doi:10.1080/21691401.2019.1607362
PPARG thyroid cancer oncomiR (chemoresistance) doi:10.1111/bcpt.13076
FZD7 lung cancer tumor suppressor (tumor progression) PMID: 29028088
SP7 maxillary sinus membrane stem cells suppress osteogenic differentiation doi:10.1097/ID.0000000000000637
LIMK1 colorectal carcinoma tumor suppressor (cell proliferation, invasion, metastasis) PMID: 31966797
GSPT1 gastric cancer tumor suppressor (tumor progression) doi:10.1016/j.biopha.2019.109417
YAP1 glioma cells tumor suppressor (tumorigenesis) doi:10.1139/bcb-2019-0300
ROR1 gastric cancer tumor suppressor (cell proliferation) doi:10.1186/s13046-015-0253-3
PPARG oocytes maturation doi:10.1016/j.bbrc.2016.09.046
GSPT1 non-small cell lung carcinoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.2147/OTT.S196865
NRF2 squamous cell carcinoma tumor suppressor (tumor progression) doi:10.1007/s13577-020-00329-7
TRAF3 chondrocytes inhibits IL1B-induced injury doi:10.1016/j.intimp.2019.106052
NR5A2, CREB1 breast cancer tumor suppressor (chemosensitivity) doi:10.1038/cddis.2016.361
TS/O, CP miR-24-3p 0.43 ± 0.62 1.48 ± 0.56 –2.05 0.091 KEAP1 cardiomyocytes cardioprotection (in ischemia-reperfusion injury) doi:10.1155/2018/7042105
FGF11 T-cells oncomiR (immune evasion) doi:10.1002/path.4781
SOX7 lung cancer oncomiR (promotes metastasis, invasion) doi:10.1002/jcb.26553
SOCS6 prostate cancer oncomiR (promotes metastasis, invasion, proliferation) PMID: 31938287
p27KIP1 papillary thyroid carcinoma oncomiR (promotes metastasis, invasion, proliferation) doi:10.26355/eurrev_201907_18327
BIM breast cancer oncomiR (chemoresistance) doi:10.1002/jcb.28568
RIPK1 cardiomyocytes cardioprotection (in ischemia-reperfusion injury) doi:10.1159/000495161
DEDD bladder cancer oncomiR (promotes tumor progression) doi:10.3892/or.2016.5326
PRKCH Lacrimal adenoid cystic carcinoma tumor suppressor (tumor progression) doi:10.1371/journal.pone.0158433
MTT1 hepatocellular carcinoma oncomiR (promotes cell proliferation) doi:10.1002/cbf.3213
SMAD5 peridontal stem cells inhibit osteogenic differentiation doi:10.1002/jcp.27499
JAB1/CSN5 nasopharyngeal carcinoma tumor suppressor (radiosensitivity) doi:10.1038/onc.2016.147
ATG4A small cell lung cancer tumor suppressor (chemosensitivity) doi:10.18632/oncotarget.2787
IGFBP5 intervertebrate discs induces disc degeneration doi:10.1016/j.lfs.2020.117288
NOTCH1, DLL1 endothelial cells inhibit angiogenesis after myocardial infarction doi:10.3390/ijms21051733
LAMB3 pancreatic ductal adenocarcinoma tumor suppressor (tumor progression) doi:10.3389/fonc.2019.01499
CHD5 squamous cell carcinoma oncomiR (promotes cell proliferation, chemoresistance) doi:10.2217/fon-2016-0179
FGF11 fibroblasts activation of fibrosis and proliferation in renal fibrosis doi:10.1002/jcp.29329
TS/O miR-23a-3p -0.14 ± 0.54 0.06 ± 0.95 –1.14 0.99 PNRC2 renal cell carcinoma oncomiR (promotes tumor progression) doi:10.1016/j.biopha.2018.11.065
KLF3 melanoma oncomiR (promotes tumor progression) doi:10.1186/s12935-019-0927-6
FGF2 squamous cell carcinoma tumor suppressor (cell proliferation) doi:10.1016/j.prp.2018.12.021
CHD17 hepatocellular carcinoma oncomiR (promotes cell proliferation) doi:10.1007/s13105-020-00726-4
SMAD3 chondrocytes promotes osteoarthritis doi:10.1016/j.bbrc.2016.06.071
PTEN gliomal cells oncomiR (promotes cell proliferation) doi:10.1002/ar.24410
TS/O, CP miR-130a-3p 4.86 ± 0.83 5.01 ± 0.74 –1.11 0.75 PDE4D cardiomyocytes cardioprotection (improves cardiac cell proliferation after myocardial infarction) doi:10.1002/jcp.26327
SMAD4 esophageal cancer oncomiR (promotes epithelial–mesenchymal transition) doi:10.1002/cam4.1981
RAB5B breast cancer tumor suppressor ( invasion, metastasis) doi:10.1016/j.bbrc.2018.05.018
SOX4 non-small cell lung carcinoma tumor suppressor (chemosensitivity) doi:10.1080/15384047.2017.1385679
SMAD4 hepatoma cells tumor suppressor (invasion, metastasis) doi:10.1186/s13046-016-0296-0
SNON kidney inhibition of renal fibrosis doi:10.1016/j.yexmp.2019.104358
TGFBR1/2 hepatic stellate cells decreases hepatic fibrosis doi:10.1038/cddis.2017.10
BACH2 nasopharyngeal carcinoma tumor suppressor (cell autophagy) doi:10.1042/BSR20160576
TS/O miR-15a-5p 5.52 ± 2.85 4.42 ± 1.07 2.14 0.73 VEGFA chondrocytes aggravates osteoarthritis doi:10.5582/bst.2016.01187
VEGFA peritoneal mesothelial cells suppresses inflammation and fibrosis doi:10.1002/jcp.27660
WNT3A endometrial carcinoma tumor suppressor (cell growth) PMID: 29164582
CXCL10 chronic myeloid leukemia tumor suppressor (cell autophagy), metastasis PMID: 28979704
MYCN neuroblastoma cells miR-15b-5p, miR-16-5p tumor suppressor (tumor progression) doi:10.1002/1878-0261.12588
PTHrP chondrocytes promotes osteoarthritis doi:10.1155/2019/3904923
FASN arteries alleviates atherosclerosis and vascular inflammation doi:10.1042/BSR20181852
PHLPP2 gastric cancer oncomiR (chemoresistance) doi:10.4149/neo_2020_190904N861
TP53INP1 cervical cancer oncomiR (anti-apoptotic) doi:10.26355/eurrev_201910_19129
BDNF hepatocellular carcinoma tumor suppressor (cell proliferation) doi:10.1007/s13277-015-4427-6
TGFB3, VEGF retinal endothelial cells promote endothelial cell tight junction formation doi:10.1016/j.visres.2017.07.007
VEGFA endometrial mesenchymal stem cells promote endometriosis PMID: 27608888
HOXA3 thyroid cancer tumor suppressor (tumor progression) doi:10.1089/hum.2018.109
TS/O, CP miR-181a-5p 5.5 ± 0.68 6.54 ± 0.7 –1.09 0.9 PBX1 ligaments promotes osteogenesis doi:10.7150/thno.44309
CBLB esophageal cancer tumor suppressor (chemosensitivity) doi:10.2147/CMAR.S251264
E2F7 non-small cell lung carcinoma oncomiR (tumor progression) doi:10.2147/CMAR.S240964
ESM1 retina anti-angiogenesis doi:10.1002/jcp.29733
SIRT1 cardiomyocytes promotes apoptosis in hypoxic injury doi:10.1080/09168451.2020.1750943
KLF17 prostate cancer oncomiR (promotes epithelial–mesenchymal transition) PMID: 32195032
PDGFRA endothelial cells anti-angiogenesis doi:10.1002/cbf.3472
AKT3 gastric adenocarcinoma tumor suppressor (cell proliferation, apoptosis) doi:10.1098/rsob.190095
p53 cardiomyocytes cardioprotection (reduces high glucose induced apoptosis) doi:10.1538/expanim.19-0058
ATG7 hepatocellular carcinoma oncomiR (inhibits autophagy) doi:10.1002/jcb.29064
TS/O miR-106a-5p 5.19 ± 0.76 5.42 ± 1.07 –1.17 0.97 HK2 squamous cell carcinoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1007/s11010-020-03840-5
STAT3 endothelial cells allelviates atherosclerosis and vascular inflammation doi:10.3892/mmr.2020.11147
RBM24 prostate cancer oncomiR (tumor progression) doi:10.2147/OTT.S246274
TGFBR2 colorectal carcinoma oncomiR (chemoresistance) PMID: 31949649
ARHGAP24 ovarian carcinoma oncomiR (cell proliferation, invasion) doi:10.1016/j.lfs.2020.117296
TGFBR2 palate promotes cleft palate formation doi:10.1016/j.yexcr.2019
TS/O miR-125a-5p 2.3 ± 0.54 2.64 ± 0.22 –1.27 0.27 FUT4 osteosarcoma tumor suppressor (tumor progression) doi:10.3389/fgene.2020.00672
LIN28B ovarian carcinoma tumor suppressor (cell proliferation, metastasis) doi:10.3892/mmr.2020.11223
MACC1 hepatocellular carcinoma miR-34a tumor suppressor (cell proliferation, metastasis) doi:10.4149/neo_2020_191019N1062
FNDC3B colorectal carcinoma miR-217 oncomiR (cell proliferation, invasion) doi:10.2147/OTT.S226520
HK2 lung inhibits glycolysis and improved pulmonary arterial hypertension doi:10.18632/aging.103163
TRAF6 macrophages promotes M2 polarization doi:10.1007/s10753-020-01231-y
GALNT7 cervical cancer tumor suppressor (cell proliferation, invasion) doi:10.1186/s12935-020-01209-8
VEGFA trophoblast suppresses migration and proliferation doi:10.1016/j.bbrc.2020.02.137
GAB2 breast cancer tumor suppressor (cell proliferation, invasion) doi:10.3934/mbe.2019347
SIRT7 non-small cell lung carcinoma tumor suppressor (radioresistance) doi:10.3233/CBM-190381
TAZ ovarian carcinoma tumor suppressor (inhibits epithelial–mesenchymal transition) doi:10.3233/CBM-190381
TS/O, CP miR-125b-5p −1.36 ± 0.51 −1.21 ± 0.36 –1.11 0.58 p53, BAK1 cardiomyocytes cardioprotection (inhibits apoptosis in ischemia-reperfusion injury) doi:10.7150/thno.28021
p53, BNIP3 cardiomyocytes cardioprotection (inhibits apoptosis in ischemia-reperfusion injury) doi:10.1161/CIRCRESAHA.118.312758
SMAD7 cardiomyocytes cardiotoxic (increase hypoxia induced injury signaling) doi:10.3892/ijmm.2018.3496
BAK1, KLF13 cardiomyocytes cardioprotection (inhibits apoptosis in ischemia-reperfusion injury) doi:10.1016/j.yjmcc.2017.11.003
EIF5A2 melanoma tumor suppressor (cell proliferation, metastasis) doi:10.1186/s13046-020-01599-7
BTG2 lung adenocarcinoma oncomiR (cell proliferation, migration and promotes epithelial–mesenchymal transition) doi:10.26355/eurrev_202004_20841
PAK3 prenatal follicles inhibits steroidogenesis doi:10.1016/j.metabol.2020.154241
BACE1 neurons attenuate neurotoxicity doi:10.1016/j.jns.2020.116793
TRIB2 squamous cell carcinoma tumor suppressor (tumor progression) doi:10.1042/BSR20193172
PDK1 cervical cancer tumor suppressor (tumorigenesis) doi:10.1155/2020/4351671
NLRC5 cardiomyocytes cardioprotection (inhibits apoptosis in ischemia-reperfusion injury) doi:10.3892/etm.2019.8309
STAT3 embryonic stem cells tumor suppressor (tumorigenesis) doi:10.7150/jca.33696
TRAF6 skeletal muscle relieves skeletal muscle atrophy doi:10.21037/atm.2019.08.39
HK2 bladder cancer tumor suppressor (tumor progression) doi:10.1007/s13577-019-00285-x
AKT3 keratinocytes miR-181b-5p
(not tested)
inhibit proliferation doi:10.1016/j.ejphar.2019.172659
LIMK1 brain neuroprotection doi:10.2174/1567202616666190906145936
TXNRD1 hepatocellular carcinoma tumor suppressor (cell proliferation, invasion, metastasis) doi:10.1186/s12935-019-0919-6
TRAF6 chondrocytes anti-inflammatory in the setting of osteoarthritis doi:10.1038/s41598-019-42601-3
TS/O, CP miR-19a-3p 3.07 ± 0.62 3.29 ± 1.04 –1.16 0.99 PTEN brain alleviates ischemia-reperfusion injury-induced apoptosis doi:10.1016/j.neuroscience.2020.04.020
IGFBP3 brain alleviates ischemia-reperfusion injury doi:10.1186/s40659-020-00280-9
FAS rectal cancer tumor suppressor (induces apoptosis) doi:10.1177/1533033820917978
PIK3IP1 hepatocellular carcinoma tumor suppressor (cell proliferation) doi:10.7150/jca.37748
FOXF2 colorectal carcinoma tumor suppressor (inhibits epithelial–mesenchymal transition) doi:10.3748/wjg.v26.i6.627
IGFBP3 ovarian carcinoma oncomiR (tumor progression) doi:10.1002/mc.23113
SOCS3 synovial cells promote cell proliferation 10.1002/jcb.28442
PTEN osteosarcoma oncomiR (chemoresistance) doi:10.3892/ol.2018.9592
PFN1 hepatocellular carcinoma oncomiR (tumor progression) doi:10.1016/j.prp.2018.12.012
PTEN hepatocellular carcinoma oncomiR (chemoresistance, metastasis) doi:10.1016/j.biopha.2018.06.097
PITX1 gastric cancer oncomiR (tumor progression) doi:10.1159/000489590
TSC1 osteoblasts mediates dexamethasone resistance doi:10.18632/oncotarget.23326
SMAD2/4 prostate cancer tumor suppressor (invasion, metastasis) doi:10.3892/or.2017.6096
TGFBR2 cardiac fibroblasts miR-19b-3p cardioprotection: anti-fibrotic doi:10.1038/srep24747
TS/O, CP miR-19b-3p 3.29 ± 0.35 3.07 ± 0.81 1.16 0.47 NRP1 gastric cancer tumor suppressor (tumor progression) doi:10.1186/s12935-020-01257-0
CCDC6 cholangiosarcoma oncomiR (promotes proliferation, epithelial–mesenchymal transition) doi:10.1016/j.abb.2020.108367
HIF1A endothelial cells anti-angiogenic after hypoxia doi:10.1096/fj.201902434R
BACE1 brain miR-16-5p prevent amyloid beta induced apoptosis doi:10.1097/WNR.0000000000001379
TNFAIP3 endothelial cells pro-inflammatory in the setting of meningitis doi:10.3390/pathogens8040268
HOXA9 non-small cell lung carcinoma oncomiR (promotes proliferation, migration, invasion) doi:10.2147/OTT.S216320
PTEN pancreatic cancer oncomiR (cell proliferation) doi:10.21037/atm.2019.04.61
GRK6 chondrocytes reduces inflammation and matrix degradation doi:10.1007/s11010-019-03563-2
PTEN muscle cells osteogenic differentiation doi:10.1002/cbin.11133
TS/O CP miR-214-3p 2.19 ± 1.04 1.96 ± 0.59 1.17 0.99 PTEN cardiomyocytes cardioprotection: inhibiting autophagy in sepsis doi:10.1155/2020/1409038
ATM lung reduce radiation induced pulmonary injury doi:10.1089/ars.2019.7965
CENPM hepatocellular carcinoma tumor supressor (tumor progression) doi:10.1093/jb/mvaa073
PLAGL2 colorectal carcinoma tumor suppressor (cell proliferation) doi:10.18632/aging.103233
LIVIN colorectal carcinoma tumor supressor (tumor progression) doi:10.1080/21655979.2020
IL17 myocardium cardioprotective (anti-fibrotic) doi:10.3389/fcell.2020.00243
WNT23 vascular smooth muscle cells inhibits cell proliferation doi:10.26355/eurrev_202003_20696
ABCB1, XIAP retinoblastoma oncomiR (chemoresistance) doi:10.2147/OTT.S235862
PSMD10 papillary thyroid carcinoma tumor suppressor (tumor progression) doi:10.1002/jcp.29557
TWIST1 endometrial carcinoma tumor suppressor (inhibit epithelial–mesenchymal transition) doi:10.2147/OTT.S181037
LHX6 ovarian carcinoma oncomiR (tumorigenesis) doi:10.3390/cancers11121917
ST6GAL1 breast cancer oncomiR (cell proliferation, inhibit apoptosis) doi:10.1007/s10616-019-00352-z
FOXP3 breast cancer oncomiR (cell proliferation) doi:10.26355/eurrev_201910_19156
HDGF pancreatic cancer tumor suppressor (chemosensitivity) doi:10.2147/OTT.S222703
BIRC5 breast cancer tumor suppressor (cell proliferation) doi:10.26355/eurrev_201909_18856
NLRC5 myocardium cardioprotection: anti-fibrotic doi:10.1042/CS20190203
CTNNB1 preadipocytes promote differentiation doi:10.3390/ijms20081816
TS/O miR-222-3p 2.34 ± 1.60 1.61 ± 0.57 1.66 0.50 PUMA non-small cell lung carcinoma oncomiR (cell proliferation, inhibit apoptosis) doi:10.1177/1533033820922558
PDCD10 ovarian carcinoma tumor suppressor (inhibit epithelial–mesenchymal transition) doi:10.7150/thno.43198
GILZ airway epithelial cells ameliorates glucocorticoid induced inhibition of cell repair doi:10.1080/10799893.2020.1742739
IGF1 bone marrow-derived MSCs promote osteogenic differentiation doi:10.1016/j.diabres.2020.108121
TMP2 renal clear cell carcinoma oncomiR (tumor progression) doi:10.3233/CBM-190264
IRF2, INPP4B acute myeloid leukemia tumor suppressor (cell proliferation) doi:10.1016/j.mcp.2020.101513
CDKN1B squamous cell carcinoma oncomiR (tumorigenesis) doi:10.1111/jop.12986
PPP2R2A large B-cell lymphoma oncomiR (cell proliferation, inhibit apoptosis) doi:10.1177/1533033819892256
GAS5, PTEN colorectal carcinoma oncomiR (promotes cell proliferation, migration, invasion) doi:10.1016/j.omtn.2019.06.009
PDE3A endothelial cells miR-27a-3p promote vascular integrity doi:10.1007/s12035-018-1446-5
TIMP3 osteosarcoma oncomiR (promote metastasis and invasion) doi:10.2147/OTT.S175745
PTEN papillary thyroid carcinoma oncomiR (inhibit apoptosis) doi:10.18632/oncotarget.23336
TS/O, CP miR-26a-5p 3.75 ± 0.54 4.06 ± 0.72 –1.24 0.53 RANBP9 brain inhibit injury induced apoptosis doi:10.1016/j.acthis.2020.151571
TLR4 kidney protect against diabetic nephropathy doi:10.1074/jbc.RA120.012522
HMGA2 hepatocellular carcinoma tumor suppressor (cell proliferation, promote apoptosis) doi:10.2147/CMAR.S237752
CTGF macrophages modulates TLR signaling upon activation doi:10.1042/BSR20192598
CREB1 renal cell carcinoma miR-27a-3p, miR-221-3p tumor suppressor (cell proliferation, promote apoptosis) doi:10.1038/s41598-020-63403-y
DYRK1A brain inhibit development Alzheimer’s disease doi:10.2174/1567202617666200414142637
WNT5A gastric cancer tumor suppressor (cell proliferation) doi:10.2147/OTT.S241199
ADAM17 cardiomyocytes cardioprotection (inhibit apoptosis) doi:10.1007/s10863-020-09829-5
COL10A1 gastric cancer tumor suppressor (cell proliferation, migration, and invasion) doi:10.26355/eurrev_202002_20170
HOXA5 osteosarcoma oncomiR (promotes cell proliferation, migration) doi:10.2147/OTT.S232100
PTEN myocardium cardioprotection (inhibits apoptosis in ischemia-reperfusion injury) doi:10.1590/1414-431 × 20199106
PTGS2 joints alleviate osteoarthritis doi:10.1016/j.intimp.2019.105946
AURKA hepatocellular carcinoma tumor suppressor (chemosensitivity) doi:10.1177/1533033819851833
WNT5A papillary thyroid carcinoma tumor suppressor (cell proliferation, migration, and invasion) doi:10.2147/OTT.S205994
PTEN myocardium cardioprotection (inhibits apoptosis in ischemia-reperfusion injury) doi:10.26355/eurrev_201908_18661
PTEN synovial cells promote cell proliferation and inhibit apoptosis doi:10.1042/BSR20182192
TS/O, CP miR-27a-3p 1.87 ± 0.98 1.80 ± 0.88 1.05 0.96 SLIT2 endothelial cells promotes apoptosis, autophagy during inflammation doi:10.1016/j.jss.2020.05.102
SP7 preosteoblasts promotes differentiation doi:10.3892/mmr.2020.11246
TAB3 kidney promotes apoptosis during kidney injury doi:10.1080/09168451.2020.1792760
PDL1 macrophages oncomiR (promotes immune evasion of breast cancer) doi:10.1111/jcmm.15367
BNIP3 pancreatic cancer oncomiR (inhibits apoptosis) doi:10.3892/ijmm.2020.4632
SMURF2 lung anti-fibrotic after bleomycin exposure PMID: 32538751
TGFBR1 cardiomyocytes cardioprotection (inhibits apoptosis in ischemia-reperfusion injury) doi:10.1155/2020/2016259
FBXW7 cervical cancer oncomiR (tumor progression) doi:10.2147/CMAR.S234897
ICOS lung adenocarcinoma tumor suppressor (promotes antitumor immunity) doi:10.1111/1759-7714.13411
NOVA gastric cancer oncomiR (promotes epithelial–mesenchymal transition) doi:10.3892/mmr.2020.10949
BNIP3 cardiomyocytes cardioprotection (inhibits apoptosis in ischemia-reperfusion injury) doi:10.1016/j.omtn.2019.11.017
TS/O, CP miR-29a-3p 2.50 ± 0.87 1.64 ± 0.66 1.82 0.19 E2F1 ovarian carcinoma oncomiR (promotes epithelial–mesenchymal transition) doi:10.18632/aging.103388
PTEN aorta promotes development of aortic aneurysms doi:10.1002/jcp.29746
DRP1 myocardium cardioprotection (prevent myocardial hypertrophy) doi:10.2174/0929866527666200416144459
COL4A2 hepatocellular carcinoma tumor suppressor (cell proliferation, migration, and invasion) doi:10.1039/c9mt00266a
COL5A1 breast cancer tumor suppressor (cell proliferation, migration) doi:10.1016/j.lfs.2019.117179
TNFR1 endothelial cells reduces TNF-alpha injury response doi:10.1016/j.omtn.2019.10.014
TS/O, CP miR-30b-5p 5.04 ± 1.10 4.56 ± 0.62 1.40 0.62 KIF18A prostate cancer oncomiR (radioresistance) doi:10.1089/cbr.2019.3538.
MYBL2 medulloblastoma tumor suppressor (cell proliferation, promotes apoptosis) doi:10.1136/jim-2020-001354
CAMK2D dermal papilla cells inhibits proliferation doi:10.1186/s12864-020-06799-1
ASPP2 breast cancer oncomiR (cell proliferation, migration, and invasion) doi:10.1155/2020/7907269
PTAFR myocardium cardioprotection: anti-fibrotic doi:10.26355/eurrev_202004_20869
PPARGC1A Huh-7 cells regulate lipid metabolism doi:10.1186/s12944-020-01261-3
CTNNB1 cardiomyocytes cardiotoxic (increased apoptosis during myocardial injury) doi:10.23736/S00264806.20.06565-9
AVEN cardiomyocytes cardiotoxic (increased apoptosis during myocardial injury) doi:10.1186/s11658-019-0187-4
TS/O, CP miR-31-5p 1.42 ± 0.46 2.24 ± 0.74 –1.76 0.15 YAP colorectal carcinoma tumor suppressor (cell proliferation, metastasis, chemosensitivity) doi:10.1016/j.yexcr.2020.112176
FLOT1 renal clear cell carcinoma tumor suppressor (cell proliferation, promote apoptosis) doi:10.2147/OTT.S254634
HOXA7 trophoblast inhibit proliferation doi:10.1111/jog.14344
PEX5 hepatocellular carcinoma oncomiR (radioresistance) doi:10.7150/thno.42371
TNS1 colon adenocarcinoma oncomiR (tumor progression) doi:10.18632/aging.103096
PKCG cardiomyocytes cardioprotective, inhibit cardiomyocyte hypertrophy doi:10.26355/eurrev_202002_20351
PAN3 cardiomyocytes cardioprotective: attenuates doxorubicin induced cardiotoxicity doi:10.1016/j.yjmcc.2020.02.009
ETBR, VEGFA endothelial cells anti-angiogenic doi:10.1016/j.lfs.2020.117306
MEGEA3 hepatocellular carcinoma oncomiR (chemoresistance, cell proliferation) doi:10.1016/j.omtn.2019.10.035
LATS2 colorectal carcinoma oncomiR (chemoresistance) doi:10.3390/cancers11101576
MLH1 renal cell carcinoma oncomiR (chemoresistance) doi:10.1002/ijc.32543
VEGFA gliomal cells tumor suppressor (anti-angiogenic) doi:10.1002/ijc.32483
TS/O miR-365a-3p 3.99 ± 0.84 4.34 ± 0.67 –1.27 0.43 ABCC4 gastric cancer tumor suppressor (tumor progression) doi:10.2147/OTT.S245557
ADAM10 colorectal carcinoma tumor suppressor (cell proliferation, migration) doi:10.7150/jca.42731
CREL pancreatic cancer tumor suppressor (tumor progression) doi:10.1016/j.canlet.2019.03.025
TET1 hepatocellular carcinoma tumor suppressor (tumor progression, invasion) doi:10.4149/neo_2018_171119N752
USP33 lung cancer oncomiR (tumorigenesis) doi:10.1186/s12935-018-0563-6
TS/O miR-93-5p 5.04 ± 0.59 5.43 ± 0.62 –1.31 0.39 MAP3K2 hepatocellular carcinoma oncomiR (tumor progression) doi:10.1038/s41388-020-01401-0
RGMB squamous cell carcinoma oncomiR (migration and invasion) doi:10.7150/jca.43854
FOXA1 colorectal carcinoma oncomiR (radioresistance) doi:10.1186/s13046-019-1507-2
AHNAK gastric cancer oncomiR (promotes epithelial–mesenchymal transition) doi:10.1186/s12935-019-1092-7
PD-L1 colorectal carcinoma tumor suppressor (tumor progression) doi:10.1002/cbin.11323
FOXK2 cervical cancer oncomiR (tumor progression) doi:10.1007/s43032-020-00140-7
CASC2 chondrocytes inhibits apoptosis in osteoarthritis doi:10.1186/s12891-019-3025-y
MMP2 gliomal cells tumor suppressor (cell proliferation, migration) doi:10.26355/eurrev_201911_19446
TS/O let-7a-5p 2.46 ± 0.96 2.79 ± 0.46 –1.26 0.40 SMAD2 chondrocytes promotes hypertrophic differentiation doi:10.1152/ajpcell.00039.2020
SAMD2 lens epithelial cells inhibits proliferation, migration and invasion PMID: 32345785
DUSP7 breast cancer tumor suppressor (chemoresistance) doi:10.2147/CMAR.S238513
BCLXL lung cancer tumor suppressor (cell autophagy) doi:10.1016/j.omto.2019.08.010
BCL2L1 lung cancer tumor suppressor (induce apoptosis) doi:10.3389/fonc.2019.00808
EGFR breast cancer oncomiR (chemoresistance) doi:10.1002/iub.2075
HMGA2 kidney promotes diabetic nephropathy doi:10.3892/mmr.2019.10057

Author Contributions

T.Z.N.-S.: conceptualization, investigation, formal analysis, writing—original draft, writing—review and editing, supervision. S.N.: investigation, formal analysis, writing—original draft, writing—review & editing. A.G.D.: investigation, formal analysis, writing—original draft. V.E.: investigation, formal analysis. H.M.: investigation. K.K.: investigation. C.M.B.: investigation, formal Analysis. P.W.: investigation. J.B.: investigation. R.B.: investigation. M.S.: writing—review and editing. V.F.: writing—review and editing, funding acquisition. M.Y.E.: conceptualization, writing—review and editing, supervision, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by institutional funds. Nazari-Shafti is a scholar in the BIH Charité Clinician Scientist Program funded by the Charité—Universitätsmedizin Berlin and the Berlin Institute of Health. Neuber was funded by the German Centre for Cardiovascular Research (FKZ 81Z0100302).

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Han Y., Li X., Zhang Y., Han Y., Chang F., Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8:886. doi: 10.3390/cells8080886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Karantalis V., Hare J.M. Use of mesenchymal stem cells for therapy of cardiac disease. Circ. Res. 2015;116:1413–1430. doi: 10.1161/CIRCRESAHA.116.303614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Spees J.L., Lee R.H., Gregory C.A. Mechanisms of mesenchymal stem/stromal cell function. Curr. Stem Cell Res. 2016;7:1–3. doi: 10.1186/s13287-016-0363-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.van der Spoel T.I., Jansen of Lorkeers S.J., Agostoni P., van Belle E., Gyöngyösi M., Sluijter J.P., Cramer M.J., Doevendans P.A., Chamuleau S.A. Human relevance of pre-clinical studies in stem cell therapy: Systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc. Res. 2011;91:649–658. doi: 10.1093/cvr/cvr113. [DOI] [PubMed] [Google Scholar]
  • 5.Jansen of Lorkeers S.J., Eding J.E., Vesterinen H.M., van der Spoel T.I., Sena E.S., Duckers H.J., Doevendans P.A., Macleod M.R., Chamuleau S.A. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: Systematic review and meta-analysis of large animal studies. Circ. Res. 2015;116:80–86. doi: 10.1161/CIRCRESAHA.116.304872. [DOI] [PubMed] [Google Scholar]
  • 6.Cambria E., Pasqualini F.S., Wolint P., Günter J., Steiger J., Bopp A., Hoerstrup S.P., Emmert M.Y. Translational cardiac stem cell therapy: Advancing from first-generation to next-generation cell types. NPJ Regen. Med. 2017;2:1–10. doi: 10.1038/s41536-017-0024-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Mendt M., Rezvani K., Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 2019;54:789–792. doi: 10.1038/s41409-019-0616-z. [DOI] [PubMed] [Google Scholar]
  • 8.Hofmann M., Wollert K.C., Meyer G.P., Menke A., Arseniev L., Hertenstein B., Ganser A., Knapp W.H., Drexler H. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111:2198–2202. doi: 10.1161/01.CIR.0000163546.27639.AA. [DOI] [PubMed] [Google Scholar]
  • 9.Zeng L., Hu Q., Wang X., Mansoor A., Lee J., Feygin J., Zhang G., Suntharalingam P., Boozer S., Mhashilkar A., et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation. 2007;115:1866–1875. doi: 10.1161/CIRCULATIONAHA.106.659730. [DOI] [PubMed] [Google Scholar]
  • 10.Doyle L.M., Wang M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727. doi: 10.3390/cells8070727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Moghaddam A.S., Afshari J.T., Esmaeili S.A., Saburi E., Joneidi Z., Momtazi-Borojeni A.A. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis. 2019;285:1–9. doi: 10.1016/j.atherosclerosis.2019.03.016. [DOI] [PubMed] [Google Scholar]
  • 12.Felekkis K., Touvana E., Stefanou C.H., Deltas C. microRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14:236. [PMC free article] [PubMed] [Google Scholar]
  • 13.Latysheva N.S., Babu M.M. Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Nucleic Acids Res. 2016;44:4487–4503. doi: 10.1093/nar/gkw282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Nazari-Shafti T.Z., Exarchos V., Biefer H.R., Cesarovic N., Meyborg H., Falk V., Emmert M.Y. MicroRNA Mediated Cardioprotection–Is There a Path to Clinical Translation? Front. Bioeng. Biotechnol. 2020;8 doi: 10.3389/fbioe.2020.00149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Serocki M., Bartoszewska S., Janaszak-Jasiecka A., Ochocka R.J., Collawn J.F., Bartoszewski R. miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target. Angiogenesis. 2018;21:183–202. doi: 10.1007/s10456-018-9600-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Meng X.M., Nikolic-Paterson D.J., Lan H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016;12:325–338. doi: 10.1038/nrneph.2016.48. [DOI] [PubMed] [Google Scholar]
  • 17.Gowen A., Shahjin F., Chand S., Odegaard K.E., Yelamanchili S.V. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Challenges in Clinical Applications. Front. Cell Dev. Biol. 2020;8 doi: 10.3389/fcell.2020.00149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Vandergriff A., Huang K.E., Shen D., Hu S., Hensley M.T., Caranasos T.G., Qian L., Cheng K. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics. 2018;8:1869. doi: 10.7150/thno.20524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wang X., Chen Y., Zhao Z., Meng Q., Yu Y., Sun J., Yang Z., Chen Y., Li J., Ma T., et al. Engineered Exosomes with Ischemic Myocardium-Targeting Peptide for Targeted Therapy in Myocardial Infarction. J. Am. Heart Assoc. 2018;7:e008737. doi: 10.1161/JAHA.118.008737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Marzi M.J., Ghini F., Cerruti B., De Pretis S., Bonetti P., Giacomelli C., Gorski M.M., Kress T., Pelizzola M., Muller H., et al. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res. 2016;26:554–565. doi: 10.1101/gr.198788.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zuk P.A., Zhu M.I., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7:211–228. doi: 10.1089/107632701300062859. [DOI] [PubMed] [Google Scholar]
  • 22.Bieback K., Netsch P. Isolation, Culture, and Characterization of Human Umbilical Cord Blood-Derived Mesenchymal Stromal Cells in Methods in Molecular Biology. Vol. 1416. Humana Press Inc.; Totowa, NJ, USA: 2016. pp. 245–258. [DOI] [PubMed] [Google Scholar]
  • 23.Beez C.M., Haag M., Klein O., Van Linthout S., Sittinger M., Seifert M. Extracellular vesicles from regenerative human cardiac cells act as potent immune modulators by priming monocytes. J. Nanobiotechnol. 2019;17:1–8. doi: 10.1186/s12951-019-0504-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Théry C., Amigorena S., Raposo G., Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006;30:3–22. doi: 10.1002/0471143030.cb0322s30. [DOI] [PubMed] [Google Scholar]
  • 25.Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-7-research0034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Jeppesen D.K., Fenix A.M., Franklin J.L., Higginbotham J.N., Zhang Q., Zimmerman L.J., Liebler D.C., Ping J., Liu Q., Evans R., et al. Reassessment of exosome composition. Cell. 2019;177:428–445. doi: 10.1016/j.cell.2019.02.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Buschmann D., Kirchner B., Hermann S., Märte M., Wurmser C., Brandes F., Kotschote S., Bonin M., Steinlein O.K., Pfaffl M.W., et al. Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J. Extracell. Vesicles. 2018;7:1481321. doi: 10.1080/20013078.2018.1481321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Russell A.E., Sneider A., Witwer K.W., Bergese P., Bhattacharyya S.N., Cocks A., Cocucci E., Erdbrügger U., Falcon-Perez J.M., Freeman D.W., et al. Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: An ISEV position paper arising from the ISEV membranes and EVs workshop. J. Extracell. Vesicles. 2019;8:1684862. doi: 10.1080/20013078.2019.1684862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Stranska R., Gysbrechts L., Wouters J., Vermeersch P., Bloch K., Dierickx D., Andrei G., Snoeck R. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J. Transl. Med. 2018;16:1–9. doi: 10.1186/s12967-017-1374-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Varga Z., Fehér B., Kitka D., Wacha A., Bóta A., Berényi S., Pipich V., Fraikin J.L. Size Measurement of Extracellular Vesicles and Synthetic Liposomes: The Impact of the Hydration Shell and the Protein Corona. Colloids Surf. B Biointerfaces. 2020;19:111053. doi: 10.1016/j.colsurfb.2020.111053. [DOI] [PubMed] [Google Scholar]
  • 31.Wiklander O.P., Bostancioglu R.B., Welsh J.A., Zickler A.M., Murke F., Corso G., Felldin U., Hagey D.W., Evertsson B., Liang X.M., et al. Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures. Front. Immunol. 2018;9:1326. doi: 10.3389/fimmu.2018.01326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Ragni E., Orfei C.P., De Luca P., Lugano G., Viganò M., Colombini A., Valli F., Zacchetti D., Bollati V., De Girolamo L. Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes. Stem Cell Res. Therapy. 2019;10:109. doi: 10.1186/s13287-019-1215-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Ragni E., Perucca O.C., De Luca P., Colombini A., Viganò M., de Girolamo L. Secreted Factors and EV-miRNAs Orchestrate the Healing Capacity of Adipose Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis. Int. J. Mol. Sci. 2020;21:1582. doi: 10.3390/ijms21051582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Reis M., Mavin E., Nicholson L., Green K., Dickinson A.M., Wang X.N. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front. Immunol. 2018:2538. doi: 10.3389/fimmu.2018.02538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Patel V., Noureddine L. MicroRNAs and fibrosis. Curr. Opin. Nephrol. Hypertens. 2012;21:410. doi: 10.1097/MNH.0b013e328354e559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Khalil H., Kanisicak O., Prasad V., Correll R.N., Fu X., Schips T., Vagnozzi R.J., Liu R., Huynh T., Lee S.J., et al. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Investig. 2017;127:3770–3783. doi: 10.1172/JCI94753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Wang Y., Du J., Niu X., Fu N., Wang R., Zhang Y., Zhao S., Sun D., Nan Y. MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2. Cell Death Dis. 2017;8:e2792. doi: 10.1038/cddis.2017.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Liu Y., Li Y., Wang R., Qin S., Liu J., Su F., Yang Y., Zhao F., Wang Z., Wu Q. MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. J. Exp. Clin. Cancer Res. 2016;35:1. doi: 10.1186/s13046-016-0296-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Zhang H., Yang K., Ren T., Huang Y., Tang X., Guo W. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis. 2018;9:1–3. doi: 10.1038/s41419-018-0738-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Tian X., Fei Q., Du M., Zhu H., Ye J., Qian L., Lu Z., Zhang W., Wang Y., Peng F., et al. miR-130a-3p regulated TGF-β1-induced epithelial-mesenchymal transition depends on SMAD4 in EC-1 cells. Cancer Med. 2019;8:1197–1208. doi: 10.1002/cam4.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Svoronos A.A., Engelman D.M., Slack F.J. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76:3666–3670. doi: 10.1158/0008-5472.CAN-16-0359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Yang Z., Xiao Z., Guo H., Fang X., Liang J., Zhu J., Yang J., Li H., Pan R., Yuan S., et al. Novel role of the clustered miR-23b-3p and miR-27b-3p in enhanced expression of fibrosis-associated genes by targeting TGFBR3 in atrial fibroblasts. J. Cell Mol. Med. 2019;23:3246–3256. doi: 10.1111/jcmm.14211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Hua H., Kong Q., Zhang H., Wang J., Luo T., Jiang Y. Targeting mTOR for cancer therapy. J. Hematol. Oncol. 2019;12:71. doi: 10.1186/s13045-019-0754-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Easton J.B., Houghton P.J. mTOR and cancer therapy. Oncogene. 2006;25:6436–6446. doi: 10.1038/sj.onc.1209886. [DOI] [PubMed] [Google Scholar]
  • 45.Grundmann S., Hans F.P., Kinniry S., Heinke J., Helbing T., Bluhm F., Sluijter J.P., Hoefer I., Pasterkamp G., Bode C., et al. MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation. 2011;123:999–1009. doi: 10.1161/CIRCULATIONAHA.110.000323. [DOI] [PubMed] [Google Scholar]
  • 46.Yang A., Liu F., Guan B., Luo Z., Lin J., Fang W., Liu L., Zuo W. p53 induces miR-199a-3p to suppress mechanistic target of rapamycin activation in cisplatin-induced acute kidney injury. J. Cell. Biochem. 2019;120:17625–17634. doi: 10.1002/jcb.29030. [DOI] [PubMed] [Google Scholar]
  • 47.Yang Z., Wang J., Pan Z., Zhang Y. miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Exp. Ther. Med. 2018;15:3781–3790. doi: 10.3892/etm.2018.5907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Shi B., Ma M., Zheng Y., Pan Y., Lin X. mTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J. Cell. Physiol. 2019;234:12562–12568. doi: 10.1002/jcp.28125. [DOI] [PubMed] [Google Scholar]
  • 49.Chalhoub N., Baker S.J. PTEN and the PI3-kinase pathway in cancer. Annual Review of Pathology. Mech. Dis. 2009;4:127–150. doi: 10.1146/annurev.pathol.4.110807.092311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Zhang P., Zhao Q., Gong K., Long Y., Zhang J., Li Y., Guo X. Downregulation of miR-103a-3p Contributes to Endothelial Progenitor Cell Dysfunction in Deep Vein Thrombosis Through PTEN Targeting. Ann. Vasc. Surg. 2020;64:339–346. doi: 10.1016/j.avsg.2019.10.048. [DOI] [PubMed] [Google Scholar]
  • 51.Gao D.C., Hou B., Zhou D., Liu Q.X., Zhang K., Lu X., Zhang J., Zheng H., Dai J.G. Tumor-derived exosomal miR-103a-2-5p facilitates esophageal squamous cell carcinoma cell proliferation and migration. Eur. Rev. Med. Pharmacol. Sci. 2020;24:6097–6110. doi: 10.26355/eurrev_202006_21505. [DOI] [PubMed] [Google Scholar]
  • 52.Shi J., Zhang Y., Jin N., Li Y., Wu S., Xu L. MicroRNA-221-3p plays an oncogenic role in gastric carcinoma by inhibiting PTEN expression. Oncol. Res. 2017;25:523–536. doi: 10.3727/096504016X14756282819385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Li X., Guo S., Min L., Guo Q., Zhang S. miR-92a-3p promotes the proliferation, migration and invasion of esophageal squamous cell cancer by regulating PTEN. Int. J. Mol. Med. 2019;44:973–981. doi: 10.3892/ijmm.2019.4258. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 54.Liu Y., Hu Q., Ao J., Li H., Li M. Role of miR-92a-3p/PTEN Axis in Regulation of Pancreatic Cancer Cell Proliferation and Metastasis. J. Cent. South Univ. Med. Sci. 2020;45:280–289. doi: 10.11817/j.issn.1672-7347.2020.180459. [DOI] [PubMed] [Google Scholar]
  • 55.Wu L., Chen Y., Chen Y., Yang W., Han Y., Lu L., Yang K., Cao J. Effect of HIF-1α/miR-10b-5p/PTEN on Hypoxia-Induced Cardiomyocyte Apoptosis. J. Am. Heart Assoc. 2019;8:e011948. doi: 10.1161/JAHA.119.011948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Lv X., Li J., Hu Y., Wang S., Yang C., Li C., Zhong G. Overexpression of miR-27b-3p targeting Wnt3a regulates the signaling pathway of Wnt/β-catenin and attenuates atrial fibrosis in rats with atrial fibrillation. Oxid. Med. Cell. Longev. 2019;2019:5703764. doi: 10.1155/2019/5703764. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Biomolecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES