Skip to main content
Sensors (Basel, Switzerland) logoLink to Sensors (Basel, Switzerland)
letter
. 2020 Sep 10;20(18):5177. doi: 10.3390/s20185177

Performance Optimization of Hybrid Satellite-Terrestrial Relay Network Based on CR-NOMA

Long Zhao 1,2, Tao Liang 2,*, Kang An 2
PMCID: PMC7571007  PMID: 32927911

Abstract

The non-orthogonal multiple access (NOMA) scheme realizes the transmission of multiple user signals at the same time and frequency resource block through power domain multiplexing, which improves the system transmission rate and user fairness. In this paper, we propose a joint relay-and-antenna selection scheme based on the cognitive radio scenario. This scheme can achieve the maximum communication rate of the secondary user when the primary user maintains the optimal outage performance. In the considered system both terrestrial relays and users are deployed with multi-antenna configurations and the terrestrial relays adopt the decode-and-forward (DF) strategy to achieve communication between satellites and users. Then, we derive the exact outage probability expression of each user in the system and the asymptotic probability expression under high signal-to-noise ratio (SNR). Numeric results demonstrate that increasing the number of relays and antennas on the terrestrial nodes can both improve system outage performance. Moreover, the number of relays imposes a more obvious effect on the achievable system performance.

Keywords: satellite communication, non-orthogonal multiple access, decode-and-forward, relay selection, antenna selection, outage probability

1. Introduction

By introducing relay technology into the satellite system, the hybrid satellite-terrestrial relay network (HSTRN) can significantly enhance signal coverage strength and coverage of the direct transmission link. To date, several works have examined the key performance indicators of HSTRN [1,2,3,4,5,6,7]. The authors in [8] derived the exact expression of the outage probability of HSTRN system and the asymptotic expression under high signal-to-noise ratio by using Meijer-G function, which revealed the diversity order and coding gain of the system. The work in [9] studied HSTRN based on amplify-and-forward (AF) strategy and analyzed the average symbol error rate of M-ary phase shift keying constellation. In [10], the authors studied the HSTRN based on the multi-antenna DF strategy and analyzed the impact of antenna configuration and satellite link interference on cognitive network performance. The research of the above paper starts from different angles and adopts different strategies to significantly improve the spectral efficiency and transmission reliability of HSTRN. However, almost all of these studies use the OMA scheme. The OMA scheme can only serve one user per time slot/frequency. Although the interference between users is effectively avoided, there is also a phenomenon of low spectrum utilization, and it is also unfair to users with poor channel conditions.

The NOMA scheme uses superimposed coding to enable transmission signals of different users to be transmitted in the same channel. At the same time, the receiver uses the serial interference cancellation (SIC) criterion to eliminate interference to achieve signal extraction and decoding [11,12]. In this scheme, the signal source performs power distribution according to the user’s priority and corresponding channel conditions, which greatly meets the communication needs of different users and improves the fairness of the system.

To date, the theoretical research based on the NOMA scheme is mainly concentrated in the cellular mobile communication network. The authors in [13] studied the downlink NOMA system and found that the system outage probability mainly depended on the user’s target rate and power distribution coefficient. In [14], the authors proposed two antenna selection schemes, max–min–max AS (AIA-AS) and max-max-max AS (A3-AS), which have higher computational efficiency for the NOMA system with multiple antennas. Moreover, through comparison, it is found that both schemes can significantly improve user performance. Among them, AIA-AS scheme can provide better system fairness, and A3 -AS scheme can provide better overall system rate. The work in [15] studied the CR-NOMA system based on energy harvesting assistance and analyzed the impact of the receiver’s imperfect successive interference cancellation on outage behavior and throughput performance. The authors in [16] studied the NOMA system throughput and the optimal position optimization of the UAV in the delay-constrained transmission mode. The work in [17] introduced the NOMA scheme into a multi-beam satellite system and proposed a scheduling strategy to enhance system performance. The authors in [18,19] integrated the NOMA scheme into HSTRN and analyzed the system outage performance based on AF strategy and the effect of parameter configuration on user performance. By applying the NOMA to enhance spectrum efficiency, the authors in [20] investigated a joint beamforming and power allocation scheme in satellite-terrestrial integrated networks. The authors in [21] introduced NOMA into a satellite communication network without terrestrial networks and studied the physical layer security of satellite downlinks. In [22], the authors studied the uplink land satellite mobile communication system based on NOMA and analyzed the outage performance of the system when the satellite receiver adopted continuous interference cancellation or joint decoding. The work in [23] introduced NOMA into HSTRN and analyzed the system outage performance when the near users of the NOMA group were relayed as far users. The authors in [24,25], respectively studied the outage performance of the HSTRN system based on NOMA under the condition of hardware damage, partial relay selection scheme and imperfect CSI.

However, as of now, there have been no reports about the application of MIMO-NOMA to the HSTRN network. To fill this gap, this paper proposes a joint relay-and-antenna selection algorithm based on MIMO-NOMA. Not only can it maximize the system capacity when taking into account the priority of HSTRN users, but it can also greatly reduce the computational complexity of the system. The rest of this article is organized as follows: Related system models are introduced in Section 2. In Section 3, we derive the exact expression of each user’s outage probability and the asymptotic outage probability expression under high signal-to-noise ratio. In Section 4, the theoretical data simulation of computer software is shown. Finally, the fifth part summarizes the full text.

2. System Model

The downlink satellite communication system we considered includes satellite S, N relays, 2 users. Each relay is equipped with K antennas. User 1 and User 2 are equipped with M antennas and L antennas, respectively. There is no direct link between the satellite and the users. They can only assist communication through terrestrial relays. The communication link between the satellite and the terrestrial relays are subject to shadowed Rician fading, and the channel coefficient vector is in=i1,i2,iN. The communication link between the terrestrial relays and the users are subject to Nakagami-m fading. The channel coefficient between the relay node n and User 1 is K×M matrix Hn.hnk=[hnk1,hnk2,,hnkM] represents the channel coefficient vector between the k–th antenna of the relay node n and User 1. The channel coefficient between the relay node n and User 2 is K×L matrix Gn. gnk=[gnk1,gnk2,,gnkL] represents the channel coefficient vector between the k–th antenna of the relay node n and User 2. To enhance the engineering practicality of the model, we assume that User 1 is a fire sensor in a forest area, and its application requirements are low rate and fast service. On the other hand, User 2 is a general user, and its application requirement is to download files, movies and other common Internet services. The system model is shown in Figure 1.

Figure 1.

Figure 1

System model.

A complete satellite downlink communication process includes two time slots. In the first time slot, the satellite s sends the superimposed signal xx=γ1Psx1+γ2Psx2 to the relays, and the signal received by the relay node n can be written as:

ysn=in(γ1Psx1+γ2Psx2)+nr (1)

where in is the channel coefficient between the satellite and the terrestrial relay n and nr is the additive white Gaussian noise (AWGN) with variance δ2. Ps is the signal transmission power of the satellite s. γ1 and γ2 are the power distribution coefficients corresponding to the signal x1 and the signal x2, respectively. Moreover, γ1 + γ2 = 1.

According to the serial interference cancellation (SIC) decoding principle, the relay node n decodes the received signal in the order of channel attenuation from large to small. The signal-to-interference-plus-noise ratio (SINR) of the signal x1 and the signal x2 received at relay node n can be expressed as:

SINRn1=γ1ρsnin2γ2ρsnin2+1 (2)
SINRn2=γ2ρsnin2 (3)

where ρsn=Ps/δ2.

After the relay node n finishes decoding the signal x1 and the signal x2, it reshapes the transmission signal according to the superposition coding method. In the second time slot, the relay node n broadcasts the superimposed signal to the users, and the signals received by User 1 and User 2 can be expressed as

yn1=hn(γ1Pnx1+γ2Pnx2)+n1 (4)
yn2=gn(γ1Pnx1+γ2Pnx2)+n2 (5)

where hn and gn are the channel coefficients from the relay n to User 1 and User 2, respectively. n1 and n2 are AWGN with variance δ2. Pn is the transmission power of the relay n. The SINR of the signal x1 received by User 1 can be expressed as

SINR11=γ1ρndhnkm2γ2ρndhnkm2+1 (6)

The SINR of the signal x1 and the signal x2 received by User 1 can be written as

SINR21=γ1ρndgnkl2γ2ρndgnkl2+1 (7)
SINR22=γ2ρndgnkl2 (8)

where ρnd=Pn/δ2.

Considering that the communication link between the satellite s and the relay node n is subject to shadowed Rician fading, the probability density function (PDF) of in2 can be written as

fin2(x)=αin2exp(βin2x)F11min2;1;δin2x (9)

where αin2=0.52bin2min2/2bin2min2+Ωin2min2,βin2=0.5/bin2,δin2=0.5Ωin2/bin2/2bin2min2+Ωin2, Ωin2 and 2bin2 represent the average power of the direct component and the multipath component, min2 is the fading parameter of the Nakagami-m distribution and F11(a;b;c) represents the confluent hypergeometric function. By consulting the relevant formulas ([26], Equation (9.14.1), Equation (3.381.1)), cumulative distributed function (CDF) of in2 can be expressed as

Fin2(x)=αin2k=0min2kδin2k(k!)2βin2k+1γk+1,βin2x (10)

where γk+1,βin2x is the incomplete Gamma function ([26], Equation (8.350.1)).

Due to the variable hnkm with fading parameter mn1 and gnkl with parameter mn2 subject to Nakagami-m distribution, we can easily obtain that hnkm2 and gnkl2 follow Gamma distribution and the CDF of them can be expressed as follows:

Fhnkm2(y)=0ymn1mn1ymn11Ωn1mn1Γ(mn1)emn1yΩn1dy=γmn1,ymn1/Ωn1Γ(mn1) (11)
Fgnkl2(y)=0ymn2mn2ymn21Ωn2mn2Γ(mn2)emn2yΩn2dy=γmn2,ymn2/Ωn2Γ(mn2) (12)

where Γ(z)=0ettz1dt is the Gamma function ([26], Equation (8.310.1)). When z takes integer values, Γ(z)=z1! and γ(z,x)=n!1exm=0zxmm! ([26], Equation (8.339.1), Equation (8.352.1)). Therefore, Fhnkm2(y) and Fgnkl2(y) can be rewritten as

Fhnkm2(y)=1eymn1Ωn1p=0mn11ymn1/Ωn1pp! (13)
Fgnkl2(y)=1eymn2Ωn2r=0m21ymn2/Ωn2rr! (14)

By consulting the higher order statistics, the CDF of hnkmmax2 and gnklmax2 can be obtained as

Fhnkmmax2(y)=1euyp=0mn11(uy)pp!M (15)
Fgnklmax2(y)=1eνyr=0mn21(νy)rr!L (16)

where u=mn1/Ωn1, v=mn2/Ωn2.Taking the derivative of the above formulas, the PDF of hnkmmax2 and gnklmax2 can be expressed as follows:

fhnkmmax2(y)=Mumn1ymn11euymn11!1euyp=0mn11(uy)pp!M1 (17)
fgnklmax2(y)=Lνmn2ymn21evymn21!1eνyr=0mn21(νy)rr!L1 (18)

3. Performance Analysis

3.1. Schematic Design

We assume that the communication requirement of the system model is to maximize the transmission rate of User 2 when the communication transmission of User 1 is not interrupted. To solve the problem of excessive computational complexity after combining multi-relay selection and multi-antenna selection in this model, this paper proposes a joint relay-and-antenna selection scheme, which can greatly reduce the amount of system computation. The specific schemes are as follows:

(1) Select a subset S1 of relay nodes that enables the signal x1 and the signal x2 to be decoded normally. It can be expressed as

S1=in2>η,nN (19)

where η=max(ε1γ1γ2ε1ρsn,ε2γ2ρsn), ε1=22R11, ε2=22R21, R1 and R2 are the target rates of User 1 and User 2, respectively.

(2) Select the maximum values hnkmmax and gnklmax from the channel vectors hnk and gnk to form a subset S2=(hnkmmax,gnklmax),nS1,kK.

hnkmmax=max(hnk1,hnk2,,hnkM) (20)
gnklmax=max(gnk1,gnk2,,gnkL) (21)

(3) Select a subset S3 from subset S2 that enables the signal x1 to successfully decode at User 1 and User 2 with qnk=min(hnkmmax2,gnklmax2). Subset S3 can be expressed as

S3=min(hnkmmax2,gnklmax2)>ε1γ1γ2ε1ρnd,nS1,kS2 (22)

(4) Select the maximum value qn of qnk corresponding to relay n to form subset S4. Subset S4 can be expressed as

S4=qn=max(qn1,qn2,,qnk),nS3,kS3 (23)

(5) Select the largest qn(nS4) from subset S4 to maximize the User 2 rate:

n*,k*,m*,l*=argmaxγ2ρn2gnkl2,nS4,kS4 (24)

where n* represents the best relay node. k*,m*,l* respectively represent the antennas corresponding to relay n*, User 1 and User 2 under the optimal selection condition.

3.2. The Exact Outage Probability Expressions for NOMA Users

(1) User 1: Define A1 as an event: The signal x1 can be successfully decoded at relay n. Define A2 as an event: User 1 can successfully decode the signal x1. The probability that any relay node n cannot successfully decode the signal x1 can be expressed as

P(A¯1)=Pr(in2<ε1γ1γ2ε1ρnd)=Fin2(ε1γ1γ2ε1ρnd) (25)

The probability that the signal forwarded by relay node n is interrupted at User 1 can be expressed as:

P(A¯2)=Pr(hnkmmax2<ε1γ1γ2ε1ρnd)K (26)

Therefore, the outage probability of User 1 can be expressed as

P(A¯)=n=1NNnP(A¯2)n(1P(A¯1))n(P(A¯1))Nn+(P(A¯1))N=n=0NNnFhnkmmax2(ε1γ1γ2ε1ρnd)Kn(1Fin2(ε1γ1γ2ε1ρnd))n(Fin2(ε1γ1γ2ε1ρnd))Nn (27)

(2) User 2: Define B1 as an event: any relay n can successfully decode the signal x1 and the signal x2. Define B2 as an event: the superimposed signal forwarded by the k–th antenna of any relay n can successfully decode the signal x1 at User 1 and User 2. Define B3 as an event: the superimposed signal forwarded through any relay n can successfully decode the signal x2 at User 2.

In the first time slot, the probability that all relay nodes cannot decode the signal x1 and the signal x2 can be expressed as

P(B¯1)=Pr(S1=0)=Πn=1NPr(in2<η)=Fin2(η)N (28)

The probability that at least one user cannot decode the signal x1 from the superimposed signal can be expressed as

P(B¯2)=PrS3=0=k=1KPrminhnkmax,gnkmax<ε1γ1γ2ε1ρnd=k=1KPrγ20=k=1KPrqnkε1ρnd=11Fhnkm2(ε1ρnd)1Fgnkl2(ε1ρnd)K (29)

On the basis that the relay nodes can successfully decode and forward the superimposed signal, and the users can decode the signal x1 normally. The probability that User 2 cannot decode the signal x2 can be derived as

P(B1B2B¯3)=Pr(γ2ρn2gnkl*2<ε2,S3>0,S1>0)=n=1NPr(γ2ρn2gnkl*2<ε2,S3>0|S1=n)Pr(S1=n)=n=1NPr(γ2ρn2gnklkmax2<ε2,S3>0|S1=n)nPr(S1=n) (30)

where:

Pr(γ2ρn2gnklkmax2<ε2,S3>0)=k=1KPr(γ2ρn2gnklkmax2<ε2|S3=k)Pr(S3=k)=k=1KPr(γ2ρn2gnklmax2<ε2|S3=k)kPr(S3=k) (31)

For any relay n in subset S1>0, combining the two expressions of SINR11ε1 and SINR21ε1, the range of γ2 when the signal x1 can be successfully decoded is

γ2=minρndhnkm2ε1ρndhnkm21+ε1,max0,ρndgnkl2ε1ρndgnkl21+ε1 (32)

Bring the above formula into expression qnk=min(hnkmmax2,gnklmax2), γ2 can be rewritten as γ2=ρndqnkε1ρndqnk1+ε1. In the set of elements that satisfy S3>0, the probability that User 2 cannot successfully decode the signal x2 can be expressed as

Pr(γ2ρn2|gnklmax|2<ε2|kS3,|S3|>0)=Pr(ρndqnkε1ρndqnk(1+ε1)<ε2ρn2|gnklmax|2|kS3,|S3|>0)=Pr(ρndqnkε1qnk(1+ε1)<ε2|gnklmax|2|qnk>ε1ρnd)=Pr(ρnd|hnkmmax|2ε1|hnkmmax|2(1+ε1)<ε2|gnklmax|2,|gnklmax|2|hnkmmax|2>ε1ρnd)Pr(qnk>ε1ρnd)+Pr(ρnd|gnklmax|2ε1|gnklmax|2(1+ε1)<ε2|gnklmax|2,|hnkmmax|2>|gnklmax|2>ε1ρnd)Pr(qnk>ε1ρnd) (33)

Let the molecules of the above formula be J1 and J2, respectively. J1 can be expressed as

J1=Pr(ρnd|hnkmmax|2ε1|hnkmmax|2(1+ε1)<ε2|gnklmax|2,|gnklmax|2|hnkmmax|2>ε1ρnd)=Pr(ε2|hnkmmax|2(1+ε1)ρnd|hnkmmax|2ε1>|gnklmax|2|hnkmmax|2>ε1ρnd)=ε1ρnda2ρndf|hnkm|2(x)dxxa1xρndxε1f|gnkl|2(y)dy=ε1ρnda2ρndf|hnkm|2(x)F|gnkl|2(a1xρndxε1)dxΨ1ε1ρnda2ρndf|hnkm|2(x)F|gnkl|2(x)dxΨ2 (34)

Expand and integrate Ψ1 and Ψ2 through the polynomial theorem. We can get the expressions (35) and (36):

Ψ1=i=0M1(M1i)ΞiΦiMumn1(mn11)!j=0L(Lj)(1)i+jΞjΦjeuε1(i+1)jva1ρnd×w=0mn11+i˜(mn11+i˜w)(ε1ρnd)mn11+i˜w+j˜z(a1ρnd)j˜z=0j˜(j˜z)0a1ρndeut(i+1)tw+zj˜ejva1ε1tρnd2dt (35)
Ψ2=i=0M1M1iΞiΦiMumn1mn11!j=0LLj(1)i+jΞjΦjeε1ρnd(ui+u+jv)×r=0mn11+i˜+j˜mn11+i˜+j˜rε1ρndmn11+i˜+j˜r(ui+u+jv)r1γ(r+1,a1ρnd(ui+u+jv)) (36)

Similarly, J2 can be expressed as

J2=Pr(ρnd|gnklmax|2ε1|gnklmax|2(1+ε1)<ε2|gnklmax|2,|hnkmmax|2>|gnklmax|2>ε1ρnd)=Pr(|gnklmax|2<ε2ε1+ε1+ε2ρnd,|hnkmmax|2>|gnklmax|2>ε1ρnd)=ε1ρnda2ρndf|gnkl|2(y)dyyf|hnkm|2(x)dx=ε1ρnda2ρndf|gnkl|2(y)dyΨ3ε1ρnda2ρndf|gnkl|2(y)F|hnkm|2(y)dyΨ4 (37)

Expand and integrate Ψ3 and Ψ4 through the polynomial theorem. We can get the expressions (38) and (39):

Ψ3=j=0LLj(1)jΞjΦja2ρndj˜ejva2ρndε1ρndj˜ejvε1ρnd (38)
Ψ4=j=0L1L1jΞjΦjLvmn2mn21!i=0MMi(1)i+jΞiΦieε1ρnd(ui+u+jv)×r=0mn21+i˜+j˜mn21+i˜+j˜rε1ρndmn21+i˜+j˜r(ui+u+jv)r1γ(r+1,a1ρnd(ui+u+jv)) (39)

where:

a=η+ε1,a1=ε2(ε1+1),a2=a1+ε1,i=i0+i1++imn11,j=j0+j1++jmn21Ξi=i1=0ii2=0ii1imn11=0ii1imn12,Ξj=j1=0jj2=0jj1jmn21=0jj1jmn22,Φi=(ii1)(ii1i2)(ii1i2imn12imn11)p=0mn11(upp!)ip,i˜=0*i0+1*i1++(mn11)*imn11Φj=(jj1)(jj1j2)(jj1j2jmn22jmn21)s=0mn21(vss!)js,j˜=0*j0+1*j1++(mn21)*jmn21 (40)

Comprehensive expressions (28)–(40), the exact expression of the outage probability for User 2 can be obtained as the expression (41):

P(B¯)=n=0NNnk=0KKk(Ψ1Ψ2+Ψ3Ψ4)k11Fhnkm2(ε1ρnd)1Fgnkl2(ε1ρnd)Kkn(1Fin2(η))nFin2(η)Nn (41)

3.3. The Asymptotic Outage Probability Expressions for NOMA Users

When ρsn, the asymptotic CDF expression of the communication link from the satellite to the relay n can be simplified to

Fin2(x)=αin2k=0min2kδin2k(k!)2βin2k+1γk+1,βin2xαin2x (42)

When ρnd, the asymptotic CDF expression of the communication link from the relay n to the users can be simplified to

Fhnkmmax2(y)=1euyp=0mn11(uy)pp!Muymn1mn1!M (43)
Fgnklmax2(y)=1eνyr=0mn21(νy)rr!Lvymn2mn2!L (44)

The corresponding asymptotic PDF expression can be simplified to

fhnkmmax2(y)MuMmn1yMmn11(1uy)mn11!(mn1!)M1 (45)
fgnklmax2(y)LνLmn2yLmn21(1vy)mn21!(mn1!)L1 (46)

Substituting the expressions (42) and (43) into the expression (27), the expression of the asymptotic outage probability of User 1 can be written as the expression (48):

P(A¯)n=0NNnuMmn1ε1Mmn1mn1!MρndMγ1γ2ε1MKn(1αin2ε1γ1γ2ε1ρnd)n(αin2ε1γ1γ2ε1ρnd)Nn (47)

Substituting expressions (42)–(46) into expressions (35)–(41), the expression of the asymptotic outage probability of User 2 can be obtained as the expression (48):

P(B¯)n=0NNnk=0KKk(Ψ1Ψ2+Ψ3Ψ4)k11uMmn1ε1Mmn1mn1!MρndM1vLmn2ε1Lmn2mn2!LρndLKkn(1αin2η)nαin2ηNn (48)

4. Numeric Results

By using numeric simulation, we analyze and compare the impact of the number of relays and antenna configuration on the NOMA-based HSTRN outage performance and prove the superiority of the proposed joint relay-and-antenna selection scheme. In the system simulation, we assume that the communication link from satellite to terrestrial relay undergoes heavy shadowing (HS) with msn,bsn,Ωsn = (0.739, 0.063, 8.97 × 10−4) or average shadowing (AS) with msn,bsn,Ωsn = (10.1, 0.126, 0.835) or light shadowing (AS) with msn,bsn,Ωsn = (19.4, 0.158, 1.29), ρsn=ρnd[27]. In order to distinguish the difference between channels of different users, the parameter between the user group and the relay are set to mn1=0.8, Ωn1=0.8, mn2=1, Ωn2=1 [28,29].

Figure 2 plots the outage probability for NOMA and TDMA under different shadowed Rician fading. Observing Figure 2, we can conclude that compared to TDMA, the proposed scheme can realize better outage probability. As the communication link transitions from HS to LS, the outage performance of User 1 and User 2 continues to improve. We can also find that the increase in outage probability between HS and AS is much greater than between AS and LS. The main reason for this phenomenon is that Ωin2 has increased by 930 times and 2 times, respectively. The substantial increase in the received power significantly improves outage performance.

Figure 2.

Figure 2

Outage probability vs. signal-to-noise ratio (SNR) for fading conditions. (a) User 1; (b) User 2.

Figure 3 depicts the impact of the number of relays and terrestrial nodes antenna configuration on users’ outage probability. It can be observed that the proposed scheme has better outage performance than TDMA. Regardless of the increase in the number of relays or the number of terrestrial nodes antennas, users’ outage performance can be improved. However, the outage performance of users is more susceptible to the number of relays. The main reason is that the shadowed Rician fading from the satellite to the ground is much larger than the terrestrial Nakagami-m fading, resulting in the change in the number of relays dominating the change in the number of antennas.

Figure 3.

Figure 3

Outage probability vs. SNR for various relays and antenna numbers. (a) User1; (b) User2.

In Figure 4, we respectively show how the user’s target rate affects the outage probability of cooperative NOMA and cooperative OMA. It can be seen from the Figure that the outage probability of users based on NOMA is always better than that of TDMA. When the target rate of User 1 is small and fixed, its outage probability will not change with the change of the target rate of User 2. As the target rate of User 2 continues to increase, its outage performance under TDMA declines far greater than NOMA. The main reason is that the communication threshold of User 2 under TDMA increases with the increase in communication rate far greater than that of NOMA. At the same time, the system energy utilization rate of User 2 under TDMA is lower than that of NOMA.

Figure 4.

Figure 4

Outage probability vs. SNR for different target rates.

In Table 1, we make a comparison between NOMA and TDMA schemes on the outage probability. It can be found that NOMA achieves better outage performance than that of TDMA. Through longitudinal comparison, the outage performance of users only improves 3 times when we set (N,K,M,L = 1,3,3,3). Under other conditions, the outage performance of users is increased by more than 10 times. Especially when R1 = 0.6 bit/s/Hz, the outage performance of User 2 is increased by 500 times. When the user adopts the TDMA scheme, each time slot can only serve one user. In order to complete the same transmission task per unit time, the user’s transmission rate in each time slot is doubled. The increase in the transmission rate leads to an increase in the corresponding threshold. Under the condition of total power limitation, the outage performance of users will decrease. At the same time, in the CR-NOMA solution, User 2 can make full use of the remaining power after ensuring that User 1 is not interrupted, which also greatly improves User 2’s outage performance.

Table 1.

Outage probability vs. various conditions.

Condition Terrestrial and Satellite Fading Conditions Relay Numbers and Antenna Numbers Target Rates
OP HS AS LS N,K,M,L = 1,3,3,3 N,K,M,L = 3,1,1,1 N,K,M,L = 3,3,3,3 R1 = 0.6 bit/s/Hz
R2 = 1.2 bit/s/Hz
R1 = 0.6 bit/s/Hz
R2 = 1.6 bit/s/Hz
User
NOMA-User1 3.91 × 10−4 1.12 × 10−8 4.7 × 10−10 2.24 × 10−3 2.25 × 10−5 1.12 × 10−8 1.12 × 10−8 1.12 × 10−8
TDMA-User1 7.07 × 10−3 2.87 × 10−7 1.25 × 10−8 6.59 × 10−3 2.78 × 10−4 2.87 × 10−7 2.87 × 10−7 2.87 × 10−7
NOMA-User2 4.18 × 10−2 2.82 × 10−6 1.3 × 10−7 1.41 × 10−2 1.57 × 10−4 2.82 × 10−6 2.82 × 10−6 2.75 × 10−5
TDMA-User2 4.03 × 10−1 1.76 × 10−4 1.03 × 10−5 5.61 × 10−2 8.47 × 10−3 1.76 × 10−4 1.76 × 10−4 1.53 × 10−2

5. Conclusions

In this paper, we proposed a NOMA-based joint relay-and-antenna selection scheme. By analyzing the SINR of each node in HSTRN under the DF strategy, the exact outage probability expression of each user and the asymptotic probability expression under high signal-to-noise ratio were derived. Through the use of software simulation, the effect of the number of relays and terrestrial nodes antenna configuration on the outage performance of the HSTRN system was studied. It proved the correctness of the proposed scheme and the superiority of the NOMA scheme compared to the TDMA scheme. At the same time, it also clarified the impact of each parameter configuration on system outage performance, which provided strong support for further research on HSTRN’s other strategies.

Acknowledgments

The authors acknowledge Aiyan Qu for reviewing and modifying this paper.

Author Contributions

Conceptualization, L.Z., T.L. and K.A.; Writing—original draft preparation, L.Z.; Writing—proposed idea and analyzed the experimental data, L.Z. and K.A.; Project administration, K.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China under Grant 61901502, the National Postdoctoral Program for Innovative Talents under Grant BX20200101 and the Research Project of NUDT under Grants ZK18-02-11 and 18-QNCXJ-029.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Lin Z., Lin M., Wang J.-B., Huang Y., Zhu W.-P. Robust secure beamforming for 5G cellular networks coexisting with satellite networks. IEEE J. Sel. Areas Commun. 2018;4:932–945. doi: 10.1109/JSAC.2018.2824760. [DOI] [Google Scholar]
  • 2.Arti M.K., Jain V. Relay selection-based hybrid satellite-terrestrial communication systems. IET Commun. 2017;11:2566–2574. doi: 10.1049/iet-com.2016.1425. [DOI] [Google Scholar]
  • 3.Liang X., Jiao J., Wu S., Zhang Q. Outage analysis of multirelay multiuser hybrid satellite-terrestrial millimeter-wave networks. IEEE Wirel. Commun. Lett. 2018;7:1046–1049. doi: 10.1109/LWC.2018.2855133. [DOI] [Google Scholar]
  • 4.Guo K., An K., Zhang B., Huang Y., Zheng G. Outage analysis of cognitive hybrid satellite-terrestrial networks with hardware impairments and multi-primary users. IEEE Wirel. Commun. Lett. 2018;7:816–819. doi: 10.1109/LWC.2018.2827067. [DOI] [Google Scholar]
  • 5.An K., Lin M., Ouyang J., Zhu W.P. Secure transmission in cognitive satellite terrestrial networks. IEEE J. Sel. Areas Commun. 2016;34:3025–3037. doi: 10.1109/JSAC.2016.2615261. [DOI] [Google Scholar]
  • 6.Lin Z., Lin M., Zhu W., Wang J., Cheng J. Robust secure beamforming for wireless powered cognitive satellite-terrestrial networks. IEEE Trans. Cogn. Commun. Netw. 2020 doi: 10.1109/TCCN.2020.3016096. [DOI] [Google Scholar]
  • 7.Lin Z., Lin M., Champagne B., Zhu W., Al-Dhahir N. Secure beamforming for cognitive satellite terrestrial networks with unknown eavesdroppers. IEEE Syst. J. 2020 doi: 10.1109/JSYST.2020.2983309. [DOI] [Google Scholar]
  • 8.An K., Lin M., Zhu W.P., Huang Y., Zheng G. Outage performance of cognitive hybrid satellite–terrestrial networks with interference constraint. IEEE Trans. Veh. Technol. 2016;65:9397–9404. doi: 10.1109/TVT.2016.2519893. [DOI] [Google Scholar]
  • 9.Bhatnagar M.R., Arti M.K. Performance analysis of AF based hybrid satellite-terrestrial cooperative network over generalized fading channels. IEEE Commun. Lett. 2013;17:1912–1915. doi: 10.1109/LCOMM.2013.090313.131079. [DOI] [Google Scholar]
  • 10.An K., Liang T., Zheng G., Yan X., Li Y., Chatzinotas S. Performance limits of cognitive FSS and terrestrial FS for Ka-band. IEEE Trans. Aerosp. Electron. Syst. 2019;55:2604–2611. doi: 10.1109/TAES.2018.2886611. [DOI] [Google Scholar]
  • 11.Upadhyay P.K., Sharma P.K. Multiuser hybrid satellite-terrestrial relay networks with co-channel interference and feedback latency; Proceedings of the 2016 European Conference on Networks and Communications (EuCNC); Athens, Greece. 27–30 June 2016; pp. 174–178. [Google Scholar]
  • 12.Benjebbour A., Saito K., Li A., Kishiyama Y., Nakamura T. Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials; Proceedings of the International Conference on Wireless Networks & Mobile Communications; Marrakech, Morocco. 20–23 October 2015. [Google Scholar]
  • 13.Ding Z.G., Yang Z., Fan P., Poor H.V. On the performance of non-orthogonal multiple access in 5G Systems with randomly deployed users. IEEE Signal Process. Lett. 2014;21:1501–1505. doi: 10.1109/LSP.2014.2343971. [DOI] [Google Scholar]
  • 14.Yu Y., Chen H., Li Y., Ding Z., Vucetic B. Antenna selection for MIMO-NOMA networks; Proceedings of the 2017 IEEE International Conference on Communications (ICC); Paris, France. 21–25 May 2017; pp. 1–6. [Google Scholar]
  • 15.Do D., Le A., Lee B.M. NOMA in Cooperative underlay cognitive radio networks under imperfect SIC. IEEE Access. 2020;8:86180–86195. doi: 10.1109/ACCESS.2020.2992660. [DOI] [Google Scholar]
  • 16.Li X.W., Wang Q.S., Peng H.X., Zhang H., Thuan Do D., Rabie K.M., Cavalcante C.C. A unified framework for HS-UAV NOMA networks: Performance analysis and location optimization. IEEE Access. 2020;8:13329–13340. doi: 10.1109/ACCESS.2020.2964730. [DOI] [Google Scholar]
  • 17.Caus M., Vázquez M.Á., Pérez-Neira A. NOMA and interference limited satellite scenarios; Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers; Pacific Grove, CA, USA. 6–9 November 2016; pp. 497–501. [Google Scholar]
  • 18.Zhang X.K., Zhang B.N., An K., Chen Z.Y., Xie S.L., Wang H., Wang L., Guo D.X. Outage performance of NOMA-Based cognitive hybrid satellite-terrestrial overlay networks by amplify-and-forward protocols. IEEE Access. 2019;7:85372–85381. doi: 10.1109/ACCESS.2019.2925314. [DOI] [Google Scholar]
  • 19.Yan X.J., Xiao H.L., An K., Zheng G., Chatzinotas S. Ergodic capacity of NOMA-based uplink satellite networks with randomly deployed users. IEEE Syst. J. 2020;14:3343–3350. doi: 10.1109/JSYST.2019.2934358. [DOI] [Google Scholar]
  • 20.Lin Z., Lin M., Wang J., Cola T.d., Wang J. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access. IEEE J.Sel. Top. Signal Process. 2019;13:657–670. doi: 10.1109/JSTSP.2019.2899731. [DOI] [Google Scholar]
  • 21.Yin Z.S., Jia M., Wang W., Cheng N., Lyu F., Guo Q., Shen X.M. Secrecy rate analysis of satellite communications with frequency domain NOMA. IEEE Trans. Veh. Technol. 2019;68:11847–11858. doi: 10.1109/TVT.2019.2944875. [DOI] [Google Scholar]
  • 22.Tegos S.A., Diamantoulakis P.D., Xia J., Fan L., Karagiannidis G.K. Outage performance of uplink NOMA in land mobile satellite communications. IEEE Wirel. Commun. Lett. 2020 doi: 10.1109/LWC.2020.3001916. [DOI] [Google Scholar]
  • 23.Singh V., Bankey V., Upadhyay P.K. Underlay cognitive hybrid satellite-terrestrial networks with cooperative-NOMA; Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC); Seoul, Korea. 25–28 May 2020; pp. 1–6. [Google Scholar]
  • 24.Guo K., Ji Z., Yang B., Wang X. NOMA-based integrated satellite-terrestrial multi-relay networks with hardware impairments and partial relay selection scheme; Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT); Xi’an, China. 16–19 October 2019; pp. 1099–1104. [Google Scholar]
  • 25.Xie S., Zhang B., Guo D., Ma W. Outage performance of NOMA-based integrated satellite-terrestrial networks with imperfect CSI. Electron. Lett. 2019;55:793–795. doi: 10.1049/el.2018.7839. [DOI] [Google Scholar]
  • 26.Gradshteyn I.S., Ryzhik I.M. Table of integrals, series, and products. Math. Comput. 2007;20:1157–1160. [Google Scholar]
  • 27.An K., Liang T. Hybrid satellite-terrestrial relay networks with adaptive transmission. IEEE Trans. Veh. Technol. 2019;68:12448–12452. doi: 10.1109/TVT.2019.2944883. [DOI] [Google Scholar]
  • 28.An K., Li Y., Liang T., Yan X. On the performance of cache-enabled hybrid satellite-terrestrial relay networks. IEEE Wirel. Commun. Lett. 2019;8:1506–1509. doi: 10.1109/LWC.2019.2924631. [DOI] [Google Scholar]
  • 29.Lu W.X., An K., Liang T. Robust beamforming design for sum secrecy rate maximization in multibeam satellite systems. IEEE Trans. Aerosp. Electron. Syst. 2019;55:1568–1572. doi: 10.1109/TAES.2019.2905306. [DOI] [Google Scholar]

Articles from Sensors (Basel, Switzerland) are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES