Skip to main content
Springer logoLink to Springer
. 2020 Oct 20;100(2):321–336. doi: 10.1007/s00277-020-04297-8

Prophylaxis, diagnosis and therapy of infections in patients undergoing high-dose chemotherapy and autologous haematopoietic stem cell transplantation. 2020 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO)

Maximilian Christopeit 1,✉,#, Martin Schmidt-Hieber 2,#, Rosanne Sprute 3,4,5,#, Dieter Buchheidt 6, Marcus Hentrich 7, Meinolf Karthaus 8, Olaf Penack 9, Markus Ruhnke 10, Florian Weissinger 11, Oliver A Cornely 3,4,5,12,#, Georg Maschmeyer 13,#
PMCID: PMC7572248  PMID: 33079221

Abstract

To ensure the safety of high-dose chemotherapy and autologous stem cell transplantation (HDC/ASCT), evidence-based recommendations on infectious complications after HDC/ASCT are given. This guideline not only focuses on patients with haematological malignancies but also addresses the specifics of HDC/ASCT patients with solid tumours or autoimmune disorders. In addition to HBV and HCV, HEV screening is nowadays mandatory prior to ASCT. For patients with HBs antigen and/or anti-HBc antibody positivity, HBV nucleic acid testing is strongly recommended for 6 months after HDC/ASCT or for the duration of a respective maintenance therapy. Prevention of VZV reactivation by vaccination is strongly recommended. Cotrimoxazole for the prevention of Pneumocystis jirovecii is supported. Invasive fungal diseases are less frequent after HDC/ASCT, therefore, primary systemic antifungal prophylaxis is not recommended. Data do not support a benefit of protective room ventilation e.g. HEPA filtration. Thus, AGIHO only supports this technique with marginal strength. Fluoroquinolone prophylaxis is recommended to prevent bacterial infections, although a survival advantage has not been demonstrated.

Keywords: Autologous stem cell transplantation, Infection

Introduction

High-dose chemotherapy (HDC) and autologous stem cell transplantation (ASCT) constitute a standard of care in the treatment of heamatologic malignancies, in particular, multiple myeloma [1], malignant lymphoma [2, 3] and acute myeloid leukaemia [4]. HDC and ASCT are also used in solid tumours such as neuroblastoma, sarcoma, germinal tumours [5] and autoimmune diseases e.g. multiple sclerosis [6], systemic sclerosis [7] and Crohn’s disease [8]. In total, the number of ASCT reported to the European Society for Blood and Marrow Transplantation in 2018 exceeds 27,750, including more than 560 for non-malignant disorders, mostly autoimmune diseases, and 1545 for solid tumours [9].

After HDC and ASCT, up to 90% of patients will experience infections, mostly presenting as fever of unknown origin (FUO) [10].

Due to indwelling venous catheters and toxicities of conditioning regimens, in particular, mucositis and gastrointestinal barrier impairment, both Gram-positive and Gram-negative bacteria may cause fever and infection after HDC/ASCT [11]. Bacterial pneumonia, colitis and bloodstream infection (BSI), including catheter-related BSI, are the prevailing documented infections in patients after HDC/ASCT [11, 12]. Invasive fungal disease and viral infections, ranging from herpes to hepatitis viruses, may occur as well, extending into the period after transplantation [13, 14].

Methods

Development of the guideline

These recommendations on prophylaxis, diagnosis and treatment of infectious complications after HDC/ASCT by the Infectious Diseases Working Party (AGIHO) of the German Society of Haematology and Medical Oncology (DGHO) are the fourth edition after 1999, 2003 and 2012 [1517]. The expert panel assessed the recommendations in a stepwise consensus process, consisting of telephone and video conferences. All members of the AGIHO were invited to the consensus meetings. The guideline was approved by the AGIHO assembly on May 7, 2020.

This guidance document is embedded into other AGIHO recommendations on infection management in patients with haematological and oncological diseases [1825]. It provides an evaluation of current evidence and the consensus interpretation of the authors. Recommendations are not mandatory and intend to assist physicians in decisions on individual patients. We regard correct dosing to be a responsibility of the prescribing physicians and do not mention this in this guideline.

Strength of recommendation and quality of evidence were graded according to the criteria applied by the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) and the European Confederation of Medical Mycology (ECMM; Table 1) [26, 27].

Table 1.

Definitions of strength of recommendation and quality of evidence

Category, grade Definition
Strength of recommendation
  A AGIHO strongly supports a recommendation for use
  B AGIHO moderately supports a recommendation for use
  C AGIHO marginally supports a recommendation for use
  D AGIHO supports a recommendation against use
Quality of evidence
  I Evidence from at least 1 properly designed randomized, controlled trial
  II Evidence from at least 1 well-designed clinical trial, without randomization; from cohort or case-controlled analytic studies (preferably from > 1 centre); from multiple time series; or from dramatic results of uncontrolled experiments
    IIr meta-analysis or systematic review of RCT
    IIt transferred evidence, i.e. results from different patient cohorts or similar immune status situation
    IIh comparator group historical control
    IIu uncontrolled trials
    IIa published abstract, presented at an international symposium or meeting
  III Evidence from opinions of respected authorities, based on clinical experience, descriptive case studies

Risk stratification

Both depth and duration of neutropenia have been associated with the risk of cancer patients to develop an infection that will take a more severe and complicated course [28]. AGIHO regards patients with expected neutropenia < 500/μl for at least 8 days to be at high risk and those with an expected duration of neutropenia of up to 7 days at standard risk for the development of an infection with a complicated course [18]. While it is generally presumed that patients after HDC/ASCT are amongst those with neutropenia lasting for 8 days or longer, thus are at high risk for complicated infection, data from prospective clinical trials show that the duration of neutropenia may often be in the standard risk range after HDC/ASCT [29]. However, profound, and sometimes long-lasting defects of components of the adaptive immune system are observed besides neutropenia after HDC/ASCT. Causes may lie in the nature of the underlying disease, timing and type of previous treatments, history of previous infection and specifics of the conditioning regimen e.g. nucleoside analogues or antilymphocyte globulins [6, 3034]. In conclusion, AGIHO considers patients after HDC/ASCT at high risk for developing infections with a complicated course. Hereby, conditioning with carmustine, etoposide, cytarabine and melphalan (BEAM) prior to ASCT is associated with an increased risk for infections compared to conditioning with high-dose melphalan [35].

Diagnostic procedures before the onset of fever or infection

Surveillance blood cultures in the absence of fever or other signs of infection are discouraged [36, 37]. Likewise, routine screening for invasive aspergillosis by serial determination of galactomannan antigen or 1,3-β-d-glucan is not recommended in these patients [38]. In individual patients at increased risk for invasive Aspergillus spp. infection, e.g. patients with previous aspergillosis who are without current systemic mould-active prophylaxis, twice-weekly galactomannan and/or 1,3-β-d-glucan surveillance may be considered. For more detailed information, refer to the separate guideline on diagnosis of fungal infection [20].

Screening for hepatitis B virus (HBV; anti-HBc antibodies, HBsAg, nucleic acid testing), hepatitis C virus (HCV; anti-HCV, nucleic acid testing), hepatitis E virus (HEV; nucleic acid testing) and human immunodeficiency virus (HIV; HIV1/2 antibodies, nucleic acid testing) is requested in all patients prior to release of the autologous graft [39, 40]. These screening tests should be repeated at least 30 days before HDC/ASCT. Monitoring of HBV viral load is strongly recommended in HBsAg and/or anti-HBc antibody positive patients for 6 months after HDC/ASCT, as immunosuppression can lead to viral reactivation and disease [4145]. If maintenance therapy using rituximab, lenalidomide or bortezomib is administered, monitoring should be continued for 6 months following cessation of the respective maintenance therapy.

In patients with respiratory symptoms, screening for respiratory tract pathogens should include severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). HDC/ASCT may be deferred until the patient is asymptomatic [46, 47].

Diagnostic procedures recommended before onset of fever or infection are given in Table 2.

Table 2.

Diagnostic procedures before the onset of fever or infection in HDC/ASCT recipients

Population Intention Intervention SoR QoE References
Prior to HDC/ASCT To detect HBV, HCV, HEV, HIV, and HDV status before release of autologous graft and and ≤ 30 days before HDC/ASCT

Screening for

• HBV (anti-HBc antibodies, HBs antigen, nucleic acid testing)

• HCV (anti-HCV, nucleic acid testing)

• HEV (nucleic acid testing)

• HIV (HIV1/2 antibodies, nucleic acid testing)

• Anti-delta if HBsAg positive

A III RiliBÄK Dtsch Arztebl (2019) [40]
HBsAg and/or anti-HBc positive To detect viral reactivation HBV nucleic acid testing for ≥ 6 months after HDC/ASCT A IIu

Jun Hepatol Int (2017) [42]

Kusumoto CID (2015) [44]

Unexplained elevated liver function tests To detect viremia prior to HDC/ASCT HEV nucleic acid testing B IIt

Von Felden J Hepatol (2019) [100]

Furfaro BBMT (2020) [101]

CMV-seropositive To detect CMV viremia and reduce CMV disease and CMV-related mortality Routine screening for CMV viremia (CMV-PCR) D IIu

Marchesi Hematol Oncol (2018) [102]

Kaya Transpl Proc (2017) [103]

Massoud JCV (2017) [104]

Piukovisc Ann Hematol (2017) [105]

HSV-seropositive To detect HSV viremia and reduce HSV-related mortality Routine screening for HSV viremia (HSV-PCR) D IIu Inazawa JMV (2017) [76]
VZV-seropositive To detect VZV viremia and reduce VZV-related mortality Routine screening for VZV viremia (VZV-PCR) D III No reference
Any To reduce mortality and incidence of PTLD Routine screening for EBV viremia (EBV-PCR) D IIu

Mehra CID (2019) [77]

Inazawa JMV (2017) [76]

Chiusolo JCI (2010) [106]

Any To reduce the incidence of HHV-6 disease and infection-related mortality Routine screening for HHV-6 (HHV-6-PCR) D IIu

Balsat J Infect (2019) [75]

Inazawa JMV (2017) [76]

Piukovics In Vivo (2014) [107]

Afebrile, neutropenic To diagnose blood stream infection with the aim to reduce infection related mortality Surveillance blood cultures D IIu Ghazal Antimicrob Resist Infect Control (2014) [36]
Afebrile, neutropenic To diagnose invasive aspergillosis Surveillance serum galactomannan antigen D IItu Duarte CID (2014) [108]
Afebrile, neutropenic To diagnose invasive aspergillosis Surveillance serum 1,3-β-d-glucan D IIt

Hammerström EJCMID (2015) [109]

Cornely JAC (2017) [110]

Diagnostic procedures in case of fever or infection

Thorough physical examination of a febrile neutropenic patient is mandatory. We strongly recommend two separate pairs of venous blood cultures in case of fever or other signs or symptoms of infection. In the presence of a central venous catheter (CVC), one of the two pairs should be obtained from the catheter. To increase the diagnostic yield of blood cultures, it is recommended with moderate strength to draw blood from each individual CVC lumen, or to obtain a third pair of blood cultures [4850]. Determination of the differential time to positivity (DTTP) between blood cultures drawn from the CVC and a peripheral vein might be useful to identify the source of BSI [51]. DTTP of 2 h or more is suggestive of catheter-related BSI [52]. DTTP may be a useful tool to diagnose Candida spp. BSI, with a cut-off value of 6 h for Candida glabrata BSI and 2 h for other Candida spp. [53]. In contrast, DTTP has not proven useful in the diagnosis of Staphylococcus aureus BSI [54, 55]. In S. aureus or Candida spp. BSI CVC should be removed whenever possible, independent of the exact source of infection [24]. Chest X-rays are commonly discouraged to diagnose lung infection in tumour patients, since infiltrates are frequently invisible [56, 57]. High-resolution/multi-slice thoracic CT scan without contrast enhancement has a significantly higher sensitivity than chest X-ray and should be performed in patients with respiratory symptoms or persisting fever despite antimicrobial treatment over 72–96 h [22, 57]. Diagnostic bronchoscopy, bronchial or bronchoalveolar lavage for patients with pulmonary infiltrates (histology, cytology, culture, antigen testing, nucleic acid testing) should be applied whenever possible. Further diagnostics (e.g. abdominal or central nervous system imaging) might also be required, depending on symptoms, clinical signs and laboratory parameters. Signs of sepsis in the absence of fever as well as hypothermia should prompt diagnostic procedures as for a first fever, and empiric antibiotic treatment.

Diagnostic procedures recommended at onset of fever or infection are summarized in Table 3.

Table 3.

Diagnostic procedures in fever or infection in HDC/ASCT recipients

Population Intention Intervention SoR QoE References
First fever To diagnose bloodstream infection Analysis of two separate pairs of venous blood cultures (2× aerobic/2× anaerobic) A IIu

Lee JCM (2007) [48]

Cockerill CID (2004) [49]

Bouza CID (2007) [111]

Fever in presence of CVC To diagnose bloodstream infection Analysis of two separate pairs of venous blood cultures (2× aerobic/2× anaerobic), one of which is drawn from the catheter (total volume 40 ml) A IIu

Lee JCM (2007) [48]

Cockerill CID (2004) [49]

Planes EIMC (2016) [112]

Fever in presence of CVC To increase diagnostic yield of blood cultures Analysis of a blood sample from each lumen of the central venous catheter B IItu

Guembe CID (2010) [50]

Herrera-Guerra AJIC (2015) [113]

Fever in presence of CVC To increase diagnostic yield of blood cultures Analysis of a third pair of blood cultures (total volume 60 ml) B IItu Guembe CID (2010) [50]
Fever To diagnose pneumonia Chest X-ray in two projections D IIt

Gerritsen PLoSOne (2017) [57]

Patsios Respir Med (2010) [56]

Respiratory symptoms To diagnose pneumonia Thoracic CT scan without contrast enhancement A IIu Gerritsen PLoSOne (2017) [57]
Persistent fever for > 96 h despite broad antibacterial therapy To diagnose pneumonia Thoracic CT scan without contrast enhancement A IIu Gerritsen PLoSOne (2017) [57]
Fever, neutropenia, and pulmonary infiltrates To identify causative pathogens, for example P. jirovecii, Gram-negative bacteria, pneumococci, Nocardia spp., M. tuberculosis, Aspergillus spp., Mucorales spp., respiratory viruses, incl. SARS-CoV-2 Bronchoscopy, bronchial or bronchoalveolar lavage (histology, cytology, culture, antigen testing, nucleic acid testing) A III Marchesi AJH (2019) [114]

Antimicrobial prophylaxis for patients during and after HDC/ASCT

Antibacterial prophylaxis

Prophylactic antimicrobial use can be considered in ASCT recipients during pre-engraftment when the duration of profound neutropenia (absolute neutrophil count < 100/μl) is expected to be at least 7 days. One placebo-controlled randomized trial has shown a reduction in the number of infections in patients, including those after HDC/ASCT, when using levofloxacin prophylaxis [58]. Moreover, a retrospective study with ASCT recipients has shown significant reduction of febrile neutropenia and BSI under prophylaxis with levofloxacin [10]. Of note, levofloxacin is not approved for antibacterial prophylaxis in Germany. An increasingly critical view of fluoroquinolone prophylaxis is explained by the absence of a survival benefit of fluoroquinolone prophylaxis in randomized clinical trials as well as by toxicities associated with fluoroquinolone use [58, 59]. Fluoroquinolone-resistant Enterobacteriaceae have been linked to community fluoroquinolone consumption. Prophylactic efficacy is reduced in neutropenic patients when the prevalence of fluoroquinolone resistance exceeds 20% in Gram-negative bacteria [60].

In summary, AGIHO recommends to critically weigh expected benefits of fluoroquinolone prophylaxis against the risks and consider local bacterial epidemiology and individual patient risk factors for fatal outcome of infections. AGIHO strongly recommends fluoroquinolone prophylaxis if the intention is to prevent bacterial infection. It cannot be expected to reduce risk of death with such prophylaxis [58].

Clostridioides difficile enteritis occurred in 3% vs. 8% after HDC/ASCT in a randomized comparison of fidaxomicin versus placebo [61]. Since the incidence of C. difficile–associated diarrhoea was low in both the placebo and in the fidaxomicin arm, AGIHO does not recommend prophylaxis of C. difficile enteritis after HDC/ASCT in the clinical routine.

Antifungal prophylaxis

Available data do not support the prophylactic use of antifungals to prevent invasive fungal disease (IFD). Those are rare events after HDC/ASCT and no reduction in mortality has been found in patients after HDC/ASCT [62, 63]. This is particularly true for mould-active antifungal agents. Yet, antifungal prophylaxis might be considered on a case-by-case basis if severe and long-lasting immunosuppression is expected.

The value of protective room ventilation such as high-efficiency particulate air (HEPA) filtration, positive pressure–directed airflow or laminar airflow is not well established for HDC/ASCT patients. During the last two decades, the use of air-filtered rooms has decreased as the incidence of filamentous fungal infections is extremely low in patients undergoing HDC/ASCT [64]. In a prospective clinical trial with 400 HDC/ASCT patients from nine transplant centres, no significant impact of HEPA filtration on the incidence of pneumonia, including IFD, or mortality rate was observed [65]. Thus, there are no data to mandate air-filtered rooms and AGIHO supports a recommendation of air-filtered rooms with marginal strength.

Prophylaxis against Pneumocystis jirovecii pneumonia (PJP) is efficacious with trimethoprim/sulfamethoxazole (TMP/SMX). A meta-analysis calculated an RR of 0.15 (95% CI 0.04–0.62) for an HIV-negative immunosuppressed individual to experience PJP when receiving prophylaxis with TMP/SMX, with a reduction of P. jirovecii–related mortality but no effect on all-cause mortality [66]. Reflecting mostly low quality of evidence due to bias and imprecision, AGIHO moderately supports a recommendation of TMP/SMX to prevent PJP after HDC/ASCT. If the administration of TMP/SMX is not feasible, alternatives are atovaquone, or pentamidine administered by inhalation or intravenously. These alternatives have not been studied in the HDC/ASCT setting and recommendations are transferred from other populations. The duration of P. jirovecii–directed prophylaxis should last for at least 3 months, preferably until the CD4+ T cell count stably exceeds 200/μl.

Antiviral prophylaxis

There are no large randomized controlled trials that evaluate antiviral drugs to prevent herpes simplex virus (HSV) and varicella zoster virus (VZV) disease after HDC/ASCT. Newer studies—including recently published placebo-controlled vaccination trials—showed that HSV infection, in particular, gingivostomatitis, and herpes zoster are still of concern in these patients [6769]. Noteworthy, herpes zoster also frequently occurred beyond 6 months post-transplant, particularly in unvaccinated patients [69]. Antiviral drug use was reported in ~ 90% in this trial, with a duration of > 6 months in ~ 40% [69]. Several studies, including placebo-controlled studies and meta-analyses (but not focused on ASCT patients) showed that acyclovir is useful to prevent and treat HSV and VZV diseases [70, 71]. Thus, we strongly recommend acyclovir prophylaxis for at least 6 months, in particular, if CD34-selected grafts are used [34, 72]. Inactivated VZV vaccine is strongly recommended for all seropositive HDC/ASCT patients [69].

Cytomegalovirus (CMV) infection (reactivation) has been reported in some patients of mainly retrospective analyses focused to patients with fever after HDC/ASCT [73, 74]. However, CMV disease, i.e. organ involvement, is very rare in this setting [74]. In summary, CMV is no major concern in patients after HDC/ASCT. AGIHO supports a recommendation against the use of CMV prophylaxis.

Human herpes virus 6 (HHV-6) and Epstein-Barr virus (EBV) infections are infrequent after HDC/ASCT and routine prophylaxis is not recommended [75, 76]. However, EBV reactivation has been reported at a high frequency in patients with multiple sclerosis undergoing ASCT [77]. Thus, nucleic acid–based screening for EBV viremia at follow-up presentations and preemptive treatment with rituximab in the case of EBV infection should be considered in these patients.

Reactivation of viral hepatitis in patients after HDC/ASCT with previous or ongoing chronic HBV infection i.e. HBsAg and/or anti-HBc positivity is associated with considerable morbidity and mortality. Reactivation has long been prevented using lamivudine. Lamivudine resistance can reach more than 70% in primary treatment of viral hepatitis B after long-time therapy [78]. Here, viral clearance and HBeAg status, amongst others, are important risk factors for the development of resistance. Today, tenofovir and entecavir are antiviral substances with resistance rates of 1–5%. Their prophylactic administration is safe even in combination with most of the conditioning regimens [79, 80]. AGIHO strongly recommends the use of either tenofovir or entecavir in patients with HBsAg- and/or anti-HBc positivity. Patients should regularly be monitored for reactivation despite antiviral prophylaxis by HBV DNA measurements. In addition to patients after HDC/ASCT, patients under steroid medication and patients after the use of anti-CD20-antibodies, e.g. during maintenance therapy after HDC/ASCT, are at high risk for HBV reactivation [81].

Notably, the presence of anti-HBc IgM indicates acute infection and should trigger HBV DNA PCR. In acute HBV infection, clinical priority will frequently be to treat hepatitis before continuing antineoplastic treatment. For negative HBV DNA PCR, a combination of HBsAg negativity, anti-HBc positivity, anti-HBs negativity most frequently is a sign of resolved infection. As it can also mirror low-level chronic infection or resolving acute infection, AGIHO recommends repeating such test to rule out a false-positive result for anti-HBc. Likewise, virustatic prophylaxis as outlined before and close monitoring of HBV DNA load is recommended if this specific constellation is repeatedly documented.

AGIHO as well as the German standing committee on vaccination recently published separate guidelines on anti-infective vaccination measures against vaccine-preventable diseases with an own section on the situation after HDC/ASCT [82, 83].

Recommendations on antimicrobial prophylaxis are summarized in Table 4.

Table 4.

Antiinfective prophylaxis in HDC/ASCT recipients

Population Intention Intervention SoR QoE References
Any To prevent infection Any fluoroquinolone A I Bucaneve NEJM (2005) [58]
Any To reduce mortality Any fluoroquinolone C I

Bucaneve NEJM (2005) [58]

Signorelli TID (2020) [10]

Any To prevent IFD Primary prophylaxis with mould active antifungal D II Van Burik CID (2004) [63]
Any To prevent invasive candidiasis Primary prophylaxis with fluconazole 400 mg/d D I

Van Burik CID (2004) [63]

Rotstein CID (1999) [62]

Goodman NEJM (1992) [115]

Patients with previous IFD To prevent recurrence of IFD Secondary prophylaxis with the last successfully used antifungal A IIt

Cornely Mycoses (2019) [116]

Sun BBMT (2015) [117]

Any To prevent invasive fungal infection Protective room ventilation e.g. HEPA filtration C IIu

Vokurka JCN (2013) [65]

Dadd J Ped Oncol Nurs (2003) [118]

Any To prevent PJP Cotrimoxazole B IIr Stern Cochrane (2014) [66]
Any To prevent HSV reactivation Acyclovir/valacyclovir A IIt

Kawamura IJH (2015) [70]

Glenny Cochrane Database (2009) [119]

CD34-selected or enriched transplant To prevent HSV reactivation Acyclovir/valacyclovir A IIu

Van Laar JAMA (2014) [34]

Lin Int J Hematol (2008) [72]

Seropositive for VZV To prevent VZV reactivation Vaccination A I

Winston Lancet (2018) [69]

Dagnew Lancet ID (2019) [120]

Any To prevent VZV reactivation Acyclovir A IIu

Winston Lancet (2018) [69]

Kawamura IJH (2015) [70]

Sahoo BBMT (2017) [121]

Seo Antivir Res (2017) [122]

CD34-selected or enriched transplant To prevent VZV reactivation Acyclovir A IIu Crippa BBMT (2002) [123]
Any To reduce CMV infection/disease CMV prophylaxis (e.g. with foscarnet or acyclovir) D IIu Boeckh JID (1995) [124]
HBs antigen or anti-HBc antibody positive To prevent hepatitis B reactivation Tenofovir or entecavir A IIt

Huang JCO (2013) [125]

Lau Gastroenterol (2003) [126]

Empiric antimicrobial therapy of fever of unknown origin

Empiric treatment of FUO during neutropenia after HDC/ASCT should follow recently published guidelines on the management of high-risk febrile neutropenia [18]. In summary, AGIHO strongly recommends to use single-agent broad-spectrum Pseudomonas-active antibiotics such as piperacillin/tazobactam, ceftazidime, cefepime, meropenem or imipenem/cilastatin as first line antibiotic therapy [18, 84]. As there is no systematic data on the empiric use of doripenem [85], ceftazidime-avibactam [86], ceftolozane-tazobactam [87] or cefozopran [88] in this setting, they are not discussed here. The upfront routine addition of tigecycline to first-line beta-lactam with anti-pseudomonal activity did not reduce the mortality rate and is therefore not recommended outside settings of high-level multidrug resistance [84]. Upfront addition of antibiotics with activity against Gram-positive bacteria such as glycopeptides (e.g. vancomycin, teicoplanin) [89], oxazolidinones (e.g. linezolid) or cyclic lipopeptides (e.g. daptomycin) has either shown no benefit or has not been studied properly, thus, we do not recommend their use. In patients with known colonization by VRE, addition of linezolid was not beneficial [90, 91]. The administration of antimicrobial agents active against MRSA or ESBL-producing Gram-negative bacteria is recommended with marginal strength in case of colonization with these pathogens. The addition of an aminoglycoside in clinically stable patients in first-line therapy is not recommended [9294]. However, in case of clinical instability, their addition is moderately recommended as might the addition of glycopeptides. Changing the first-line antibiotic regimen in a clinically stable patient who is still febrile after > 96 h is not generally recommended [18, 95, 96].

Empiric use of antifungals during first-line therapy in a clinically stable patient with FUO after HDC/ASCT is not recommended [9799]. However, second-line addition of a mould-active antifungal is recommended with marginal strength for patients with persisting fever for at least 96 h receiving a broad-spectrum first-line antibacterial therapy who had not received prior antifungal prophylaxis and who are expected to experience neutropenia for more than 7 days [9799]. This is not recommended if a mould-active antifungal prophylaxis had been administered prior to signs of infection or fever. For second-line empiric antifungal therapy, caspofungin or liposomal amphotericin B are preferred, while conventional amphotericin B deoxycholate is not recommended due to an unfavourable toxicity profile.

Recommendations on empiric antimicrobial therapy are summarized in Table 5.

Table 5.

Empirical antimicrobial therapy in HDC/ASCT recipients

Population Intention Intervention SoR QoE References
Patients at onset of fever To treat presumed underlying infection Broad-spectrum antibiotics (piperacillin/tazobactam, ceftazidime, cefepime, meropenem, imipenem/cilastatin) A I

Bucaneve JCO (2014) [84]

Reich BJH (2005) [127]

Horita CMI (2017) [128]

Harter BMT (2006) [129]

Patients at onset of fever, clinically stable To treat presumed underlying infection Add aminoglycoside D I Del Favero CID (2001) [92]
Patients at fever onset, hospital with high rates of multidrug resistant bacteria To treat presumed underlying infection Add antibiotics as appropriate (e.g. novel combinations of cephalosporins and betalactamase inhibitors, siderophore cephalosporins, tigecycline) A I Bucaneve JCO (2014) [84]
Patients at fever onset or with persisting fever To treat presumed underlying infection Add glycopeptide or oxazolidinone (e.g. linezolid) D I

Cometta CID (2003) [96]

Lisboa IJID (2015) [90]

Patients with fever persisting > 96 h, clinically stable To treat presumed underlying infection Continue first line antibiotic treatment A I

Bow CID (2006) [130]

Cometta CID (2003) [96]

Patients with a first fever To treat presumed underlying infection Add antifungal D IIt Maschmeyer EJCMID (2013) [131]
Patients with fever persisting > 96 h, clinically stable To treat presumed underlying infection Add liposomal amphotericin B or caspofungin C IIt

Walsh NEJM (2004) [132]

Walsh NEJM 1999 [133]

Clinically documented infections

Recommendations on management of pulmonary infiltrates [22], gastrointestinal and perineal infections [23], central nervous system infection [25], central venous catheter–related infection [24] and invasive fungal infections [21] can be found in the respective guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Haematology and Medical Oncology (DGHO).

Compliance with ethical standards

Conflict of interest

Maximilian Christopeit reports personal fees from Merck/MSD, GILEAD, Basilea, Pfizer, IQONE, Shionogi, non-financial support and other from Robert-Koch-Institut during the conduct of the study; others from Celgene, personal fees from JAZZ, Stemline, outside the submitted work.

Martin Schmidt-Hieber has received financial support for educational meetings at the Carl-Thiem-Klinikum, Cottbus/Germany from the following companies: Janssen-Cilag, Takeda, Novartis, Pfizer, Roche, Vifor and Celgene.

Rosanne Sprute declares that she has no conflict of interest.

Dieter Buchheidt reports personal fees from Gilead Sciences, Pfizer and Merck Sharp & Dohme/Merck, outside the submitted work.

Marcus Hentrich declares that he has no conflict of interest.

Meinolf Karthaus reports personal fees from Riemser, Roche, Celgene and Servier, outside the submitted work.

Olaf Penack reports personal fees from Astellas, Merck/MSD, Shionogi, Pfizer, Omeros and grants from Incyte, outside the submitted work.

Markus Ruhnke declares that he has no conflict of interest.

Florian Weissinger reports personal fees from Roche, Novartis, Sanofi, Janssen and Pfizer, outside the submitted work.

Oliver A. Cornely is supported by the German Federal Ministry of Research and Education, is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030—390661388 and has received research grants from Actelion, Amplyx, Astellas, Basilea, Cidara, Da Volterra, F2G, Gilead, Janssen Pharmaceuticals, Medicines Company, MedPace, Melinta Therapeutics, Merck/MSD, Pfizer and Scynexis; a consultant to Actelion, Allecra Therapeutics, Al-Jazeera Pharmaceuticals, Amplyx, Astellas, Basilea, Biosys UK Limited, Cidara, Da Volterra, Entasis, F2G, Gilead, Matinas, MedPace, Menarini Ricerche, Merck/MSD, Mylan Pharmaceuticals, Nabriva Therapeutics, Octapharma, Paratek Pharmaceuticals, Pfizer, PSI, Rempex, Roche Diagnostics Scynexis, Seres Therapeutics, Tetraphase and Vical; and received lecture honoraria from Astellas, Basilea, Gilead, Grupo Biotoscana, Merck/MSD and Pfizer.

Georg Maschmeyer reports personal fees from Gilead, Merck-Serono, Astra Zeneca and AMGEN and personal fees and non-financial support from Janssen Cilag, outside the submitted work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Footnotes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Maximilian Christopeit, Martin Schmidt-Hieber and Rosanne Sprute contributed equally to this work. Oliver A. Cornely and Georg Maschmeyer contributed equally to this work.

References

  • 1.Attal M, Lauwers-Cances V, Hulin C, Leleu X, Caillot D, Escoffre M, Arnulf B, Macro M, Belhadj K, Garderet L, Roussel M, Payen C, Mathiot C, Fermand JP, Meuleman N, Rollet S, Maglio ME, Zeytoonjian AA, Weller EA, Munshi N, Anderson KC, Richardson PG, Facon T, Avet-Loiseau H, Harousseau JL, Moreau P, Study IFM. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376(14):1311–1320. doi: 10.1056/NEJMoa1611750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Hermine O, Hoster E, Walewski J, Bosly A, Stilgenbauer S, Thieblemont C, Szymczyk M, Bouabdallah R, Kneba M, Hallek M, Salles G, Feugier P, Ribrag V, Birkmann J, Forstpointner R, Haioun C, Hanel M, Casasnovas RO, Finke J, Peter N, Bouabdallah K, Sebban C, Fischer T, Duhrsen U, Metzner B, Maschmeyer G, Kanz L, Schmidt C, Delarue R, Brousse N, Klapper W, Macintyre E, Delfau-Larue MH, Pott C, Hiddemann W, Unterhalt M, Dreyling M, European Mantle Cell Lymphoma N. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL younger): a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet. 2016;388(10044):565–575. doi: 10.1016/S0140-6736(16)00739-X. [DOI] [PubMed] [Google Scholar]
  • 3.Jurinovic V, Metzner B, Pfreundschuh M, Schmitz N, Wandt H, Keller U, Dreger P, Dreyling M, Hiddemann W, Unterhalt M, Hoster E, Weigert O. Autologous stem cell transplantation for patients with early progression of follicular lymphoma: a follow-up study of 2 randomized trials from the German Low Grade Lymphoma Study Group. Biol Blood Marrow Transplant. 2018;24(6):1172–1179. doi: 10.1016/j.bbmt.2018.03.022. [DOI] [PubMed] [Google Scholar]
  • 4.Christopeit M, Labopin M, Gorin NC, Saraceni F, Passweg J, Forcade E, Maertens J, Van Lint MT, Bosi A, Niederwieser D, Ehninger G, Polge E, Mohty M, Nagler A. Allogeneic stem cell transplantation following relapse post autologous stem cell transplantation in adult patients with acute myeloid leukemia: a retrospective analysis of 537 patients from the Acute Leukemia Working Party of the EBMT. Am J Hematol. 2018;93(12):1532–1542. doi: 10.1002/ajh.25285. [DOI] [PubMed] [Google Scholar]
  • 5.Pagliaro LC. Role of high-dose chemotherapy with autologous stem-cell rescue in men with previously treated germ cell tumors. J Clin Oncol. 2017;35(10):1036–1040. doi: 10.1200/JCO.2016.70.6523. [DOI] [PubMed] [Google Scholar]
  • 6.Muraro PA, Pasquini M, Atkins HL, Bowen JD, Farge D, Fassas A, Freedman MS, Georges GE, Gualandi F, Hamerschlak N, Havrdova E, Kimiskidis VK, Kozak T, Mancardi GL, Massacesi L, Moraes DA, Nash RA, Pavletic S, Ouyang J, Rovira M, Saiz A, Simoes B, Trneny M, Zhu L, Badoglio M, Zhong X, Sormani MP, Saccardi R, Multiple Sclerosis-Autologous Hematopoietic Stem Cell Transplantation Long-term Outcomes Study G. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurology. 2017;74(4):459–469. doi: 10.1001/jamaneurol.2016.5867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Sullivan KM, Goldmuntz EA, Keyes-Elstein L, McSweeney PA, Pinckney A, Welch B, Mayes MD, Nash RA, Crofford LJ, Eggleston B, Castina S, Griffith LM, Goldstein JS, Wallace D, Craciunescu O, Khanna D, Folz RJ, Goldin J, St Clair EW, Seibold JR, Phillips K, Mineishi S, Simms RW, Ballen K, Wener MH, Georges GE, Heimfeld S, Hosing C, Forman S, Kafaja S, Silver RM, Griffing L, Storek J, LeClercq S, Brasington R, Csuka ME, Bredeson C, Keever-Taylor C, Domsic RT, Kahaleh MB, Medsger T, Furst DE, Investigators SS. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med. 2018;378(1):35–47. doi: 10.1056/nejmoa1703327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Brierley CK, Castilla-Llorente C, Labopin M, Badoglio M, Rovira M, Ricart E, Dierickx D, Vermeire S, Hasselblatt P, Finke J, Onida F, Cassinotti A, Satsangi J, Kazmi M, Lopez-Sanroman A, Schmidt C, Farge D, Travis SPL, Hawkey CJ, Snowden JA, European Society for B, Marrow Transplantation Autoimmune Diseases Working P Autologous haematopoietic stem cell transplantation for Crohn's disease: a retrospective survey of long-term outcomes from the European Society for Blood and Marrow Transplantation. J Crohn's Colitis. 2018;12(9):1097–1103. doi: 10.1093/ecco-jcc/jjy069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Passweg JR, Baldomero H, Chabannon C, Basak GW, Corbacioglu S, Duarte R, Dolstra H, Lankester AC, Mohty M, Montoto S, Peffault de Latour R, Snowden JA, Styczynski J, Yakoub-Agha I, Kroger N, European Society for B, Marrow T The EBMT activity survey on hematopoietic-cell transplantation and cellular therapy 2018: CAR-T’s come into focus. Bone Marrow Transplant. 2020;55(8):1604–1613. doi: 10.1038/s41409-020-0826-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Signorelli J, Zimmer A, Liewer S, Shostrom VK, Freifeld A. Incidence of febrile neutropenia in autologous hematopoietic stem cell transplant (HSCT) recipients on levofloxacin prophylaxis. Transpl Infect Dis. 2020;22(2):e13225. doi: 10.1111/tid.13225. [DOI] [PubMed] [Google Scholar]
  • 11.Girmenia C, Bertaina A, Piciocchi A, Perruccio K, Algarotti A, Busca A, Cattaneo C, Raiola AM, Guidi S, Iori AP, Candoni A, Irrera G, Milone G, Marcacci G, Scime R, Musso M, Cudillo L, Sica S, Castagna L, Corradini P, Marchesi F, Pastore D, Alessandrino EP, Annaloro C, Ciceri F, Santarone S, Nassi L, Farina C, Viscoli C, Rossolini GM, Bonifazi F, Rambaldi A, Gruppo Italiano Trapianto di Midollo O, Associazione Microbiologi Clinici I Incidence, risk factors and outcome of pre-engraftment Gram-negative bacteremia after allogeneic and autologous hematopoietic stem cell transplantation: an Italian prospective multicenter survey. Clin Infect Dis. 2017;65(11):1884–1896. doi: 10.1093/cid/cix690. [DOI] [PubMed] [Google Scholar]
  • 12.Averbuch D, Tridello G, Hoek J, Mikulska M, Akan H, Yanez San Segundo L, Pabst T, Ozcelik T, Klyasova G, Donnini I, Wu D, Gulbas Z, Zuckerman T, Botelho de Sousa A, Beguin Y, Xhaard A, Bachy E, Ljungman P, de la Camara R, Rascon J, Ruiz Camps I, Vitek A, Patriarca F, Cudillo L, Vrhovac R, Shaw PJ, Wolfs T, O'Brien T, Avni B, Silling G, Al Sabty F, Graphakos S, Sankelo M, Sengeloev H, Pillai S, Matthes S, Melanthiou F, Iacobelli S, Styczynski J, Engelhard D, Cesaro S. Antimicrobial resistance in Gram-negative rods causing bacteremia in hematopoietic stem cell transplant recipients: intercontinental prospective study of the Infectious Diseases Working Party of the European Bone Marrow Transplantation Group. Clin Infect Dis. 2017;65(11):1819–1828. doi: 10.1093/cid/cix646. [DOI] [PubMed] [Google Scholar]
  • 13.Marchesi F, Pimpinelli F, Di Domenico EG, Renzi D, Gallo MT, Regazzo G, Rizzo MG, Gumenyuk S, Toma L, Marino M, Cordone I, Cantonetti M, Liberati AM, Montanaro M, Ceribelli A, Prignano G, Palombi F, Romano A, Papa E, Pisani F, Spadea A, Arcese W, Ensoli F, Mengarelli A (2019) Association between CMV and invasive fungal infections after autologous stem cell transplant in lymphoproliferative malignancies: opportunistic partnership or cause-effect relationship? Int J Mol Sci 20(6). 10.3390/ijms20061373 [DOI] [PMC free article] [PubMed]
  • 14.Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, Ito J, Andes DR, Baddley JW, Brown JM, Brumble LM, Freifeld AG, Hadley S, Herwaldt LA, Kauffman CA, Knapp K, Lyon GM, Morrison VA, Papanicolaou G, Patterson TF, Perl TM, Schuster MG, Walker R, Wannemuehler KA, Wingard JR, Chiller TM, Pappas PG. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50(8):1091–1100. doi: 10.1086/651263. [DOI] [PubMed] [Google Scholar]
  • 15.Maschmeyer G, Hertenstein B, Glass B, Schiel X (1999) Interventional antimicrobial therapy for febrile complications after high-dose chemotherapy and autologous stem cell transplantation. Standard recommendations of the Work Group of Infections in Hematology and Oncology of the German Association of Hematology and Oncology. Dtsch Med Wochenschr 124(Suppl 1):S9–S13 [PubMed]
  • 16.Bertz H, Auner HW, Weissinger F, Salwender HJ, Einsele H, Egerer G, Sandherr M, Schuttrumpf S, Sudhoff T, Maschmeyer G, Infectious Diseases Working Party of the German Society of H, Oncology (2003) Antimicrobial therapy of febrile complications after high-dose chemo−/radiotherapy and autologous hematopoietic stem cell transplantation--guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 82 Suppl 2:S167–S174. doi:10.1007/s00277-003-0771-5 [DOI] [PubMed]
  • 17.Weissinger F, Auner HW, Bertz H, Buchheidt D, Cornely OA, Egerer G, Heinz W, Karthaus M, Kiehl M, Kruger W, Penack O, Reuter S, Ruhnke M, Sandherr M, Salwender HJ, Ullmann AJ, Waldschmidt DT, Wolf HH. Antimicrobial therapy of febrile complications after high-dose chemotherapy and autologous hematopoietic stem cell transplantation--guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO) Ann Hematol. 2012;91(8):1161–1174. doi: 10.1007/s00277-012-1456-8. [DOI] [PubMed] [Google Scholar]
  • 18.Heinz WJ, Buchheidt D, Christopeit M, von Lilienfeld-Toal M, Cornely OA, Einsele H, Karthaus M, Link H, Mahlberg R, Neumann S, Ostermann H, Penack O, Ruhnke M, Sandherr M, Schiel X, Vehreschild JJ, Weissinger F, Maschmeyer G. Diagnosis and empirical treatment of fever of unknown origin (FUO) in adult neutropenic patients: guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) Ann Hematol. 2017;96(11):1775–1792. doi: 10.1007/s00277-017-3098-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Penack O, Becker C, Buchheidt D, Christopeit M, Kiehl M, von Lilienfeld-Toal M, Hentrich M, Reinwald M, Salwender H, Schalk E, Schmidt-Hieber M, Weber T, Ostermann H. Management of sepsis in neutropenic patients: 2014 updated guidelines from the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (AGIHO) Ann Hematol. 2014;93(7):1083–1095. doi: 10.1007/s00277-014-2086-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ruhnke M, Behre G, Buchheidt D, Christopeit M, Hamprecht A, Heinz W, Heussel CP, Horger M, Kurzai O, Karthaus M, Loffler J, Maschmeyer G, Penack O, Rieger C, Rickerts V, Ritter J, Schmidt-Hieber M, Schuelper N, Schwartz S, Ullmann A, Vehreschild JJ, von Lilienfeld-Toal M, Weber T, Wolf HH. Diagnosis of invasive fungal diseases in haematology and oncology: 2018 update of the recommendations of the infectious diseases Working Party of the German Society for Hematology and Medical Oncology (AGIHO) Mycoses. 2018;61(11):796–813. doi: 10.1111/myc.12838. [DOI] [PubMed] [Google Scholar]
  • 21.Ruhnke M, Cornely OA, Schmidt-Hieber M, Alakel N, Boell B, Buchheidt D, Christopeit M, Hasenkamp J, Heinz WJ, Hentrich M, Karthaus M, Koldehoff M, Maschmeyer G, Panse J, Penack O, Schleicher J, Teschner D, Ullmann AJ, Vehreschild M, von Lilienfeld-Toal M, Weissinger F, Schwartz S. Treatment of invasive fungal diseases in cancer patients - Revised 2019 Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO) Mycoses. 2020;63(7):653–682. doi: 10.1111/myc.13082. [DOI] [PubMed] [Google Scholar]
  • 22.Maschmeyer G, Carratala J, Buchheidt D, Hamprecht A, Heussel CP, Kahl C, Lorenz J, Neumann S, Rieger C, Ruhnke M, Salwender H, Schmidt-Hieber M, Azoulay E. Diagnosis and antimicrobial therapy of lung infiltrates in febrile neutropenic patients (allogeneic SCT excluded): updated guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) Ann Oncol. 2015;26(1):21–33. doi: 10.1093/annonc/mdu192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Schmidt-Hieber M, Bierwirth J, Buchheidt D, Cornely OA, Hentrich M, Maschmeyer G, Schalk E, Vehreschild JJ, Vehreschild M, Group AW Diagnosis and management of gastrointestinal complications in adult cancer patients: 2017 updated evidence-based guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) Ann Hematol. 2018;97(1):31–49. doi: 10.1007/s00277-017-3183-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Hentrich M, Schalk E, Schmidt-Hieber M, Chaberny I, Mousset S, Buchheidt D, Ruhnke M, Penack O, Salwender H, Wolf HH, Christopeit M, Neumann S, Maschmeyer G, Karthaus M, Infectious Diseases Working Party of the German Society of H, Medical O Central venous catheter-related infections in hematology and oncology: 2012 updated guidelines on diagnosis, management and prevention by the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology. Ann Oncol. 2014;25(5):936–947. doi: 10.1093/annonc/mdt545. [DOI] [PubMed] [Google Scholar]
  • 25.Schmidt-Hieber M, Silling G, Schalk E, Heinz W, Panse J, Penack O, Christopeit M, Buchheidt D, Meyding-Lamade U, Hahnel S, Wolf HH, Ruhnke M, Schwartz S, Maschmeyer G. CNS infections in patients with hematological disorders (including allogeneic stem-cell transplantation) - Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) Ann Oncol. 2016;27(7):1207–1225. doi: 10.1093/annonc/mdw155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ullmann AJ, Akova M, Herbrecht R, Viscoli C, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Calandra T, Castagnola E, Cornely OA, Donnelly JP, Garbino J, Groll AH, Hope WW, Jensen HE, Kullberg BJ, Lass-Florl C, Lortholary O, Meersseman W, Petrikkos G, Richardson MD, Roilides E, Verweij PE, Cuenca-Estrella M, Group EFIS ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT) Clin Microbiol Infect. 2012;18(Suppl 7):53–67. doi: 10.1111/1469-0691.12041. [DOI] [PubMed] [Google Scholar]
  • 27.Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B, Hoenigl M, Jensen HE, Lagrou K, Lewis RE, Mellinghoff SC, Mer M, Pana ZD, Seidel D, Sheppard DC, Wahba R, Akova M, Alanio A, Al-Hatmi AMS, Arikan-Akdagli S, Badali H, Ben-Ami R, Bonifaz A, Bretagne S, Castagnola E, Chayakulkeeree M, Colombo AL, Corzo-Leon DE, Drgona L, Groll AH, Guinea J, Heussel CP, Ibrahim AS, Kanj SS, Klimko N, Lackner M, Lamoth F, Lanternier F, Lass-Floerl C, Lee DG, Lehrnbecher T, Lmimouni BE, Mares M, Maschmeyer G, Meis JF, Meletiadis J, Morrissey CO, Nucci M, Oladele R, Pagano L, Pasqualotto A, Patel A, Racil Z, Richardson M, Roilides E, Ruhnke M, Seyedmousavi S, Sidharthan N, Singh N, Sinko J, Skiada A, Slavin M, Soman R, Spellberg B, Steinbach W, Tan BH, Ullmann AJ, Vehreschild JJ, Vehreschild M, Walsh TJ, White PL, Wiederhold NP, Zaoutis T, Chakrabarti A, Mucormycosis EMSGGGWG. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019;19(12):e405–e421. doi: 10.1016/S1473-3099(19)30312-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Bodey GP. Infectious complications of acute leukemia. Medical Times. 1966;94(9):1076–1085. [PubMed] [Google Scholar]
  • 29.Roussel M, Moreau P, Huynh A, Mary JY, Danho C, Caillot D, Hulin C, Fruchart C, Marit G, Pegourie B, Lenain P, Araujo C, Kolb B, Randriamalala E, Royer B, Stoppa AM, Dib M, Dorvaux V, Garderet L, Mathiot C, Avet-Loiseau H, Harousseau JL, Attal M, Intergroupe Francophone d M. Bortezomib and high-dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase 2 study of the Intergroupe Francophone du Myelome (IFM) Blood. 2010;115(1):32–37. doi: 10.1182/blood-2009-06-229658. [DOI] [PubMed] [Google Scholar]
  • 30.Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, Bence-Bruckler I, Birch P, Bredeson C, Chen J, Fergusson D, Halpenny M, Hamelin L, Huebsch L, Hutton B, Laneuville P, Lapierre Y, Lee H, Martin L, McDiarmid S, O'Connor P, Ramsay T, Sabloff M, Walker L, Freedman MS. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388(10044):576–585. doi: 10.1016/S0140-6736(16)30169-6. [DOI] [PubMed] [Google Scholar]
  • 31.Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, de Paula Alves Sousa A, Griffith LM, Lim N, Nash RA, Turka LA (2014) T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest 124 (3):1168–1172. doi:10.1172/JCI71691 [DOI] [PMC free article] [PubMed]
  • 32.Darlington PJ, Stopnicki B, Touil T, Doucet JS, Fawaz L, Roberts ME, Boivin MN, Arbour N, Freedman MS, Atkins HL, Bar-Or A. Natural killer cells regulate Th17 cells after autologous hematopoietic stem cell transplantation for relapsing remitting multiple sclerosis. Front Immunol. 2018;9:834. doi: 10.3389/fimmu.2018.00834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, Donelli A, Lugaresi A, Di Bartolomeo P, Rottoli MR, Rambaldi A, Amato MP, Massacesi L, Di Gioia M, Vuolo L, Curro D, Roccatagliata L, Filippi M, Aguglia U, Iacopino P, Farge D, Saccardi R, Astims Haemato-Neurological Collaborative Group ObotADWPotEGfB. Marrow T, Blood AH-NCGObotADWPAotEGf. Marrow Transplantation E Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84(10):981–988. doi: 10.1212/WNL.0000000000001329. [DOI] [PubMed] [Google Scholar]
  • 34.van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J, Schuerwegh AJ, Marijt EW, Vonk MC, Schattenberg AV, Matucci-Cerinic M, Voskuyl AE, van de Loosdrecht AA, Daikeler T, Kotter I, Schmalzing M, Martin T, Lioure B, Weiner SM, Kreuter A, Deligny C, Durand JM, Emery P, Machold KP, Sarrot-Reynauld F, Warnatz K, Adoue DF, Constans J, Tony HP, Del Papa N, Fassas A, Himsel A, Launay D, Lo Monaco A, Philippe P, Quere I, Rich E, Westhovens R, Griffiths B, Saccardi R, van den Hoogen FH, Fibbe WE, Socie G, Gratwohl A, Tyndall A, Group EESS Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA: J Am Med Assoc. 2014;311(24):2490–2498. doi: 10.1001/jama.2014.6368. [DOI] [PubMed] [Google Scholar]
  • 35.Veeraputhiran M, Jain T, Deol A, Ayash L, Kim S, Dyson G, Bhutani D, Lum LG, Ratanatharathorn V, Uberti JP, Abidi MH. BEAM conditioning regimen has higher toxicity compared with high-dose melphalan for salvage autologous hematopoietic stem cell transplantation in multiple myeloma. Clin Lymphoma Myeloma Leuk. 2015;15(9):531–535. doi: 10.1016/j.clml.2015.05.008. [DOI] [PubMed] [Google Scholar]
  • 36.Ghazal SS, Stevens MP, Bearman GM, Edmond MB. Utility of surveillance blood cultures in patients undergoing hematopoietic stem cell transplantation. Antimicrob Resist Infect Control. 2014;3:20. doi: 10.1186/2047-2994-3-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Nesher L, Chemaly RF, Shah DP, Mulanovich VE, Hosing C, Rolston KV. Utility of routine surveillance blood cultures in asymptomatic allogeneic hematopoietic stem cell transplant recipients with indwelling central venous catheters at a comprehensive cancer center. Am J Infect Control. 2014;42(10):1084–1088. doi: 10.1016/j.ajic.2014.07.004. [DOI] [PubMed] [Google Scholar]
  • 38.Metan G, Koc AN, Kaynar LG, Atalay A, Ozturk A, Eser B, Cetin M. What is the role of the (1-->3)-beta-d-glucan assay in the screening of patients undergoing autologous haematopoietic stem-cell transplantation? Mycoses. 2013;56(1):34–38. doi: 10.1111/j.1439-0507.2012.02195.x. [DOI] [PubMed] [Google Scholar]
  • 39.Pischke S, Hiller J, Lutgehetmann M, Polywka S, Rybczynski M, Ayuk F, Lohse AW. Blood-borne hepatitis E virus transmission: a relevant risk for immunosuppressed patients. Clin Infect Dis. 2016;63(4):569–570. doi: 10.1093/cid/ciw309. [DOI] [PubMed] [Google Scholar]
  • 40.Richtlinie zur Herstellung und Anwendung von hämatopoetischen Stammzellzubereitungen – Erste Fortschreibung (2019). Dtsch Arztebl. 10.3238/arztebl.2019.rl_haematop_sz02
  • 41.Chen CY, Huang SY, Cheng A, Chou WC, Yao M, Tang JL, Tsay W, Sheng WH, Tien HF. High risk of hepatitis B reactivation among patients with acute myeloid leukemia. PLoS One. 2015;10(5):e0126037. doi: 10.1371/journal.pone.0126037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Jun CH, Kim BS, Oak CY, Lee DH, Cho E, Cho SB, Choi SK, Park CH, Joo YE, Lee JJ, Kim HJ. HBV reactivation risk factors in patients with chronic HBV infection with low replicative state and resolved HBV infection undergoing hematopoietic stem cell transplantation in Korea. Hepatol Int. 2017;11(1):87–95. doi: 10.1007/s12072-016-9747-0. [DOI] [PubMed] [Google Scholar]
  • 43.Kim HY, Yoo JJ, Oh S, Yu SJ, Kim YJ, Yoon JH, Kim W, Jung YJ, Kim BH, Kim CM, Park JW, Lee JH. Scoring system for risk stratification of viral reactivation during prophylactic antiviral treatment in Korean patients with hepatitis B undergoing anticancer chemotherapy: a multicenter study. J Med Virol. 2018;90(10):1593–1603. doi: 10.1002/jmv.25241. [DOI] [PubMed] [Google Scholar]
  • 44.Kusumoto S, Tanaka Y, Suzuki R, Watanabe T, Nakata M, Takasaki H, Fukushima N, Fukushima T, Moriuchi Y, Itoh K, Nosaka K, Choi I, Sawa M, Okamoto R, Tsujimura H, Uchida T, Suzuki S, Okamoto M, Takahashi T, Sugiura I, Onishi Y, Kohri M, Yoshida S, Sakai R, Kojima M, Takahashi H, Tomita A, Maruyama D, Atsuta Y, Tanaka E, Suzuki T, Kinoshita T, Ogura M, Mizokami M, Ueda R. Monitoring of hepatitis B virus (HBV) DNA and risk of HBV reactivation in B-cell lymphoma: a prospective observational study. Clin Infect Dis. 2015;61(5):719–729. doi: 10.1093/cid/civ344. [DOI] [PubMed] [Google Scholar]
  • 45.Lv JW, Chen YP, Huang XD, Zhou GQ, Chen L, Li WF, Tang LL, Mao YP, Guo Y, Xu RH, Ma J, Sun Y. Hepatitis B virus screening and reactivation and management of patients with nasopharyngeal carcinoma: a large-scale, big-data intelligence platform-based analysis from an endemic area. Cancer. 2017;123(18):3540–3549. doi: 10.1002/cncr.30775. [DOI] [PubMed] [Google Scholar]
  • 46.von Lilienfeld-Toal M, Berger A, Christopeit M, Hentrich M, Heussel CP, Kalkreuth J, Klein M, Kochanek M, Penack O, Hauf E, Rieger C, Silling G, Vehreschild M, Weber T, Wolf HH, Lehners N, Schalk E, Mayer K. Community acquired respiratory virus infections in cancer patients-guideline on diagnosis and management by the Infectious Diseases Working Party of the German Society for Haematology and Medical Oncology. Eur J Cancer. 2016;67:200–212. doi: 10.1016/j.ejca.2016.08.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.von Lilienfeld-Toal M, Vehreschild JJ, Cornely O, Pagano L, Compagno F, Group EHAIDSW, Hirsch HH (2020) Frequently asked questions regarding SARS-CoV-2 in cancer patients-recommendations for clinicians caring for patients with malignant diseases. Leukemia 34 (6):1487–Group EHA1494. doi:10.1038/s41375-020-0832-y [DOI] [PMC free article] [PubMed]
  • 48.Lee A, Mirrett S, Reller LB, Weinstein MP. Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol. 2007;45(11):3546–3548. doi: 10.1128/JCM.01555-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Cockerill FR, 3rd, Wilson JW, Vetter EA, Goodman KM, Torgerson CA, Harmsen WS, Schleck CD, Ilstrup DM, Washington JA, 2nd, Wilson WR. Optimal testing parameters for blood cultures. Clin Infect Dis. 2004;38(12):1724–1730. doi: 10.1086/421087. [DOI] [PubMed] [Google Scholar]
  • 50.Guembe M, Rodriguez-Creixems M, Sanchez-Carrillo C, Perez-Parra A, Martin-Rabadan P, Bouza E. How many lumens should be cultured in the conservative diagnosis of catheter-related bloodstream infections? Clin Infect Dis. 2010;50(12):1575–1579. doi: 10.1086/652766. [DOI] [PubMed] [Google Scholar]
  • 51.Seifert H, Cornely O, Seggewiss K, Decker M, Stefanik D, Wisplinghoff H, Fatkenheuer G. Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J Clin Microbiol. 2003;41(1):118–123. doi: 10.1128/jcm.41.1.118-123.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Blot F, Nitenberg G, Chachaty E, Raynard B, Germann N, Antoun S, Laplanche A, Brun-Buisson C, Tancrede C. Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet. 1999;354(9184):1071–1077. doi: 10.1016/s0140-6736(98)11134-0. [DOI] [PubMed] [Google Scholar]
  • 53.Park KH, Lee MS, Lee SO, Choi SH, Sung H, Kim MN, Kim YS, Woo JH, Kim SH. Diagnostic usefulness of differential time to positivity for catheter-related candidemia. J Clin Microbiol. 2014;52(7):2566–2572. doi: 10.1128/JCM.00605-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Kaasch AJ, Rieg S, Hellmich M, Kern WV, Seifert H. Differential time to positivity is not predictive for central line-related Staphylococcus aureus bloodstream infection in routine clinical care. J Inf Secur. 2014;68(1):58–61. doi: 10.1016/j.jinf.2013.08.006. [DOI] [PubMed] [Google Scholar]
  • 55.Bouzidi H, Emirian A, Marty A, Chachaty E, Laplanche A, Gachot B, Blot F. Differential time to positivity of central and peripheral blood cultures is inaccurate for the diagnosis of Staphylococcus aureus long-term catheter-related sepsis. J Hosp Infect. 2018;99(2):192–199. doi: 10.1016/j.jhin.2018.01.010. [DOI] [PubMed] [Google Scholar]
  • 56.Patsios D, Maimon N, Chung T, Roberts H, Disperati P, Minden M, Paul N. Chest low-dose computed tomography in neutropenic acute myeloid leukaemia patients. Respir Med. 2010;104(4):600–605. doi: 10.1016/j.rmed.2009.11.003. [DOI] [PubMed] [Google Scholar]
  • 57.Gerritsen MG, Willemink MJ, Pompe E, van der Bruggen T, van Rhenen A, Lammers JW, Wessels F, Sprengers RW, de Jong PA, Minnema MC. Improving early diagnosis of pulmonary infections in patients with febrile neutropenia using low-dose chest computed tomography. PLoS One. 2017;12(2):e0172256. doi: 10.1371/journal.pone.0172256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Bucaneve G, Micozzi A, Menichetti F, Martino P, Dionisi MS, Martinelli G, Allione B, D'Antonio D, Buelli M, Nosari AM, Cilloni D, Zuffa E, Cantaffa R, Specchia G, Amadori S, Fabbiano F, Deliliers GL, Lauria F, Foa R, Del Favero A, Gruppo Italiano Malattie Ematologiche dell'Adulto Infection P Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N Engl J Med. 2005;353(10):977–987. doi: 10.1056/NEJMoa044097. [DOI] [PubMed] [Google Scholar]
  • 59.Fluoroquinolone and quinolone antibiotics: PRAC recommends restrictions on use. (2018). European Medicines Agency EMA/668915/2018
  • 60.Bow EJ. Fluoroquinolones, antimicrobial resistance and neutropenic cancer patients. Curr Opin Infect Dis. 2011;24(6):545–553. doi: 10.1097/QCO.0b013e32834cf054. [DOI] [PubMed] [Google Scholar]
  • 61.Mullane KM, Winston DJ, Nooka A, Morris MI, Stiff P, Dugan MJ, Holland H, Gregg K, Adachi JA, Pergam SA, Alexander BD, Dubberke ER, Broyde N, Gorbach SL, Sears PS. A randomized, placebo-controlled trial of fidaxomicin for prophylaxis of Clostridium difficile-associated diarrhea in adults undergoing hematopoietic stem cell transplantation. Clin Infect Dis. 2019;68(2):196–203. doi: 10.1093/cid/ciy484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Rotstein C, Bow EJ, Laverdiere M, Ioannou S, Carr D, Moghaddam N. Randomized placebo-controlled trial of fluconazole prophylaxis for neutropenic cancer patients: benefit based on purpose and intensity of cytotoxic therapy. The Canadian Fluconazole Prophylaxis Study Group. Clin Infect Dis. 1999;28(2):331–340. doi: 10.1086/515128. [DOI] [PubMed] [Google Scholar]
  • 63.van Burik JA, Ratanatharathorn V, Stepan DE, Miller CB, Lipton JH, Vesole DH, Bunin N, Wall DA, Hiemenz JW, Satoi Y, Lee JM, Walsh TJ, National Institute of A. Infectious Diseases Mycoses Study G Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis. 2004;39(10):1407–1416. doi: 10.1086/422312. [DOI] [PubMed] [Google Scholar]
  • 64.Hicheri Y, Einsele H, Martino R, Cesaro S, Ljungman P, Cordonnier C. Environmental prevention of infection in stem cell transplant recipients: a survey of the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Transpl Infect Dis. 2013;15(3):251–258. doi: 10.1111/tid.12064. [DOI] [PubMed] [Google Scholar]
  • 65.Vokurka S, Bystricka E, Svoboda T, Skoda Gorican IK, Sever M, Mazur E, Kopinska A, Pavlicova V, Mocanu O, Tanase A, Ghelase R, Zitkova M, Labudikova M, Raida L, Hrabankova-Navratilova D, Bockova J. The availability of HEPA-filtered rooms and the incidence of pneumonia in patients after haematopoietic stem cell transplantation (HSCT): results from a prospective, multicentre, eastern European study. J Clin Nurs. 2014;23(11–12):1648–1652. doi: 10.1111/jocn.12286. [DOI] [PubMed] [Google Scholar]
  • 66.Stern A, Green H, Paul M, Vidal L, Leibovici L. Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients. Cochrane Database Syst Rev. 2014;10:CD005590. doi: 10.1002/14651858.CD005590.pub3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Bastidas A, de la Serna J, El Idrissi M, Oostvogels L, Quittet P, Lopez-Jimenez J, Vural F, Pohlreich D, Zuckerman T, Issa NC, Gaidano G, Lee JJ, Abhyankar S, Solano C, Perez de Oteyza J, Satlin MJ, Schwartz S, Campins M, Rocci A, Vallejo Llamas C, Lee DG, Tan SM, Johnston AM, Grigg A, Boeckh MJ, Campora L, Lopez-Fauqued M, Heineman TC, Stadtmauer EA, Sullivan KM, Collaborators Z-HSG. Effect of recombinant zoster vaccine on incidence of herpes zoster after autologous stem cell transplantation: a randomized clinical trial. JAMA: J Am Med Assoc. 2019;322(2):123–133. doi: 10.1001/jama.2019.9053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Curran D, Matthews S, Rowley SD, Young JH, Bastidas A, Anagnostopoulos A, Barista I, Chandrasekar PH, Dickinson M, El Idrissi M, Heras I, Milliken ST, Monserrat Coll J, Navarro Matilla MB, Oostvogels L, Piatkowska-Jakubas B, Quiel D, Sabry W, Schwartz S, Selleslag DLD, Sullivan KM, Theunissen K, Yegin ZA, Yeh SP, Zaja F, Szer J, Z-HSg c. Recombinant zoster vaccine significantly reduces the impact on quality of life caused by herpes zoster in adult autologous hematopoietic stem cell transplant recipients: a randomized placebo-controlled trial (ZOE-HSCT) Biol Blood Marrow Transplant. 2019;25(12):2474–2481. doi: 10.1016/j.bbmt.2019.07.036. [DOI] [PubMed] [Google Scholar]
  • 69.Winston DJ, Mullane KM, Cornely OA, Boeckh MJ, Brown JW, Pergam SA, Trociukas I, Zak P, Craig MD, Papanicolaou GA, Velez JD, Panse J, Hurtado K, Fernsler DA, Stek JE, Pang L, Su SC, Zhao Y, Chan ISF, Kaplan SS, Parrino J, Lee I, Popmihajlov Z, Annunziato PW, Arvin A, Team VPT Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: an international, multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391(10135):2116–2127. doi: 10.1016/S0140-6736(18)30631-7. [DOI] [PubMed] [Google Scholar]
  • 70.Kawamura K, Hayakawa J, Akahoshi Y, Harada N, Nakano H, Kameda K, Ugai T, Wada H, Yamasaki R, Ishihara Y, Sakamoto K, Ashizawa M, Sato M, Terasako-Saito K, Kimura S, Kikuchi M, Nakasone H, Yamazaki R, Kanda J, Kako S, Tanihara A, Nishida J, Kanda Y. Low-dose acyclovir prophylaxis for the prevention of herpes simplex virus and varicella zoster virus diseases after autologous hematopoietic stem cell transplantation. Int J Hematol. 2015;102(2):230–237. doi: 10.1007/s12185-015-1810-4. [DOI] [PubMed] [Google Scholar]
  • 71.McDonald EM, de Kock J, Ram FS. Antivirals for management of herpes zoster including ophthalmicus: a systematic review of high-quality randomized controlled trials. Antivir Ther. 2012;17(2):255–264. doi: 10.3851/IMP2011. [DOI] [PubMed] [Google Scholar]
  • 72.Lin PC, Lee MY, Lin JT, Hsiao LT, Chen PM, Chiou TJ. Virus reactivation in high-risk non-Hodgkin's lymphoma patients after autologous CD34+-selected peripheral blood progenitor cell transplantation. Int J Hematol. 2008;87(4):434–439. doi: 10.1007/s12185-008-0053-z. [DOI] [PubMed] [Google Scholar]
  • 73.Jain T, John J, Kotecha A, Deol A, Saliminia T, Revankar S, Chandrasekar P. Cytomegalovirus infection in autologous stem cell transplant recipients in the era of rituximab. Ann Hematol. 2016;95(8):1323–1327. doi: 10.1007/s00277-016-2700-4. [DOI] [PubMed] [Google Scholar]
  • 74.Mengarelli A, Annibali O, Pimpinelli F, Riva E, Gumenyuk S, Renzi D, Cerchiara E, Piccioni L, Palombi F, Pisani F, Romano A, Spadea A, Papa E, Cordone I, Canfora M, Arcese W, Ensoli F, Marchesi F. Prospective surveillance vs clinically driven approach for CMV reactivation after autologous stem cell transplant. J Infect. 2016;72(2):265–268. doi: 10.1016/j.jinf.2015.11.005. [DOI] [PubMed] [Google Scholar]
  • 75.Balsat M, Pillet S, Tavernier E, Cacheux V, Escuret V, Molucon-Chabrot C, Augeul-Meunier K, Mirand A, Regagnon C, Tinquaut F, Bousser V, Oriol M, Guyotat D, Salles G, Bay JO, Pozzetto B, Cornillon J. Human herpesvirus 6 infection after autologous stem cell transplantation: a multicenter prospective study in adult patients. J Infect. 2019;79(1):36–42. doi: 10.1016/j.jinf.2019.05.001. [DOI] [PubMed] [Google Scholar]
  • 76.Inazawa N, Hori T, Nojima M, Saito M, Igarashi K, Yamamoto M, Shimizu N, Yoto Y, Tsutsumi H. Virus reactivations after autologous hematopoietic stem cell transplantation detected by multiplex PCR assay. J Med Virol. 2017;89(2):358–362. doi: 10.1002/jmv.24621. [DOI] [PubMed] [Google Scholar]
  • 77.Mehra V, Rhone E, Widya S, Zuckerman M, Potter V, Raj K, Kulasekararaj A, McLornan D, de Lavallade H, Benson-Quarm N, Lim C, Ware S, Sudhanva M, Malik O, Nicholas R, Muraro PA, Marsh J, Mufti GJ, Silber E, Pagliuca A, Kazmi MA (2019) Epstein-Barr virus and monoclonal gammopathy of clinical significance in autologous stem cell transplantation for multiple sclerosis. Clin Infect Dis 69 (10):1757–1763. doi:10.1093/cid/ciz047 [DOI] [PubMed]
  • 78.EASL 2017 Clinical practice guidelines on the management of hepatitis B virus infection J Hepatol. 2017;67(2):370–398. doi: 10.1016/j.jhep.2017.03.021. [DOI] [PubMed] [Google Scholar]
  • 79.Tenney DJ, Rose RE, Baldick CJ, Pokornowski KA, Eggers BJ, Fang J, Wichroski MJ, Xu D, Yang J, Wilber RB, Colonno RJ. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naive patients is rare through 5 years of therapy. Hepatology. 2009;49(5):1503–1514. doi: 10.1002/hep.22841. [DOI] [PubMed] [Google Scholar]
  • 80.Jenh AM, Thio CL, Pham PA. Tenofovir for the treatment of hepatitis B virus. Pharmacotherapy. 2009;29(10):1212–1227. doi: 10.1592/phco.29.10.1212. [DOI] [PubMed] [Google Scholar]
  • 81.Choi J, Lim YS. Characteristics, prevention, and management of hepatitis B virus (HBV) reactivation in HBV-infected patients who require immunosuppressive therapy. J Infect Dis. 2017;216(suppl_8):S778–S784. doi: 10.1093/infdis/jix178. [DOI] [PubMed] [Google Scholar]
  • 82.Rieger CT, Liss B, Mellinghoff S, Buchheidt D, Cornely OA, Egerer G, Heinz WJ, Hentrich M, Maschmeyer G, Mayer K, Sandherr M, Silling G, Ullmann A, Vehreschild M, von Lilienfeld-Toal M, Wolf HH, Lehners N, German Society of H. Medical Oncology Infectious Diseases Working G Anti-infective vaccination strategies in patients with hematologic malignancies or solid tumors-Guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO) Ann Oncol. 2018;29(6):1354–1365. doi: 10.1093/annonc/mdy117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Laws HJ, Baumann U, Bogdan C, Burchard G, Christopeit M, Hecht J, Heininger U, Hilgendorf I, Kern W, Kling K, Kobbe G, Kulper W, Lehrnbecher T, Meisel R, Simon A, Ullmann A, de Wit M, Zepp F (2020). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 63 (5):588–644. doi:10.1007/s00103-020-03123-w [DOI] [PMC free article] [PubMed]
  • 84.Bucaneve G, Micozzi A, Picardi M, Ballanti S, Cascavilla N, Salutari P, Specchia G, Fanci R, Luppi M, Cudillo L, Cantaffa R, Milone G, Bocchia M, Martinelli G, Offidani M, Chierichini A, Fabbiano F, Quarta G, Primon V, Martino B, Manna A, Zuffa E, Ferrari A, Gentile G, Foa R, Del Favero A. Results of a multicenter, controlled, randomized clinical trial evaluating the combination of piperacillin/tazobactam and tigecycline in high-risk hematologic patients with cancer with febrile neutropenia. J Clin Oncol. 2014;32(14):1463–1471. doi: 10.1200/JCO.2013.51.6963. [DOI] [PubMed] [Google Scholar]
  • 85.Toya T, Nannya Y, Narukawa K, Ichikawa M, Kurokawa M. A comparative analysis of meropenem and doripenem in febrile patients with hematologic malignancies: a single-center retrospective study. Jpn J Infect Dis. 2012;65(3):228–232. doi: 10.7883/yoken.65.228. [DOI] [PubMed] [Google Scholar]
  • 86.Hachem R, Reitzel R, Rolston K, Chaftari AM, Raad I. Antimicrobial activities of ceftazidime-avibactam and comparator agents against clinical bacteria isolated from patients with cancer. Antimicrob Agents Chemother. 2017;61(4):e02106–e02116. doi: 10.1128/AAC.02106-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Aitken SL, Kontoyiannis DP, DePombo AM, Bhatti MM, Tverdek FP, Gettys SC, Nicolau DP, Nunez CA. Use of ceftolozane/tazobactam in the treatment of multidrug-resistant Pseudomonas aeruginosa bloodstream infection in a pediatric leukemia patient. Pediatr Infect Dis J. 2016;35(9):1040–1042. doi: 10.1097/INF.0000000000001228. [DOI] [PubMed] [Google Scholar]
  • 88.Nakane T, Tamura K, Hino M, Tamaki T, Yoshida I, Fukushima T, Tatsumi Y, Nakagawa Y, Hatanaka K, Takahashi T, Akiyama N, Tanimoto M, Ohyashiki K, Urabe A, Masaoka T, Kanamaru A, Japan Febrile Neutropenia Study G. Cefozopran, meropenem, or imipenem-cilastatin compared with cefepime as empirical therapy in febrile neutropenic adult patients: a multicenter prospective randomized trial. J Infect Chemother. 2015;21(1):16–22. doi: 10.1016/j.jiac.2014.08.026. [DOI] [PubMed] [Google Scholar]
  • 89.Vardakas KZ, Samonis G, Chrysanthopoulou SA, Bliziotis IA, Falagas ME. Role of glycopeptides as part of initial empirical treatment of febrile neutropenic patients: a meta-analysis of randomised controlled trials. Lancet Infect Dis. 2005;5(7):431–439. doi: 10.1016/S1473-3099(05)70164-X. [DOI] [PubMed] [Google Scholar]
  • 90.Lisboa LF, Miranda BG, Vieira MB, Dulley FL, Fonseca GG, Guimaraes T, Levin AS, Shikanai-Yasuda MA, Costa SF. Empiric use of linezolid in febrile hematology and hematopoietic stem cell transplantation patients colonized with vancomycin-resistant Enterococcus spp. Int J Infect Dis. 2015;33:171–176. doi: 10.1016/j.ijid.2015.02.001. [DOI] [PubMed] [Google Scholar]
  • 91.Kamboj M, Cohen N, Huang YT, Kerpelev M, Jakubowski A, Sepkowitz KA, Papanicolaou GA, Seo SK. Impact of empiric treatment for vancomycin-resistant Enterococcus in colonized patients early after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25(3):594–598. doi: 10.1016/j.bbmt.2018.11.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Del Favero A, Menichetti F, Martino P, Bucaneve G, Micozzi A, Gentile G, Furno P, Russo D, D'Antonio D, Ricci P, Martino B, Mandelli F, Gruppo Italiano Malattie Ematologiche dell'Adulto Infection P (2001) A multicenter, double-blind, placebo-controlled trial comparing piperacillin-tazobactam with and without amikacin as empiric therapy for febrile neutropenia. Clin Infect Dis 33 (8):1295–1301. doi:10.1086/322646 [DOI] [PubMed]
  • 93.Furno P, Bucaneve G, Del Favero A. Monotherapy or aminoglycoside-containing combinations for empirical antibiotic treatment of febrile neutropenic patients: a meta-analysis. Lancet Infect Dis. 2002;2(4):231–242. doi: 10.1016/s1473-3099(02)00241-4. [DOI] [PubMed] [Google Scholar]
  • 94.Paul M, Dickstein Y, Schlesinger A, Grozinsky-Glasberg S, Soares-Weiser K, Leibovici L. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropenia. Cochrane Database Syst Rev. 2013;2013(6):CD003038. doi: 10.1002/14651858.CD003038.pub2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad RKV, II, Young JA, Wingard JR, Infectious Diseases Society of A Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56–e93. doi: 10.1093/cid/cir073. [DOI] [PubMed] [Google Scholar]
  • 96.Cometta A, Kern WV, De Bock R, Paesmans M, Vandenbergh M, Crokaert F, Engelhard D, Marchetti O, Akan H, Skoutelis A, Korten V, Vandercam M, Gaya H, Padmos A, Klastersky J, Zinner S, Glauser MP, Calandra T, Viscoli C, International Antimicrobial Therapy Group of the European Organization for Research Treatment of C Vancomycin versus placebo for treating persistent fever in patients with neutropenic cancer receiving piperacillin-tazobactam monotherapy. Clin Infect Dis. 2003;37(3):382–389. doi: 10.1086/376637. [DOI] [PubMed] [Google Scholar]
  • 97.Cordonnier C, Pautas C, Maury S, Vekhoff A, Farhat H, Suarez F, Dhedin N, Isnard F, Ades L, Kuhnowski F, Foulet F, Kuentz M, Maison P, Bretagne S, Schwarzinger M. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: a randomized, controlled trial. Clin Infect Dis. 2009;48(8):1042–1051. doi: 10.1086/597395. [DOI] [PubMed] [Google Scholar]
  • 98.Fung M, Kim J, Marty FM, Schwarzinger M, Koo S. Meta-analysis and cost comparison of empirical versus pre-emptive antifungal strategies in hematologic malignancy patients with high-risk febrile neutropenia. PLoS One. 2015;10(11):e0140930. doi: 10.1371/journal.pone.0140930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Maertens J, Theunissen K, Verhoef G, Verschakelen J, Lagrou K, Verbeken E, Wilmer A, Verhaegen J, Boogaerts M, Van Eldere J (2005) Galactomannan and computed tomography-based preemptive antifungal therapy in neutropenic patients at high risk for invasive fungal infection: a prospective feasibility study. Clin Infect Dis 41 (9):1242–1250. doi:10.1086/496927 [DOI] [PubMed]
  • 100.von Felden J, Alric L, Pischke S, Aitken C, Schlabe S, Spengler U, Giordani MT, Schnitzler P, Bettinger D, Thimme R, Xhaard A, Binder M, Ayuk F, Lohse AW, Cornelissen JJ, de Man RA, Mallet V. The burden of hepatitis E among patients with haematological malignancies: a retrospective European cohort study. J Hepatol. 2019;71(3):465–472. doi: 10.1016/j.jhep.2019.04.022. [DOI] [PubMed] [Google Scholar]
  • 101.Furfaro E, Nicolini L, Della Vecchia A, Di Grazia C, Raiola AM, Varaldo R, Ferrando F, Barisione G, Bruzzone B, Angelucci E, Viscoli C, Mikulska M (2020) Hepatitis E virus infection in an Italian cohort of hematopoietic stem cell transplantation recipients: seroprevalence and infection. Biol Blood Marrow Transplant 26 (7):1355–1362. doi:10.1016/j.bbmt.2020.03.012 [DOI] [PubMed]
  • 102.Marchesi F, Pimpinelli F, Ensoli F, Mengarelli A. Cytomegalovirus infection in hematologic malignancy settings other than the allogeneic transplant. Hematol Oncol. 2018;36(2):381–391. doi: 10.1002/hon.2453. [DOI] [PubMed] [Google Scholar]
  • 103.Kaya AH, Tekgunduz E, Akpinar S, Batgi H, Bekdemir F, Kayikci O, Namdaroglu S, Ulu BU, Dal MS, Cakar MK, Korkmaz S, Altuntas F. Is cytomegalovirus surveillance necessary for patients with low reactivation risk in an autologous hematopoietic cell transplantation setting? Transplant Proc. 2017;49(8):1911–1915. doi: 10.1016/j.transproceed.2017.05.007. [DOI] [PubMed] [Google Scholar]
  • 104.Massoud R, Assi R, Fares E, Haffar B, Charafeddine M, Kreidieh N, Mahfouz R, Kanj SS, El Zakhem A, Kharfan-Dabaja M, Bazarbachi A, El Cheikh J. Cytomegalovirus reactivation in lymphoma and myeloma patients undergoing autologous peripheral blood stem cell transplantation. J Clin Virol. 2017;95:36–41. doi: 10.1016/j.jcv.2017.08.006. [DOI] [PubMed] [Google Scholar]
  • 105.Piukovics K, Terhes G, Gurbity-Palfi T, Bereczki A, Rarosi F, Deak J, Borbenyi Z, Urban E. Cytomegalovirus infection in patients with haematological diseases and after autologous stem cell transplantation as consolidation: a single-centre study. Ann Hematol. 2017;96(1):125–131. doi: 10.1007/s00277-016-2831-7. [DOI] [PubMed] [Google Scholar]
  • 106.Chiusolo P, Metafuni E, Cattani P, Piccirillo N, Santangelo R, Manzara S, Bellesi S, De Michele T, Leone G, Sica S. Prospective evaluation of epstein-barr virus reactivation after stem cell transplantation: association with monoclonal gammopathy. J Clin Immunol. 2010;30(6):894–902. doi: 10.1007/s10875-010-9454-x. [DOI] [PubMed] [Google Scholar]
  • 107.Piukovics K, Borbenyi Z, Rajda C, Csomor A, Deak J, Terhes G. Monitoring human herpesvirus-6 in patients with autologous stem cell transplantation. Vivo. 2014;28(6):1113–1117. [PubMed] [Google Scholar]
  • 108.Duarte RF, Sanchez-Ortega I, Cuesta I, Arnan M, Patino B, Fernandez de Sevilla A, Gudiol C, Ayats J, Cuenca-Estrella M. Serum galactomannan-based early detection of invasive aspergillosis in hematology patients receiving effective antimold prophylaxis. Clin Infect Dis. 2014;59(12):1696–1702. doi: 10.1093/cid/ciu673. [DOI] [PubMed] [Google Scholar]
  • 109.Hammarstrom H, Kondori N, Friman V, Wenneras C. How to interpret serum levels of beta-glucan for the diagnosis of invasive fungal infections in adult high-risk hematology patients: optimal cut-off levels and confounding factors. Eur J Clin Microbiol Infect Dis. 2015;34(5):917–925. doi: 10.1007/s10096-014-2302-9. [DOI] [PubMed] [Google Scholar]
  • 110.Cornely OA, Leguay T, Maertens J, Vehreschild M, Anagnostopoulos A, Castagnola C, Verga L, Rieger C, Kondakci M, Harter G, Duarte RF, Allione B, Cordonnier C, Heussel CP, Morrissey CO, Agrawal SG, Donnelly JP, Bresnik M, Hawkins MJ, Garner W, Gokbuget N, AmBiGuard Study G Randomized comparison of liposomal amphotericin B versus placebo to prevent invasive mycoses in acute lymphoblastic leukaemia. J Antimicrob Chemother. 2017;72(8):2359–2367. doi: 10.1093/jac/dkx133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Bouza E, Alvarado N, Alcala L, Perez MJ, Rincon C, Munoz P. A randomized and prospective study of 3 procedures for the diagnosis of catheter-related bloodstream infection without catheter withdrawal. Clin Infect Dis. 2007;44(6):820–826. doi: 10.1086/511865. [DOI] [PubMed] [Google Scholar]
  • 112.Planes AM, Calleja R, Bernet A, Campins-Marti M, Almirante B, Pumarola T, Fernandez-Hidalgo N. Evaluation of the usefulness of a quantitative blood culture in the diagnosis of catheter-related bloodstream infection: comparative analysis of two periods (2002 and 2012) Enferm Infecc Microbiol Clin. 2016;34(8):484–489. doi: 10.1016/j.eimc.2015.11.007. [DOI] [PubMed] [Google Scholar]
  • 113.Herrera-Guerra AS, Garza-Gonzalez E, Martinez-Resendez MF, Llaca-Diaz JM, Camacho-Ortiz A. Individual versus pooled multiple-lumen blood cultures for the diagnosis of intravascular catheter-related infections. Am J Infect Control. 2015;43(7):715–718. doi: 10.1016/j.ajic.2015.02.028. [DOI] [PubMed] [Google Scholar]
  • 114.Marchesi F, Cattaneo C, Criscuolo M, Delia M, Dargenio M, Del Principe MI, Spadea A, Fracchiolla NS, Melillo L, Perruccio K, Alati C, Russo D, Garzia M, Brociner M, Cefalo M, Armiento D, Cesaro S, Decembrino N, Mengarelli A, Tumbarello M, Busca A, Pagano L, Sorveglianza Epidemiologica Infezioni nelle Emopatie G (2019) A bronchoalveolar lavage-driven antimicrobial treatment improves survival in hematologic malignancy patients with detected lung infiltrates: a prospective multicenter study of the SEIFEM group American Journal of Hematology 94 (10):1104–1112. doi:10.1002/ajh.25585 [DOI] [PubMed]
  • 115.Goodman JL, Winston DJ, Greenfield RA, Chandrasekar PH, Fox B, Kaizer H, Shadduck RK, Shea TC, Stiff P, Friedman DJ, et al. A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation. N Engl J Med. 1992;326(13):845–851. doi: 10.1056/NEJM199203263261301. [DOI] [PubMed] [Google Scholar]
  • 116.Cornely OA, Hoenigl M, Lass-Florl C, Chen SC, Kontoyiannis DP, Morrissey CO, Thompson GR, 3rd, Mycoses Study Group E, Research C, the European Confederation of Medical M Defining breakthrough invasive fungal infection-position paper of the mycoses study group education and research consortium and the European Confederation of Medical Mycology. Mycoses. 2019;62(9):716–729. doi: 10.1111/myc.12960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Sun Y, Meng F, Han M, Zhang X, Yu L, Huang H, Wu D, Ren H, Wang C, Shen Z, Ji Y, Huang X. Epidemiology, management, and outcome of invasive fungal disease in patients undergoing hematopoietic stem cell transplantation in China: a multicenter prospective observational study. Biol Blood Marrow Transplant. 2015;21(6):1117–1126. doi: 10.1016/j.bbmt.2015.03.018. [DOI] [PubMed] [Google Scholar]
  • 118.Dadd G, McMinn P, Monterosso L. Protective isolation in hemopoietic stem cell transplants: a review of the literature and single institution experience. J Pediatr Oncol Nurs. 2003;20(6):293–300. doi: 10.1177/1043454203254985. [DOI] [PubMed] [Google Scholar]
  • 119.Glenny AM, Fernandez Mauleffinch LM, Pavitt S, Walsh T. Interventions for the prevention and treatment of herpes simplex virus in patients being treated for cancer. Cochrane Database Syst Rev. 2009;1:CD006706. doi: 10.1002/14651858.CD006706.pub2. [DOI] [PubMed] [Google Scholar]
  • 120.Dagnew AF, Ilhan O, Lee WS, Woszczyk D, Kwak JY, Bowcock S, Sohn SK, Rodriguez Macias G, Chiou TJ, Quiel D, Aoun M, Navarro Matilla MB, de la Serna J, Milliken S, Murphy J, McNeil SA, Salaun B, Di Paolo E, Campora L, Lopez-Fauqued M, El Idrissi M, Schuind A, Heineman TC, Van den Steen P, Oostvogels L, Zoster-039 s g (2019) Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in adults with haematological malignancies: a phase 3, randomised, clinical trial and post-hoc efficacy analysis. Lancet Infect Dis 19(9):988–1000. 10.1016/S1473-3099(19)30163-X [DOI] [PubMed]
  • 121.Sahoo F, Hill JA, Xie H, Leisenring W, Yi J, Goyal S, Kimball LE, Lee I, Seo S, Davis C, Pergam SA, Flowers ME, Liaw KL, Holmberg L, Boeckh M. Herpes zoster in autologous hematopoietic cell transplant recipients in the era of acyclovir or valacyclovir prophylaxis and novel treatment and maintenance therapies. Biol Blood Marrow Transplant. 2017;23(3):505–511. doi: 10.1016/j.bbmt.2016.12.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Seo HM, Kim YS, Bang CH, Lee JH, Lee JY, Lee DG, Park YM. Antiviral prophylaxis for preventing herpes zoster in hematopoietic stem cell transplant recipients: a systematic review and meta-analysis. Antivir Res. 2017;140:106–115. doi: 10.1016/j.antiviral.2017.01.011. [DOI] [PubMed] [Google Scholar]
  • 123.Crippa F, Holmberg L, Carter RA, Hooper H, Marr KA, Bensinger W, Chauncey T, Corey L, Boeckh M. Infectious complications after autologous CD34-selected peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2002;8(5):281–289. doi: 10.1053/bbmt.2002.v8.pm12064366. [DOI] [PubMed] [Google Scholar]
  • 124.Boeckh M, Gooley TA, Reusser P, Buckner CD, Bowden RA. Failure of high-dose acyclovir to prevent cytomegalovirus disease after autologous marrow transplantation. J Infect Dis. 1995;172(4):939–943. doi: 10.1093/infdis/172.4.939. [DOI] [PubMed] [Google Scholar]
  • 125.Huang YH, Hsiao LT, Hong YC, Chiou TJ, Yu YB, Gau JP, Liu CY, Yang MH, Tzeng CH, Lee PC, Lin HC, Lee SD. Randomized controlled trial of entecavir prophylaxis for rituximab-associated hepatitis B virus reactivation in patients with lymphoma and resolved hepatitis B. J Clin Oncol. 2013;31(22):2765–2772. doi: 10.1200/JCO.2012.48.5938. [DOI] [PubMed] [Google Scholar]
  • 126.Lau GK, Yiu HH, Fong DY, Cheng HC, Au WY, Lai LS, Cheung M, Zhang HY, Lie A, Ngan R, Liang R. Early is superior to deferred preemptive lamivudine therapy for hepatitis B patients undergoing chemotherapy. Gastroenterology. 2003;125(6):1742–1749. doi: 10.1053/j.gastro.2003.09.026. [DOI] [PubMed] [Google Scholar]
  • 127.Reich G, Cornely OA, Sandherr M, Kubin T, Krause S, Einsele H, Thiel E, Bellaire T, Dorken B, Maschmeyer G. Empirical antimicrobial monotherapy in patients after high-dose chemotherapy and autologous stem cell transplantation: a randomised, multicentre trial. Br J Haematol. 2005;130(2):265–270. doi: 10.1111/j.1365-2141.2005.05608.x. [DOI] [PubMed] [Google Scholar]
  • 128.Horita N, Shibata Y, Watanabe H, Namkoong H, Kaneko T. Comparison of antipseudomonal beta-lactams for febrile neutropenia empiric therapy: systematic review and network meta-analysis. Clin Microbiol Infect. 2017;23(10):723–729. doi: 10.1016/j.cmi.2017.03.024. [DOI] [PubMed] [Google Scholar]
  • 129.Harter C, Schulze B, Goldschmidt H, Benner A, Geiss HK, Hoppe-Tichy T, Ho AD, Egerer G. Piperacillin/tazobactam vs ceftazidime in the treatment of neutropenic fever in patients with acute leukemia or following autologous peripheral blood stem cell transplantation: a prospective randomized trial. Bone Marrow Transplant. 2006;37(4):373–379. doi: 10.1038/sj.bmt.1705256. [DOI] [PubMed] [Google Scholar]
  • 130.Bow EJ, Rotstein C, Noskin GA, Laverdiere M, Schwarer AP, Segal BH, Seymour JF, Szer J, Sanche S. A randomized, open-label, multicenter comparative study of the efficacy and safety of piperacillin-tazobactam and cefepime for the empirical treatment of febrile neutropenic episodes in patients with hematologic malignancies. Clin Infect Dis. 2006;43(4):447–459. doi: 10.1086/505393. [DOI] [PubMed] [Google Scholar]
  • 131.Maschmeyer G, Heinz WJ, Hertenstein B, Horst HA, Requadt C, Wagner T, Cornely OA, Loffler J, Ruhnke M, Is i. Immediate versus deferred empirical antifungal (IDEA) therapy in high-risk patients with febrile neutropenia: a randomized, double-blind, placebo-controlled, multicenter study. Eur J Clin Microbiol Infect Dis. 2013;32(5):679–689. doi: 10.1007/s10096-012-1794-4. [DOI] [PubMed] [Google Scholar]
  • 132.Walsh TJ, Teppler H, Donowitz GR, Maertens JA, Baden LR, Dmoszynska A, Cornely OA, Bourque MR, Lupinacci RJ, Sable CA, dePauw BE. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N Engl J Med. 2004;351(14):1391–1402. doi: 10.1056/NEJMoa040446. [DOI] [PubMed] [Google Scholar]
  • 133.Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D, Pappas P, Seibel N, Greenberg RN, Dummer S, Schuster M, Holcenberg JS. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med. 1999;340(10):764–771. doi: 10.1056/NEJM199903113401004. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Hematology are provided here courtesy of Springer

RESOURCES