Skip to main content
EXCLI Journal logoLink to EXCLI Journal
letter
. 2020 Aug 14;19:1158–1160. doi: 10.17179/excli2020-2745

Do artificial sweeteners increase the risk of non-alcoholic fatty liver disease (NAFLD)?

Tahany Abbas 1,*, Walaa Murad 1
PMCID: PMC7573173  PMID: 33088253

Dear Editor,

Recently, Emamat and colleagues published a review about NAFLD and a possible role of artificial sweeteners as a risk factor (Emamat et al., 2020[3]). NAFLD is the most frequent liver disorder in industrialized countries, which affects ~25 % of the population (Younossi et al., 2018[24]; Friedman et al., 2018[4]). In the past years, the prevalence of NAFLD increased in adults and in children and is also present in ~7 % of lean persons (Romero-Gómez et al., 2017[17]; Younossi et al., 2018[24]). Moreover, NAFLD represents a risk factor of primary liver cancer (AISF, 2017[1]; Trépo and Valenti, 2020[21]). In their review, Emamat et al. discuss the hypothesis that artificial sweeteners increase the risk of NAFLD (Emamat et al., 2020[3]). Artificial sweeteners or sugar substitutes are increasingly consumed to reduce caloric intake (Kakleas et al., 2020[14]; Suez et al., 2015[20]; Ruiz-Ojeda et al., 2019[18]; Uebanso et al., 2017[22]). The authors discuss the currently available evidence that artificial sweeteners alter the gut microbiota, which may increase the prevalence of NAFLD.

Currently, much experimental effort is invested to gain a deeper understanding of liver disease (Jansen et al., 2017[13]; Godoy et al., 2013[8], 2015[9], 2016[10]; Ghallab et al., 2016[5], 2019[7][6]; Vartak et al., 2016[23]) and to identify compounds that cause an increased risk of hepatotoxicity (Grinberg et al., 2014[12], 2018[11]; Albrecht et al., 2019[2]; Kim et al., 2015[15]). Research in this field is often hampered by difficulties to extrapolate data from animal or in vitro experiments to the in vivo situation (Schenk et al., 2017[19]; Leist et al., 2017[16]). The review of Emamat et al. clearly shows that there is strong evidence that artificial sweeteners influence the composition of gut microbiota. However, further work including prospective and intervention studies are required to clarify if this mechanism really causes an increased risk of liver disease.

Conflict of interest

The authors declare no conflict of interest.

References

  • 1.AISF, Italian Association for the Study of the Liver. AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig Liver Dis. 2017;49:471–483. doi: 10.1016/j.dld.2017.01.147. doi: 10.1016/j.dld.2017.01.147. Available from: [DOI] [PubMed] [Google Scholar]
  • 2.Albrecht W, Kappenberg F, Brecklinghaus T, Stoeber R, Marchan R, Zhang M, et al. Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Arch Toxicol. 2019;93:1609–1637. doi: 10.1007/s00204-019-02492-9. doi: 10.1007/s00204-019-02492-9. Available from: [DOI] [PubMed] [Google Scholar]
  • 3.Emamat H, Ghalandari H, Tangestani H, Abdollahi A, Hekmatdoost A. Artificial sweeteners are related to non-alcoholic fatty liver disease: Microbiota dysbiosis as a novel potential mechanism. EXCLI J. 2020;19:620–626. doi: 10.17179/excli2020-1226. doi: 10.17179/excli2020-1226. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9. doi: 10.1038/s41591-018-0104-9. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ghallab A, Cellière G, Henkel SG, Driesch D, Hoehme S, Hofmann U, et al. Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol. 2016;64:860–871. doi: 10.1016/j.jhep.2015.11.018. doi: 10.1016/j.jhep.2015.11.018. Available from: [DOI] [PubMed] [Google Scholar]
  • 6.Ghallab A, Hofmann U, Sezgin S, Vartak N, Hassan R, Zaza A, et al. Bile microinfarcts in cholestasis are initiated by rupture of the apical hepatocyte membrane and cause shunting of bile to sinusoidal blood. Hepatology. 2019;69:666–683. doi: 10.1002/hep.30213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Ghallab A, Myllys M, Holland CH, Zaza A, Murad W, Hassan R, et al. Influence of liver fibrosis on lobular zonation. Cells. 2019;8(12):1556. doi: 10.3390/cells8121556. doi: 10.3390/cells8121556. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87:1315–1530. doi: 10.1007/s00204-013-1078-5. doi: 10.1007/s00204-013-1078-5. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Godoy P, Schmidt-Heck W, Natarajan K, Lucendo-Villarin B, Szkolnicka D, Asplund A, et al. Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells. J Hepatol. 2015;63:934–942. doi: 10.1016/j.jhep.2015.05.013. doi: 10.1016/j.jhep.2015.05.013. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Godoy P, Widera A, Schmidt-Heck W, Campos G, Meyer C, Cadenas C, et al. Gene network activity in cultivated primary hepatocytes is highly similar to diseased mammalian liver tissue. Arch Toxicol. 2016;90:2513–2529. doi: 10.1007/s00204-016-1761-4. doi: 10.1007/s00204-016-1761-4. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Grinberg M, Stöber RM, Albrecht W, Edlund K, Schug M, Godoy P, et al. Toxicogenomics directory of rat hepatotoxicants in vivo and in cultivated hepatocytes. Arch Toxicol. 2018;92:3517–3533. doi: 10.1007/s00204-018-2352-3. doi: 10.1007/s00204-018-2352-3. Available from: [DOI] [PubMed] [Google Scholar]
  • 12.Grinberg M, Stöber RM, Edlund K, Rempel E, Godoy P, Reif R, et al. Toxicogenomics directory of chemically exposed human hepatocytes. Arch Toxicol. 2014;88:2261–2287. doi: 10.1007/s00204-014-1400-x. doi: 10.1007/s00204-014-1400-x. Available from: [DOI] [PubMed] [Google Scholar]
  • 13.Jansen PL, Ghallab A, Vartak N, Reif R, Schaap FG, Hampe J, et al. The ascending pathophysiology of cholestatic liver disease. Hepatology. 2017;65:722–738. doi: 10.1002/hep.28965. doi: 10.1002/hep.28965. Available from: [DOI] [PubMed] [Google Scholar]
  • 14.Kakleas K, Christodouli F, Karavanaki K. Nonalcoholic fatty liver disease, insulin resistance, and sweeteners: a literature review. Expert Rev Endocrinol Metab. 2020;15:83–93. doi: 10.1080/17446651.2020.1740588. doi: 10.1080/17446651.2020.1740588. Available from: [DOI] [PubMed] [Google Scholar]
  • 15.Kim JY, Fluri DA, Marchan R, Boonen K, Mohanty S, Singh P, et al. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J Biotechnol. 2015;205:24–35. doi: 10.1016/j.jbiotec.2015.01.003. doi: 10.1016/j.jbiotec.2015.01.003. Available from: [DOI] [PubMed] [Google Scholar]
  • 16.Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, et al. Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol. 2017;91:3477–3505. doi: 10.1007/s00204-017-2045-3. doi: 10.1007/s00204-017-2045-3. Available from: [DOI] [PubMed] [Google Scholar]
  • 17.Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017;67:829–846. doi: 10.1016/j.jhep.2017.05.016. doi: 10.1016/j.jhep.2017.05.016. Available from: [DOI] [PubMed] [Google Scholar]
  • 18.Ruiz-Ojeda FJ, Plaza-Diaz J, Saez-Lara MJ, Gil A. Effects of sweeteners on the gut microbiota: A review of experimental studies and clinical trials. Adv Nutr. 2019;10:S31–S48. doi: 10.1093/advances/nmy037. doi: 10.1093/advances/nmy037. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Schenk A, Ghallab A, Hofmann U, Hassan R, Schwarz M, Schuppert A, et al. Physiologically-based modelling in mice suggests an aggravated loss of clearance capacity after toxic liver damage. Sci Rep. 2017;7:6224. doi: 10.1038/s41598-017-04574-z. doi: 10.1038/s41598-017-04574-z. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Suez J, Korem T, Zilberman-Schapira G, Segal E, Elinav E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microb. 2015;6:149–55. doi: 10.1080/19490976.2015.1017700. doi: 10.1080/19490976.2015.1017700. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Trépo E, Valenti L. Update on NAFLD genetics: From new variants to the clinic. J Hepatol. 2020;72:1196–1209. doi: 10.1016/j.jhep.2020.02.020. doi: 10.1016/j.jhep.2020.02.020. Available from: [DOI] [PubMed] [Google Scholar]
  • 22.Uebanso T, Ohnishi A, Kitayama R, Yoshimoto A, Nakahashi M, Shimohata T, et al. Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice. Nutrients. 2017;9:560. doi: 10.3390/nu9060560. doi: 10.3390/nu9060560. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Vartak N, Damle-Vartak A, Richter B, Dirsch O, Dahmen U, Hammad S, et al. Cholestasis-induced adaptive remodeling of interlobular bile ducts. Hepatology. 2016;63:951–964. doi: 10.1002/hep.28373. doi: 10.1002/hep.28373. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20. doi: 10.1038/nrgastro.2017.109. doi: 10.1038/nrgastro.2017.109. Available from: [DOI] [PubMed] [Google Scholar]

Articles from EXCLI Journal are provided here courtesy of Leibniz Research Centre for Working Environment and Human Factors

RESOURCES