Abstract
低强度脉冲超声(LIPUS)是临床常见的物理治疗手段之一,可用于促进骨折愈合以及治疗陈旧性骨不连。局部血管、神经和骨组织密切相关、互相影响,是骨组织再生的重要影响因素。近年来越来越多的数据表明LIPUS不仅能作用于成骨细胞、破骨细胞、间充质干细胞等发挥促成骨效应,还可通过其对血管、神经的作用对骨组织愈合与再生产生一定的积极影响。本文从LIPUS对骨组织的直接作用和LIPUS通过促进血管及神经再生对骨组织的间接作用2个方面,就LIPUS在骨组织再生方面相关分子机制的最新研究进展作一综述,为LIPUS治疗骨相关疾病提供新的思路。
Keywords: 低强度脉冲超声, 骨组织再生, 血管生成, 神经再生
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a common physical therapy to accelerate the healing of bone fracture and treat delayed union of bone fracture. Vessels, nerves, and bone tissue are essential constituents of bone system. Recently, increasing evidence has been revealed that LIPUS can not only promote bone regeneration by directly regulating osteoblasts, osteoblasts, mesenchymal stem cells, but also have a positive impact on the repair of bone healing through vessels and nerves. Thus, we reviewed and summarized the latest published literature about the molecular mechanism for the effects of LIPUS on bone regeneration, which might offer a promising therapy for bone-related diseases.
Keywords: low-intensity pulsed ultrasound, bone regeneration, angiogenesis, nerve regeneration
超声作为机械能量中的一种,可传入体内产生独特的生物学效应,不同强度、频率的超声广泛应用于医学诊断与治疗中。由于高强度超声能在组织中产生大量热量,可能会损伤器官、组织和细胞,低强度脉冲超声(low-intensity pulsed ultrasound,LIPUS)一般被认为既不产生热损伤也不具有破坏性[1],在医学各领域尤其是骨组织修复与再生领域表现出了一定的应用潜力。以往研究多基于LIPUS对骨折愈合的影响,近年来针对LIPUS在骨组织再生方面的研究有较大进展,如在牵张成骨、骨坏死、骨缺损修复、牙周组织再生等模型中,LIPUS也表现出了积极效应。
由于LIPUS以非侵入方式通过软组织传递到骨骼,在此过程中各种类型的细胞相互作用并提供适当水平的生物活性分子,将机械信号转化为生物学信号后发挥作用,因此LIPUS促进骨组织再生所涉及的分子机制较为复杂。越来越多的数据表明LIPUS不仅可能作用于成骨细胞、破骨细胞、间充质干细胞(mesenchymal stem cell,MSC)等直接促进成骨,还可通过其对血管、神经的作用对骨组织愈合与再生产生一定的积极影响,本文就这方面的最新研究进展作一综述。
1. LIPUS可促进骨组织修复与再生
临床前实验已经证实LIPUS参与了骨组织修复与再生过程中的一系列生物学反应,如血管生成、软骨形成、骨重塑等[2]–[3]。比如,在大鼠创伤性椎体骨折模型中,LIPUS通过增加软骨形成、诱导成骨细胞成骨以及H型微血管的形成,从而加速创伤性椎体骨折愈合[4];通过诱导成骨和新生血管形成,LIPUS也可以促进类固醇相关骨坏死兔模型的骨组织修复再生[5];此外,LIPUS还能促进大鼠颅骨缺损处的骨再生,这与成骨细胞增殖的显著增加有关[6]等等。在21世纪初,LIPUS就已被美国食品药品监督管理局批准应用于临床治疗新鲜骨折愈合和陈旧性骨不连[7]。
LIPUS不仅可单独作用,与其他治疗手段结合时可发挥更积极的影响。比如LIPUS结合多孔支架对骨再生有着更强大的促进作用,可能成为治疗骨缺损的新方法[8];LIPUS+自体浓缩骨髓移植作为一种新开发的关节保存手术,对股骨头坏死患者具有一定安全性,并可能有效促进新骨形成[9];LIPUS和生物可降解镁材料骨植入物结合应用,可以极大促进植入物周围骨再生,提高相应的骨诱导性、生物相容性和生物安全性[10];LIPUS和引导组织再生术(guided tissue regeneration,GTR)同时应用于牙槽骨缺损处,能促进更多骨生成,因此在牙周组织修复领域具有一定的潜在应用前景,但其有效性尚需进一步的临床试验证实[11]。
2. LIPUS促进骨组织再生的分子机制
2.1. LIPUS与成骨细胞
多项研究数据表明,LIPUS对成骨细胞增殖、活化及矿化有积极作用,这可能是音猬因子(sonic hedgehog,SHH)信号通路上调所致,抑制SHH通路降低了成骨细胞的迁移、增殖和活化能力,并阻碍了LIPUS的治疗效果[12]–[13]。Miyasaka等[14]发现,骨形态发生蛋白(bone morphogenetic protein,BMP)信号通路作为重要的成骨相关信号通路,可被LIPUS诱导激活;当BMP信号途径被抑制时,LIPUS则刺激Smad1磷酸化来抑制热休克蛋白(heat-shock protein,HSP)27、上调HSP90水平,引起成骨细胞活化和成骨信号转导。LIPUS也可以作用于成熟成骨细胞,使核因子κB受体活化因子配体(receptor activator of nuclear factor κB ligand,RANKL)的表达明显升高,激活RANKL信号通路,进而激活下游趋化因子单核细胞趋化蛋白-1和巨噬细胞炎症蛋白-1β的产生,调节其活化和矿化[15]。
此外,LIPUS还可通过成骨细胞膜上P2X7受体诱导三磷酸腺苷(adenosine triphosphate,ATP)的释放及细胞分化,ATP作为机械刺激反应中的关键介质能促进骨形成。Manaka等[16]证实,这是一条独立于碱性磷酸酶(alkaline phosphatase,ALP)活化信号通路以外的转导途径。
对于成骨前体细胞,LIPUS刺激可以令其产生活性氧以激活丝裂原活化蛋白激酶通路,从而导致细胞活力显著增加[17];另外LIPUS可以加速成骨前体细胞对钙和磷酸盐的摄取从而促进其矿化[18]。Tabuchi等[19]则首次证实,在小鼠成骨前体细胞中,有许多基因对LIPUS刺激有反应,比如与骨形态相关的Dmp1、Fbn1、Igf2、Lum、Mmp13和Thbs1以及参与成骨细胞发育和/或分化的Cd200、Dmp1、Igf2和Nr4a1等基因,在被LIPUS刺激后会发生上调,从而降低成骨细胞分化的Id1、Id2、Id3等相关基因,使其发生下调。上述研究结果表明,LIPUS可能通过直接调节成骨细胞基因表达,或调控不同信号通路来影响成骨相关细胞的增殖、活化及矿化,提示LIPUS的作用机制可能涉及多个信号调控网络。
2.2. LIPUS与破骨细胞
破骨细胞也是骨形成过程中一种不可或缺的细胞,与成骨细胞一起共同调控骨组织代谢,在骨重建塑形过程中起重要作用。Suzuki等[20]研究了成骨细胞和破骨细胞在LIPUS刺激下的生物学行为,结果显示,破骨细胞标志物如抗酒石酸酸性磷酸酶、组织蛋白酶K表达降低,而成骨细胞标志物如骨钙素、Runt相关转录因子2(runt-related transcription factor 2,Runx2)等表达增加,破骨细胞凋亡相关基因由LIPUS处理后上调,表明LIPUS可加速破骨细胞凋亡。Hanmoto等[21]研究表明,破骨细胞内核因子κB受体活化因子/RANKL信号通路在LIPUS刺激下被适度激活,影响破骨细胞活性进而诱导骨再生。此外,LIPUS也可能通过抑制ERK-c-Fos-NFATC1级联信号通路,有效地抑制破骨细胞分化和破骨细胞特异性基因表达[22]。综合近年来研究数据可见,关于LIPUS对骨组织再生影响的报道大多集中在成骨细胞的分化、增殖及基因表达调控上,对破骨细胞等其他骨相关细胞研究较少,且LIPUS作用于破骨细胞的信号转导途径尚未完全阐明,其后的相关研究可多关注破骨细胞对不同LIPUS治疗参数(如频率和强度)的反应以及其中潜在的细胞分子机制。
2.3. LIPUS与MSC
MSC可分化为多种细胞类型,如脂肪细胞和成骨细胞。MSC成脂和成骨向分化的严格控制对于骨再生至关重要[23],机械刺激是调节MSC分化的关键因素之一。LIPUS作为一种物理机械刺激,可能通过降低过氧化物酶体增殖剂激活受体γ2(peroxisome proliferator-activated receptor γ2,Pparg2)和脂肪酸结合蛋白4的基因表达、下调Pparg2的磷酸化水平,从而抑制MSC向脂肪细胞分化[24];同时LIPUS促进MSC的成骨向分化,表现为诱导OCN、Runx2、ALP、COL1等mRNA的表达、增加细胞钙化,这可能是通过激活RhoA/ROCK-Cot/Tpl2-MEK-ERK信号通路实现的[24]–[25]。另外He等[26]研究显示,LIPUS可有效促进小鼠胚胎来源的MSC C3H10T1/2细胞从静止期进入生长/分裂期,增强细胞增殖从而促进骨缺损愈合,其机制可能与Bmi-1基因表达上调有关。
对于骨髓间充质干细胞(bone mesenchymal stem cell,BMSC)来说,细胞间间隙连接在LIPUS激活BMSC的过程中具有潜在作用[27]。另一方面,BMSC的迁移能力对骨再生也至关重要。Xiao等[28]研究证实,LIPUS刺激能够通过上调趋化因子受体CXCR4和CCR-2、上调整合素-1β来激活并改善BMSC的迁移。因此,LIPUS可能通过刺激MSC成骨向分化、增加细胞增殖并抑制其成脂向分化、活化BMSC等,发挥对骨组织修复再生的积极效应,有望成为骨组织工程的潜在辅助治疗手段之一。
3. LIPUS促进血管生成与骨组织再生
血管与骨组织之间存在着密切且复杂的偶联关系,从组织结构上看,血管与成骨相关细胞紧密分布,尤其在骨再生区域,血管生成对骨折愈合及预后十分关键[29]–[30]。Katano等[31]研究发现,LIPUS可促进软骨内成骨从而缩短骨折愈合期,这一过程血管内皮细胞向新生骨组织处迁移,愈伤组织周围的血管内皮生长因子(vascular endothelial growth factor,VEGF)表达和微血管新生显着增加。Cheung等[32]应用骨质疏松大鼠模型也证实了,LIPUS可以通过上调血管生成相关基因表达、增加血管生成和愈伤组织重塑,来加速骨质疏松性骨折的愈合。另一项体内研究[33]则观察了LIPUS在1型糖尿病大鼠股骨骨折模型中的应用效果,结果表明,LIPUS干预后的糖尿病大鼠骨折部位血管密度较正常对照大鼠及无LIPUS干预的糖尿病大鼠显著增加,且此效应与VEGF生成的显着增加有关。
最新一项随机对照双盲临床试验[34]表明,针对截骨术后腓骨延迟愈合的患者进行LIPUS干预,与对照组相比,LIPUS治疗组患者骨愈合部位的血管体积密度显著增加,从而增加新生骨体积。体外实验[35]–[36]则证实,LIPUS刺激可引起人血管内皮细胞中包括VEGF信号传导和局灶性黏连途径等1 050个基因发生改变。综上,可以推测LIPUS不仅能通过复杂的信号分子机制作用于成骨细胞、破骨细胞、MSC等直接调控骨代谢,还可能通过局部微循环改建间接对骨组织再生产生积极影响,且此过程可能与VEGF及其相关信号转导途径相关,是否涉及其他分子机制则需深入研究。
4. LIPUS促进周围感觉神经再生与骨组织再生
近年来研究发现,周围感觉神经对骨再生起重要的调控作用,骨组织活力状态与感觉神经分布密度相关,正常生理状态下,骨代谢活跃的区域感觉神经分布密集,而阻断感觉神经支配可导致骨组织密度和形态学改变[37],如失下牙槽神经后可引起严重的下颌骨病理改变[38]。
LIPUS对感觉神经损伤后修复再生存在一定积极影响,除可有效促进雪旺细胞增殖和轴突再髓鞘化外[39],还可能诱导多能干细胞来源的神经嵴干细胞向神经细胞分化[40]–[41],加速神经修复再生。另外有研究[42]提示,LIPUS可上调周围神经系统中神经营养因子-3和脑源性神经营养因子的mRNA及相应基因表达,而这些因子对骨组织再生起着积极作用。
在骨代谢活跃的区域,降钙素基因相关肽(calcitonin gene-related peptide,CGRP)阳性感觉神经纤维分布密度较高。Zhou等[43]报道在脊柱融合动物模型中,LIPUS促进异位成骨的同时,CGRP阳性感觉神经纤维快速增加,提示LIPUS可能通过CGRP阳性感觉神经支配来促进成骨。Lam等[44]报道在大鼠坐骨神经切除后,LIPUS不能促进其胫骨骨折愈合,而神经存在时LIPUS超声实验组表现出更快更成熟的愈合修复,表明完整的神经分布可能在LIPUS促进骨折愈合中发挥重要作用。另有研究[38]也同样证实,LIPUS可以显著改善由神经损伤导致的骨质改变,但只发生在神经可愈合的情况下;当神经无法愈合时,LIPUS并不能促进骨组织修复与再生。
上述研究结果提示,LIPUS具有促进神经再生的潜力,主要表现为刺激雪旺细胞增殖来促进轴突再生和髓鞘化、增加感觉神经纤维的数量和密度等来加速外周神经损伤后修复,而完整的神经分布在骨组织修复与再生中可能起重要作用。目前关于LIPUS在促进神经与骨组织再生平衡中作用机制的研究尚不深入,需进一步探索挖掘,但仍为LIPUS的临床应用提供了新的思路。
Funding Statement
[基金项目] 国家自然科学基金(81500895,81571008)
Supported by: The National Natural Science Foundation of China (81500895, 81571008).
Footnotes
利益冲突声明:作者声明本文无利益冲突。
References
- 1.Yang MH, Lim KT, Choung PH, et al. Application of ultrasound stimulation in bone tissue engineering[J] Int J Stem Cells. 2010;3(2):74–79. doi: 10.15283/ijsc.2010.3.2.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Harrison A, Lin S, Pounder N, et al. Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair[J] Ultrasonics. 2016;70:45–52. doi: 10.1016/j.ultras.2016.03.016. [DOI] [PubMed] [Google Scholar]
- 3.Bashardoust Tajali S, Houghton P, MacDermid JC, et al. Effects of low-intensity pulsed ultrasound therapy on fracture healing: a systematic review and meta-analysis[J] Am J Phys Med Rehabil. 2012;91(4):349–367. doi: 10.1097/PHM.0b013e31822419ba. [DOI] [PubMed] [Google Scholar]
- 4.Wu SY, Xu XM, Sun JC, et al. Low-intensity pulsed ultrasound accelerates traumatic vertebral fracture healing by coupling proliferation of type H microvessels[J] J Ultrasound Med. 2018;37(7):1733–1742. doi: 10.1002/jum.14525. [DOI] [PubMed] [Google Scholar]
- 5.Zhu HX, Cai XZ, Lin T, et al. Low-intensity pulsed ultrasound enhances bone repair in a rabbit model of steroid-associated osteonecrosis[J] Clin Orthop Relat Res. 2015;473(5):1830–1839. doi: 10.1007/s11999-015-4154-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Jung YJ, Kim R, Ham HJ, et al. Focused low-intensity pulsed ultrasound enhances bone regeneration in rat calvarial bone defect through enhancement of cell proliferation[J] Ultrasound Med Biol. 2015;41(4):999–1007. doi: 10.1016/j.ultrasmedbio.2014.11.008. [DOI] [PubMed] [Google Scholar]
- 7.Rubin C, Bolander M, Ryaby JP, et al. The use of low-intensity ultrasound to accelerate the healing of fractures[J] J Bone Joint Surg Am. 2001;83(2):259–270. doi: 10.2106/00004623-200102000-00015. [DOI] [PubMed] [Google Scholar]
- 8.Feng LF, Liu XH, Cao HJ, et al. A comparison of 1- and 3.2-MHz low-intensity pulsed ultrasound on osteogenesis on porous titanium alloy scaffolds: an in vitro and in vivo study[J] J Ultrasound Med. 2019;38(1):191–202. doi: 10.1002/jum.14683. [DOI] [PubMed] [Google Scholar]
- 9.Mishima H, Sugaya H, Yoshioka T, et al. The safety and efficacy of combined autologous concentrated bone marrow grafting and low-intensity pulsed ultrasound in the treatment of osteonecrosis of the femoral head[J] Eur J Orthop Surg Traumatol. 2016;26(3):293–298. doi: 10.1007/s00590-016-1752-4. [DOI] [PubMed] [Google Scholar]
- 10.Zu HY, Yi XT, Zhao DW. Transcriptome sequencing analysis reveals the effect of combinative treatment with low-intensity pulsed ultrasound and magnesium ions on hFOB1. 19 human osteoblast cells[J] Mol Med Rep. 2018;18(1):749–762. doi: 10.3892/mmr.2018.9006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Wang YJ, Qiu Y, Li J, et al. Low-intensity pulsed ultrasound promotes alveolar bone regeneration in a periodontal injury model[J] Ultrasonics. 2018;90:166–172. doi: 10.1016/j.ultras.2018.06.015. [DOI] [PubMed] [Google Scholar]
- 12.Zhou XY, Xu XM, Wu SY, et al. Low-intensity pulsed ultrasound promotes spinal fusion and enhances migration and proliferation of MG63s through sonic hedgehog signaling pathway[J] Bone. 2018;110:47–57. doi: 10.1016/j.bone.2018.01.025. [DOI] [PubMed] [Google Scholar]
- 13.Matsumoto K, Shimo T, Kurio N, et al. Low-intensity pulsed ultrasound stimulation promotes osteoblast differentiation through hedgehog signaling[J] J Cell Biochem. 2018;119(6):4352–4360. doi: 10.1002/jcb.26418. [DOI] [PubMed] [Google Scholar]
- 14.Miyasaka M, Nakata H, Hao J, et al. Low-intensity pulsed ultrasound stimulation enhances heat-shock protein 90 and mineralized nodule formation in mouse Calvaria-derived osteoblasts[J] Tissue Eng Part A. 2015;21(23/24):2829–2839. doi: 10.1089/ten.tea.2015.0234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Bandow K, Nishikawa Y, Ohnishi T, et al. Low-intensity pulsed ultrasound (LIPUS) induces RANKL, MCP-1, and MIP-1beta expression in osteoblasts through the angiotensin Ⅱ type 1 receptor[J] J Cell Physiol. 2007;211(2):392–398. doi: 10.1002/jcp.20944. [DOI] [PubMed] [Google Scholar]
- 16.Manaka S, Tanabe N, Kariya T, et al. Low-intensity pulsed ultrasound-induced ATP increases bone formation via the P2X7 receptor in osteoblast-like MC3T3-E1 cells[J] FEBS Lett. 2015;589(3):310–318. doi: 10.1016/j.febslet.2014.12.013. [DOI] [PubMed] [Google Scholar]
- 17.Kaur H, Siraki AG, Uludağ H, et al. Role of reactive oxygen species during low-intensity pulsed ultrasound application in MC-3T3 E1 pre-osteoblast cell culture[J] Ultrasound Med Biol. 2017;43(11):2699–2712. doi: 10.1016/j.ultrasmedbio.2017.07.002. [DOI] [PubMed] [Google Scholar]
- 18.Tassinary JAF, Lunardelli A, Basso BS, et al. Low-intensity pulsed ultrasound (LIPUS) stimulates mineralization of MC3T3-E1 cells through calcium and phosphate uptake[J] Ultrasonics. 2018;84:290–295. doi: 10.1016/j.ultras.2017.11.011. [DOI] [PubMed] [Google Scholar]
- 19.Tabuchi Y, Sugahara Y, Ikegame M, et al. Genes responsive to low-intensity pulsed ultrasound in MC3T3-E1 preosteoblast cells[J] Int J Mol Sci. 2013;14(11):22721–22740. doi: 10.3390/ijms141122721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Suzuki N, Hanmoto T, Ikegame M, et al. 9. effects of low-intensity pulsed ultrasound (LIPUS) on osteoclasts and osteoblasts: analysis using an assay system with fish scale as a model of bone[J] J Orthop Trauma. 2016;30(8):S4. doi: 10.1097/01.bot.0000489982.40329.52. [DOI] [PubMed] [Google Scholar]
- 21.Hanmoto T, Tabuchi Y, Ikegame M, et al. Effects of low-intensity pulsed ultrasound on osteoclasts: analysis with goldfish scales as a model of bone[J] Biomed Res. 2017;38(1):71–77. doi: 10.2220/biomedres.38.71. [DOI] [PubMed] [Google Scholar]
- 22.Meng JH, Hong JQ, Zhao CC, et al. Low-intensity pulsed ultrasound inhibits RANKL-induced osteoclast formation via modulating ERK-c-Fos-NFATc1 signaling cascades[J] Am J Transl Res. 2018;10(9):2901–2910. [PMC free article] [PubMed] [Google Scholar]
- 23.Verma S, Rajaratnam JH, Denton J, et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis[J] J Clin Pathol. 2002;55(9):693–698. doi: 10.1136/jcp.55.9.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Kusuyama J, Bandow K, Shamoto M, et al. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway[J] J Biol Chem. 2014;289(15):10330–10344. doi: 10.1074/jbc.M113.546382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Costa V, Carina V, Fontana S, et al. Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation[J] J Cell Physiol. 2018;233(2):1558–1573. doi: 10.1002/jcp.26058. [DOI] [PubMed] [Google Scholar]
- 26.He RX, Zhou WC, Zhang Y, et al. Combination of low-intensity pulsed ultrasound and C3H10T1/2 cells promotes bone-defect healing[J] Int Orthop. 2015;39(11):2181–2189. doi: 10.1007/s00264-015-2898-0. [DOI] [PubMed] [Google Scholar]
- 27.Sena K, Angle SR, Kanaji A, et al. Low-intensity pulsed ultrasound (LIPUS) and cell-to-cell communication in bone marrow stromal cells[J] Ultrasonics. 2011;51(5):639–644. doi: 10.1016/j.ultras.2011.01.007. [DOI] [PubMed] [Google Scholar]
- 28.Xiao WX, Xu Q, Zhu ZM, et al. Different performances of CXCR4, integrin-1β and CCR-2 in bone marrow stromal cells (BMSCs) migration by low-intensity pulsed ultrasound stimulation[J] Biomedizinische Tech. 2017;62(1):89–95. doi: 10.1515/bmt-2015-0166. [DOI] [PubMed] [Google Scholar]
- 29.Maes C, Goossens S, Bartunkova S, et al. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones[J] EMBO J. 2010;29(2):424–441. doi: 10.1038/emboj.2009.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels[J] Dev Cell. 2010;19(2):329–344. doi: 10.1016/j.devcel.2010.07.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Katano M, Naruse K, Uchida K, et al. Low intensity pulsed ultrasound accelerates delayed healing process by reducing the time required for the completion of endochondral ossification in the aged mouse femur fracture model[J] Exp Anim. 2011;60(4):385–395. doi: 10.1538/expanim.60.385. [DOI] [PubMed] [Google Scholar]
- 32.Cheung WH, Chow SK, Sun MH, et al. Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing[J] Ultrasound Med Biol. 2011;37(2):231–238. doi: 10.1016/j.ultrasmedbio.2010.11.016. [DOI] [PubMed] [Google Scholar]
- 33.Martinez de Albornoz P, Khanna A, Longo UG, et al. The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing[J] Br Med Bull. 2011;100:39–57. doi: 10.1093/bmb/ldr006. [DOI] [PubMed] [Google Scholar]
- 34.Korstjens CM, Rutten S, Nolte PA, et al. Low-intensity pulsed ultrasound increases blood vessel size during fracture healing in patients with a delayed-union of the osteotomized fibula[J] Histol Histopathol. 2018;33(7):737–746. doi: 10.14670/HH-11-972. [DOI] [PubMed] [Google Scholar]
- 35.Hanawa K, Ito K, Aizawa K, et al. Low-intensity pulsed ultrasound induces angiogenesis and ameliorates left ventricular dysfunction in a porcine model of chronic myocardial ischemia[J] PLoS One. 2014;9(8):e104863. doi: 10.1371/journal.pone.0104863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Shindo T, Ito K, Ogata T, et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates left ventricular dysfunction in a mouse model of acute myocardial infarction[J] Arterioscler Thromb Vasc Biol. 2016;36(6):1220–1229. doi: 10.1161/ATVBAHA.115.306477. [DOI] [PubMed] [Google Scholar]
- 37.Heffner MA, Anderson MJ, Yeh GC, et al. Altered bone development in a mouse model of peripheral sensory nerve inactivation[J] J Musculoskelet Neuronal Interact. 2014;14(1):1–9. [PMC free article] [PubMed] [Google Scholar]
- 38.杨 博, 吴 庆庆, 张 亮, et al. 低频脉冲超声对失下牙槽神经后下颌骨病理改变修复的影响[J] 中国医学科学院学报. 2017;39(2):215–224. doi: 10.3881/j.issn.1000-503X.2017.02.009. [DOI] [PubMed] [Google Scholar]; Yang B, Wu QQ, Zhang L, et al. Effect of low-intensity pulsed ultrasound on the mandibular remodeling following inferior alveolar nerve transection[J] Acta Acad Med Sinic. 2017;39(2):215–224. doi: 10.3881/j.issn.1000-503X.2017.02.009. [DOI] [PubMed] [Google Scholar]
- 39.Jiang WL, Wang YX, Tang J, et al. Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat[J] Sci Rep. 2016;6:22773. doi: 10.1038/srep22773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Lv Y, Nan PP, Chen GB, et al. In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells-derived neural crest stem cells[J] Biotechnol Lett. 2015;37(12):2497–2506. doi: 10.1007/s10529-015-1939-5. [DOI] [PubMed] [Google Scholar]
- 41.Xia B, Chen GB, Zou Y, et al. Low-intensity pulsed ultrasound combination with induced pluripotent stem cells-derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery[J] J Tissue Eng Regen Med. 2019;13(4):625–636. doi: 10.1002/term.2823. [DOI] [PubMed] [Google Scholar]
- 42.Zhang H, Lin X, Wan H, et al. Effect of low-intensity pulsed ultrasound on the expression of neurotrophin-3 and brain-derived neurotrophic factor in cultured Schwann cells[J] Microsurgery. 2009;29(6):479–485. doi: 10.1002/micr.20644. [DOI] [PubMed] [Google Scholar]
- 43.Zhou XY, Xu XM, Wu SY, et al. Low-intensity pulsed ultrasound-induced spinal fusion is coupled with enhanced calcitonin gene-related peptide expression in rat model[J] Ultrasound Med Biol. 2017;43(7):1486–1493. doi: 10.1016/j.ultrasmedbio.2017.03.012. [DOI] [PubMed] [Google Scholar]
- 44.Lam WL, Guo X, Leung KS, et al. The role of the sensory nerve response in ultrasound accelerated fracture repair[J] J Bone Joint Surg Br. 2012;94(10):1433–1438. doi: 10.1302/0301-620X.94B10.29139. [DOI] [PubMed] [Google Scholar]
