Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Oct 17;56(9):1146–1148. doi: 10.1007/s10593-020-02785-3

Inline graphic Application of BF3·Et2O in the synthesis of cyclic organic peroxides (microreview)

Peter S Radulov 1, Ivan A Yaremenko 1,
PMCID: PMC7595082  PMID: 33144737

Abstract

graphic file with name 10593_2020_2785_Figb_HTML.jpg

Inline graphic A summary of recent applications of Lewis acid BF3·Et2O as a catalyst in the synthesis of cyclic organic peroxides is presented.

graphic file with name 10593_2020_2785_Figd_HTML.jpg


Introduction Inline graphic

Medicinal chemists and pharmacologists recognize cyclic peroxides as an uncharted chemical space for drug design. Cyclic peroxides exhibit antiparasitic,1 anticancer,2 antifungal,3 and antiviral4 activities. Ethanolic extract of Artemisia annua L. possesses antiviral activity against SARS-associated coronavirus.5 Such properties have prompted the development of convenient and efficient methods for the synthesis of cyclic peroxides related to natural product – artemisinin. Brønsted acids are mainly used in the synthesis of cyclic peroxides.6 However, these acids can lead not only to the formation of peroxides, but also promote their acid-catalyzed rearrangement.7 Lewis acids disclose approaches toward synthesis of cyclic peroxides, which cannot be obtained using Brønsted acids.8 Among Lewis acids, nonobvious BF3·Et2O proved to be one of the most interesting tools for the selective synthesis of peroxides. This microreview describes recent achievements related to the application of BF3·Et2O as a catalyst, which opens an efficient and atom-economical access to 1,2-dioxolanes, 1,2,4-trioxolanes, 1,2-dioxanes, derivatives of β- and γ-peroxylactones, 1,2,4-trioxanes, 1,2,4,5-tetraoxanes, and 1,2,4,5,7,8-hexaoxonanes.

graphic file with name 10593_2020_2785_Figf_HTML.jpg

Synthesis of 1,2-dioxolanes Inline graphic

Substituted 1,2-dioxolanes were synthesized from 1,2,4- trioxolanes and olefins using BF3·Et2O as a catalyst in CH2Cl2 at 0°C. In the presence of BF3, the 1,2,4-trioxolane (ozonide) cycle decomposed with the formation of BF3-coordinated carbonyl oxide, which attacked the corresponding alkene to yield 1,2-dioxolane.9 Inline graphic

graphic file with name 10593_2020_2785_Figi_HTML.jpg

Synthesis of 1,2,4-trioxolanes Inline graphic

An ozone-free method for the synthesis of 1,2,4-trioxolanes from 1,5-diketones and H2O2 was developed.10 In this case, BF3·Et2O promoted selective assembly of the ozonide cycle rather than its destruction mentioned above.9 Inline graphic

graphic file with name 10593_2020_2785_Figl_HTML.jpg

Inline graphicPeter S. Radulov graduated from the Mendeleev University of Chemical Technology of Russia in 2016. At present, he is a graduate student under the supervision of Prof. A. O. Terent'ev (N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences). His research interest is the chemistry of organic peroxides.

Inline graphicIvan A. Yaremenko received his PhD in organic chemistry in 2013 under the supervision of Prof. A. O. Terent’ev. At present, he is a Senior Researcher in the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences. His research interests are chemistry of organic peroxides, medicinal and agrochemistry.

Synthesis of 1,2-dioxanes Inline graphic

Peroxidation of acetal containing Michael acceptor fragment afforded 1,2-dioxane (nitro analog of plakoric acid). Urea–H2O2 complex (UHP) and BF3·Et2O in Et2O allowed nucleophilic substitution of only one methoxy group.11 Inline graphic

graphic file with name 10593_2020_2785_Figq_HTML.jpg

Synthesis of β-hydroperoxy- and β-alkoxy-β-peroxylactones Inline graphic

BF3·Et2O was used as effective catalyst for the synthesis of β-hydroperoxy-β-peroxylactones from β-keto esters, their silyl enol ethers, enol acetates, or cyclic acetals and H2O2.12

graphic file with name 10593_2020_2785_Figs_HTML.jpg

Furthermore, BF3·Et2O–UHP–alcohol system provided β-alkoxy-β-peroxylactones from β-keto esters.13

graphic file with name 10593_2020_2785_Figt_HTML.jpg

graphic file with name 10593_2020_2785_Figu_HTML.jpg

Synthesis of γ-hydroperoxy-γ-peroxylactones Inline graphic

Peroxidation of γ-keto esters under action of BF3·Et2O afforded γ-hydroperoxy-γ-peroxylactones in moderate to high yields. It should be noted that application of Brønsted acids as catalysts led to the formation of target peroxides in 15–24% yields.14 Inline graphic

graphic file with name 10593_2020_2785_Figx_HTML.jpg

Synthesis of 1,2,4-trioxanes Inline graphic

BF3·Et2O-catalyzed peroxyacetalization of hydroperoxy alcohol with aldehydes or ketones provided 1,2,4-trioxanes in high yields.15

graphic file with name 10593_2020_2785_Figz_HTML.jpg

Bridged 1,2,4-trioxanes were synthesized in low yields via intramolecular cyclization of peroxyketals under action of BF3·Et2O.16 Such an approach could disclose access to new bioactive peroxides.

graphic file with name 10593_2020_2785_Figaa_HTML.jpg

graphic file with name 10593_2020_2785_Figab_HTML.jpg

Synthesis of 1,2,4,5-tetraoxanes Inline graphic

Interaction of gem-bishydroperoxides and acetals in the presence of BF3·Et2O is a versatile synthetic route toward substituted unsymmetrical 1,2,4,5-tetraoxanes.17

graphic file with name 10593_2020_2785_Figad_HTML.jpg

BF3·Et2O was also used for the synthesis of bridged 1,2,4,5-tetraoxanes from β-diketones.18

graphic file with name 10593_2020_2785_Figae_HTML.jpg

graphic file with name 10593_2020_2785_Figaf_HTML.jpg

Synthesis of tricyclic monoperoxides Inline graphic

Peroxidation of β,δ'-triketones in the presence of BF3·Et2O led to the formation of tricyclic monoperoxides in moderate to excellent yields. Despite the presence of three carbonyl groups, peroxidation was selective.19 Inline graphic

graphic file with name 10593_2020_2785_Figai_HTML.jpg

Synthesis of 1,2,4,5,7,8-hexaoxonanes Inline graphic

A method for the synthesis of 1,2,4,5,7,8-hexaoxonanes based on BF3·Et2O-catalyzed reaction of acetals and 1,1'-peroxybis(1-hydroperoxycycloalkanes) was developed. This approach significantly expanded the structural diversity of 1,2,4,5,7,8-hexaoxonanes and, in most cases, permitted to prepare these compounds in high yields.20 Inline graphic

graphic file with name 10593_2020_2785_Figal_HTML.jpg

Acknowledgments

Authors are grateful for the support of the Scientific Schools Development Program by the N. D. Zelinsky Institute of Organic Chemistry.

Footnotes

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2020, 56(9), 1146–1148

References

  • 1.(a) Robert, A.; Dechy-Cabaret, O.; Cazelles, J.; Meunier, B. Acc. Chem. Res.2002, 35, 167. (b) Keiser, J.; Ingram, K.; Vargas, M.; Chollet, J.; Wang, X.; Dong, Y.; Vennerstrom, J. L. Antimicrob. Agents Chemother.2012, 56, 1090. (c) Ingram, K.; Yaremenko, I. A.; Krylov, I. B.; Hofer, L.; Terent'ev, A. O.; Keiser, J. J. Med. Chem.2012, 55, 8700. (d) Wang, X.; Dong, Y.; Wittlin, S.; Charman, S. A.; Chiu, F. C. K.; Chollet, J.; Katneni, K.; Mannila, J.; Morizzi, J.; Ryan, E.; Scheurer, C.; Steuten, J.; Santo Tomas, J.; Snyder, C.; Vennerstrom, J. L. J. Med. Chem.2013, 56, 2547. (e) Cowan, N.; Yaremenko, I. A.; Krylov, I. B.; Terent'ev, A. O.; Keiser, J. Bioorg. Med. Chem.2015, 23, 5175.
  • 2.(a) Coghi, P.; Yaremenko, I. A.; Prommana, P.; Radulov, P. S.; Syroeshkin, M. A.; Wu, Y. J.; Gao, J. Y.; Gordillo, F. M.; Mok, S.; Wong, V. K. W.; Uthaipibull, C.; Terent’ev, A. O. ChemMedChem2018, 13, 2249. (b) Yaremenko, I. A.; Coghi, P.; Prommana, P.; Qiu, C.-L.; Radulov, P. S.; Qu, Y.-Q.; Belyakova, Yu. Yu.; Zanforlin, E.; Kokorekin, V. A.; Wu, Y. Y. J.; Fleury, F.; Uthaipibull, C.; Wong, V. K. W.; Terent'ev, A. O. ChemMedChem2020, 15, 1118.
  • 3.Yaremenko IA, Radulov PS, Belyakova YY, Demina AA, Fomenkov DI, Barsukov DV, Subbotina IR, Fleury F, Terent’ev AO. Chem.–Eur. J. 2020;26:4734. doi: 10.1002/chem.201904555. [DOI] [PubMed] [Google Scholar]
  • 4.(a) Çapcı, A.; Lorion, M. M.; Mai, C.; Hahn, F.; Hodek, J.; Wangen, C.; Weber, J.; Marschall, M.; Ackermann, L.; Tsogoeva, S. B. Chem.Eur. J.2020, 26, 12019. (b) Karagöz, A. C.; Reiter, C.; Seo, E.-J.; Gruber, L.; Hahn, F.; Leidenberger, M.; Klein, V.; Hampel, F.; Friedrich, O.; Marschall, M.; Kappes, B.; Efferth, T.; Tsogoeva, S. B. Bioorg. Med. Chem.2018, 26, 3610. [DOI] [PubMed]
  • 5.(a) Li, S.-Y.; Chen, C.; Zhang, H.-Q.; Guo, H.-Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.-N.; Yu, J.; Xiao, P.-G.; Li, R.-S.; Tan, X. Antiviral Res.2005, 67, 18. (b) Yang, Y.; Islam, M. S.; Wang, J.; Li, Y.; Chen, X. Int. J. Biol. Sci.2020, 16, 1708.
  • 6.(a) Bischoff, C.; Rieche, A. Justus Liebigs Ann. Chem.1969, 725, 87. (b) McCullough, K. J.; Ushigoe, Y.; Tanaka, S.; Masuyama, A.; Nojima, M. J. Chem. Soc., Perkin Trans. 11998, 3053. (c) Terent'ev, A. O.; Borisov, D. A.; Chernyshev, V. V.; Nikishin, G. I. J. Org. Chem.2009, 74, 3335. (d) Terent'ev, A. O.; Yaremenko, I. A.; Chernyshev, V. V.; Dembitsky, V. M.; Nikishin, G. I. J. Org. Chem.2012, 77, 1833. (e) Yaremenko, I. A.; Radulov, P. S.; Medvedev, M. G.; Krivoshchapov, N. V.; Belyakova, Yu. Yu.; Korlyukov, A. A.; Ilovaisky, A. I.; Terent'ev, A. O.; Alabugin, I. V. J. Am. Chem. Soc.2020, 142, 14588. (f) Vil', V. A.; Yaremenko, I. A.; Fomenkov, D. I.; Levitsky, D. O.; Fleury, F.; Terent'ev, A. O. Chem. Heterocycl. Compd.2020, 56, 722. [Khim. Geterotsikl. Soedin.2020, 56, 722.]
  • 7.(a) Terent’ev, A. O.; Pastukhova, Z. Yu.; Yaremenko, I. A.; Novikov, R. A.; Demchuk, D. V.; Bruk, L. G.; Levitsky, D. O.; Fleury, F.; Nikishin, G. I. Tetrahedron2016, 72, 3421. (b) Chaudhari, M. B.; Chaudhary, A.; Kumar, V.; Gnanaprakasam, B. Org. Lett.2019, 21, 1617. (c) Chaudhari, M. B.; Jayan, K.; Gnanaprakasam, B. J. Org. Chem.2020, 85, 3374. (d) Ilovaisky, A. I.; Merkulova, V. M.; Vil', V. A.; Chernoburova, E. I.; Shchetinina, M. A.; Loguzov, S. D.; Dmitrenok, A. S.; Zavarzin, I. V.; Terent'ev, A. O. Eur. J. Org. Chem.2020, 402.
  • 8.(a) Dussault, P. H.; Zope, U. Tetrahedron Lett.1995, 36, 3655. (b) Jiang, H.; Chu, G.; Gong, H.; Qiao, Q. J. Chem. Res., Synop.1999, 288. (c) Radulov, P. S.; Belyakova, Yu. Yu.; Demina, A. A.; Nikishin, G. I.; Yaremenko, I. A.; Terent'ev, A. O. Russ. Chem. Bull.2019, 68, 1289. [Izv. Akad. Nauk, Ser. Khim.2019, 1289.] (d) Pinet, A.; Nguyen, T. L.; Bernadat, G.; Figadère, B.; Ferrié, L. Org. Lett.2019, 21, 4729. c Radulov, P. S.; Vil', V. A. Chem. Heterocycl. Compd.2020, 56, 299. [Khim. Geterotsikl. Soedin.2020, 56, 299.]
  • 9.(a) Miura, M.; Yoshida, M.; Nojima, M.; Kusabayashi, S. J. Chem. Soc., Chem. Commun.1982, 397. (b) Yoshida, M.; Miura, M.; Nojima, M.; Kusabayashi, S. J. Am. Chem. Soc.1983, 105, 6279.
  • 10.(a) dos Passos Gomes, G.; Yaremenko, I. A.; Radulov, P. S.; Novikov, R. A.; Chernyshev, V. V.; Korlyukov, A. A.; Nikishin, G. I.; Alabugin, I. V.; Terent'ev, A. O. Angew. Chem.2017, 129, 5037. (b) Yaremenko, I. A.; dos Passos Gomes, G.; Radulov, P. S.; Belyakova, Yu. Yu.; Vilikotskiy, A. E.; Vil', V. A.; Korlyukov, A. A.; Nikishin, G. I.; Alabugin, I. V.; Terent'ev, A. O. J. Org. Chem.2018, 83, 4402.
  • 11.Zhang Q, Jin H-X, Liu H-H, Wu Y-K. Chin. J. Chem. 2006;24:1190. doi: 10.1002/cjoc.200690222. [DOI] [Google Scholar]
  • 12.(a) Vil’, V. A.; dos Passos Gomes, G.; Bityukov, O. V.; Lyssenko, K. A.; Nikishin, G. I.; Alabugin, I. V.; Terent’ev, A. O. Angew. Chem., Int. Ed.2018, 57, 3372. (b) Vil', V. A.; dos Passos Gomes, G.; Ekimova, M. V.; Lyssenko, K. A.; Syroeshkin, M. A.; Nikishin, G. I.; Alabugin, I. V.; Terent'ev, A. O. J. Org. Chem.2018, 83, 13427.
  • 13.Vil’ VA, Barsegyan YA, Barsukov DV, Korlyukov AA, Alabugin IV, Terent'ev AO. Chem.–Eur. J. 2019;25:14460. doi: 10.1002/chem.201903752. [DOI] [PubMed] [Google Scholar]
  • 14.Vil’ VA, Barsegyan YA, Kuhn L, Ekimova MV, Semenov EA, Korlyukov AA, Terent'ev AO, Alabugin IV. Chem. Sci. 2020;11:5313. doi: 10.1039/D0SC01025A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Griesbeck AG, El-Idreesy TT, Fiege M, Brun R. Org. Lett. 2002;4:4193. doi: 10.1021/ol026916n. [DOI] [PubMed] [Google Scholar]
  • 16.Griesbeck AG, Blunk D, El-Idreesy TT, Raabe A. Angew. Chem., Int. Ed. 2007;46:8883. doi: 10.1002/anie.200701397. [DOI] [PubMed] [Google Scholar]
  • 17.(a) Terent’ev, A. O.; Kutkin, A. V.; Starikova, Z. A.; Antipin, M. Yu.; Ogibin, Yu. N.; Nikishin, G. I. Synthesis2004, 2356. (b) Hamann, H.-J.; Hecht, M.; Bunge, A.; Gogol, M.; Liebscher, J. Tetrahedron Lett.2011, 52, 107.
  • 18.Terent’ev AO, Borisov DA, Chernyshev VV, Nikishin GI. J. Org. Chem. 2009;74:3335. doi: 10.1021/jo900226b. [DOI] [PubMed] [Google Scholar]
  • 19.Terent’ev, A. O.; Yaremenko, I. A.; Vil', V. A.; Dembitsky, V. M.; Nikishin, G. I. Synthesis2013, 246.
  • 20.Terent’ev AO, Platonov MM, Sonneveld EJ, Peschar R, Chernyshev VV, Starikova ZA, Nikishin GI. J. Org. Chem. 2007;72:7237. doi: 10.1021/jo071072c. [DOI] [PubMed] [Google Scholar]

Articles from Chemistry of Heterocyclic Compounds are provided here courtesy of Nature Publishing Group

RESOURCES