ABSTRACT
Lung transplantation can potentially be a life-saving treatment for patients with non-resolving COVID-19 acute respiratory distress syndrome. Concerns limiting transplant include recurrence of SARS-CoV-2 infection in the allograft, technical challenges imposed by viral-mediated injury to the native lung, and potential risk for allograft infection by pathogens associated with ventilator-induced pneumonia in the native lung. Additionally, the native lung might recover, resulting in long-term outcomes preferable to transplant. Here, we report the results of the first two successful lung transplantation procedures in patients with non-resolving COVID-19 associated acute respiratory distress syndrome in the United States. We performed smFISH to detect both positive and negative strands of SARS-CoV-2 RNA in the explanted lung tissue, extracellular matrix imaging using SHIELD tissue clearance, and single cell RNA-Seq on explant and warm post-mortem lung biopsies from patients who died from severe COVID-19 pneumonia. Lungs from patients with prolonged COVID-19 were free of virus but pathology showed extensive evidence of injury and fibrosis which resembled end-stage pulmonary fibrosis. Single cell RNA-Seq of the explanted native lungs from transplant and paired warm post-mortem autopsies showed similarities between late SARS-CoV-2 acute respiratory distress syndrome and irreversible end-stage pulmonary fibrosis requiring lung transplantation. There was no recurrence of SARS-CoV-2 or pathogens associated with pre-transplant ventilator associated pneumonias following transplantation in either patient. Our findings suggest that some patients with severe COVID-19 develop fibrotic lung disease for which lung transplantation is the only option for survival.
Single sentence summary
Some patients with severe COVID-19 develop end-stage pulmonary fibrosis for which lung transplantation may be the only treatment.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.