Abstract
目的
探讨兰州市中老年人不同糖代谢状态与慢性肾脏疾病(CKD)的相关性。
方法
采用“REACTION”研究兰州地区的基线资料,随机抽取兰州市3个社区中40~75岁的符合条件的常住居民10038名为研究对象,根据其空腹血糖、负荷后2 h血糖和自报糖尿病分为正常糖耐量(NGT)组、糖调节受损(IGR)组和糖尿病(DM)组。分别用肾小球滤过率(eGFR)和尿白蛋白/肌酐比值(ACR)评价肾功能。采用协方差分析比较不同糖代谢状态下蛋白尿的患病率及eGFR的水平。采用Logistic回归分析探讨IGR和DM是否是蛋白尿和肾功能不全(RI)的危险因素。采用多元回归分析探讨eGFR随ACR增加的趋势。
结果
在整个研究人群中,蛋白尿、CKD和RI的患病率分别为26.2%、27.4%和2.5%。DM组蛋白尿、CKD和RI的患病率明显高于IGR组和NGT组(P均 < 0.05)。无论是否合并糖代谢异常,高血压患者蛋白尿、CKD及RI的患病率均明显高于血压正常者(P < 0.05)。随着CKD1期进展到CKD4期,高龄、DM病史、高血压病史、血脂异常病史、冠心病病史、DM、高血压及血脂异常人群的比例明显增加(P < 0.05)。IGR人群中,年龄、高血压、高甘油三酯(TG)血症与RI的患病风险呈正相关(OR分别为:1.113、1.904、2.608,P均 < 0.05)。在DM人群中,年龄、冠心病、肥胖、高TG血症及高LDL-C血症与RI的患病风险呈正相关(OR分别为:1.069、2.535、3.359、1.827、2.690,P均 < 0.05)。logistic回归分析显示:DM显著增加蛋白尿和RI的风险,OR分别为1.543(P=0.000)和1.446(P=0.005)。logistic回归分析及多元回归分析综合显示:虽然eGFR在DM和IGR患者中的恶化趋势相似,但IGR不是蛋白尿或RI的显著危险因素(OR=1.057,P=0.355;OR=0.918,P=0.614)。
结论
DM是蛋白尿及RI的显著危险因素,IGR不是蛋白尿及RI的显著危险因素。对于糖尿病、高血压、肥胖和心血管疾病患者,特别是老年人和女性,强烈建议筛查蛋白尿和eGFR,以预防终末期肾病。
Keywords: 不同糖代谢状态, 蛋白尿, 慢性肾脏疾病, 中老年人
Abstract
Objective
To explore the correlation of different glucose metabolism statues with chronic kidney disease (CKD) in middle-aged and elderly individuals in Lanzhou.
Methods
Based on the baseline data of REACTION Study in Lanzhou area, we randomly sampled 10 038 residents aged 40-75 years in 3 communities in Lanzhou, who were classified into normal glucose tolerance (NGT), impaired glucose regulation (IGR) and diabetes groups. The estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (ACR) were used to assess the renal function and albuminuria, respectively. Binary logistic regression was performed to analyze the contribution of the risk factors to CKD. Polynominal regression was used to determine the trends of eGFR with the increment of ACR.
Results
Among all the participants, the prevalences of albuminuria, CKD and renal insufficiency (RI) were 26.2%, 27.4% and 2.5%, respectively. The prevalence of albuminuria, CKD and RI were significantly higher in the diabetes group than in IGR and NGT groups (P < 0.05). In IGR group, age, hypertension, and hypertriglyceridemia were positively correlated with the risk of RI (OR: 1.113, 1.904, and 2.608, respectively; P < 0.05). In diabetes group, age, coronary heart disease, obesity, hypertriglyceridemia, and elevated LDL-C level were positively correlated with the risk of RI (OR: 1.069, 2.535, 3.359, 1.827, and 2.690, respectively; P < 0.05). Logistic regression analysis showed that diabetes mellitus significantly increased the risk of albuminuria (OR: 1.543, P=0.000) and RI (OR: 1.446, P=0.005). Logistic regression analysis and multivariate regression analysis showed that although the deterioration trends of eGFR were similar in diabetes group and IGR group, IGR was not a significant risk factor for albuminuria or RI (OR:1.057, P=0.355; OR: 0.918, P=0.614).
Conclusion
Diabetes mellitus is a significant risk factor for albuminuria and RI, while IGR is not. Screening for albuminuria and eGFR is highly recommended for individuals with diabetes, hypertension, and obesity, especially in women and the elderly population.
Keywords: glucose metabolism, albuminuria, chronic kidney disease, middle-aged and elderly individuals
慢性肾脏病(CKD)是一种严重危害人类健康的非传染性疾病,是指各种原因引起的肾脏结构或功能异常≥3个月。其死亡率、致残率高,也是心血管疾病的高危因素,而心血管疾病又是CKD患者死亡的首要原因,约60%~74%的CKD患者死于心血管并发症[1]。我国约有1.195亿人患有CKD,患病率为10.8%[2],不同地域,不同生活习惯,不同糖代谢状态下的慢性肾脏病患病情况存在差异[3],CKD患病率的上升与糖尿病(DM)[4]的患病率上升密切相关,我国是世界上DM患病率上升最快的国家之一。2017年成年人DM的患病率为12.8%,IGR的患病率为35.2%[5],我国DM患者CKD的患病率高达30.9%,已经超过肾小球肾炎成为引起终末期肾脏病(ESRD)的首要原因[6]。澳大利亚及日本的学者针对糖尿病肾脏疾病的研究显示,DM患者在没有并发视网膜病变及微量蛋白尿时约有30%的患者已经出现GFR的下降[7],即肾脏损害发生要比视网膜病变更早。IGR患病率也在逐年升高,仅有少量研究发现IGR亦是CKD患病的独立危险因素[8]。兰州位于中国西北,其CKD流行状况鲜见报道,尤其是不同糖代谢状态下的CKD流行状况及危险因素尚未见报道。因此,本研究旨在分析兰州市中老年人群糖代谢与蛋白尿以及CKD之间的相关性; 探究CKD的危险因素,为本地区CKD的早筛查、早发现、早治疗提供科学依据。
1. 资料和方法
1.1. 研究对象
本研究采用《中国糖尿病患者肿瘤发生风险的流行病学研究》(REACTION研究)[9]兰州地区的基线调查资料,该研究通过随机抽取兰州市天庆嘉园社区、广武门社区和西村街道社区中40~75岁的常住居民(居住时间≥5年)进行的流行病学调查。共招募了10 100名符合条件的居民(2942名男性和7158名女性)。排除血样不足(n=62)、1型糖尿病、急性肾功能衰竭或正在接受透析的人后,本研究共纳入10038名居民。本研究经中国疾病预防控制中心伦理审查委员会和兰州大学第一医院伦理委员会批准。所有研究参与者均获得书面知情同意。
1.2. 数据收集
1.2.1. 调查问卷
调查问卷内容包括个人基本信息(姓名、性别、年龄、民族、籍贯)、饮食习惯、生活方式(饮酒情况、吸烟情况、饮茶情况、饮用咖啡情况、饮用碳酸饮料情况、体力活动情况),DM、冠心病、高血压、高脂血症、脑卒中、肿瘤等疾病病史及家族史,文化程度、用药史、手术史等。
1.2.2. 体格检查
测量所有研究对象的身高(HT)、体质量(WT)、腰围(WC)、臀围(HC)、收缩压(SBP)、舒张压(DBP)、心率(HR)等指标,并计算体质量指数(BMI)及腰臀比(WHR)。
1.2.3. 实验室检测
采集受检者的静脉全血,全自动生化分析仪检测空腹血糖(FBG)、负荷后2 h血糖(2hPG)、糖化血红蛋白(HbA1c)、总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白(HDL-C)、尿素氮(BUN)、血肌酐等指标。采集受检者清晨中段尿标本,全自动生化分析仪检测尿白蛋白、尿肌酐(CR),并计算尿白蛋白/肌酐比值(ACR)、估算肾小球滤过率(eGFR)。[eGFR=186×(SCr×0.011)-1.154×(年龄)-0.203×(0.742女性)×1.233(中国人的调节系数),mL/min/1.73 m2,SCr(mg/dL),年龄(岁)][9]。
1.3. 诊断标准
1.3.1. 糖代谢异常的诊断与分组
采用WHO1999年制定的诊断标准[11],根据FBG和2hPG的水平,将研究对象的糖代谢状态分为3组。NGT组:FBG < 6.1 mmol/L且2hPG < 7.8 mmol/L; IGR组可分为3个亚组,单纯性IFG组:6.1 mmol/L≤FBG < 7.0 mmol/L且2hPG < 7.8 mmol/L; 单纯性IGT组:FBG < 6.1 mmol/L且7.8 mmol/L≤ 2hPG < 11.1 mmol/L; 合并的IGT组:6.1 mmol/L≤ FBG < 7.0 mmol/L且7.8 mmol/L≤2hPG < 11.1 mmol/L; DM组:FBG≥7.0 mmol/L和(或)2hPG≥11.1 mmol/L,以及既往确诊DM的患者(以问卷中患者自述为准)。
1.3.2. 蛋白尿定义
ACR≥30 mg/g,微量白蛋白尿:ACR 30~300 mg/g,大量白蛋白尿:ACR≥300 mg/g[12]。
1.3.3. CKD的诊断及分期
采用NKF-K/DOQI指南的标准进行诊断和分期[13]:符合以下7项中的任意一项,持续时间超过3个月,即可诊断为CKD:①尿白蛋白(尿白蛋白排泄率≥30 mg/24 h; ACR≥30 mg/g); ②尿沉渣异常; ③肾小管相关病变; ④组织学异常; ⑤影像学所见结构异常; ⑥肾移植病史; ⑦GFR < 60 mL/min/1.73 m2。CKD分期:1期:eGFR≥90 mL/min/1.73 m2并伴有持续性蛋白尿; 2期:eGFR 60~89 mL/min/1.73 m2并伴有持续性蛋白尿; 3期:eGFR 30~59 mL/min/1.73 m2; 4期:eGFR 15~29 mL/min/1.73 m2; 5期:eGFR < 15 mL/min/ 1.73 m2或者透析。CKD3-5期(eGFR < 60 mL/min/1.73 m2)定义为肾功能不全(RI)[12]。
1.4. 数据分析
所有数据均采用SPSS 23.0软件进行统计学分析,计量资料用均数±标准差表示,正态分布数据用独立样本T检验进行两两比较,多组间比较应用单因素方差分析。计数资料用频数和百分率(%)表示,组间率比较应用χ2检验。采用双因素Logistic回归分析探讨IGR和DM是否是蛋白尿和RI的危险因素。采用多元回归分析探讨eGFR随ACR增加的趋势。P < 0.05表示差异有统计学意义。
2. 结果
2.1. 不同糖代谢状态下的人群特征
本研究共纳入10 038名研究人群,其中男性2902名,女性7136名,年龄58.0±8.5岁。分为3组,NGT组、IGR组和DM组。DM组有2486(24.77%)人,其中已知的T2DM患者有47.0%;IGR组有2808(27.97%)人,IGT组有4744(61.8%)人。DM组和IGR组的年龄、FBG、HbA1c、CR、LDL-C、TC、TG、WT、BMI、WC、HC、SBP、DBP和IR明显高于NGT组(P均 < 0.05),HDL-C明显低于NGT组(P < 0.05),高血压和血脂异常在DM组和IGR组中更为普遍。DM组吸烟人数的比例明显高于NGT组和IGR组(P < 0.05)。DM、IGR、NGT3组DM家族史相比较无显著性差异。经调整年龄差异以后,DM组ACR最高,同时,DM组的eGFR最低,但调整年龄差异后,DM组eGFR高于NGT组和IGR组(P < 0.05)。IGR组ACR的值高于NGT组,eGFR水平低于NGT组,但经调整年龄差异后,IGR组与NGT组eGFR无显著差异(表 1)。
1.
不同糖代谢状态下的人群特征
Characteristics of the participants with different statuses of glucose metabolism
Variables | NGT | IGR | DM |
eGFRa: Estimated glomerular filtration rate after logarithmic correction; Ln ACR: Logarithmically corrected urinary albumin/creatinine ratio; *P < 0.05 diabetes or IGR versus NGT; † P < 0.05 diabetes versus IGR; ‡ P < 0.05 Comparisons adjusted by age in the model of univariate generalized linear models. | |||
Number | 4744 | 2808 | 2486 |
Gender (male/female) | 1174/3570 | 790/2018* | 938/1548*† |
Age (year) | 55.67±8.19 | 59.04±8.32* | 61.27±8.05*† |
FBG (mmol/L) | 5.14±0.50 | 5.81±0.60* | 7.82±2.48*† |
2hPG (mmol/L) | 6.02±1.08 | 8.65±1.29 | 13.75±4.52*† |
HbA1c (%) | 5.75±0.38 | 5.97±0.41* | 7.19±1.56*† |
CR (μmol/L) | 66.8±12.9 | 67.6±15.0* | 71.8±20.2*† |
HDL-C (mmol/L) | 1.27±0.31 | 1.20±0.30* | 1.16±0.28*† |
LDL-C (mmol/L) | 2.54±0.77 | 2.60±0.77* | 2.58±0.79* |
TC (mmol/L) | 4.50±1.01 | 4.61±1.04* | 4.62±1.12* |
TG (mmol/L) | 1.56±0.98 | 1.89±1.16* | 2.10±1.51*† |
HT (cm) | 161.92±7.22 | 161.62±7.78 | 162.35±8.06*† |
WT (kg) | 61.92±10.18 | 64.60±10.37* | 65.71±10.51*† |
BMI (kg/m2) | 23.57±3.24 | 24.69±3.27* | 24.89±3.31*† |
WC (cm) | 82.92±9.44 | 86.52±9.59* | 88.04±9.26*† |
HC (cm) | 96.84±6.91 | 98.88±7.06* | 99.28±7.02*† |
WHR | 0.56±0.07 | 0.87±0.06* | 0.89±0.06*† |
BP (mmHg) | |||
SBP | 124.11±18.34 | 130.33±18.85* | 135.02±19.66*† |
DBP | 75.14±10.42 | 77.47±10.73* | 77.70±10.68* |
HR (min-1) | 76.76±10.55 | 78.66±11.33* | 79.9±11.90*† |
high school education, n (%) | 768 (16.2) | 437 (15.6) | 412 (16.6) |
Current smoking, n (%) | 597 (12.6) | 324 (11.5) | 362 (14.6)*† |
Family history of diabetes, n (%) | 758 (16.0) | 452 (16.1) | 619 (24.9) |
hypertention, n (%) | 1239 (26.1) | 1154 (41.1)* | 1337 (53.8)*† |
dyslipidaema, n (%) | 2780 (58.6) | 2007 (71.5)* | 1903 (76.5)*† |
eGFR (mL/min/1.73 m2) | 95.0±21.0 | 93.6±19.8* | 90.8±22.1*† |
eGFRa‡ (mL/min/1.73 m2) | 66.8±12.9 | 67.6±15.0 | 71.8±20.2*† |
ACR (mg/g) | 24.4±12.2 | 26.9±15.7* | 41.6±25.8*† |
Ln ACR | 2.77±1.28 | 2.91±1.03* | 3.14±1.18*† |
Ln ACR‡ | 2.77±1.28 | 2.91±1.03* | 3.14±1.18*† |
2.2. 不同临床特征下蛋白尿和CKD的患病率
在整个研究人群中,蛋白尿、CKD和RI的患病率分别为26.2%、27.4%和2.5%,其中女性高于男性,随着年龄增长,蛋白尿、RI的患病率逐渐升高,至70岁及以上人群达到高峰,CKD患病率亦随着年龄增长显著增加,在60~69岁人群中达到高峰,但70岁以上人群中CKD患病率反而较60~69岁人群出现下降趋势(P < 0.05)。DM组蛋白尿、CKD和RI的患病率明显高于IGR组和NGT组。既往诊断为T2DM的患者蛋白尿、CKD和RI的患病率最高。IGR组与NGT组蛋白尿、CKD、RI的患病率无显著差异。此外,DM组合并高血压的患者蛋白尿、CKD和RI的患病率均显著高于无高血压患者(P < 0.05),且在NGT组和IGR组中均存在这一现象。在NGT组中,合并肥胖的研究人群大量蛋白尿、CKD和RI的患病率显著高于非肥胖NGT研究人群(均P < 0.05),但在蛋白尿的总患病率及微量蛋白尿的患病率上无显著差异。IGR组中肥胖患者蛋白尿、CKD、RI的患病率均显著高于非肥胖组(均P < 0.05)。非肥胖DM组人群与肥胖人群相比,蛋白尿、CKD和RI的患病率均无显著差异(均P > 0.05,表 2)。
2.
不同临床特征下蛋白尿和CKD的患病率比较
Prevalence of proteinuria and CKD in individuals with different clinical characteristics
variables | Albuminuria | CKD | RI | |||
Total (%) | Microalbuminuria (%) | Macroalbuminuria (%) | CKD n (%) | RI n (%) | ||
#P < 0.05 female versus male; aP < 0.05 50-59、60-69 or ≥70 versus 40-49; bP < 0.05 40-49、60-69 or ≥70 versus 50-59; cP < 0.05 40-49、50-59 or ≥70 versus 60-69; *P < 0.05 known diabetes versus newly diagnosed diabetes; hypertension versus normotension; Obesity versus non-Obesity; ‡P < 0.05 diabetes versus NGT; §P < 0.05 diabetes versus IGR. | ||||||
n (%) | 2625 (26.2) | 2544 (25.3) | 81 (0.8) | 2748 (27.4) | 251 (2.5) | |
Male | 570 (19.6) | 537 (18.5) | 33 (1.1) | 599 (20.6) | 54(1.9) | |
Female | 2055 (28.8)# | 2007 (28.1)# | 48 (0.7)# | 2149 (30.1)# | 197 (2.7)# | |
Age group (year) | ||||||
40-49 | 312(17.0)bc | 306(16.7)bc | 6 (0.3)bc | 317 (11.5)bc | 11 (4.4)bc | |
50-59 | 874 (22.1)ac | 854 (21.6)ac | 20 (0.5)ac | 905 (32.9)ac | 58 (23.1)ac | |
60-69 | 939(31.1)ab | 903(29.9)ab | 36(1.2)ab | 979(35.6)ab | 90 (35.8)ab | |
≥70 | 500 (40.8)abc | 481 (39.2)abc | 19 (1.5)abc | 547 (19.9)abc | 92 (36.7)abc | |
NGT (n=4744) | 1020 (21.5) | 1003 (21.2) | 17 (0.4) | 1066 (22.5) | 87(1.8) | |
Hypertention (n=1245) | 349(28.0)* | 335(26.9)* | 14(1.1)* | 366(29.4)* | 39 (3.1)* | |
Normotention (n=3499) | 671 (19.2) | 668 (19.1) | 3(0.1) | 700 (20.0) | 48(1.4) | |
Obesity | 35(25.2) | 33(23.7) | 2 (1.4)* | 41 (29.5)* | 9 (6.5)* | |
Non-obesity | 985 (21.4) | 970 (21.1) | 15 (0.3) | 1025 (22.3) | 78(1.7) | |
IGR (n=2808) | 724 (25.8) | 714 (25.4) | 10 (0.4) | 758 (27.0) | 69(2.5) | |
Isolated-IFG (n=430) | 89(20.7) | 87(20.2) | 2(0.5) | 95(22.1) | 11(2.7) | |
Isolated-IGT (n=1734) | 455 (26.2) | 450 (26.0) | 5(0.3) | 479 (27.6) | 46(2.7) | |
Combined-IGT (n=644) | 180 (28.0) | 177 (27.5) | 3(0.5) | 184 (28.6) | 12(1.9) | |
Obesity | 52 (31.3)* | 51 (30.7)* | 1 (0.6)* | 55 (33.1)* | 7 (4.2)* | |
non-Obesity | 672 (25.4) | 663 (25.1) | 9(0.3) | 703 (26.6) | 62(2.3) | |
Hypertention | 373(32.3)* | 366(31.7)* | 7 (0.6)* | 392(33.9)* | 46 (4.0)* | |
Normotention | 351 (21.2) | 348 (21.1) | 3(0.2) | 366 (22.2) | 23(1.4) | |
T2DM (n=2486) | 881(35.4)‡§ | 827(33.3)‡§ | 54(2.2)‡§ | 924(37.2)‡§ | 113(4.5)‡§ | |
Known (n=1168) | 469(40.2)* | 419(35.9)* | 50(4.3)* | 495(42.4)* | 80 (6.8)* | |
Newly diagnosed (n=1318) | 412 (31.3) | 408 (31.0) | 4(0.3) | 429 (32.5) | 33(2.5) | |
Obesity | 54(37.5) | 51(35.4) | 3(2.1) | 58(40.3) | 7 (4.9) | |
non-Obesity | 827 (35.3) | 776 (33.1) | 51 (2.2) | 866 (37.0) | 106 (4.5) | |
Hypertention | 528(39.5)* | 486(36.4)* | 42(3.1)* | 559(41.8)* | 89 (6.7)* | |
Normotention | 353 (30.7) | 341 (29.7) | 12 (1.0) | 365 (31.8) | 24(2.1) |
2.3. CKD各期的临床特征
随着CKD从1期进展到4期,高龄、既往DM病史、高血压病史、冠心病病史、血脂异常病史、DM、高血压、血脂异常的人群的比例显著增加(均P < 0.05),高TC血症、高TG血症、高LDL-C血症的比例明显增加(P < 0.05),相反,吸烟人群的比例明显下降(P < 0.05)。而IGR研究人群的比例无明显变化(P > 0.05)。随着CKD从1期进展到3期,肥胖者的比例显著增加(P < 0.05,表 3)。
3.
CKD各期的临床特征
Clinical characteristics of individuals at different stages of CKD
Variables | Total | Stage1 | Stage 2 | Stage 3 | Stage 4 | P |
CVD: Cardiovascular disease. | ||||||
Age (year) | 57.0±8.3 | 58.1±8.6 | 62.3±7.8 | 64.8±7.6 | 62.3±9.1 | 0.000 |
Gender (male:female) | 2303:4987 | 342:902 | 203:1050 | 48:189 | 6:8 | 0.000 |
History of diabetes (%) | 673(9.2) | 166(13.3) | 252(20.1) | 67 (28.3) | 10(71.4) | 0.000 |
History of hypertention (%) | 1447(19.8) | 291(23.4) | 409(32.6) | 123(51.9) | 10(71.4) | 0.000 |
History of CVD (%) | 253(3.5) | 63(5.1) | 83(6.6) | 21(8.9) | 3(21.4) | 0.000 |
History of dyslipidaemia (%) | 676(9.3) | 129(10.4) | 171(13.6) | 42 (17.7) | 3(21.4) | 0.000 |
Current Smoker (%) | 1251(17.2) | 190(15.3) | 100 (8.0) | 24 (10.1) | 1(7.1) | 0.000 |
Diabetes (%) | 1562(21.4) | 366(29.4) | 451(36.0) | 95 (40.1) | 12(85.7) | 0.000 |
hypertention (%) | 2421(33.2) | 525(42.2) | 631(50.4) | 147(62.0) | 14(100.0) | 0.000 |
dyslipidaemia (%) | 4770(65.4) | 822(66.1) | 892(71.2) | 187(78.9) | 12(85.7) | 0.000 |
IGR (%) | 2050(28.1) | 367(29.5) | 327(26.1) | 63 (26.6) | 1(7.1) | 0.173 |
Central obesity (%) | 5610(77.7) | 991(79.7) | 1102 (87.9) | 206(86.9) | 8(57.1) | 0.000 |
Obesity (%) | 295(4.0) | 65(5.2) | 66(5.3) | 23(9.7) | 0(0.0) | 0.000 |
Total cholesterol≥5.18 mmol/L (%) | 1812(24.9) | 251(20.2) | 485(38.7) | 92 (38.8) | 9(64.3) | 0.000 |
Triacylglycerol≥1.70 mmol/L (%) | 2845(39.0) | 443(35.6) | 618(49.3) | 147(62.0) | 11(78.6) | 0.000 |
LDL-cholesterol≥3.37 mmol/L (%) | 979 (13.4) | 129(10.4) | 255(20.4) | 53 (22.4) | 5(35.7) | 0.000 |
HDL-cholesterol < 1.04 mmol/L (%) | 1986(27.2) | 437(35.1) | 212(16.9) | 52 (21.9) | 4(28.6) | 0.000 |
2.4. IGR或者DM患者RI的危险因素
在IGR人群中,年龄、高血压及高TG血症与RI的患病风险呈正相关(OR分别为:1.113、1.904、2.608,均P < 0.05),与40~49岁年龄段的人群比较,60~69及70岁以上人群的RI患病风险显著增加(OR分别为:11.842、31.120,均P < 0.05)。在DM人群中,年龄、冠心病、肥胖、高TG血症及高LDL-C血症与RI的患病风险呈正相关(OR分别为:1.069、2.535、3.359、1.827、2.690,均P < 0.05),与40~49岁年龄段的人群比较,60~69及70岁以上人群的RI患病风险显著增加(OR分别为:10.581、24.811,均P < 0.05,表 4)。
4.
IGR或者DM患者RI的危险因素
Risk factors for RI in patients with IGR and DM
Variable | P | OR | 95%CI |
IGR | |||
Age | 0.000 | 1.113 | (1.074, 1.154) |
40-49 | 1 | ||
50-59 | 0.105 | 5.382 | (0.705, 41.056) |
60-69 | 0.015 | 11.842 | (1.601, 87.563) |
≥70 | 0.001 | 31.120 | (4.213, 49.857) |
Hypertention | 0.017 | 1.904 | (1.124, 3.225) |
Cardiovascular disease | 0.421 | 0.649 | (0.227, 1.857) |
Obesity | 0.358 | 1.470 | (0.646, 3.344) |
TC≥5.18 mmol/L | 0.821 | 1.076 | (0.570, 2.033) |
TG≥1.70 mmol/L | 0.000 | 2.608 | (1.527, 4.456) |
LDL-C≥3.37 mmol/L | 0.439 | 0.733 | (0.334, 1.609) |
HDL-C < 1.04 mmol/L | 0.102 | 0.594 | (0.318, 1.110) |
DM | |||
Age | 0.000 | 1.069 | (1.039, 1.099) |
40-49 | 1 | ||
50-59 | 0.167 | 4.186 | (0.550, 31.868) |
60-69 | 0.020 | 10.581 | (1.451, 77.151) |
≥70 | 0.002 | 24.811 | (3.406, 50.735) |
Hypertention | 0.124 | 1.433 | (0.906, 2.266) |
Cardiovascular disease | 0.017 | 2.535 | (1.178, 5.455) |
Obesity | 0.002 | 3.359 | (1.589, 7.104) |
TC≥5.18 mmol/L | 0.320 | 0.703 | (0.352, 1.407) |
TG≥1.70 mmol/L | 0.009 | 1.827 | (1.163, 2.870) |
LDL-C≥3.37 mmol/L | 0.007 | 2.690 | (1.130, 5.523) |
HDL-C < 1.04 mmol/L | 0.080 | 0.573 | (0.307, 1.068) |
2.5. Logistic回归分析IGR和DM是否是蛋白尿和RI发生的危险因素
在不调整变量时,IGR与DM均与蛋白尿患病风险呈正相关(OR分别为:1.268、1.828,均P < 0.05),仅调整年龄和性别后,IGR与蛋白尿患病风险无相关性(OR= 1.106,P>0.05),DM与蛋白尿的患病风险仍呈正相关(OR=1.656,P < 0.05);在上述基础上调整BMI、WC、HR和吸烟后,IGR仍与蛋白尿患病风险无相关性(OR= 1.088,P>0.05),DM与蛋白尿的患病风险仍呈正相关(OR=1.621,P < 0.05);最后,进一步去除高血压和自报冠心病后,IGR仍与蛋白尿患病风险无相关性(OR= 1.057,P>0.05),DM与蛋白尿的患病风险依旧呈正相关(OR=1.543,P < 0.05,表 5)。
5.
IGR和DM患者蛋白尿的发生风险分析
Risk analysis of IGR and DM patients with proteinuria
Variables | OR | 95%CI | P |
Model 1: Unadjusted; Model 2: Adjusted for age, gender; Model 3: Further adjusted for BMI, waist circumference, HR, smoking; Model 4: Further adjusted for hypertension, self-reported CVD (yes/no). | |||
Model 1 | |||
IGR | 1.268 | (1.137, 1.415) | 0.000 |
DM | 1.828 | (1.657, 2.016) | 0.000 |
Model 2 | |||
IGR | 1.106 | (0.987, 1.240) | 0.082 |
DM | 1.656 | (1.494, 1.836) | 0.000 |
Model 3 | |||
IGR | 1.088 | (0.969, 1.221) | 0.153 |
DM | 1.621 | (1.460, 1.799) | 0.000 |
Model 4 | |||
IGR | 1.057 | (0.940, 1.187) | 0.355 |
DM | 1.543 | (1.389, 1.715) | 0.000 |
在不调整变量时,IGR与RI患病风险无相关性(OR=1.348,P>0.05),DM与RI患病风险呈正相关(OR=2.258,P < 0.05),仅调整年龄和性别后,IGR与RI患病风险仍无相关性(OR=1.007,P>0.05),DM与RI的患病风险仍呈正相关(OR=1.681,P < 0.05);在上述基础上调整BMI、WC、HR和吸烟后,IGR仍与IR患病风险无相关性(OR=1.088,P>0.05),DM与RI的患病风险仍呈正相关(OR=1.568,P < 0.05);最后,进一步去除高血压和自报冠心病后,IGR仍与RI患病风险无相关性(OR=0.918,P>0.05),DM与RI的患病风险依旧呈正相关(OR=1.446,P < 0.05,表 6)。
6.
IGR和DM患者RI发生风险分析
Risk analysis of IGR and DM patients with RI
Variables | OR | 95%CI | P |
Model 1 | |||
IGR | 1.348 | (0.980, 1.856) | 0.067 |
DM | 2.258 | (1.764, 2.889) | 0.000 |
Model 2 | |||
IGR | 1.007 | (0.726, 1.397) | 0.966 |
DM | 1.618 | (1.254, 2.087) | 0.000 |
Model 3 | |||
IGR | 0.961 | (0.689, 1.339) | 0.812 |
DM | 1.568 | (1.212, 2.028) | 0.001 |
Model 4 | |||
IGR | 0.918 | (0.657, 1.282) | 0.614 |
DM | 1.446 | (1.116, 1.874) | 0.005 |
2.6. 不同糖代谢状态下随ACR值升高eGFR变化趋势
eGFR的多元回归方程显示,NGT组、IGR组和DM组eGFR随ACR从 < 5 mg/g增加到≥300 mg/g逐渐降低。DM组eGFR低于IGR组和NGT组,当ACR≥100 mg/g时DM组eGFR迅速下降,而100 mg/g≤ACR < 300 mg/g时NGT组eGFR迅速上升,随后ACR≥300 mg/g时NGT组eGFR迅速下降(图 1)。
1.
不同糖代谢状态下随ACR值升高eGFR变化趋势
eGFR trend with ACR increment in groups with different glucose metabolism statuses.
3. 讨论
本研究显示了在兰州市不同糖代谢状态的中老年人群蛋白尿和CKD的患病率。中老年2型糖尿病患者蛋白尿患病率(35.4%)和CKD患病率(37.2%)较高,特别是既往确诊DM的患者,其蛋白尿患病率(40.2%)和CKD患病率(42.4%)显著高于IGT及NGT人群。同时,本研究显示,DM与蛋白尿和RI的患病风险呈正相关,而IGR不是蛋白尿或者RI的显著危险因素(OR= 1.057,P=0.355;OR=0.918,P=0.614)。
CKD是一种严重危害人类健康的非传染性疾病,我国CKD的患病率波动于10%~20%[14-17]。对中国北京石景山区中老年人群的调查显示,慢性肾病患病率为12.9%,相比本研究结果可知,兰州地区中老年人患慢性肾脏病的患病率更高,可能与地域、疾病背景以及社会经济地位的差异有关。此外,许多差异可能来自于诊断标准的不同,这可能掩盖了CKD患病率的真正差异。在一个相对较大的队列研究中发现即使在肾功能正常的健康个体中,ACR的加速变化也可能意味着糖尿病和高血压的风险更高[18]。中国人口目前正处于老龄化过程,据估计到2030年,60岁以上的中国公民将占25.0%,2017年60岁以上的中国公民占17.3%[19]。Grupper等[18]发现CKD的患病率有明显的年龄依赖性,本研究亦发现,蛋白尿和RI患病率高峰出现在70岁及以上,CKD患病率高峰出现在60~69岁; 与40~49岁糖调节受损人群相比,70岁及以上人群RI患病风险增加了30.1倍; 与40~49岁糖尿病人群相比较,70岁及以上人群RI患病风险增加了23.8倍。在20世纪90年代,高血压和DM的患病率分别只有11%和2.5%[20-21],而目前患病率分别达到了30%和11.6%[22-23]。在我们之前的研究中,40~75岁的高血压患病率为37.2%[24]。高血压是CKD最重要的致病因素之一,其相关性最强,这也是我国蛋白尿和慢性肾病高发的原因[25]。排除遗传因素的潜在影响和/或较高的肾小球肾炎患病率,高血压的控制不良可能与中国人群中蛋白尿的高患病率密切相关。在最近的一项分析中,中国的高血压知晓率、治疗率和控制率分别为42.6%、34.2%和9.3%[23]。本研究中,无论在怎样的糖代谢状态下,高血压患者的蛋白尿和CKD患病率均显著增加。一些社会环境因素与CKD有关,红肉、脂肪和甜食的摄入量高与微量白蛋白尿的患病风险升高有关[26]。兰州位于中国西北内陆地区,当地人喜食大肉、牛肉、羊肉和咸菜,也有证据表明环境二手烟暴露,环境重金属暴露和颗粒物空气污染与CKD有关[27-28]。兰州气候干燥,常年降雨量少、风沙大,在冬春两季表现的尤为明显。此外,兰州是一个工业型城市,大气雾霾严重,其引起的空气污染和环境重金属暴露水平高,本研究中兰州地区CKD的高患病率可能与上述因素相关。
近年来,肥胖在我国迅速成为一个重要的公共健康问题。Nazare等[29]研究显示我国肥胖患者的比例已经超过了白种人,男性肥胖的患病率为10.8%,女性为12.7%,男性腹部肥胖患病率为44.0%,女性为93.0%。中心性肥胖可能通过增加DM和高血压患病风险或者通过独立途径来引起肾脏损害[30-31]。本研究显示在合并肥胖的NGT、IGR研究人群中蛋白尿、CKD和RI的患病率显著高于非肥胖NGT、IGR研究人群。但在T2DM患者中,无论伴或者不伴肥胖,其蛋白尿、CKD和RI的患病率没有显著差异。无论如何,肥胖对T2DM患者肾功能的潜在影响不容忽视[32]。
当前的研究仍不能确定IGR是否为CKD的危险因素,也很少有研究探讨eGFR、ACR与IGR的关系。在本研究中,我们比较了不同糖代谢状态下eGFR随ACR的增加的变化趋势。IGR患者的eGFR最初维持在超滤状态,但随着ACR的增加eGFR逐渐降低。然而,IGR并不是蛋白尿和eGFR降低的独立危险因素,因为代谢综合征、年龄和性别才是eGFR的真正决定因素[4]。与NGT人群比较,随着eGFR水平的下降,IGR人群中有更多的高血压、血脂异常以及中心性肥胖患者。
在整体研究人群中,DM与eGFR降低和CKD风险增加显著相关[31],在调整了年龄、性别和其他CKD的潜在危险因素后,DM患者出现蛋白尿和CKD的风险明显增加。本研究发现随着CKD从第1期到第4期的进展,DM患者的比例增加,在大蛋白尿存在的情况下,DM患者的eGFR迅速下降。近来,孟德尔随机化方法被广泛用于人群研究中因果关系的评估[33],T2DM遗传风险评分越高,eGFR降低的风险越大,该分析为遗传确定T2DM与RI之间的生物学上可能的因果关系提供了证据。事实上,流行病学研究已经表明,在过去20年中,开始肾脏替代治疗的患者中T2DM的患者增加了一倍多[34]。
综上所述,兰州市中老年人群蛋白尿及CKD的患病率高,尤其是既往确诊为DM的患者患病率最高。DM是蛋白尿及RI的显著危险因素,IGR不是蛋白尿及RI的显著危险因素。对于兰州市中老年人DM、高血压及肥胖患者,应积极进行CKD筛查,早期发现肾脏损害,积极治疗,延缓CKD进展。
Biography
王强梅,在读硕士研究生,E-mail: 1375378300@qq.com
Funding Statement
国家重点研发计划项目资助(2016YFC0901202);标准化代谢性疾病管理中心(MMC)专项研究基金(2018-mmczxjj-3);甘肃省自然科学基金(1308RJZA254,1606RJZA347);兰州大学中央高校基本科研业务费用专项资金重点项目(2022142zrk012);甘肃省卫生行业科研项目(GSWSKY-2014-27);兰大一院院内经费(ldyyyn2015-22)
Contributor Information
王 强梅 (Qiangmei WANG), Email: 1375378300@qq.com.
甄 东户 (Donghu ZHEN), Email: zhdh8279@163.com.
References
- 1.李 孟建. 慢性肾脏病心血管并发症的危险因素与防治进展研究. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ylzb201818146. 医疗装备. 2018;31(18):197–8. [李孟建.慢性肾脏病心血管并发症的危险因素与防治进展研究[J].医疗装备, 2018, 31(18): 197-8.] [Google Scholar]
- 2.Zhang LX, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22. doi: 10.1016/S0140-6736(12)60033-6. [Zhang LX, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey[J]. Lancet, 2012, 379 (9818): 815-22.] [DOI] [PubMed] [Google Scholar]
- 3.程 根阳, 刘 东伟, 刘 章锁, et al. 河南省郑州市成年人血糖异常分布与慢性肾脏病的流行病学研究. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhszb98201003005. 中华肾脏病杂志. 2010;(3):177–80. [程根阳, 刘东伟, 刘章锁, 等.河南省郑州市成年人血糖异常分布与慢性肾脏病的流行病学研究[J].中华肾脏病杂志, 2010(3): 177-80.] [Google Scholar]
- 4.Jia WP, Gao X, Pang C, et al. Prevalence and risk factors of albuminuria and chronic kidney disease in Chinese population with type 2 diabetes and impaired glucose regulation: Shanghai diabetic complications study (SHDCS) Nephrol Dial Transplant. 2009;24(12):3724–31. doi: 10.1093/ndt/gfp349. [Jia WP, Gao X, Pang C, et al. Prevalence and risk factors of albuminuria and chronic kidney disease in Chinese population with type 2 diabetes and impaired glucose regulation: Shanghai diabetic complications study (SHDCS)[J]. Nephrol Dial Transplant, 2009, 24 (12): 3724-31.] [DOI] [PubMed] [Google Scholar]
- 5.Li YZ, Teng D, Shi XG, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;369:m997. doi: 10.1136/bmj.m997. [Li YZ, Teng D, Shi XG, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 369: m997.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Alam Miah MB, Yousuf MA. Analysis the significant risk factors on type 2 diabetes perspective of Bangladesh. Diabetes Metab Syndr. 2018;12(6):897–902. doi: 10.1016/j.dsx.2018.05.012. [Alam Miah MB, Yousuf MA. Analysis the significant risk factors on type 2 diabetes perspective of Bangladesh[J]. Diabetes Metab Syndr, 2018, 12(6): 897-902.] [DOI] [PubMed] [Google Scholar]
- 7.罗 映松, 罗 庆昌. 慢性肾脏病并发症治疗现状及思考. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwscy201412119. 中国卫生产业. 2014;11(12):193–4. [罗映松, 罗庆昌.慢性肾脏病并发症治疗现状及思考[J].中国卫生产业, 2014, 11(12): 193-4.] [Google Scholar]
- 8.肖 倩蓉, 范 丽君, 蒋 薇, et al. 不同糖代谢状态人群慢性肾脏病的患病率及危险因素. http://www.j-smu.com/oa/pdfdow.aspx?Sid=201605697. 南方医科大学学报. 2016;36(5):697–700. [肖倩蓉, 范丽君, 蒋薇, 等.不同糖代谢状态人群慢性肾脏病的患病率及危险因素[J].南方医科大学学报, 2016, 36(5): 697-700.] [PubMed] [Google Scholar]
- 9.Ning G, Reaction Study Group. Risk Evaluation of cAncers in Chinese diabeTic Individuals: a lONgitudinal (REACTION) study. http://europepmc.org/abstract/MED/22221801. J Diabetes. 2012;4(2):172–3. doi: 10.1111/j.1753-0407.2012.00182.x. [Ning G, Reaction Study Group. Risk Evaluation of cAncers in Chinese diabeTic Individuals: a lONgitudinal (REACTION) study[J]. J Diabetes, 2012, 4(2): 172-3.] [DOI] [PubMed] [Google Scholar]
- 10.Ma YC, Zuo L, Chen JH, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol. 2006;17(10):2937–44. doi: 10.1681/ASN.2006040368. [Ma YC, Zuo L, Chen JH, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease[J]. J Am Soc Nephrol, 2006, 17(10): 2937-44.] [DOI] [PubMed] [Google Scholar]
- 11.Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S. [Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation[J]. Diabet Med, 1998, 15(7): 539-53.] [DOI] [PubMed] [Google Scholar]
- 12.Reutens AT. Epidemiology of diabetic kidney disease. Med Clin N Am. 2013;97(1):1–18. doi: 10.1016/j.mcna.2012.10.001. [Reutens AT. Epidemiology of diabetic kidney disease[J]. Med Clin N Am, 2013, 97(1): 1-18.] [DOI] [PubMed] [Google Scholar]
- 13.Sheikhbahaei S, Fotouhi A, Hafezi-Nejad N, et al. Serum uric acid, the metabolic syndrome, and the risk of chronic kidney disease in patients with type 2 diabetes. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc6660d94ca95a68946876de93cb9493. Metab Syndr Relat Disord. 2014;12(2):102–9. doi: 10.1089/met.2013.0119. [Sheikhbahaei S, Fotouhi A, Hafezi-Nejad N, et al. Serum uric acid, the metabolic syndrome, and the risk of chronic kidney disease in patients with type 2 diabetes[J]. Metab Syndr Relat Disord, 2014, 12(2): 102-9.] [DOI] [PubMed] [Google Scholar]
- 14.周 芳芳, 罗 群, 吴 灵萍, et al. 宁波市成年人群的慢性肾脏病流行病学调查. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyfyxzz201309007. 中国预防医学杂志. 2013;14(9):669–74. [周芳芳, 罗群, 吴灵萍, 等.宁波市成年人群的慢性肾脏病流行病学调查[J].中国预防医学杂志, 2013, 14(9): 669-74.] [Google Scholar]
- 15.王 善志, 唐 文庄, 钟 良宝, et al. 海口市4491例成年健康体检人群慢性肾脏病流行病学调查. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hainanyx201724049. 海南医学. 2017;28(24):4100–2. [王善志, 唐文庄, 钟良宝, 等.海口市4491例成年健康体检人群慢性肾脏病流行病学调查[J].海南医学, 2017, 28(24): 4100-2.] [Google Scholar]
- 16.李 燕, 杨 海蓉, 贺 艳, et al. 湖南省慢性肾脏病流行病学调查. 湖南师范大学学报(医学版) 2018;15(3):180–3. [李燕, 杨海蓉, 贺艳, 等.湖南省慢性肾脏病流行病学调查[J].湖南师范大学学报(医学版), 2018, 15(3): 180-3.] [Google Scholar]
- 17.刘 晓琳, 周 弋, 阮 晓楠, et al. 上海市浦东新区慢性肾病流行情况及其危险因素研究. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqkyx201630023. 中国全科医学. 2016;19(30):3742–50. [刘晓琳, 周弋, 阮晓楠, 等.上海市浦东新区慢性肾病流行情况及其危险因素研究[J].中国全科医学, 2016, 19(30): 3742-50.] [Google Scholar]
- 18.Grupper A, Schwartz D, Berliner S, et al. Normal-range albuminuria in healthy subjects increases over time in association with hypertension and metabolic outcomes. J Am Soc Hypertens. 2018;12(11):759–67. doi: 10.1016/j.jash.2018.08.003. [Grupper A, Schwartz D, Berliner S, et al. Normal-range albuminuria in healthy subjects increases over time in association with hypertension and metabolic outcomes[J]. J Am Soc Hypertens, 2018, 12(11): 759-67.] [DOI] [PubMed] [Google Scholar]
- 19.Editorial Department. Statistical Communique of the People's Republic of China on the 2019 National Economic and Social Development (Excerpt)[J]. <a href="http://www.stats.gov.cn/english/" target="_blank">http://www.stats.gov.cn/english/</a>.
- 20.Wu X, Duan X, Gu D, et al. Prevalence of hypertension and its trends in Chinese populations. http://europepmc.org/abstract/med/8707434. Int J Cardiol. 1995;52(1):39–44. doi: 10.1016/0167-5273(95)02443-z. [Wu X, Duan X, Gu D, et al. Prevalence of hypertension and its trends in Chinese populations[J]. Int J Cardiol, 1995, 52(1): 39-44.] [DOI] [PubMed] [Google Scholar]
- 21.Pan XR, Yang WY, Li GW, et al. Prevalence of Diabetes and Its Risk Factors in China, 1994. Diabet Care. 1997;20(11):1664–9. doi: 10.2337/diacare.20.11.1664. [Pan XR, Yang WY, Li GW, et al. Prevalence of Diabetes and Its Risk Factors in China, 1994[J]. Diabet Care, 1997, 20(11): 1664-9.] [DOI] [PubMed] [Google Scholar]
- 22.Xu Y, Wang LM, He J, et al. Prevalence and control of diabetes in Chinese adults. JAMA. 2013;310(9):948–59. doi: 10.1001/jama.2013.168118. [Xu Y, Wang LM, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9): 948-59.] [DOI] [PubMed] [Google Scholar]
- 23.Wang JW, Zhang LX, Wang F, et al. Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey. Am J Hypertens. 2014;27(11):1355–61. doi: 10.1093/ajh/hpu053. [Wang JW, Zhang LX, Wang F, et al. Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey[J]. Am J Hypertens, 2014, 27(11): 1355-61.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Guan CH, Zhen DH, Tang XL, et al. The status of 25-hydroxyvitamin D across the spectrum of glucose tolerance among middle-aged and elderly Chinese individuals. Clin Endocrinol (Oxf) 2014;81(6):834–40. doi: 10.1111/cen.12574. [Guan CH, Zhen DH, Tang XL, et al. The status of 25-hydroxyvitamin D across the spectrum of glucose tolerance among middle-aged and elderly Chinese individuals[J]. Clin Endocrinol (Oxf), 2014, 81(6): 834-40.] [DOI] [PubMed] [Google Scholar]
- 25.Chen J, Kong X, Jia X, et al. Association between metabolic syndrome and chronic kidney disease in a Chinese urban population. Clin Chim Acta. 2017;470:103–8. doi: 10.1016/j.cca.2017.05.012. [Chen J, Kong X, Jia X, et al. Association between metabolic syndrome and chronic kidney disease in a Chinese urban population[J]. Clin Chim Acta, 2017, 470: 103-8.] [DOI] [PubMed] [Google Scholar]
- 26.Haynes R, Staplin N, Emberson J, et al. Evaluating the contribution of the cause of kidney disease to prognosis in CKD: results from the study of heart and renal protection (SHARP) Am J Kidney Dis. 2014;64(1):40–8. doi: 10.1053/j.ajkd.2013.12.013. [Haynes R, Staplin N, Emberson J, et al. Evaluating the contribution of the cause of kidney disease to prognosis in CKD: results from the study of heart and renal protection (SHARP)[J]. Am J Kidney Dis, 2014, 64(1): 40-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Kim NH, Hyun YY, Lee KB, et al. Erratum: environmental heavy metal exposure and chronic kidney disease in the general population. J Korean Med Sci. 2015;30(4):507. doi: 10.3346/jkms.2015.30.4.507. [Kim NH, Hyun YY, Lee KB, et al. Erratum: environmental heavy metal exposure and chronic kidney disease in the general population[J]. J Korean Med Sci, 2015, 30(4): 507.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Friedman DJ. Genes and environment in chronic kidney disease hotspots. Curr Opin Nephrol Hypertens. 2019;28(1):87–96. doi: 10.1097/MNH.0000000000000470. [Friedman DJ. Genes and environment in chronic kidney disease hotspots[J]. Curr Opin Nephrol Hypertens, 2019, 28(1): 87-96.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Nazare JA, Smith JD, Borel AL, et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. Am J Clin Nutr. 2012;96(4):714–26. doi: 10.3945/ajcn.112.035758. [Nazare JA, Smith JD, Borel AL, et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity[J]. Am J Clin Nutr, 2012, 96(4): 714-26.] [DOI] [PubMed] [Google Scholar]
- 30.Garland JS. Elevated body mass index as a risk factor for chronic kidney disease: current perspectives. http://pubmedcentralcanada.ca/pmcc/articles/PMC4122576/ Diabetes Metab Syndr Obes. 2014;7:347–55. doi: 10.2147/DMSO.S46674. [Garland JS. Elevated body mass index as a risk factor for chronic kidney disease: current perspectives[J]. Diabetes Metab Syndr Obes, 2014, 7: 347-55.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Wang F, He K, Wang JW, et al. Prevalence and risk factors for CKD: a comparison between the adult populations in China and the United States. Kidney Int Rep. 2018;3(5):1135–43. doi: 10.1016/j.ekir.2018.05.011. [Wang F, He K, Wang JW, et al. Prevalence and risk factors for CKD: a comparison between the adult populations in China and the United States[J]. Kidney Int Rep, 2018, 3(5): 1135-43.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Kramer H, Reboussin D, Bertoni AG, et al. Obesity and albuminuria among adults with type 2 diabetes: the Look AHEAD (Action for Health in Diabetes) Study. Diabetes Care. 2009;32(5):851–3. doi: 10.2337/dc08-2059. [Kramer H, Reboussin D, Bertoni AG, et al. Obesity and albuminuria among adults with type 2 diabetes: the Look AHEAD (Action for Health in Diabetes) Study[J]. Diabetes Care, 2009, 32(5): 851-3.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Xu M, Bi YF, Huang Y, et al. Type 2 diabetes, diabetes genetic score and risk of decreased renal function and albuminuria: a Mendelian randomization study. EBioMedicine. 2016;6:162–70. doi: 10.1016/j.ebiom.2016.02.032. [Xu M, Bi YF, Huang Y, et al. Type 2 diabetes, diabetes genetic score and risk of decreased renal function and albuminuria: a Mendelian randomization study[J]. EBioMedicine, 2016, 6: 162-70.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Park CW. Diabetic kidney disease: from epidemiology to clinical perspectives. Diabetes Metab J. 2014;38(4):252–60. doi: 10.4093/dmj.2014.38.4.252. [Park CW. Diabetic kidney disease: from epidemiology to clinical perspectives[J]. Diabetes Metab J, 2014, 38(4): 252-60.] [DOI] [PMC free article] [PubMed] [Google Scholar]