Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2020 Oct 20;40(10):1406–1414. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2020.10.05

高脂饮食和运动影响妊娠中期大鼠皮下和腹膜脂肪组织中asprosin和CTRP6的表达

Effect of high-fat diet and exercise on asprosin and CTRP6 expression in subcutaneous and retroperitoneal adipose tissues in rats during mid-gestation

杨 昭 1,2, 蒋 佳男 1, 黄 佳琪 1, 招 雨佳 1, 罗 肖 1, 宋 琳 1,*
PMCID: PMC7606239  PMID: 33118513

Abstract

目的

研究孕期高脂饮食和运动对皮下和腹膜后脂肪组织中asprosin和CTRP6表达的影响。

方法

从妊娠第1天开始,大鼠分别以脂肪含量13.5%的常规饲料和脂肪含量60%的高脂饲料喂养,妊娠第3天运动组大鼠放开转轮开始自主运动,饮食和运动处理持续整个孕期。按照处理将妊娠Sprague-Dawley大鼠随机分为4组:正常饮食非运动组(CH-SD)、正常饮食运动组(CH-RW)、高脂饮食非运动组(HF-SD)、高脂饮食运动组(HF-RW)。于妊娠第14天用RT-qPCR测定脂肪组织中asprosin和CTRP6的mRNA表达水平,Western blotting测定asprosin和CTRP6的蛋白表达水平。

结果

腹膜后脂肪组织中,asprosin mRNA表达在HF-RW组显著高于CH-SD组、CH-RW组和HF-SD组(P < 0.001)。皮下脂肪组织中,asprosin mRNA表达在HFSD组显著高于CH-SD组(P=0.0234),而HF-RW组中asprosin mRNA的表达水平正常(P=0.0494)。腹膜后脂肪组织中,CTRP6 mRNA水平在HF-RW组显著高于CH-SD组、CH-RW组和HF-SD组(P < 0.0001),CTRP6蛋白水平在HF-RW组显著高于CH-RW组和HF-SD组(P < 0.05)。皮下脂肪组织中,CTRP6蛋白表达在CH-RW组显著高于HF-SD组和HF-RW组(P < 0.05)。皮下脂肪组织中CTRP6的蛋白水平与血糖呈显著负相关(r=-0.6038,P=0.0172),而腹膜后脂肪组织中CTRP6的蛋白水平与血糖呈显著正相关(r=0.5305,P=0.0285),且asprosin和CTRP6 mRNA在皮下脂肪组织中的表达量要显著低于其在腹膜后脂肪组织中的表达量(P < 0.0001)。

结论

妊娠期高脂饮食和运动会影响妊娠中期大鼠脂肪组织内asprosin和CTRP6的表达水平,且具有部位差异性。

Keywords: asprosin, CTRP6, 高脂饮食, 孕期运动, 脂肪组织


孕期肥胖是严重影响母胎健康的孕期危险因素之一,可诱发或加重哮喘、高血压、2型糖尿病等多种孕产期甚至远期母胎并发症[1-2]。此外,孕期肥胖增加巨大儿出生及新生儿死亡的风险[3]。通过孕期合理饮食和适度体育锻炼减少孕期增重,可有效地降低胎儿脂肪含量、改善高脂饮食对母婴的不良影响,从而保障母胎健康[4-7]

脂肪组织功能紊乱是孕期肥胖诱发众多母胎并发症的关键因素之一。众所周知,脂肪组织是机体重要的内分泌器官,脂肪组织功能紊乱的表现之一为脂肪细胞因子分泌失调。研究发现,多种脂肪细胞因子如adiponectin、irisin、leptin等参与调节孕期,尤其是孕中期脂肪组织慢性炎症反应及机体胰岛素抵抗[8-9]。新近研究发现,一种新的脂肪细胞因子asprosin与肥胖和胰岛素抵抗成正相关,可通过旁分泌和内分泌方式,参与调解机体血糖水平[10-11]。而另一脂肪细胞因子(CTRP6)通过旁分泌和自分泌途径调节脂肪细胞分化、糖代谢、胰岛素抵抗等过程,与2型糖尿病等代谢性疾病有密切关系[12-15]。然而,asprosin和CTRP6在妊娠中期脂肪组织中的表达情况及具体作用还未为可知。另外,脂肪组织由于其分布不同而功能各异,asprosin和CRTP6在妊娠中期皮下和腹膜后脂肪组织中的表达情况尚未见报道。因此,本研究选取妊娠中期高脂饲喂及自愿运动的大鼠皮下和腹膜后脂肪组织为研究对象,利用RT-qPCR和Western blotting检测不同处理组脂肪组织内asprosin及CTRP6的表达变化,以期为深入研究这两种脂肪因子在妊娠期胰岛素抵抗和脂肪组织慢性炎症过程中的作用奠定基础,为妊娠期肥胖及相关代谢疾病的防治提供新的研究思路。

1. 材料和方法

1.1. 试剂

TRIzol裂解液(Invitrogen),反转录试剂盒(Thermo),实时定量PCR(SYBR Premix Ex Taq Ⅱ)试剂盒(TaKaRa),兔抗大鼠asprosin多克隆抗体(Cayman),兔抗大鼠CTRP6多克隆抗体和山羊抗兔二抗(Abcam)。

1.2. 动物

成年SPF级Sprague-Dawley大鼠,体质量210~ 220 g,购自西安交通大学医学实验动物中心。大鼠自购回后按照体质量随机分为久坐组(放置在标准的饲养笼;SD)和运动组(放置在带有锁定转轮的饲养笼;RW)。大鼠单独饲养,可随意饮水并给予和动物中心相同的标准饲料(科奥谢里),鼠房维持在12:12 h的光照:黑暗周期,早晨8点亮灯。适应1周后,将雄性大鼠(260~280 g)与雌性大鼠合笼饲养,经阴道栓形成确认雌鼠怀孕后将雄鼠移出,阴道栓排出界定为妊娠期(GD)第1天。从GD 1 d开始,SD组和RW组的妊娠大鼠改用新的饲料喂养——CHOW(饲料的热量成分为13.5%脂肪,58%碳水化合物和28.5%蛋白质,德克萨斯州,LabDiet 5001)和(高脂HF饲料的热量成分为60%脂肪,20%碳水化合物和20%蛋白质,Research Diets)。RW组中,转轮(Lafayette 80 Instrument)在实验开始时被锁定并在GD 3 d时开启。在妊娠期间,RW组大鼠可以自由进入转轮,行驶距离通过红外光束中断自动记录下来并累计1 h的运动量。根据妊娠期大鼠的饮食和运动情况,将其分为四个实验组:CHOW/久坐(CHSD,n=6窝);CHOW/运动(CH-RW,n=5窝);HF/久坐(HF-SD,n=7窝);HF/运动(HF-RW,n=5窝)。每天称量大鼠体质量和摄食量。所有动物操作程序均已获得西安交通大学机构动物护理和使用委员会(XJTULAC- 2017-779)批准。

在GD 14 d时对大鼠进行断头处理,断头前禁食4 h并用手持血糖仪测定血糖。大鼠的皮下和腹膜后脂肪经双侧解剖分离并称质量,立即在液氮中冷冻,并在- 80 ℃下保存直至基因及蛋白表达分析。

1.3. 总RNA提取、cDNA合成

按照总RNA提取试剂盒说明书提取脂肪组织CH-SD、CH-RW、HF-SD、HF-RW的总RNA。提取完成后,用分光光度计检测RNA的纯度及浓度。根据反转录试剂盒说明书步骤合成cDNA。

1.4. RT-qPCR

RT-qPCR采用20μL反应体系,实验数据使用Bio-rad Rotor Gene real time Analysis Software 6.0软件进行结果分析和计算,使用亲环素作为内参基因,运用相对Ct法计算mRNA的表达,标准Ct值=0.035,目的基因值=2△(Ct Ref Gene-Ct GOI)。引物序列如表 1所示。

1.

实时定量PCR分析所用引物序列

Primer sequences for real-time quantitative PCR

Primer name Primer sequence (5'-3') Length/bp Gene number
asprosin-F GCAACACCAAGGTACAGCGA 158 NM_031825.1
aprosin-R CTGGAAAGATGGCGGTCG
CTRP6-F ATAGTCCACAACGAGCAGGC 151 NM—001034932.1
CTRP6-R TGTAGATGCCATTCTCCCGC
Cyclophlin-F AGGGCTCTTGTGAAAGTCCC 158 NM—172243.1
Cyclophlin-R AATTCACATTGAGCAGACAGGC

1.5. Western blotting分析

利用匀浆器提取脂肪组织总蛋白,采用BSA方法测定蛋白浓度。蛋白样本经聚丙烯酰胺凝胶电泳分离后,转移到PVDF膜上(200 mA,2 h)。将目的条带处的膜剪下,利用含5%脱脂奶粉的TBS-T室温封闭1 h,一抗4 ℃孵育过夜,二抗室温孵育1 h。利用BioRad(ChemiDocTM Touch Imaging System)成像软件系统分析蛋白条带。

1.6. 数据统计分析

采用GraphPad Prism 8.0软件对数据进行分析。计量资料采用均数±标准误表示,多组比较采用oneway ANOVA结合Tukey's post-hoc检验,再通过twoway ANOVA分析高脂饮食和运动双重因素对四组数据的影响,结合Correlation and Linear regression分析血糖与脂肪组织内asprosin和CTRP6表达水平的相关性。P < 0.05为差异有统计学意义。

2. 结果

2.1. 高脂饮食和运动影响妊娠中期大鼠的体质量和血糖

断头前测定大鼠的体质量和血糖,结果显示:四组大鼠的体质量在妊娠中期无显著差异(图 1AP > 0.05),但HF-SD组的血糖水平显著高于其他三组(HF-SD vs CH-SD P=0.0031;HF-SD vs CH-RW P=0.0079;HF-SD vs HF-RW P=0.0214),孕期高脂饮食和运动会影响妊娠大鼠的血糖水平(PDiet=0.0050;PExercise=0.0150,图 1B)。

1.

1

妊娠中期母鼠体质量(A)和血糖水平(B

Comparison of body weight (A) and blood glucose (B) of the rats on gestational day 14. Data were analyzed by one-way or two-way ANOVA (n=5-7 in each group). CH-SD: CHOW diet/sedentary; CH-RW: CHOW diet/wheel running; HF-SD: high-fat diet/sedentary; HF-RW: high-fat diet/wheel running). *P < 0.05, **P < 0.01.

2.2. 高脂饮食和运动影响妊娠中期大鼠皮下脂肪组织中asprosin的表达水平

Asprosin的mRNA表达水平在HF-SD组明显高于CH-SD组(P=0.0234),但在HF-RW组中这种差异消失(HF-SD vs HF-RW P=0.0494)(图 2A),孕期高脂饮食和运动的交互作用影响皮下脂肪组织内asprosin的mRNA表达水平(PDiet*Exercise=0.0072)。Asprosin的蛋白水平在各组之间无显著性差异(图 2B)。

2.

2

妊娠中期大鼠皮下脂肪组织中asprosin的mRNA(A)和蛋白(B)表达水平

Asprosin mRNA (A) and protein (B) expressions in subcutaneous fat pads (SC) on gestational day 14. *P < 0.05.

2.3. 高脂饮食和运动影响妊娠中期大鼠腹膜后脂肪组织中asprosin的表达水平

Asprosin的mRNA表达水平在HF-RW组明显高于CH-RW组和HF-SD组,同时也显著高于CH-SD组(HF-RW vs CH-SD P=0.0001;HF-RW vs CH-RW P= 0.0007;HF-RW vs HF-SD P < 0.0001),孕期高脂饮食和运动可共同作用使得腹膜后脂肪组织中asprosin表达升高(PDiet=0.0004;PExercise=0.0001;PDiet*Exercise=0.0010)(图 3A)。Asprosin的蛋白水平在各组之间无显著性差异(图 3B)。

3.

3

妊娠中期大鼠腹膜后脂肪组织中asprosin的mRNA(A)和蛋白(B)表达水平

Asprosin mRNA (A) and protein expressions (B) in retroperitoneal fat pads (RP) on gestational day 14. ***P < 0.001; ****P < 0.0001.

2.4. 高脂饮食和运动影响妊娠中期大鼠皮下脂肪组织中CTRP6的表达水平

CTRP6的mRNA表达水平在各组之间无显著性差异(图 4A)。CTRP6的蛋白表达水平在HF-SD和HF-RW组明显低于CH-RW组(CH-RW vs HF-SD P=0.0119;CH- RW vs HF-RW P=0.0400),高脂饮食具有降低CTRP6蛋白表达水平的主效应,高脂饮食可明显降低皮下脂肪组织中CTRP6的表达水平(PDiet=0.0025)(图 4B)。

4.

4

妊娠中期大鼠皮下脂肪组织中CTRP6的mRNA(A)和蛋白(B)表达水平

CTRP6 mRNA (A) and protein expressions (B) in subcutaneous fat pads (SC) on gestational day 14. Data were analyzed by one-way or two-way ANOVA (n=5-7). *P < 0.05.

2.5. 高脂饮食和运动影响妊娠中期大鼠腹膜后脂肪组织中CTRP6的表达水平

CTRP6的mRNA表达水平在HF-RW组明显高于CH-SD组、CH-RW组和HF-SD组(HF-RW vs CH-SD P < 0.0001;HF- RW vs CH- RW P < 0.0001;HF- RW vs HF-SD P < 0.0001),饮食和运动对CTRP6的表达具有交互作用,高脂饮食和运动共同上调腹膜后脂肪组织内CTRP6的mRNA表达水平(PDiet < 0.0001;PExercise < 0.0001;PDiet*Exercise < 0.0001,图 5A)。CTRP6的蛋白表达水平与mRNA表达水平趋势一致,HF-RW组明显高于CH-RW组和HF-SD组(HF-RW vs CH-RW P=0.0151;HF-RW vs HF-SD P=0.0323;PDiet*Exercise=0.0054,图 5B)。

5.

5

妊娠中期大鼠腹膜后脂肪组织中CTRP6的mRNA(A)和蛋白(B)表达水平

CTRP6 mRNA (A) and protein expressions (B) in retroperitoneal fat pads (RP) on gestational day 14. *P < 0.05; ****P < 0.0001.

2.6. 高脂饮食和运动影响下妊娠中期大鼠脂肪组织内CTRP6的表达与血糖水平相关,且这种相关性具有部位特异性

皮下脂肪组织asprosin mRNA和蛋白表达水平(r= 0.3684,P=0.2649,图 6Ar=-0.0374,P=0.8830,图 6B)及腹膜后脂肪组织asprosin mRNA和蛋白表达水平(r=-0.1473,P=0.6477,图 6Cr=0.0885,P=0.7445,图 6D)与血糖水平无显著相关性;皮下脂肪组织CTRP6 mRNA表达水平(r=0.0163,P=0.9598,图 6E)和腹膜后脂肪组织CTRP6 mRNA表达水平(r=- 0.1323,P= 0.6666,图 6G)和血糖水平无显著相关性,但皮下脂肪组织CTRP6蛋白表达水平和血糖水平呈显著负相关(r=- 0.6038,P=0.0172,图 6F),而腹膜后脂肪组织CTRP6蛋白表达水平和血糖呈显著正相关(r=0.5305,P=0.0285,图 6H)。

6.

6

妊娠中期大鼠血糖水平与脂肪组织的asprosin和CTRP6 mRNA和蛋白表达水平的相关性分析

Correlation analysis of blood glucose with asprosin and CTRP6 mRNA and protein expressions in the fat pads of the rats on gestational day 14 (n=5-7). A, B: Correlation of blood glucose with asprosin mRNA (A) and protein (B) expressions in subcutaneous fat pads (SC); C, D: Correlation of blood glucose with asprosin mRNA (C) and protein (D) expressions in retroperitoneal fat pads; E, F: Correlation of blood glucose with CTRP6 mRNA (E) and protein (F) expressions in SC; G, H: Correlation of blood glucose with CTRP6 mRNA (G) and protein (H) expressions in RP.

2.7. 高脂饮食和运动影响下妊娠中期大鼠脂肪组织内asprosin和CTRP6的表达具有组织特异性

HF-RW组的腹膜后脂肪组织内asprosin mRNA表达水平显著高于皮下脂肪组织(P < 0.0001,图 7A),asprosin的蛋白水平在两组之间无显著性差异(图 7B)。HF-RW组的腹膜后脂肪组织内CTRP6 mRNA表达水平显著高于皮下脂肪组织(P < 0.0001,图 7C)。CH-RW组的CTRP6的蛋白表达水平在皮下脂肪组织却显著高于腹膜后脂肪组织(P=0.0004,图 7D)。

7.

7

妊娠中期大鼠脂肪组织中asprosin和CTRP6的mRNA和蛋白表达水平具有部位特异性

Asprosin and CTRP6 mRNA (A, C) and protein expressions (B, D) in subcutaneous (SC) and retroperitoneal fat pads (RP) on gestational day 14 (n=5-7). Data were analyzed by t test. The expression levels of different genes and proteins were all normalized to the expression level in subcutaneous fat (SC) of CH-SD group. ***P < 0.001; ****P < 0.0001.

3. 讨论

妊娠期是一个伴随着脂肪组织的慢性炎症、胰岛素抵抗等多种病理生理改变的特殊生理时期,妊娠期饮食失调引起的肥胖会加重以上各种病理生理变化,并且在此过程中,妊娠中期的机体慢性炎症反应和胰岛素抵抗表现尤为明显。我们之前使用相同模型的研究发现四组母体孕期增重不受饮食和运动因素影响,即各组之间无显著性差异。但孕期高脂饮食和运动会影响母体能量摄入,且影响母体血糖水平,即HF-SD组大鼠的空腹血糖明显高于CH-SD组,但HF-RW组的血糖水平与CH-SD组相当。HF-SD组大鼠的皮下脂肪含量和腹膜脂肪含量均明显高于CH-SD组大鼠,而HF-RW组与CH-SD组大鼠的这种差异却消失[16],说明孕期运动可以部分消除高脂饮食带来的脂肪组织变化和血糖变化。脂肪因子作为广泛分布的内分泌激素,通过自分泌、内分泌和旁分泌等多种方式调节脂肪细胞分化和多种细胞生命活动,与各种代谢性疾病密切相关。随着多种脂肪因子的发现,脂肪因子在参与调节胰岛素抵抗和脂肪组织慢性炎症中的潜能受到更多的重视,对于脂肪因子在妊娠期间调节孕产妇脂肪组织功能及具体机制的探索成了近年来的研究热点之一。

Asprosin是新近发现的一种与2型糖尿病等代谢性疾病和食欲密切相关的脂肪因子。研究发现asprosin在肥胖、1型糖尿病、2型糖尿病患者和动物模型中升高,参与肝脏葡萄糖释放、胰岛素释放以及食欲调节[17-18]。Asprosin还可能与妊娠糖尿病、先兆子痫、重度先兆子痫和巨大胎儿有关,研究发现患有上述并发症的孕妇血浆中asprosin浓度显着升高,而宫内发育迟缓的孕妇血浆中asprosin浓度则明显降低。但关于妊娠期肥胖及合理运动是否会影响asprosin在脂肪组织的表达,至今还不清楚。本研究首次检测了孕期高脂饮食和运动干扰后asprosin在大鼠不同部位脂肪组织中的表达情况,证实脂肪组织内asprosin的表达与孕期高脂饮食和运动密切相关。结果发现皮下脂肪组织内asprosin的mRNA水平在HF-SD组显著高于CH-SD组、腹膜后脂肪组织内asprosin的mRNA水平在HF-RW组显著高于CH-RW组,结果与研究[17]一致,提示孕期高脂饮食诱导的肥胖大鼠脂肪组织中asprosin表达水平上升。值得注意的是,在皮下脂肪组织中,HF-RW组的asprosin的表达水平较HF-SD组降低且与CH-SD组无显著性差异,提示孕期运动可以消除皮下脂肪组织内肥胖导致的asprosin表达水平差异。但腹膜后脂肪组织中却显示出完全相反的变化,在腹膜后脂肪组织中,HF-RW组的asprosin表达水平显著高于CH-SD组、CH-RW组和HF-SD组,说明孕期高脂饮食和运动共同作用反而会促进腹膜后脂肪组织内asprosin的表达。皮下和腹膜后脂肪组织在调节胰岛素抵抗和脂肪组织慢性炎症中的侧重点不同,腹膜后脂肪与调节胰岛素抵抗更为密切相关[19],本研究结果也证实这一结论,发现asprosin和CTRP6在皮下和腹膜后脂肪组织中的表达确有差异,提示asprosin和CTRP6在皮下和腹膜后脂肪组织内可能是通过不同机制调节脂肪细胞功能。此外,由于我们实验采用的是孕中期的大鼠,此时脂肪组织的慢性炎症还处于代偿阶段[20],运动因素可能是通过增加asprosin表达以改善这种代偿状态从而维持母胎代谢平衡,其具体机制尚需要进一步研究证实。通过相关性分析,本研究发现大鼠血糖水平与皮下脂肪组织和腹膜后脂肪组织中asprosin mRNA及蛋白表达水平并无显著相关性。下一步研究将着重检测母体血清中asprosin的表达水平,深入分析在孕期高脂饮食和运动影响下母体血糖水平与血清中asprosin表达水平的相关性。

CTRP6也和肥胖患者体内的胰岛素抵抗和脂肪组织慢性炎症密切相关[14]。CTRP6通过AdipoR1/MAPK信号通路调节猪的脂肪细胞增殖和分化[13],可增加巨噬细胞内IL-10的表达,还可通过AMPK信号通路调节脂肪酸的氧化[21-22]。研究发现CTRP6在超重和肥胖患者体内水平升高,沉默CTRP6可以减轻高脂诱导的小鼠肥胖和胰岛素抵抗[12, 15]。本研究发现在腹膜后脂肪组织中,CTRP6的mRNA和蛋白表达水平表现出相同的趋势即在HF-RW组显著高于CH-RW组和HF-SD组,与研究结果[12, 15]一致,说明CTRP6与孕期高脂饮食密切相关,且孕中期高脂饮食和运动可共同作用上调CTRP6的表达水平。同asprosin在脂肪组织中的表达相似,CTRP6在孕中期大鼠脂肪组织中的表达也有显著的部位差异性,本研究结果显示皮下脂肪组织中CTRP6 mRNA的表达水平低于腹膜后脂肪组织中的表达水平。有趣的是,4组大鼠的体质量在妊娠中期无明显差异时却已表现出血糖水平的差异,提示妊娠中期高脂饮食和运动作用下对机体生理活动的影响明显早于母体体质量发生变化,强调了孕早期常规产检在筛查妊娠期代谢疾病方面的重要性[23-24]。由于分子水平的变化可能较临床指标变化更早,且已发现血糖水平与脂肪组织内CTRP6的表达具有显著相关性,提示CTRP6可能参与胰岛素抵抗,更加强调了深入研究asprosin和CTRP6在检测母体妊娠期生理变化及预测妊娠相关并发症中的重要性。研究[25]报道血清中的CTRP6水平与空腹血糖呈正相关,但本研究发现皮下脂肪组织中CTRP6的蛋白表达水平与血糖呈显著负相关,而腹膜后脂肪组织中两者却呈正相关。值得注意的是,本研究发现在皮下脂肪组织中,CTRP6蛋白的表达水平在CHRW组显著高于HF-RW组,这与研究[12, 15]结果相悖,且在CH-RW组中,皮下脂肪组织中CTRP6的蛋白表达水平显著高于腹膜后脂肪组织。由此推测孕期皮下脂肪组织中可能存在特殊机制调节CTRP6的表达。由于CTRP家族成员的活性受到转录后修饰的调节,且研究发现饮食和运动介导强大的表观遗传学修饰作用,因此我们推测皮下脂肪组织中CTRP6的表达可能与转录后修饰作用密切相关[26-28]

妊娠期是一个动态变化的复杂的生理过程,其伴随的脂肪组织的慢性炎症、胰岛素抵抗等多种病理生理改变在不同时期也体现出不同的变化[29-31]。脂肪因子asprosin和CTRP6参与该过程的作用机制的时序性也是研究重点之一。本研究采用的大鼠属于孕中期,运动调节脂肪组织内asprosin和CTRP6表达的具体机制还需结合孕晚期进一步研究。此外,asprosin作为特殊的脂肪因子,可以通过血脑屏障进入下丘脑,下一步我们会检测孕期肥胖母体及其子代大鼠下丘脑中asprosin的表达变化,进一步明确asprosin参与母体胰岛素抵抗及是否会通过相关机制影响胎儿下丘脑内asprosin的表达,这对研究肥胖对子代的远期并发症有非常重要的意义[32]。另外,本研究发现孕期高脂饮食和合理运动可显著改变大鼠脂肪组织中asprosin和CTRP6的表达,且这种改变具有明显的部位差异性,但其具体机制尚需进一步研究证实。

本研究发现妊娠期高脂饮食和运动会影响妊娠中期大鼠脂肪组织内asprosin和CTRP6的表达水平,且具有部位差异性,同时CTRP6的蛋白表达水平与血糖水平密切相关。深入研究asprosin和CTRP6在脂肪组织慢性炎症及胰岛素抵抗中的作用将对诊断和治疗妊娠期肥胖相关并发症有重要意义。

Biography

杨昭,硕士,E-mail: yangzhao123@stu.xjtu.edu.cn

Funding Statement

国家自然科学基金(81801459);陕西省自然科学基金(2019JQ069);中国博士后科学基金(2018M641001);中央高校基本科研业务费专项资金(Z201806124);西安交通大学大学生创新训练项目(GJ201910698176)

Supported by National Natural Science Foundation of China (81801459)

Contributor Information

杨 昭 (Zhao YANG), Email: yangzhao123@stu.xjtu.edu.cn.

宋 琳 (Lin SONG), Email: lsong1030@xjtu.edu.cn.

References

  • 1.AliZ, Nilas L, Ulrik CS. Excessive gestational weight gain in first trimester is a risk factor for exacerbation of asthma during pregnancy: A prospective study of 1283 pregnancies. J Allergy Clin Immunol. 2018;141(2):761–7. doi: 10.1016/j.jaci.2017.03.040. [AliZ, L Nilas, CS Ulrik. Excessive gestational weight gain in first trimester is a risk factor for exacerbation of asthma during pregnancy: A prospective study of 1283 pregnancies[J]. J Allergy Clin Immunol, 2018, 141(2): 761-7.] [DOI] [PubMed] [Google Scholar]
  • 2.Campos CAS, Malta MB, Neves PAR, et al. Gestational weight gain, nutritional status and blood pressure in pregnant women. Rev Saude Publica. 2019;53:57. doi: 10.11606/S1518-8787.2019053000880. [Campos CAS, Malta MB, Neves PAR, et al. Gestational weight gain, nutritional status and blood pressure in pregnant women[J]. Rev Saude Publica, 2019, 53: 57.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Weissmann-BrennerA, Simchen MJ, Zilberberg E, et al. Maternal and neonatal outcomes of macrosomic pregnancies. http://pubmedcentralcanada.ca/pmcc/articles/PMC3560660/ Med Sci Monit. 2012;18(9):p. PH77–81. doi: 10.12659/MSM.883340. [Weissmann-BrennerA, Simchen MJ, Zilberberg E, et al. Maternal and neonatal outcomes of macrosomic pregnancies[J]. Med Sci Monit, 2012, 18(9): p. PH77-81.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Asbee SM, Jenkins TR, Butler JR, et al. Preventing excessive weight gain during pregnancy through dietary and lifestyle counseling: a randomized controlled trial. http://www.onacademic.com/detail/journal_1000039341222210_33b2.html. Obstet Gynecol. 2009;113(2 Pt 1):305–12. doi: 10.1097/AOG.0b013e318195baef. [Asbee SM, Jenkins TR, Butler JR, et al.Preventing excessive weight gain during pregnancy through dietary and lifestyle counseling: a randomized controlled trial[J]. Obstet Gynecol, 2009, 113(2 Pt 1): 305-12.] [DOI] [PubMed] [Google Scholar]
  • 5.Dahly DL, Li X, Smith HA, et al. Associations between maternal lifestyle factors and neonatal body composition in the Screening for Pregnancy Endpoints (Cork) cohort study. Int J Epidemiol. 2018;47(1):131–45. doi: 10.1093/ije/dyx221. [Dahly DL, Li X, Smith HA, et al. Associations between maternal lifestyle factors and neonatal body composition in the Screening for Pregnancy Endpoints (Cork) cohort study[J]. Int J Epidemiol, 2018, 47(1): 131-45.] [DOI] [PubMed] [Google Scholar]
  • 6.PatelN, Godfrey KM, Pasupathy D, et al. Infant adiposity following a randomised controlled trial of a behavioural intervention in obese pregnancy. Int J Obes (Lond) 2017;41(7):1018–26. doi: 10.1038/ijo.2017.44. [PatelN, Godfrey KM, Pasupathy D, et al. Infant adiposity following a randomised controlled trial of a behavioural intervention in obese pregnancy[J]. Int J Obes (Lond), 2017, 41(7): 1018-26.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.BacchiM, Mottola MF, Perales M, et al. Aquatic activities during pregnancy prevent excessive maternal weight gain and preserve birth weight: a randomized clinical trial. Am J Health Promot. 2018;32(3):729–35. doi: 10.1177/0890117117697520. [BacchiM, Mottola MF, Perales M, et al. Aquatic activities during pregnancy prevent excessive maternal weight gain and preserve birth weight: a randomized clinical trial[J]. Am J Health Promot, 2018, 32(3): 729-35.] [DOI] [PubMed] [Google Scholar]
  • 8.Thagaard IN, Hedley PL, Holm JC, et al. Leptin and Adiponectin as markers for preeclampsia in obese pregnant women, a cohort study. Pregnancy Hypertens. 2019;15:78–83. doi: 10.1016/j.preghy.2018.12.002. [Thagaard IN, Hedley PL, Holm JC, et al. Leptin and Adiponectin as markers for preeclampsia in obese pregnant women, a cohort study [J]. Pregnancy Hypertens, 2019, 15: 78-83.] [DOI] [PubMed] [Google Scholar]
  • 9.Usluoğullari B, Usluogullari CA, Balkan F, et al. Role of serum levels of irisin and oxidative stress markers in pregnant women with and without gestational diabetes. Gynecol Endocrinol. 2017;33(5):405–7. doi: 10.1080/09513590.2017.1284789. [Usluoğullari B, Usluogullari CA, Balkan F, et al. Role of serum levels of irisin and oxidative stress markers in pregnant women with and without gestational diabetes[J]. Gynecol Endocrinol, 2017, 33(5): 405-7.] [DOI] [PubMed] [Google Scholar]
  • 10.Li E, Shan H, Chen L, et al. OLFR734 Mediates Glucose Metabolism as a Receptor of Asprosin. http://www.researchgate.net/publication/333910696_OLFR734_Mediates_Glucose_Metabolism_as_a_Receptor_of_Asprosin. Cell Metab. 2019;30(2):319–28. doi: 10.1016/j.cmet.2019.05.022. [Li E, Shan H, Chen L, et al. OLFR734 Mediates Glucose Metabolism as a Receptor of Asprosin[J]. Cell Metab, 2019, 30(2): 319-28 e8.] [DOI] [PubMed] [Google Scholar]
  • 11.Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a fastinginduced glucogenic protein hormone. Cell. 2016;165(3):566–79. doi: 10.1016/j.cell.2016.02.063. [Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a fastinginduced glucogenic protein hormone[J]. Cell, 2016, 165(3): 566-79.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Wang M, Tang X, Li L, et al. C1q/TNF-related protein-6 is associated with insulin resistance and the development of diabetes in Chinese population. Acta Diabetol. 2018;55(12):1221–9. doi: 10.1007/s00592-018-1203-2. [Wang, M, Tang X, Li L, et al. C1q/TNF-related protein-6 is associated with insulin resistance and the development of diabetes in Chinese population[J]. Acta Diabetol, 2018, 55(12): 1221-9.] [DOI] [PubMed] [Google Scholar]
  • 13.Wu W, Zhang J, Zhao C, et al. CTRP6 regulates porcine adipocyte proliferation and differentiation by the adipoR1/MAPK signaling pathway. J Agric Food Chem. 2017;65(27):5512–22. doi: 10.1021/acs.jafc.7b00594. [Wu W, Zhang J, Zhao C, et al. CTRP6 regulates porcine adipocyte proliferation and differentiation by the adipoR1/MAPK signaling pathway[J]. J Agric Food Chem, 2017, 65(27): 5512-22.] [DOI] [PubMed] [Google Scholar]
  • 14.Lei X, Seldin MM, Little HC, et al. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance. J Biol Chem. 2017;292(36):14836–50. doi: 10.1074/jbc.M116.766808. [Lei X, Seldin MM, Little HC, et al. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance[J]. J Biol Chem, 2017, 292(36): 14836-50.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Wu W, Zhang J, Zhao C, et al. Lentivirus-mediated CTRP6 silencing ameliorates diet-induced obesity in mice. Exp Cell Res. 2018;367(1):15–23. doi: 10.1016/j.yexcr.2018.01.027. [Wu W, Zhang J, Zhao C, et al. Lentivirus-mediated CTRP6 silencing ameliorates diet-induced obesity in mice[J]. Exp Cell Res, 2018, 367(1): 15-23.] [DOI] [PubMed] [Google Scholar]
  • 16.Song L, Yan J, Wang N, et al. Prenatal exercise reverses high-fatdiet-induced placental alterations and alters male fetal hypothalamus during late gestation in ratsdagger. Biol Reprod. 2020;102(3):705–16. doi: 10.1093/biolre/ioz213. [Song L, Yan J, Wang N, et al. Prenatal exercise reverses high-fatdiet-induced placental alterations and alters male fetal hypothalamus during late gestation in ratsdagger[J]. Biol Reprod, 2020, 102(3): 705-16.] [DOI] [PubMed] [Google Scholar]
  • 17.Groener JB, Valkanou A, Kender Z, et al. Asprosin response in hypoglycemia is not related to hypoglycemia unawareness but rather to insulin resistance in type 1 diabetes. PLoS One. 2019;14(9):e0222771. doi: 10.1371/journal.pone.0222771. [Groener JB, Valkanou A, Kender Z, et al. Asprosin response in hypoglycemia is not related to hypoglycemia unawareness but rather to insulin resistance in type 1 diabetes[J]. PLoS One, 2019, 14(9): e0222771.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Zhang X, Jiang H, Ma X, et al. Increased serum level and impaired response to glucose fluctuation of asprosin is associated with type 2 diabetes mellitus[J]. J Diabetes Investig, 2019, 2020, 11(2)349: 55.
  • 19.Rostami H, Samadi M, Yuzbashian E, et al. Habitual dietary intake of fatty acids are associated with leptin gene expression in subcutaneous and visceral adipose tissue of patients without diabetes. Prostaglandins Leukot Essent Fatty Acids. 2017;126:49–54. doi: 10.1016/j.plefa.2017.09.010. [Rostami H, Samadi M, Yuzbashian E, et al. Habitual dietary intake of fatty acids are associated with leptin gene expression in subcutaneous and visceral adipose tissue of patients without diabetes[J]. Prostaglandins Leukot Essent Fatty Acids, 2017, 126: 49-54.] [DOI] [PubMed] [Google Scholar]
  • 20.Pathirathna ML, Sekijima K, Sadakata M, et al. Impact of second trimester maternal dietary intake on gestational weight gain and neonatal birth weight. Nutrients. 2017;9(6):627. doi: 10.3390/nu9060627. [Pathirathna ML, Sekijima K, Sadakata M, et al. Impact of second trimester maternal dietary intake on gestational weight gain and neonatal birth weight[J]. Nutrients, 2017, 9(6): 627.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.KimMJ, Lee W, Park EJ, et al. C1qTNF-related protein-6 increases the expression of interleukin-10 in macrophages. Mol Cells. 2010;30(1):59–64. doi: 10.1007/s10059-010-0088-x. [KimMJ, Lee W, Park EJ, et al. C1qTNF-related protein-6 increases the expression of interleukin-10 in macrophages[J]. Mol Cells, 2010, 30(1): 59-64.] [DOI] [PubMed] [Google Scholar]
  • 22.Lee W, Kim MJ, Park EJ, et al. C1qTNF-related protein-6 mediates fatty acid oxidation via the activation of the AMP-activated protein kinase. FEBS Lett. 2010;584(5):968–72. doi: 10.1016/j.febslet.2010.01.040. [Lee W, Kim MJ, Park EJ, et al. C1qTNF-related protein-6 mediates fatty acid oxidation via the activation of the AMP-activated protein kinase[J]. FEBS Lett, 2010, 584(5): 968-72.] [DOI] [PubMed] [Google Scholar]
  • 23.Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, et al. Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J. 2009;23(1):241–58. doi: 10.1096/fj.08-114991. [Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, et al. Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin[J]. FASEB J, 2009, 23(1): 241-58.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Hernandez-Saavedra D, Moody L, Xu GB, et al. Epigenetic Regulation of Metabolism and Inflammation by Calorie Restriction. Adv Nutr. 2019;10(3):520–36. doi: 10.1093/advances/nmy129. [Hernandez-Saavedra D, Moody L, Xu GB, et al. Epigenetic Regulation of Metabolism and Inflammation by Calorie Restriction [J]. Adv Nutr, 2019, 10(3): 520-36.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Liao X, Liu S1, Tang X et al, Circulating CTRP6 levels are increased in overweight or obese chinese individuals and associated with insulin resistance parameters: a pilot study[J]. Exp Clin Endocrinol Diabetes, 2019 Aug 14. doi: <a href="http://dx.doi.org/10.1055/a-0929-6072" target="_blank">10.1055/a-0929-6072</a>.
  • 26.Srivastava RAK. Life-style-induced metabolic derangement and epigenetic changes promote diabetes and oxidative stress leading to NASH and atherosclerosis severity. J Diabetes Metab Disord. 2018;17(2):381–91. doi: 10.1007/s40200-018-0378-y. [Srivastava RAK. Life-style-induced metabolic derangement and epigenetic changes promote diabetes and oxidative stress leading to NASH and atherosclerosis severity[J]. J Diabetes Metab Disord, 2018, 17(2): 381-91.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Latendresse G, Deneris A. An update on current prenatal testing options: first trimester and noninvasive prenatal testing. J Midwifery Womens Health. 2015;60(1):24–36. doi: 10.1111/jmwh.12228. [Latendresse G, Deneris A. An update on current prenatal testing options: first trimester and noninvasive prenatal testing[J]. J Midwifery Womens Health, 2015, 60(1): 24-36; quiz 111.] [DOI] [PubMed] [Google Scholar]
  • 28.Knutzen D, Stoll K. Beyond the Brochure: Innovations in Clinical Counseling Practices for Prenatal Genetic Testing Options. J Perinat Neonatal Nurs. 2019;33(1):12–25. doi: 10.1097/JPN.0000000000000374. [Knutzen D, Stoll K. Beyond the Brochure: Innovations in Clinical Counseling Practices for Prenatal Genetic Testing Options[J]. J Perinat Neonatal Nurs, 2019, 33(1): 12-25.] [DOI] [PubMed] [Google Scholar]
  • 29.Mack LR, Tomich PG. Gestational diabetes: diagnosis, classification, and clinical care. Obstet Gynecol Clin North Am. 2017;44(2):207–17. doi: 10.1016/j.ogc.2017.02.002. [Mack LR, Tomich PG. Gestational diabetes: diagnosis, classification, and clinical care[J]. Obstet Gynecol Clin North Am, 2017, 44(2): 207-17.] [DOI] [PubMed] [Google Scholar]
  • 30.Khambule L, George JA. The Role of Inflammation in the Development of GDM and the Use of Markers of Inflammation in GDM Screening. http://link.springer.com/chapter/10.1007/978-3-030-12668-1_12. Adv Exp Med Biol. 2019;1134:217–42. doi: 10.1007/978-3-030-12668-1_12. [Khambule L, George JA. The Role of Inflammation in the Development of GDM and the Use of Markers of Inflammation in GDM Screening[J]. Adv Exp Med Biol, 2019, 1134: 217-42.] [DOI] [PubMed] [Google Scholar]
  • 31.Dhingra A, Ahuja K. Lifestyle modifications for GDM. http://europepmc.org/abstract/MED/27582149. J Pak Med Assoc. 2016;66(9 Suppl 1):S34–8. [Dhingra A, Ahuja K. Lifestyle modifications for GDM[J]. J Pak Med Assoc, 2016, 66(9 Suppl 1): S34-8.] [PubMed] [Google Scholar]
  • 32.Page KA, Luo S, Wang X, et al. Children exposed to maternal obesity or gestational diabetes mellitus during early fetal development have hypothalamic alterations that predict future weight gain. Diabetes Care. 2019;42(8):1473–80. doi: 10.2337/dc18-2581. [Page KA, Luo S, Wang X, et al. Children exposed to maternal obesity or gestational diabetes mellitus during early fetal development have hypothalamic alterations that predict future weight gain[J]. Diabetes Care, 2019, 42(8): 1473-80.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES