Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2020 Oct 20;40(10):1472–1479. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2020.10.13

高盐刺激可诱导巨噬细胞极化从而促进肾脏成纤维细胞的增殖及表型转化

High-salt exposure induces macrophage polarization to promote proliferation and phenotypic transformation of co-cultured renal fibroblasts

陆 静 1, 白 志勋 2,*, 匡 晓燕 1, 李 玲 1
PMCID: PMC7606244  PMID: 33118503

Abstract

目的

探讨高盐诱导单核巨噬细胞极化,以及极化后巨噬细胞对肾脏纤维细胞株(NRK-49F)增殖及表型转化的影响。

方法

培养大鼠骨髓单核巨噬细胞及NRK-49F,随后予以高盐(Na+161 mmol/L)刺激单核巨噬细胞2 h。采用RT-qPCR检测M0、M1、M2各型巨噬细胞表面标记物,同时分别收集正常及高盐组巨噬细胞培养基,予以RT-qPCR及Elisa分别检测培养基中IL-6及TGF-β的mRNA表达与蛋白表达。随后建立巨噬细胞与NRK-49F的Transwell小室共培养体系。采用EdU及Transwell分别检测NRK-49F增殖及迁移能力。予以Western blot检测NRK-49F中collagen I、collagen III及α-平滑肌肌动蛋白(α-SMA)相对表达情况。

结果

RT-qPCR结果显示,与对照组相比,高盐组细胞中表达M2型巨噬细胞表面标记物甘露糖受体(MR)和精氨酸酶(Arg)基因的mRNA水平显著升高(P < 0.05)。EdU及Transwell结果显示,共培养体系中,高盐处理巨噬细胞组上层NRK-49F增殖、迁移能力增强(P < 0.05)。Western blot结果显示,高盐处理组细胞培养基可诱导NRK-49F中collagen I、collagen III及和α-SMA蛋白表达增强(P < 0.05)。此外,RT-qPCR及Elisa结果显示高盐处理组单核巨噬细胞培养基中IL-6与TGF-β1均显著高表达(P < 0.05)。

结论

高盐处理可诱导单核巨噬细胞像M2型极化并分泌IL-6与TGF-β1,从而诱导NRK-49F增殖及表型转化。

Keywords: 高盐, 巨噬细胞, 肾脏成纤维细胞株, 细胞增殖, 表型转化


高血压是我国最常见的心血管疾病之一[1-2]。有研究表明,高盐饮食与血压增高水平成正相关,并且直接参与肾脏损伤过程[3-4]。而肾脏损伤后又可导致血压继发性增高,形成恶性循环,因此了解高盐导致肾脏损伤的机制显得尤为重要。高盐饮食的大鼠,其肾脏中巨噬细胞浸润增加,肾脏纤维化加重[5-7]。有研究认为,巨噬细胞的不同表型参与调控肾脏炎症及间质纤维化,巨噬细胞向M1型分化有促炎作用,而向M2方向转化可促进纤维化[8-9]。肾脏纤维化主要由大量成纤维细胞增殖,迁移及表型转化,分泌大量胶原蛋白沉积,最终导致肾小球硬化及肾小管间质的纤维化[10-11]。然而,高盐对巨噬细胞极化及与肾脏成纤维细胞株增殖及表型转化之间的关系目前尚未阐明。

本研究拟采用高盐(Na+161 mmol/L)处理单核巨噬细胞,鉴定高盐是否能够诱导单核巨噬细胞极化为M2型巨噬细胞,随后将高盐处理的巨噬细胞与成纤维细胞共培养,观察成纤维细胞增殖、迁移及胶原表达情况。旨在探索高盐诱导巨噬细胞极化在肾脏纤维化中的作用,为高盐所致肾脏损害提供新的治疗靶点和理论依据。

1. 材料和方法

1.1. 实验动物及材料

3~4周龄Spreagne-Dawley(SD)大鼠,雌雄不限,体质量约100~150 g,由中国人民解放军第三军医大学大坪医院动物中心提供,动物许可证号:SCXK(渝)2012-0005。大鼠肾脏成纤维细胞细胞株(NRK-49F)购买自中国科学院上海细胞库。低糖杜氏改良培养基(DMEM)(Thermo Fisher Scientific)。集落刺激因子(Peprotech),qPCR试剂盒,IL-1β、TNF-α、MR、Arg、TGF-β1、IL-6、β-actin等引物、Elisa检测试剂盒(生工生物))。EdU增殖检测(成像)试剂盒(C10310-3)(广州锐博生物科技)。Transwell小室(Corning)。结晶紫染色液(C0121)(碧云天生物)。Anti-collagen I、anti-collagen III、anti-α-SMA兔抗大鼠一抗(博士德生物)。

1.2. 巨噬细胞培养及高盐处理

按既往研究报道培养骨髓巨噬细胞[12]。即取3~5周龄(100~150 g)SD大鼠,颈椎脱臼法处死后,无菌条件下完整取出双侧股骨和胫骨,用眼科剪去除两端骨骺以暴露髓腔,用5 mL无菌注射器吸取低糖杜氏改良培养基(DMEM)反复冲洗骨髓腔并收集骨髓腔冲洗液用细胞过滤器过滤; 随后予以1000 g离心5 min后弃去上清,加入3 mL红细胞裂解液,充分重悬细胞,置于冰上裂解10~15 min,待液体变得清亮透明时,加入3 mL完全培养基终止裂解,1000 g离心5 min,去除上清; 将上述所得沉淀,予以10 mL完全培养基重悬后与培养瓶中培养,次日收集未贴壁细胞,加入含有巨噬细胞集落刺激因子并调整终浓度为40 ng/mL的完全培养基接种于培养瓶中培养,约在第6~7天可成功诱导单核巨噬细胞,随后将单核巨噬细胞分为2组,即正常(Na+122.27 mmol/L)组及高盐组(Na+161 mmol/L),高盐组细胞予以含Na+ 161 mmol/L的完全培养基培养2 h后更换为正常钠盐完全培养基。由于巨噬细胞具有异质性,在不同的刺激因素下,可向促炎表型M1极化,表达炎症细胞标记物IL-1β、TNF-α。或向M2抗炎表型极化,表达MR和Arg[13]。因此采用免疫荧光及RT-qPCR检测巨噬细胞表面标记物后用于后续试验。

1.3. 实时荧光定量PCR(RT-qPCR)

收集高盐处理前后的巨噬细胞,用Trizol、氯仿、异丙醇提取细胞总RNA,采用核酸分析仪测定提取RNA浓度和A260/280比值。根据实时荧光定量PCR试剂盒操作说明将RNA以25 ℃ 5 min,42 ℃ 30 min; 85 ℃ 5 min的条件进行逆转录,逆转录所得产物于-80 ℃低温保存。采用SYBR Green法进行荧光定量PCR反应:预变性(1 cycle),95 ℃ 30 s; PCR反应(40 cycle),95 ℃ 5 s,60 ℃ 20 s; 溶解(dissociation),55~95 ℃,每0.5 ℃ 10 s。分别检测M1型巨噬细胞相关基因白介素1β(IL-1β)、肿瘤坏死因子α(TNF-α)和M2巨噬细胞相关基因甘露糖受体(MR)和精氨酸酶(Arg)的mRNA表达。采用2 −∆∆Ct法分析相对表达量。收集正常组及高盐组细胞培养液,用RT-qPCR检测培养液中白介素6(IL-6)及转化生长因子β(TGF-β1)的mRNA表达。引物序列如下。

1.

实时荧光定量PCR引物对

Primer sequences for quantitative real-time PCR

Gene Forward primer (5'-3') Reverse primer (5'-3')
IL-1β CCCTGCAGCTGGAGAGTGTGG TGTGCTCTGCTTGAGAGGTGCT
TNF-α GAAGGAATGGGTCCAGACAT ACGGGTCAACTTCACATTCA
MR CAAGGAAGGTTGGCATTTGT CCTTTCAGTCCTTTGCAAGC
Arg CCAAGCCAAAGCCCA TAGAG TCCTCGAGGCTGTCCCTTAG
IL-6 GGAGAGGAGACTTCACAGAGG CCAGTTTGGTAGCATCCATC
TGF-β1 AACATGATCGTGCGCTCTGCAAGTGCAGC AAGGAATAGTGCAGACAGGCAGGA
β-actin TGAGCTGCGTTTTACACCCT GTTTGCTCCAACCAACTGCT

1.4. 酶联免疫吸附测定(ELISA)

收集处理后的各组巨噬细胞培养液,根据ELISA试剂盒说明书操作步骤进行检测各组吸光度,根据标准曲线计算各组细胞培养液中IL-6与TGF-β1浓度。

1.5. 肾脏成纤维细胞株培养

大鼠肾脏成纤维细胞细胞株(NRK-49F)从中科院上海细胞库购买,并保存于液氮之中。随后采用含体积分数为10%的胎牛血清、100 U/mL青霉素、100 U/mL链霉素的DMEM对细胞进行复苏,置于5% CO2,37 ℃恒温培养箱内培养,培养24 h后弃去上清,用无菌PBS液洗涤2次,每次5 min。随后更换无血清培养基饥饿培养18 h使细胞同步化进行随后实验。

1.6. Transwell共培养体系检测细胞迁移能力

将巨噬细胞以l×105铺于24孔Transwell板下层小室,分为正常组、高盐组,并加入完全培养基。Transwell板上层接种NRK-49F。24 h后,弃掉培养液,PBS洗上层细胞两遍。湿棉签擦净上室面未迁移细胞,甲醇固定20 min,1%结晶紫染色15 min,PBS洗3遍,取6个视野显微镜拍照,并用Image J软件计算迁移细胞数量。

1.7. EdU法检测细胞增殖情况

予以正常或高盐培养液分别培养2 h后均更换为正常培养液,继续培养24 h,随后分别收集两组巨噬细胞培养液备用。待培养的NRK-49F融合达80%左右,将细胞分为两组,分别加入正常巨噬细胞培养液及高盐组巨噬细胞培养液继续培养24 h。随后收集两组NRK-49F分别接种于Petru皿中,根据EdU试剂盒说明书操作步骤进行实验,予以荧光显微镜观察结果并采用Image J软件计算增殖细胞数。

1.8. Western blot

收集两组NRK-49F,冰上裂解细胞后提取总蛋白,采用BCA蛋白试剂盒测定蛋白浓度。每个蛋白样品取40 μg上样,经10%的二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE),恒流电泳转至聚偏而氟乙烯膜膜(PVDF膜)上,5%脱脂牛奶室温封闭2 h,随后加入一抗4 ℃孵育过夜,TBST洗膜3次×10 min,加入辣根过氧化物酶标记二抗,37 ℃孵育1 h,洗膜后经化学发光凝胶成像系统检测,并以β-actin作为内参照计算各组NRK-49F中collagen I、collagen III及和α-SMA蛋白得相对表达量。

1.9. 统计分析

所有数据均采用SPSS13.0统计软件处理,正态分布资料以均数±标准差表示,两组间比较采用t检验,以P < 0.05为差异有统计意义。

2. 结果

2.1. 高盐刺激单核巨噬细胞向M2型巨噬细胞极化

巨噬细胞经原代分离培养后为M0型巨噬细胞,以F4/80作为表面标记行免疫荧光染色,如(图 1)所示,95%以上的细胞均表达F4/80,为绿色荧光,进一步证实培养单核巨噬细胞成功; M1型巨噬细胞由于其具有促进炎的作用,因此高表达炎症相关基因IL-1β、TNF-α; M2型巨噬细胞具有强的抑制炎症的作用和吞噬作用,故低表达炎症相关基因IL-1β、TNF-α,而高表达甘露糖受体(MR)和精氨酸酶(Arg)基因。RT-qPCR结果显示(图 2~5),两组细胞均低表达IL-1β、TNF-α,而高盐组细胞中表达M2巨噬细胞表面标记物MR和Arg基因的mRNA水平较对照组显著升高(P < 0.05)。进一步采用免疫荧光检测发现,高盐处理后巨噬细胞高表达M2巨噬细胞表面标记物MR及Arg(图 6)。

1.

1

免疫荧光鉴定M0巨噬细胞表面标记物F4/F80

Expression of F4/F80 green fluorescent protein on M0 macrophages (Original magnification: ×200, scale=50 μm).

2.

2

巨噬细胞表面标记物MR基因mRNA相对水平

Relative mRNA levels of MR in macrophages. (A), melt curve(B), and melt peak (C) of RT-qPCR; (D) Histogram showing relative expressions of MR in macrophages in Nor and HS groups by RT-qPCR; 2-ΔΔCt method was used to measure the relative MR expression. Values are presented as Mean±SD (*P < 0.005).

5.

5

巨噬细胞表面标记物TNF-α基因mRNA相对水平

Relative mRNA levels of TNF-α genes mRNA in macrophages. (A), melt curve(B), and melt peak (C) of RT-qPCR; (D) Histogram showed the different relative expression of TNF-α of macrophages in Nor and HS group by RT-qPCR; 2-ΔΔCt method was used to measure the relative TNF-α expression. Values are depicted as Mean±SD (*P < 0.005).

6.

6

免疫荧光鉴定高盐诱导巨噬细胞表达M2型巨噬细胞表面标记物MR及Arg

Immunofluorescence identification of high salt-induced macrophages expressing M2 macrophage surface markers MR and Arg.

3.

3

巨噬细胞表面标记物Arg基因mRNA相对水平

Relative mRNA levels of Arg in macrophages. (A), melt curve(B), and melt peak (C) of RT-qPCR; (D) Histogram showing relative expression of Arg of macrophages in Nor and HS group by RT-qPCR; 2-ΔΔCt method was used to measure the relative Arg expression. Values are presented as Mean±SD (*P < 0.005).

4.

4

巨噬细胞表面标记物IL-1β基因mRNA相对水平

Relative mRNA levels of IL-1βin macrophages. (A), melt curve(B), and melt peak (C) of RT-qPCR; (D) Histogram showing relative expression of IL-1β of macrophages in Nor and HS group by RT-qPCR; 2-ΔΔCt method was used to measure the relative IL-1β expression. Values are presented as Mean±SD (*P < 0.005).

2.2. 高盐组巨噬细胞促进NRK-49F迁移

NRK-49F分别与正常组与高盐组巨噬细胞共培养24 h,经Transwell实验表明(图 7),高盐组NRK-49F迁移能力较正常对照组明显增高(189±5 vs 291±12,P < 0.05)。表明高盐刺激后的巨噬细胞培养液可导致NRK-49F迁移能力增强。

7.

7

显微镜下结晶紫染色的迁移细胞数量

Number of migrating cells stained with crystal violet (×10, scale=50 μm).

2.3. 高盐组巨噬细胞促进NRK-49F增殖

NRK-49F分别予以正常组与高盐组巨噬细胞培养液培养24 h后,经EdU检测结果显示(图 8),高盐组NRK-49F增殖能力较正常组对照组明显增高(19.9±0.2 vs 39.3±1.1,P < 0.05)。

8.

8

EdU检测两组间NRK-49F增殖情况

Green fluorescence in the nuclei of proliferating cells under fluorescence microscope (×20, scale=20 μm).

2.4. 高盐组巨噬细胞促进NRK-49F表型转化

NRK-49F分别予以正常组与高盐组巨噬细胞的培养液培养24 h后,经Western blot检测结果显示(图 9),高盐组NRK-49F中collagen I、collagen III及和α-SMA蛋白得相对表达量明显高于正常组(P < 0.05)。

9.

9

NRK-49F中collagen I、collagen III及α-SMA蛋白的相对表达

Protein expression of collagen I、collagen III、α-SMA in the NRK-49F. n=3. *P < 0. 05 vs Nor group.

2.5. 高盐刺激巨噬细胞分泌IL-6与TGF-β

RT-qPCR结果显示(图 10),高盐组细胞培养液中IL-6与TGF-β mRNA均显著高于正常组表达(P < 0.05)。Elisa结果显示(表 2),与正常组相比,高盐组细胞培养液中IL-6与TGF-β1分泌量显著增高(P < 0.05)。

10.

10

高盐刺激巨噬细胞分泌IL-6和TGF-β1的mRNA表达水平

Relative mRNA levels of IL-6 and TGF-β1 genes mRNA in co-culture medium. (A), melt curve (B), and melt peak (C) of RT-qPCR; D: Histogram showed the different relative expression of IL-6 and TGF-β1 in Nor and HS group by RT-qPCR (Mean±SD); 2-ΔΔCt method was used to measure the relative IL-6 and TGF-β1 expression. (*P < 0.005).

2.

高盐刺激巨噬细胞分泌IL-6和TGF-β1表达水平

High salt stimulate macrophages to secrete Il-6 and TGF-β 1expression (Mean±SD, n=3)

Group IL-6 (ng/L) TGF-β1 (ng/L)
*P < 0.05 vs Nor group.
Nor 13.416±0.652 18.968±0.443
HS 304.689±13.517* 366.082±7.128*

3. 讨论

高血压所致的肾脏损伤引起肾脏纤维化的机制十分复杂,包括免疫炎症反应,氧化应激、神经内分泌调节等[14-15]。其中,在免疫炎症反应中,巨噬细胞浸润、极化并分泌多种炎症介质及细胞因子是导致肾脏纤维化的重要原因[16-17]。研究表明,在患病人群及动物模型的肾小球及肾小管间质中均可见到大量的巨噬细胞募集和浸润,且与肾脏纤维化及肾脏功能受损有着密切的关联[18-19]。众所周知,盐敏感性高血压患者在高盐摄入后血压将急剧上升,进而导致肾脏损伤,而后控制钠盐的摄入可有效降低血压[20-21]。高盐是否通过直接影响肾脏组织局部巨噬细胞浸润加重肾脏纤维化,亦或是通过影响血压间接导致肾脏纤维化目前尚不清楚。

研究显示,巨噬细胞可以在不同环境中极化成两种不同的表型,即M1型噬细胞和M2型巨噬细胞[22]。M1型巨噬细胞的主要作用是产生分泌多种促炎症细胞因子,抵抗病原入侵,吞噬损伤组织,同时也会造成机体损伤[23]。M2型巨噬细胞则被认为是抗炎表型,参与组织损伤修复[24]。常见的M1型巨噬细胞标志物有诱导型一氧化氮合酶,白细胞IL-1β、TNF-α等。常见M2型巨噬细胞标志物有MR和Arg等[25-26]。本研究中,高盐(Na+ 161 mmol/L)刺激培养的骨髓单核巨噬细胞2 h后,细胞高表达MR及Arg,低表达IL-1β、TNF-α,表明高盐刺激可促进单核巨噬细胞向M2型巨噬细胞极化。这可能与巨噬细胞异质性相关,即巨噬细胞在不同微环境中可向不同的表型极化一致,且在同一刺激环境下,不同刺激时间也会造成巨噬细胞极化表型不同[27]。既往研究表明,在糖尿病肾病,浸润的M2型巨噬细胞与肾间质纤维化关系密切[28-29]。且小鼠输尿管梗阻模型中,损伤后的肾脏组织中以M2型巨噬细胞浸润为主,消除M2型巨噬细胞后,受损后的肾脏纤维化水平减轻,而消除M1型巨噬细胞则无此作用[30]。本实验采用Transwell共培养体系,将巨噬细胞与肾脏成纤维细胞株(NRK-49F)共培养,24 h后发现,经高盐处理后的巨噬细胞组中,NRK-49F的增殖、迁移能力明显增强,表明高盐刺激后极化的M2巨噬细胞可通过旁分泌效应,促进NRK-49F增殖及迁移。此外,经Western blot检测结果发现,将正常培养的单核巨噬细胞与高盐刺激后的巨噬细胞细胞培养液收集后,分别用来培养NRK-49F,高盐刺激组中,NRK-49F中肌成纤维细胞标记物α-SMA及Collage I、Collage III表达明显增加,表明高盐刺激巨噬细胞促进NRK-49F表型转化。既往研究报道显示,M2型巨噬细胞可分泌IL-10和TGF-β,诱导成纤维细胞增殖,迁移及表型转化,促进纤维化的发生[31-32]。在盐敏感性高血压大鼠模型中,给与抗IL-6抗体可降低肾组织IL-6,减弱肾脏中巨噬细胞和单核细胞的积聚,并可减轻大鼠盐敏感性高血压的发展和相关的肾脏损害[33]。本研究经Elisa检测结果发现,高盐处理后的巨噬细胞,其细胞培养液中IL-6及TGF-β1均显著高表达,推测高盐刺激的单核巨噬细胞极化为M2型巨噬细胞后,通过分泌IL-6及TGF-β1促进共培养的NRK-49F增殖、迁移及向肌成纤维细胞表型转化。

综上,高盐刺激单核巨噬细胞向M2极化,并分泌IL-6及TGF-β1,从而促进NRK-49F增殖、迁移及表型转化。这可能是高盐诱导肾脏纤维化的机制之一。

Biography

陆静,讲师,E-mail: 254027408@qq.com

Funding Statement

贵州省“千层次”创新型人才基金项目(2017-20);遵医附院院字(2015)50号

Contributor Information

陆 静 (Jing LU), Email: 254027408@qq.com.

白 志勋 (Zhixun BAI), Email: zhixunbai@zmu.edu.cn.

References

  • 1.Joint Committee for Guideline Revision. 2018 Chinese guidelines for prevention and treatment of hypertension-A report of the revision committee of Chinese guidelines for prevention and treatment of hypertension. J Geriatr Cardiol. 2019;16(3):182–241. doi: 10.11909/j.issn.1671-5411.2019.03.014. [Joint Committee for Guideline Revision. 2018 Chinese guidelines for prevention and treatment of hypertension-A report of the revision committee of Chinese guidelines for prevention and treatment of hypertension[J]. J Geriatr Cardiol, 2019, 16(3): 182-241.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.吴 兆苏, 霍 勇, 王 文, et al. 中国高血压患者教育指南. http://d.wanfangdata.com.cn/Periodical_zgyxqyzz201403032.aspx. 慢性病学杂志. 2014;15(1):1–30. [吴兆苏, 霍勇, 王文, 等.中国高血压患者教育指南[J].慢性病学杂志, 2014, 15(1): 1-30.] [Google Scholar]
  • 3.王 晓春, 商 黔惠, 祝 荣文, et al. 长期高盐饮食对Wistar大鼠血压和肾脏的影响及替米沙坦干预研究. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxyzz201303014. 中华高血压杂志. 2013;21(3):253–9. [王晓春, 商黔惠, 祝荣文, 等.长期高盐饮食对Wistar大鼠血压和肾脏的影响及替米沙坦干预研究[J].中华高血压杂志, 2013, 21(3): 253-9.] [Google Scholar]
  • 4.Wu YB, An CL, Jin XG, et al. Disruption of CXCR6 ameliorates kidney inflammation and fibrosis in deoxycorticosterone acetate/ salt hypertension. Sci Rep. 2020;10(1):133. doi: 10.1038/s41598-019-56933-7. [Wu YB, An CL, Jin XG, et al. Disruption of CXCR6 ameliorates kidney inflammation and fibrosis in deoxycorticosterone acetate/ salt hypertension[J]. Sci Rep, 2020, 10(1): 133.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Huang L, Wang AM, Hao Y, et al. Macrophage depletion lowered blood pressure and attenuated hypertensive renal injury and fibrosis. Front Physiol. 2018;9:473. doi: 10.3389/fphys.2018.00473. [Huang L, Wang AM, Hao Y, et al. Macrophage depletion lowered blood pressure and attenuated hypertensive renal injury and fibrosis[J]. Front Physiol, 2018, 9: 473.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhou X, Zhang L, Ji WJ, et al. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLoS One. 2013;8(4):e60332. doi: 10.1371/journal.pone.0060332. [Zhou X, Zhang L, Ji WJ, et al. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation[J]. PLoS One, 2013, 8(4): e60332.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Azushima K, Uneda K, Wakui H, et al. Effects of rikkunshito on renal fibrosis and inflammation in angiotensin Ⅱ-infused mice. Sci Rep. 2019;9(1):6201. doi: 10.1038/s41598-019-42657-1. [Azushima K, Uneda K, Wakui H, et al. Effects of rikkunshito on renal fibrosis and inflammation in angiotensin Ⅱ-infused mice[J]. Sci Rep, 2019, 9(1): 6201.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Shirai T, Hilhorst M, Harrison DG, et al. Macrophages in vascular inflammation-from atherosclerosis to vasculitis. Autoimmunity. 2015;48(3):139–51. doi: 10.3109/08916934.2015.1027815. [Shirai T, Hilhorst M, Harrison DG, et al. Macrophages in vascular inflammation-from atherosclerosis to vasculitis[J]. Autoimmunity, 2015, 48(3): 139-51.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Barbosa RM, Speretta GF, Dias DPM, et al. Increased expression of macrophage migration inhibitory factor in the nucleus of the solitary tract attenuates renovascular hypertension in rats. Am J Hypertens. 2017;30(4):435–43. doi: 10.1093/ajh/hpx001. [Barbosa RM, Speretta GF, Dias DPM, et al. Increased expression of macrophage migration inhibitory factor in the nucleus of the solitary tract attenuates renovascular hypertension in rats[J]. Am J Hypertens, 2017, 30(4): 435-43.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Truong LD, Trostel J, McMahan R, et al. Macrophage A2A adenosine receptors are essential to protect from progressive kidney injury. Am J Pathol. 2016;186(10):2601–13. doi: 10.1016/j.ajpath.2016.06.017. [Truong LD, Trostel J, McMahan R, et al. Macrophage A2A adenosine receptors are essential to protect from progressive kidney injury[J]. Am J Pathol, 2016, 186(10): 2601-13.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Tanino A, Okura T, Nagao T, et al. Interleukin-18 deficiency protects against renal interstitial fibrosis in aldosterone/salt-treated mice. Clin Sci. 2016;130(19):1727–39. doi: 10.1042/CS20160183. [Tanino A, Okura T, Nagao T, et al. Interleukin-18 deficiency protects against renal interstitial fibrosis in aldosterone/salt-treated mice[J]. Clin Sci, 2016, 130(19): 1727-39.] [DOI] [PubMed] [Google Scholar]
  • 12.Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol. 2015;15(2):117–29. doi: 10.1038/nri3800. [Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair[J]. Nat Rev Immunol, 2015, 15(2): 117-29.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Chen PM, Zhang XP, Venosa A, et al. A novel bivalent mannosylated targeting ligand displayed on nanoparticles selectively targets anti-inflammatory M2 macrophages. Pharmaceutics. 2020;12(3):E243. doi: 10.3390/pharmaceutics12030243. [Chen PM, Zhang XP, Venosa A, et al. A novel bivalent mannosylated targeting ligand displayed on nanoparticles selectively targets anti-inflammatory M2 macrophages[J]. Pharmaceutics, 2020, 12(3): E243.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Harwani SC, Ratcliff J, Sutterwala FS, et al. Nicotine mediates CD161a+ renal macrophage infiltration and premature hypertension in the spontaneously hypertensive rat. Circ Res. 2016;119(10):1101–15. doi: 10.1161/CIRCRESAHA.116.309402. [Harwani SC, Ratcliff J, Sutterwala FS, et al. Nicotine mediates CD161a+ renal macrophage infiltration and premature hypertension in the spontaneously hypertensive rat[J]. Circ Res, 2016, 119(10): 1101-15.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Feng D, Yang C, Geurts AM, et al. Increased expression of NAD(P) H oxidase subunit p67(phox) in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension. Cell Metab. 2012;15(2):201–8. doi: 10.1016/j.cmet.2012.01.003. [Feng D, Yang C, Geurts AM, et al. Increased expression of NAD(P) H oxidase subunit p67(phox) in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension[J]. Cell Metab, 2012, 15(2): 201-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Rudemiller NP, Patel MB, Zhang JD, et al. C-C motif chemokine 5 attenuates angiotensin Ⅱ-dependent kidney injury by limiting renal macrophage infiltration. Am J Pathol. 2016;186(11):2846–56. doi: 10.1016/j.ajpath.2016.07.015. [Rudemiller NP, Patel MB, Zhang JD, et al. C-C motif chemokine 5 attenuates angiotensin Ⅱ-dependent kidney injury by limiting renal macrophage infiltration[J]. Am J Pathol, 2016, 186(11): 2846-56.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Nikolic-Paterson DJ, Wang S, Lan HY. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl (2011) 2014;4(1):34–8. doi: 10.1038/kisup.2014.7. [Nikolic-Paterson DJ, Wang S, Lan HY. Macrophages promote renal fibrosis through direct and indirect mechanisms[J]. Kidney Int Suppl (2011), 2014, 4(1): 34-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ikezumi Y, Suzuki T, Yamada T, et al. Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury. Pediatr Nephrol. 2015;30(6):1007–17. doi: 10.1007/s00467-014-3023-0. [Ikezumi Y, Suzuki T, Yamada T, et al. Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury[J]. Pediatr Nephrol, 2015, 30(6): 1007-17.] [DOI] [PubMed] [Google Scholar]
  • 19.Engel DR, Krause TA, Snelgrove SL, et al. CX3CR1 reduces kidney fibrosis by inhibiting local proliferation of profibrotic macrophages. J Immunol. 2015;194(4):1628–38. doi: 10.4049/jimmunol.1402149. [Engel DR, Krause TA, Snelgrove SL, et al. CX3CR1 reduces kidney fibrosis by inhibiting local proliferation of profibrotic macrophages[J]. J Immunol, 2015, 194(4): 1628-38.] [DOI] [PubMed] [Google Scholar]
  • 20.Rafiq K, Nishiyama A, Konishi Y, et al. Regression of glomerular and tubulointerstitial injuries by dietary salt reduction with combination therapy of angiotensin Ⅱ receptor blocker and calcium channel blocker in Dahl salt-sensitive rats. PLoS One. 2014;9(9):e107853. doi: 10.1371/journal.pone.0107853. [Rafiq K, Nishiyama A, Konishi Y, et al. Regression of glomerular and tubulointerstitial injuries by dietary salt reduction with combination therapy of angiotensin Ⅱ receptor blocker and calcium channel blocker in Dahl salt-sensitive rats[J]. PLoS One, 2014, 9 (9): e107853.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Johnson AC, Wu WJ, Attipoe EM, et al. Loss of Arhgef11 in the dahl salt-sensitive rat protects against hypertension-induced renal injury. Hypertension. 2020;75(4):1012–24. doi: 10.1161/HYPERTENSIONAHA.119.14338. [Johnson AC, Wu WJ, Attipoe EM, et al. Loss of Arhgef11 in the dahl salt-sensitive rat protects against hypertension-induced renal injury[J]. Hypertension, 2020, 75(4): 1012-24.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44(3):439–49. doi: 10.1016/j.immuni.2016.02.024. [Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis[J]. Immunity, 2016, 44(3): 439-49.] [DOI] [PubMed] [Google Scholar]
  • 23.Kapellos TS, Iqbal AJ. Epigenetic control of macrophage polarisation and soluble mediator gene expression during inflammation. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842078/ Mediators Inflamm. 2016;2016:6591703. doi: 10.1155/2016/6591703. [Kapellos TS, Iqbal AJ. Epigenetic control of macrophage polarisation and soluble mediator gene expression during inflammation[J]. Mediators Inflamm, 2016, 2016: 6591703.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Liu GW, Yang H. Modulation of macrophage activation and programming in immunity. J Cell Physiol. 2013;228(3):502–12. doi: 10.1002/jcp.24157. [Liu GW, Yang H. Modulation of macrophage activation and programming in immunity[J]. J Cell Physiol, 2013, 228(3): 502-12.] [DOI] [PubMed] [Google Scholar]
  • 25.Babicky ML, Harper MM, Chakedis J, et al. MST1R kinase accelerates pancreatic cancer progression via effects on both epithelial cells and macrophages. Oncogene. 2019;38(28):5599–611. doi: 10.1038/s41388-019-0811-9. [Babicky ML, Harper MM, Chakedis J, et al. MST1R kinase accelerates pancreatic cancer progression via effects on both epithelial cells and macrophages[J]. Oncogene, 2019, 38(28): 5599-611.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Guiteras R, Sola A, Flaquer M, et al. Macrophage overexpressing NGAL ameliorated kidney fibrosis in the UUO mice model. Cell Physiol Biochem. 2017;42(5):1945–60. doi: 10.1159/000479835. [Guiteras R, Sola A, Flaquer M, et al. Macrophage overexpressing NGAL ameliorated kidney fibrosis in the UUO mice model[J]. Cell Physiol Biochem, 2017, 42(5): 1945-60.] [DOI] [PubMed] [Google Scholar]
  • 27.Dai YX, Chang SF, Ren DY, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia_reperfusion injury via inhibiting TXNIP and the TLR4/ NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol. 2020;142:65–79. doi: 10.1016/j.yjmcc.2020.02.007. [Dai YX, Chang SF, Ren DY, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia_reperfusion injury via inhibiting TXNIP and the TLR4/ NF-κB/NLRP3 inflammasome signaling pathway[J]. J Mol Cell Cardiol, 2020, 142: 65-79.] [DOI] [PubMed] [Google Scholar]
  • 28.Klessens CQF, Zandbergen M, Wolterbeek R, et al. Macrophages in diabetic nephropathy in patients with type 2 diabetes. http://www.ncbi.nlm.nih.gov/pubmed/27416772/ Nephrol Dial Transplant. 2017;32(8):1322–9. doi: 10.1093/ndt/gfw260. [Klessens CQF, Zandbergen M, Wolterbeek R, et al. Macrophages in diabetic nephropathy in patients with type 2 diabetes[J]. Nephrol Dial Transplant, 2017, 32(8): 1322-9.] [DOI] [PubMed] [Google Scholar]
  • 29.Xu BH, Sheng JY, You YK, et al. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy. Metab Clin Exp. 2020;103:154013. doi: 10.1016/j.metabol.2019.154013. [Xu BH, Sheng JY, You YK, et al. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy[J]. Metab Clin Exp, 2020, 103: 154013.] [DOI] [PubMed] [Google Scholar]
  • 30.Pan BX, Liu GH, Jiang ZP, et al. Regulation of renal fibrosis by macrophage polarization. Cell Physiol Biochem. 2015;35(3):1062–9. doi: 10.1159/000373932. [Pan BX, Liu GH, Jiang ZP, et al. Regulation of renal fibrosis by macrophage polarization[J]. Cell Physiol Biochem, 2015, 35(3): 1062-9.] [DOI] [PubMed] [Google Scholar]
  • 31.Guiteras R, Flaquer M, Cruzado JM. Macrophage in chronic kidney disease. Clin Kidney J. 2016;9(6):765–71. doi: 10.1093/ckj/sfw096. [Guiteras R, Flaquer M, Cruzado JM. Macrophage in chronic kidney disease[J]. Clin Kidney J, 2016, 9(6): 765-71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.吴 莲凤, 陆 红, 洪 炜龙, et al. M1/M2型巨噬细胞极化参与肾组织炎症损伤和修复进程. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgblslzz201712021. 中国病理生理杂志. 2017;33(12):2245–51. [吴莲凤, 陆红, 洪炜龙, 等. M1/M2型巨噬细胞极化参与肾组织炎症损伤和修复进程[J].中国病理生理杂志, 2017, 33(12): 2245-51.] [Google Scholar]
  • 33.Hashmat S, Rudemiller N, Lund H, et al. Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Physiol Renal Physiol. 2016;311(3):F555–61. doi: 10.1152/ajprenal.00594.2015. [Hashmat S, Rudemiller N, Lund H, et al. Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats[J]. Am J Physiol Renal Physiol, 2016, 311(3): F555-61.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES