Skip to main content
Frontiers in Oncology logoLink to Frontiers in Oncology
editorial
. 2020 Oct 20;10:588786. doi: 10.3389/fonc.2020.588786

Editorial: PVT1 in Cancer

Olorunseun O Ogunwobi 1,*, Miguel F Segura 2
PMCID: PMC7606904  PMID: 33194746

The plasmacytoma variant translocation 1 (PVT1) gene is located at human chromosome 8q24, downstream of the well-known c-MYC oncogene (1). As chromosome 8q24 is a chromosomal region of genomic instability, it is not surprising that PVT1 was discovered in the context of cancer. PVT1 is now known to be dysregulated in non-cancerous diseases such as kidney disease (including diabetic nephropathy) (2), cardiac hypertrophy (3), vitiligo (4), osteoarthritis (5), and asthma (6). However, PVT1 is much better established to be dysregulated in a wide variety of cancers including plasmacytomas (7, 8), lymphomas (9, 10), leukemias (11, 12), sarcomas (including osteosarcoma) (13, 14), ovarian cancer (15, 16), breast cancer (16, 17), lung cancer (18, 19), astrocytomas (20), pancreatic cancer (21, 22), prostate cancer (2326), cholangiocarcinoma (27), gliomas (28), medulloblastoma (29), mesothelioma (30), colorectal cancer (31), gastric cancer (32), hepatocellular carcinoma (33, 34), thyroid cancer (35), bladder cancer (36), renal cell carcinoma (37, 38), cervical cancer (39), esophageal cancer (40), melanoma (41), endometrial cancer (42, 43), non-small cell lung cancer (44, 45), and cutaneous squamous cell carcinoma (46, 47).

PVT1 has at least 12 annotated exons: exon 1A, exon 1B, exon 1C, exon 2, exon 3A, exon 3B, exon 4A, exon 4B, exon 5, exon 6, exon 7, exon 8, and exon 9 (1). And it encodes six annotated microRNAs (miRNAs): miR-1204, miR-1205, miR-1206, miR-1207-3p, miR-1207-5p, and miR-1208 (48). PVT1 is expressed in the various organs throughout the human body. There is progressively increasing evidence that distinct PVT1 exons, and PVT1-encoded miRNAs have significant biological functions, as discussed in the well-written articles included in our Research Topic entitled “PVT1 in Cancer.” In addition, there is evidence of alternative splicing at the PVT1 gene, resulting in at least 25 annotated PVT1 transcript variants (Martinez-Barriocanal et al.). As noted in several of the papers published in the Research Topic “PVT1 in Cancer,” PVT1 induces cancer development and progression via a variety of biological mechanisms including but not limited to miRNA regulation (Wang et al.), and as a competing endogenous RNA (ceRNA) (Ogunwobi and Kumar).

The articles included in the Research Topic “PVT1 in Cancer” are particularly interesting because they highlight the clinical relevance and potential clinical applications of PVT1 in cancer. For example, the article by Boloix et al. discusses the potential prognostic applications and the potential to target PVT1 for therapeutic applications in pediatric cancers. All of the other articles discuss potential clinical applications in a variety of adult cancers. Notably, Ogunwobi and Kumar identify PVT1 as a mediator of cancer chemoresistance. Thus, targeting PVT1 may have a future role in the treatment of many highly lethal cancers such as pancreatic cancer, and neuroendocrine prostate cancer where chemoresistance is common.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

OO is a co-founder of NucleoBio, Inc., a City University of New York start-up biotechnology company. The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Footnotes

Funding. OO was supported by National Cancer Institute grant # U54CA221704.

References

  • 1.Huppi K, Pitt JJ, Wahlberg BM, Caplen NJ. The 8q24 gene desert: an oasis of non-coding transcriptional activity. Front Genet. (2012) 3:69. 10.3389/fgene.2012.00069 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Alvarez ML, DiStefano JK. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS ONE. (2011) 6:e18671. 10.1371/journal.pone.0018671 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Yu YH, Hu ZY, Li MH, Li B, Wang ZM, Chen SL. Cardiac hypertrophy is positively regulated by long non-coding RNA PVT1. Int J Clin Exp Pathol. (2015) 8:2582–9. [PMC free article] [PubMed] [Google Scholar]
  • 4.Ben S, Jin Y, Santorico SA, Spritz RA. Genome-wide association of PVT1 with Vitiligo. J Invest Dermatol. (2018) 138:1884–6. 10.1016/j.jid.2018.02.025 [DOI] [PubMed] [Google Scholar]
  • 5.Li Y, Li S, Luo Y, Liu Y, Yu N. LncRNA PVT1 regulates chondrocyte apoptosis in osteoarthritis by acting as a sponge for miR-488-3p. DNA Cell Biol. (2017) 36:571–80. 10.1089/dna.2017.3678 [DOI] [PubMed] [Google Scholar]
  • 6.Austin PJ, Tsitsiou E, Boardman C, Jones SW, Lindsay MA, Adcock IM, et al. Transcriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation (PVT1) as a novel regulator of the asthmatic phenotype in human airway smooth muscle. J Allergy Clin Immunol. (2017) 139:780–9. 10.1016/j.jaci.2016.06.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Webb E, Adams JM, Cory S. Variant (6; 15) translocation in a murine plasmacytoma occurs near an immunoglobulin kappa gene but far from the myc oncogene. Nature. (1984) 312:777–9. 10.1038/312777a0 [DOI] [PubMed] [Google Scholar]
  • 8.Cory S, Graham M, Webb E, Corcoran L, Adams JM. Variant (6;15) translocations in murine plasmacytomas involve a chromosome 15 locus at least 72 kb from the c-myc oncogene. EMBO J. (1985) 4:675–81. 10.1002/j.1460-2075.1985.tb03682.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Huppi K, Siwarski D. Chimeric transcripts with an open reading frame are generated as a result of translocation to the Pvt-1 region in mouse B-cell tumors. Int J Cancer. (1994) 59:848–51. 10.1002/ijc.2910590623 [DOI] [PubMed] [Google Scholar]
  • 10.Graham M, Adams JM. Chromosome 8 breakpoint far 3' of the c-myc oncogene in a Burkitt's lymphoma 2;8 variant translocation is equivalent to the murine pvt-1 locus. EMBO J. (1986) 5:2845–51. 10.1002/j.1460-2075.1986.tb04578.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Yazdi N, Houshmand M, Atashi A, Kazemi A, Najmedini AA, Zarif MN. Long noncoding RNA PVT1: potential oncogene in the development of acute lymphoblastic leukemia. Turk J Biol. (2018) 42:405–13. 10.3906/biy-1801-46 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Zeng C, Yu X, Lai J, Yang L, Chen S, Li Y. Overexpression of the long non-coding RNA PVT1 is correlated with leukemic cell proliferation in acute promyelocytic leukemia. J Hematol Oncol. (2015) 8:126. 10.1186/s13045-015-0223-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Liu J, Li R, Liao X, Hu B, Yu J. Comprehensive investigation of the clinical significance and molecular mechanisms of plasmacytoma variant translocation 1 in sarcoma using genome-wide RNA sequencing data. J Cancer. (2019) 10:4961–77. 10.7150/jca.31675 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Zhou Q, Chen F, Zhao J, Li B, Liang Y, Pan W, et al. Long non-coding RNA PVT1 promotes osteosarcoma development by acting as a molecular sponge to regulate miR-195. Oncotarget. (2016) 7:82620–33. 10.18632/oncotarget.13012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Chen Y, Du H, Bao L, Liu W. LncRNA PVT1 promotes ovarian cancer progression by silencing miR-214. Cancer Biol Med. (2018) 15:238–50. 10.20892/j.issn.2095-3941.2017.0174 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Guan Y, Kuo WL, Stilwell JL, Takano H, Lapuk AV, Fridlyand J, et al. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res. (2007) 13:5745–55. 10.1158/1078-0432.CCR-06-2882 [DOI] [PubMed] [Google Scholar]
  • 17.Tang J, Li Y, Sang Y, Yu B, Lv D, Zhang W, et al. LncRNA PVT1 regulates triple-negative breast cancer through KLF5/beta-catenin signaling. Oncogene. (2018) 37:4723–34. 10.1038/s41388-018-0310-4 [DOI] [PubMed] [Google Scholar]
  • 18.Guo D, Wang Y, Ren K, Han X. Knockdown of LncRNA PVT1 inhibits tumorigenesis in non-small-cell lung cancer by regulating miR-497 expression. Exp Cell Res. (2018) 362:172–9. 10.1016/j.yexcr.2017.11.014 [DOI] [PubMed] [Google Scholar]
  • 19.Chen W, Zhu H, Yin L, Wang T, Wu J, Xu J, et al. lncRNA-PVT1 facilitates invasion through upregulation of MMP9 in nonsmall cell lung cancer cell. DNA Cell Biol. (2017) 36:787–93. 10.1089/dna.2017.3725 [DOI] [PubMed] [Google Scholar]
  • 20.Schiffman JD, Hodgson JG, VandenBerg SR, Flaherty P, Polley MY, Yu M, et al. Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res. (2010) 70:512–9. 10.1158/0008-5472.CAN-09-1851 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zhao L, Kong H, Sun H, Chen Z, Chen B, Zhou M. LncRNA-PVT1 promotes pancreatic cancer cells proliferation and migration through acting as a molecular sponge to regulate miR-448. J Cell Physiol. (2018) 233:4044–55. 10.1002/jcp.26072 [DOI] [PubMed] [Google Scholar]
  • 22.You L, Wang H, Yang G, Zhao F, Zhang J, Liu Z, et al. Gemcitabine exhibits a suppressive effect on pancreatic cancer cell growth by regulating processing of PVT1 to miR1207. Mol Oncol. (2018) 12:2147–64. 10.1002/1878-0261.12393 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Ilboudo A, Chouhan J, McNeil BK, Osborne JR, Ogunwobi OO. PVT1 Exon 9: a potential biomarker of aggressive prostate cancer? Int J Environ Res Public Health. (2015) 13:ijerph13010012. 10.3390/ijerph13010012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Pal G, Huaman J, Levine F, Orunmuyi A, Olapade-Olaopa EO, Onagoruwa OT, et al. Long noncoding RNA from PVT1 exon 9 is overexpressed in prostate cancer and induces malignant transformation and castration resistance in prostate epithelial cells. Genes. (2019) 10:964. 10.3390/genes10120964 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Orunmuyi A, Ilboudo A, Ogun O, Bach C, Adebayo S, Salako A, et al. PVT1 exons 4A, 4B, and 9 are overexpressed in aggressive prostate cancer, and PVT1 exon 4B may distinguish between indolent and aggressive prostate cancer. Cancer Res. (2017) 77 (13 Suppl.):3507 10.1158/1538-7445.AM2017-3507 [DOI] [Google Scholar]
  • 26.Pal G, Di L, Orunmuyi A, Olapade-Olaopa EO, Qiu W, Ogunwobi OO. Population differentiation at the PVT1 gene locus: implications for prostate cancer. G3 (Bethesda). (2020) 10:2257–64. 10.1534/g3.120.401291 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Chapman MH, Tidswell R, Dooley JS, Sandanayake NS, Cerec V, Deheragoda M, et al. Whole genome RNA expression profiling of endoscopic biliary brushings provides data suitable for biomarker discovery in cholangiocarcinoma. J Hepatol. (2012) 56:877–85. 10.1016/j.jhep.2011.10.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Zhang Y, Yang G, Luo Y. Long non-coding RNA PVT1 promotes glioma cell proliferation and invasion by targeting miR-200a. Exp Ther Med. (2019) 17:1337–45. 10.3892/etm.2018.7083 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. (2012) 488:49–56. 10.1038/nature11327 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Riquelme E, Suraokar MB, Rodriguez J, Mino B, Lin HY, Rice DC, et al. Frequent coamplification and cooperation between C-MYC and PVT1 oncogenes promote malignant pleural mesothelioma. J Thorac Oncol. (2014) 9:998–1007. 10.1097/JTO.0000000000000202 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Wu H, Wei M, Jiang X, Tan J, Xu W, Fan X, et al. lncRNA PVT1 promotes tumorigenesis of colorectal cancer by stabilizing miR-16-5p and interacting with the VEGFA/VEGFR1/AKT axis. Mol Ther Nucleic Acids. (2020) 20:438–50. 10.1016/j.omtn.2020.03.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Xu MD, Wang Y, Weng W, Wei P, Qi P, Zhang Q, et al. A positive feedback loop of lncRNA-PVT1 and FOXM1 facilitates gastric cancer growth and invasion. Clin Cancer Res. (2017) 23:2071–80. 10.1158/1078-0432.CCR-16-0742 [DOI] [PubMed] [Google Scholar]
  • 33.Gou X, Zhao X, Wang Z. Long noncoding RNA PVT1 promotes hepatocellular carcinoma progression through regulating miR-214. Cancer Biomark. (2017) 20:511–9. 10.3233/CBM-170331 [DOI] [PubMed] [Google Scholar]
  • 34.Lan T, Yan X, Li Z, Xu X, Mao Q, Ma W, et al. Long non-coding RNA PVT1 serves as a competing endogenous RNA for miR-186-5p to promote the tumorigenesis and metastasis of hepatocellular carcinoma. Tumour Biol. (2017) 39:1010428317705338. 10.1177/1010428317705338 [DOI] [PubMed] [Google Scholar]
  • 35.Zhang R, Hardin H, Huang W, Buehler D, Lloyd RV. Long non-coding RNA Linc-ROR is upregulated in papillary thyroid carcinoma. Endocr Pathol. (2018) 29:1–8. 10.1007/s12022-017-9507-2 [DOI] [PubMed] [Google Scholar]
  • 36.Tian Z, Cao S, Li C, Xu M, Wei H, Yang H, et al. LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/ CDK1. J Cell Physiol. (2019) 234:4799–811. 10.1002/jcp.27279 [DOI] [PubMed] [Google Scholar]
  • 37.Zou B, Wang D, Xu K, Liu JL, Yuan DY, Meng Z, et al. Prognostic value of long non-coding RNA plasmacytoma variant translocation1 in human solid tumors: a meta-analysis. Medicine. (2019) 98:e16087. 10.1097/MD.0000000000016087 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Li W, Zheng Z, Chen H, Cai Y, Xie W. Knockdown of long non-coding RNA PVT1 induces apoptosis and cell cycle arrest in clear cell renal cell carcinoma through the epidermal growth factor receptor pathway. Oncol Lett. (2018) 15:7855–63. 10.3892/ol.2018.8315 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Iden M, Fye S, Li K, Chowdhury T, Ramchandran R, Rader JS. The lncRNA PVT1 contributes to the cervical cancer phenotype and associates with poor patient prognosis. PLoS ONE. (2016) 11:e0156274. 10.1371/journal.pone.0156274 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Li PD, Hu JL, Ma C, Ma H, Yao J, Chen LL, et al. Upregulation of the long non-coding RNA PVT1 promotes esophageal squamous cell carcinoma progression by acting as a molecular sponge of miR-203 and LASP1. Oncotarget. (2017) 8:34164–76. 10.18632/oncotarget.15878 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Chen L, Ma D, Li Y, Li X, Zhao L, Zhang J, et al. Effect of long non-coding RNA PVT1 on cell proliferation and migration in melanoma. Int J Mol Med. (2018) 41:1275–82. 10.3892/ijmm.2017.3335 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Xing TR, Chen P, Wu JM, Gao LL, Yang W, Cheng Y, et al. UPF1 participates in the progression of endometrial cancer by inhibiting the expression of lncRNA PVT1. Onco Targets Ther. (2020) 13:2103–14. 10.2147/OTT.S233149 [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 43.Kong F, Ma J, Yang H, Yang D, Wang C, Ma X. Long non-coding RNA PVT1 promotes malignancy in human endometrial carcinoma cells through negative regulation of miR-195-5p. Biochim Biophys Acta. (2018). 10.1016/j.bbamcr.2018.07.008 [DOI] [PubMed] [Google Scholar]
  • 44.Cui D, Yu CH, Liu M, Xia QQ, Zhang YF, Jiang WL. Long non-coding RNA PVT1 as a novel biomarker for diagnosis and prognosis of non-small cell lung cancer. Tumour Biol. (2016) 37:4127–34. 10.1007/s13277-015-4261-x [DOI] [PubMed] [Google Scholar]
  • 45.Qiu C, Li S, Sun D, Yang S. lncRNA PVT1 accelerates progression of non-small cell lung cancer via targeting miRNA-526b/EZH2 regulatory loop. Oncol Lett. (2020) 19:1267–72. 10.3892/ol.2019.11237 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Das Mahapatra K, Pasquali L, Sondergaard JN, Lapins J, Nemeth IB, Baltas E, et al. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci Rep. (2020) 10:3637. 10.1038/s41598-020-59660-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Wu D, Li Y, Zhang H, Hu X. Knockdown of Lncrna PVT1 enhances radiosensitivity in non-small cell lung cancer by sponging Mir-195. Cell Physiol Biochem. (2017) 42:2453–66. 10.1159/000480209 [DOI] [PubMed] [Google Scholar]
  • 48.Huppi K, Volfovsky N, Runfola T, Jones TL, Mackiewicz M, Martin SE, et al. The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol Cancer Res. (2008) 6:212–21. 10.1158/1541-7786.MCR-07-0105 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Oncology are provided here courtesy of Frontiers Media SA

RESOURCES