Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2020 Nov 3.
Published in final edited form as: J Vis Exp. 2019 Mar 31;(145):10.3791/59382. doi: 10.3791/59382

HOX Loci Focused CRISPR/sgRNA Library Screening Identifying Critical CTCF Boundaries

Huacheng Luo 1, Amin Sobh 2, Christopher D Vulpe 2, Edmond Brewer 1, Sinisa Dovat 1, Yi Qiu 3, Suming Huang 1
PMCID: PMC7607627  NIHMSID: NIHMS1639398  PMID: 30985763

Abstract

CCCTC-binding factor (CTCF)-mediated stable topologically associating domains (TADs) play a critical role in constraining interactions of DNA elements that are located in neighboring TADs. CTCF plays an important role in regulating the spatial and temporal expression of HOX genes that control embryonic development, body patterning, hematopoiesis, and leukemogenesis. However, it remains largely unknown whether and how HOX loci associated CTCF boundaries regulate chromatin organization and HOX gene expression. In the current protocol, a specific sgRNA pooled library targeting all CTCF binding sites in the HOXA/B/C/D loci has been generated to examine the effects of disrupting CTCF-associated chromatin boundaries on TAD formation and HOX gene expression. Through CRISPR-Cas9 genetic screening, the CTCF binding site located between HOXA7/HOXA9 genes (CBS7/9) has been identified as a critical regulator of oncogenic chromatin domain, as well as being important for maintaining ectopic HOX gene expression patterns in MLL-rearranged acute myeloid leukemia (AML). Thus, this sgRNA library screening approach provides novel insights into CTCF mediated genome organization in specific gene loci and also provides a basis for the functional characterization of the annotated genetic regulatory elements, both coding and noncoding, during normal biological processes in the post-human genome project era.

Keywords: CRISPR/Cas9, sgRNA library screening, CTCF boundary, HOX loci, one-step RT-qPCR, Indel mutation detection, Acute Myeloid Leukemia

SUMMARY:

A CRISPR/sgRNA library has been applied to interrogating protein-coding genes. However, the feasibility of a sgRNA library to uncover the function of a CTCF boundary in gene regulation remains unexplored. Here, we describe a HOX loci specific sgRNA library to elucidate the function of CTCF boundaries in HOX loci.

INTRODUCTION:

Recent genome interaction studies revealed that the human nuclear genome forms stable topologically associating domains (TADs) that are conserved across cell types and species. The organization of the genome into separate domains facilitates and restricts interactions between regulatory elements (e.g., enhancers and promoters). The CCCTC-binding factor (CTCF) binds to TAD boundaries and plays a critical role in constraining interactions of DNA elements that are located in neighboring TADs1. However, genome wide CTCF binding data revealed that although CTCF mostly interacts with the same DNA-sites in different cell types, it often functions as a chromatin barrier at a specific site in one cell type but not in the other, suggesting that CTCF functions together with other activities in the formation of chromatin boundaries2. What remains unknown is whether the boundary elements (CTCF-binding sites) are directly linked to the biological function of CTCF, and how these links occur. Therefore, we hypothesize that specific CTCF binding sites in the genome directly regulate the formation of TADs and control promoter/enhancer interactions within these domains or between neighboring domains. The completion of the human and mouse genome sequencing projects and subsequent epigenetic analyses have uncovered new molecular and genetic signatures of the genome. However, the role of specific signatures/modifications in gene regulation and cellular function, as well as their molecular mechanism(s), have yet to be fully understood.

Multiple lines of evidence support that the CTCF-mediated TADs represent functional chromatin domains35. Although CTCF mostly interacts with the same DNA-sites in different cell types, genome wide CTCF ChIP-seq data revealed that CTCF often functions as a chromatin barrier in one cell type but not in the other2. CTCF plays an essential role during development by mediating genome organization4,6,7. Disruption of CTCF boundaries impaired enhancer/promoter interactions and gene expression, leading to developmental blockage. This suggests that CTCF mediated TADs are not only structural components, but also regulatory units required for proper enhancer action and gene transcription5,8,9.

HOX genes play critical roles during embryonic development and they are temporally and spatially restricted in their expression patterns. The HOXA locus forms two stable TADs separating anterior and posterior genes by a CTCF-associated boundary element in both hESCs and IMR90 cells1. Recent reports demonstrated that HoxBlinc, a HoxB locus associated lncRNA, mediates the formation of CTCF directed TADs and enhancer/promoter interactions in the HOXB locus. This leads to anterior HOXB gene activation during ESC commitment and differentiation10. Furthermore, at specific gene loci including the HOXA locus, alteration of CTCF mediated TAD domains changed lineage specific gene expression profiles and was associated with the development of disease states11,12. The evidence supports a primary function for CTCF in coordinating gene transcription and determining cell identity by organizing the genome into functional domains.

Despite its role in the embryonic development, during hematopoiesis, HOX genes regulate hematopoietic stem and progenitor cell (HS/PC) function. This is done by controlling the balance between proliferation and differentiation10,1315. The expression of HOX genes is tightly regulated throughout the specification and differentiation of hematopoietic cells, with highest expression in HS/PCs. HOX gene expression gradually decreases during maturation, with its lowest levels occurring in differentiated hematopoietic cells16. HOX gene dysregulation is a dominant mechanism of leukemic transformation by dysregulating self-renewal and differentiation properties of HS/PCs leading to leukemic transformation17,18. However, the mechanism of establishing and maintaining normal vs. oncogenic expression patterns of HOX genes as well as associated regulatory networks remains unclear.

CRISPR-Cas9 sgRNA library screening has been widely used to interrogate protein-coding genes19 as well as non-coding genes, such as lncRNA20 and miRNA21 in different species. However, the cost to use the CRISPR-Cas9 sgRNA library to identify new genomic targets remains high, because high-throughput genome sequencing is often applied to verify the sgRNA library screening. Our sgRNA screening system is focused on the specific genome loci and evaluates the targeting sgRNAs through one-step RT-PCR according to the marker gene expression, such as HOXA9. Additionally, Sanger sequencing confirmed that the sgRNA was integrated into the genome, and Indel mutations can be detected to identify the sgRNA targeting site. Through the loci-specific CRISPR-Cas9 genetic screening, the CBS7/9 chromatin boundary has been identified as a critical regulator for establishing oncogenic chromatin domain and maintaining ectopic HOX gene expression patterns in AML pathogenesis12. The method can be widely applied to identify not only specific function of CTCF boundary in embryonic development, hematopoiesis, leukemogenesis, but also CTCF boundary as potential therapeutic targets for future epigenetic therapy.

PROTOCOL:

1. CTCF sgRNA library design using an online tool

1.1. Design the sgRNA targeting CTCF binding sites in the human HOX loci using the genetic perturbation platform (GPP) designer tool (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design).

1.2. Synthesize a total of 1,070 sgRNAs consisting of sgRNAs targeting 303 random targeting genes, 60 positive controls, 500 non-Human-targeting controls, and 207 CTCF elements or lncRNA targeting genes (Figure 1, Table 1). Each targeting DNA element is targeted by 5-10 different sgRNAs.

Figure 1: Schematic diagram showing CTCF binding sites and lncRNAs in four HOX gene loci.

Figure 1:

Each targeting DNA element contains 5-10 different sgRNAs. CTCF ChIP-seq dataset was downloaded from GEO (GSM1335528) and visualized with Integrated Genomic Viewer (IGV). SgRNA targeting CTCF sites in HOX loci were labelled with orange scissors.

Table 1.

sgRNAs pool library targeting information (This data from Luo et al.12).

Gene/Motif sgRNA sequence Gene/Motif sgRNA sequence
ABCC1 AAAATGTGATTGGCCCCAAG HOXD89-F-3 AGCTTTACGAGATCAGAAAG
ABCC1 AACCTGACAGCATCGAGCGA HOXD89-F-4 AATTAAATTCAGTGGACTGG
ABCC1 AGTACACGGAAAGCTTGACC HOXD89-F-5 AAAAATTAAATTCAGTGGAC
ABCC1 CAAGTTCGTGAATGACACGA HOXD89-F-6 TAAATTCAGTGGACTGGAGG
ABCC1 CCAGCCGAAAGAGAGTTCCA HOXD10-F-1 CGCTCTTACTGATCTCTAGG
ABCC1 GCGCCACCGGCATGGCGCTC HOXD10-F-2 TAACGCTCTTACTGATCTCT
ABCC1 TAGAAGTAGCCCTGCCAGTC HOXD10-F-3 AGAGCGTTAACCTCACCGAC
ABCC1 TCTGCTTCGTCAGTGGCATG HOXD10-F-4 GATCTCTAGGCGGCGCTCGC
ACAD11 AGAACGTTCAGCCATATATG HOXD10-F-5 TGATCTCTAGGCGGCGCTCG
ACAD11 CCACTCCGATAGCTGTTGCA HOXD10-F-6 CTAGGCGGCGCTCGCGGGTG
ACAD11 CCTTGGCCAAAAGTAGAACA HOXD10-11-F-1 AACGTGAGCGCGCCCTCGTG
ACAD11 CTGAGCCAATGTTTCTACCG HOXD10-11-F-2 GGGCCTGGAGATCCACACGA
ACAD11 TGCAGTGATACTTCTGTCAT HOXD10-11-F-3 GGGGCCTGGAGATCCACACG
ACAD11 TTACGTAATGGAACATGTGC HOXD10-11-F-4 TCTTGGTCAAACGCGGCTTC
ACAD11 TTGTTTGTACAGACTCGGAA HOXD10-11-F-5 GCGCCCTCGTGTGGATCTCC
ACKR3 AAGACAGCGATAATGGAGAA HOXD12-13-R-1 GCCAATGCCGCCCAATGCCC
ACKR3 ACTGGACGCCGAGATGGCTC HOXD12-13-R-2 GAGCGCGCTCGCCATCTCCT
ACKR3 CATCTCGGCGTCCAGTGACC HOXD12-13-R-3 GCCGCCCAATGCCCAGGAGA
ACKR3 CCAACAATGAGACCTACTGC HOXD12-13-R-4 GGAGCGCGCTCGCCATCTCC
ACKR3 CCGTTTCCTTACCTCCGGGC HOXD12-13-R-5 CGGCTGCGCCCCGATAGGCA
ACKR3 GCACTGCTACATCTTGAACC HOXD12-13-R-6 CTCGCCATCTCCTGGGCATT
ACKR3 GCATTATATACACTGCAGAA HOXD12-13-R-7 GCTCGCCATCTCCTGGGCAT
ACKR3 GGTCCACGCTCATGCACGTG HOXD13-1-R-1 GACATCTAGCGCCAGGCGTG
ACSL3 ATGATTACTGCAATATCTGA HOXD13-1-R-2 TTGCAGGGACATCTAGCGCC
ACSL3 CGAGTGGATGATAGCTGCAC HOXD13-1-R-3 GGACATCTAGCGCCAGGCGT
ACSL3 GAAAGTTCGAAGCTTGCTAG HOXD13-1-R-4 GGGACATCTAGCGCCAGGCG
ACSL3 GCAATGGTTTGCTATGAGGT HOXD13-1-R-5 GGCTCCACTTCCCGGCCCGG
ACSL3 GTGGTGAAGAGTAACCAATG HOXD13-1-R-6 TTCGGCTCCACTTCCCGGCC
ACSL3 TAACATACCCATGCTGGCCT HOXD13-1-R-7 GGCGCGCAGTTCCCCACGCC
ACSL3 TATCTAAAGTATCACATCCA HOXD13-1-R-8 CAGTGTTCGGCTCCACTTCC
ACSL3 TCACATAGTAACATTATTGC HOXD13-2-R-1 ATGCCTTTATTGCTGTCGTT
ACTC1 CGATGGACGGGAAGACAGCG HOXD13-2-R-2 TCACAGCAGCCGAAACCGCG
ACTC1 CTACAACTCACCAATGAAGG HOXD13-2-R-3 AAACCGCGAGGAAAACAGAT
ACTC1 CTGGGCTTCATCACCTACGT HOXD13-2-R-4 AACCGCGAGGAAAACAGATG
ACTC1 GGTACGGCCAGAAGCATACA HOXD13-2-R-5 ACCGCGAGGAAAACAGATGG
ACTC1 GTGCTATCCCTGTATGCTTC Non-Targeting Control 1 ACGGAGGCTAAGCGTCGCAA
ACTC1 GTGTGACATTGATATCCGCA Non-Targeting Control 2 CGCTTCCGCGGCCCGTTCAA
ACTC1 TCTTCATGAGGTAGTCAGTG Non-Targeting Control 3 ATCGTTTCCGCTTAACGGCG
ACTC1 TGGTACGGCCAGAAGCATAC Non-Targeting Control 4 GTAGGCGCGCCGCTCTCTAC
ADGRE2 ACCGTCACAAGTCTCCATGG Non-Targeting Control 5 CCATATCGGGGCGAGACATG
ADGRE2 AGACAAGGCCCACCACAGAA Non-Targeting Control 6 GCGTGCGTCCCGGGTTACCC
ADGRE2 CAGACTCACCCCTGGAGTCC Non-Targeting Control 7 CGGAGTAACAAGCGGACGGA
ADGRE2 CGAGAAAGACGAGAAAGACG Non-Targeting Control 8 CGAGTGTTATACGCACCGTT
ADGRE2 CTGTTGCAGCATTCTGTGTC Non-Targeting Control 9 CGACTAACCGGAAACTTTTT
ADGRE2 GAGAGCGAGAACACGTGTCA Non-Targeting Control 10 CAGGAGTCGCCGATACGCGT
ADGRE2 GCACATCGTAGTGGGCCATG Non-Targeting Control 11 TTCACGTCGTCTCGCGACCA
ADGRE2 TCCACCAGCACTCACACGGT Non-Targeting Control 12 CGCTAGTACGCTCCTCTATA
ADGRG6 AACCCATTGGTAACCTACTG Non-Targeting Control 13 CTATCTCGAGTGGTAATGCG
ADGRG6 AGCCAATATTACCAACATTG Non-Targeting Control 14 AATCGACTCGAACTTCGTGT
ADGRG6 AGCGTATCATCCCTGTTACC Non-Targeting Control 15 ACGTTCGAGTACGACCAGCT
ADGRG6 CAATAATGAATCGTATTTCC Non-Targeting Control 16 GGTCACCGATCGAGAGCTAG
ADGRG6 CTAACAGAATCGATAAACAA Non-Targeting Control 17 CGTATTCGACTCTCAACGCG
ADGRG6 TATCTGAATGATATAACCGG Non-Targeting Control 18 GAATCGACCGACACTAATGT
ADGRG6 TCCTTAAGGACACGGCAACT Non-Targeting Control 19 ACTTCAGTTCGGCGTAGTCA
ADGRG6 TTTGACCTGTTCCACAATGT Non-Targeting Control 20 CGCCTAATTTCCGGATCAAT
ADK AAAGTCGAATATCATGCTGG Non-Targeting Control 21 CGTGGCCGGAACCGTCATAG
ADK ACAGCAGAGATGTCAAGCAG Non-Targeting Control 22 ACATAGTCGACGGCTCGATT
ADK GAGCCACTTTAATTGAATTC Non-Targeting Control 23 CGCCGGGCTGACAATTAACG
ADK GCTTGACATCTCTGCTGTAG Non-Targeting Control 24 CGTCGCCATATGCCGGTGGC
ADK GTAGTAATGAGCATCCACAT Non-Targeting Control 25 CGGGCCTATAACACCATCGA
ADK TCTGGAGAAAAACTGGATGT Non-Targeting Control 26 CGCCGTTCCGAGATACTTGA
ADORA2A AAGCAGTTGATGATGTGTAG Non-Targeting Control 27 CGGGACGTCGCGAAAATGTA
ADORA2A ATGCTAGGTTGGAACAACTG Non-Targeting Control 28 TCGGCATACGGGACACACGC
ADORA2A CTCCACCGTGATGTACACCG Non-Targeting Control 29 ATCGTATCATCAGCTAGCGC
ADORA2A CTCCTCGGTGTACATCACGG Non-Targeting Control 30 CGACGCTAGGTAACGTAGAG
ADORA2A GAAGGGATTCACAACCGAAT Non-Targeting Control 31 CATTGTTGAGCGGGCGCGCT
ADORA2A GCGGCGGCCGACATCGCAGT Non-Targeting Control 32 CCGCTATTGAAACCGCCCAC
ADORA2A TAGCCATTGGGCCTCCGCTC Non-Targeting Control 33 TTTACGATCTAGCGGCGTAG
ADORA2A TGGCTTGGTGACCGGCACGA Non-Targeting Control 34 GGTTAGAGACTAGGCGCGCG
ANKDD1A ACGCACGTGGTTTCTGGCCC Non-Targeting Control 35 CCTCCGTGCTAACGCGGACG
ANKDD1A ACTTACATGATCAACCACGT Non-Targeting Control 36 TTATCGCGTAGTGCTGACGT
ANKDD1A GGCTGTGCTGCAGCGACTTG Non-Targeting Control 37 CGCGGCCCACGCGTCATCGC
ANKDD1A GGGGAACACTGCCCTTCATC Non-Targeting Control 38 AGCTCGCCATGTCGGTTCTC
ANKDD1A GTAGCCACTTACATTGTCCA Non-Targeting Control 39 AACTAGCCCGAGCAGCTTCG
ANKDD1A TCGACGCCATCGAGCAACAG Non-Targeting Control 40 CGCAAGGTGTCGGTAACCCT
ANKDD1A TGCGGTAGGGGCCCTCACAG Non-Targeting Control 41 CTTCGACGCCATCGTGCTCA
ANKDD1A TGTGCTGGCGTTCATAATGG Non-Targeting Control 42 ATAGCCGCCGCTCATTACTT
ANKRD32 ACTATGAATTATATAGTCCT Non-Targeting Control 43 GTCGTCCGGGATTACAAAAT
ANKRD32 AGAGACCATGTATAGAACCC Non-Targeting Control 44 TATCGCTTCCGATTAGTCCG
ANKRD32 AGGAAAGTGGATACTAACCA Non-Targeting Control 45 GTACCATACCGCGTACCCTT
ANKRD32 CATGGCTATTAAGACAGATG Non-Targeting Control 46 TAAGATCCGCGGGTGGCAAC
ANKRD32 CCATCTTAAATCCTGTCATC Non-Targeting Control 47 GTTCGCTTCGTAACGAGGAA
ANKRD32 GCATGAAGAACGCATACAGG Non-Targeting Control 48 GACCCCCGATAACTTTTGAC
ANKRD32 GCTTATCAGTTCTAACAAGG Non-Targeting Control 49 ACGTCCATACTGTCGGCTAC
ANXA8L1 ACCTTGAAGTCTGAGCTCAG Non-Targeting Control 50 TGGTTCCGTAGGTCGGTATA
ANXA8L1 ACTTACCCAGGCTTTCCACC Non-Targeting Control 51 CGCTAGGTCCGGTAAGTGCG
ANXA8L1 CATGGCGTCATGCAGCTCCT Non-Targeting Control 52 AGCACGTAATGTCCGTGGAT
ANXA8L1 CCAAGAGAAGCAACACGCAG Non-Targeting Control 53 AAGGCGCGCGAATGTGGCAG
ANXA8L1 CCCTCTACAAAGCCATGAAG Non-Targeting Control 54 ACTGCGGAGCGCCCAATATC
ANXA8L1 CTTGCCGAACTGAGCCTTGA Non-Targeting Control 55 CGTCGAGTGCTCGAACTCCA
ANXA8L1 TCTGTATGGCGGATACATAA Non-Targeting Control 56 GCCGTGTTGCTGGATACGCC
ANXA8L1 TGTGAGCAGCTTTGTGGACC Non-Targeting Control 57 TACCCTCCGGATACGGACTG
APOOL AGCGGTGGTGCAGTATATAT Non-Targeting Control 58 CCGTTGGACTATGGCGGGTC
APOOL GCAGCTAGTGAAACCAGAGC Non-Targeting Control 59 AAGAGTAGTAGACGCCCGGG
APOOL GCGGTGGTGCAGTATATATG Non-Targeting Control 60 CGGCTCGTTCTACGCACTGA
APOOL TCAGTCCGTAATAATTGCTA Non-Targeting Control 61 TCCAGCGCGAGCTTACTCGT
APOOL TGTAACAACCAGTTGCAGTG Non-Targeting Control 62 CAATCGGCGACGTTTTAAAT
APOOL TGTACATGCAGCCAAACAAG Non-Targeting Control 63 GTACCCCTATGGCCGTTCTA
APOOL TTGTAGACATGGCGGCCATC Non-Targeting Control 64 TACCCACGCGTATTCCATCT
APOOL TTGTTACATTGGCTGGTGCA Non-Targeting Control 65 CTTGTTGCGTATACGAGACT
AQP3 ATCTTTGCTACCTACCCCTC Non-Targeting Control 66 GCGAACCCCGTAGCCAGGCT
AQP3 CAAGCTGCCCATCTACACCC Non-Targeting Control 67 CCGGGAGATTAACGTTAATT
AQP3 CAGCACACACACGATAAGGG Non-Targeting Control 68 ATCTCGGGTCGACTGCGGAT
AQP3 GATGGTGAGGAAACCACCGT Non-Targeting Control 69 CGCCGGGACCGTTAGGGAAT
AQP3 TACAACAACCCCGTCCCCCG Non-Targeting Control 70 GCAAACCCGAGTGACACGTC
AQP3 TGCCCCGGCTGAGCACAACC Non-Targeting Control 71 GTGCGTGAGTATTAACGCTC
ARHGEF37 ATACAATCTGGACATCCCCG Non-Targeting Control 72 TGGCCACGAATTCCGCCGCC
ARHGEF37 ATTTAGAAGAGAGGTTCCAG Non-Targeting Control 73 GTAAGGCCCGCGTACGAGCT
ARHGEF37 CAGATTCCTCCATGATCTGC Non-Targeting Control 74 CTCCTTACGTCGGGCATTAA
ARHGEF37 CCGGGAGCTCATCGACACTG Non-Targeting Control 75 ATTCCTTCGGCGCTCTGCGT
ARHGEF37 GACGAGCCATCCTCCAGGTC Non-Targeting Control 76 ATGCGCTTTAATCGCCGTTC
ARHGEF37 GAGGAACAAGTGCAGCTAGT Non-Targeting Control 77 TTAGCCCTCGATTGGTTGCG
ARHGEF37 GCACATTCGTGACCCTCCAG Non-Targeting Control 78 AACGCTGTCGTACGTGTATA
ARHGEF37 TGCAGCCTCCAAGTACACCA Non-Targeting Control 79 TAACGCGCATATCTGAACAC
ARID1B AAGTTGCTTCCGTTCCCGTG Non-Targeting Control 80 CGCTAGGTTATTTCGTGGCC
ARID1B CAAAGTTGCTTCCGTTCCCG Non-Targeting Control 81 CGGCCGCATCCTGTTATATT
ARID1B CAGCAGAGCAGTCCGTACCC Non-Targeting Control 82 CTGGATCGCCCGCAGAAATA
ARID1B CTGCCCATGCCATACAACTG Non-Targeting Control 83 ATTAGCCGTTGCCATATCAA
ARID1B GGAAGCAACCAGTCTCGATC Non-Targeting Control 84 ACCCGATAATAGCTACTGGT
ARID1B GTAATTATTAAACTCCGGGA Non-Targeting Control 85 CCCGCCGAAGACCCTGCTTG
ARID1B GTCCGACCCTGGATGCCAAT Non-Targeting Control 86 CTTACGCGCCTGGTCAAAAG
ARID1B TGAGTGCAAGATCGAACGTG Non-Targeting Control 87 CGCATAAGTCGATAGACACA
ATF1 AAGTATCTGCTGTCCATCAG Non-Targeting Control 88 GTCATCAGCGATTTGACGAG
ATF1 ATCTGTCTTAGTTGTCTGAG Non-Targeting Control 89 CGAATCGGAACTTTGTACCG
ATF1 CAACTGTAAGGCTCCATTTG Non-Targeting Control 90 AGGTCAAGCCGACCTCGAAC
ATF1 CCCATCTATCAGACTAGCAG Non-Targeting Control 91 TGCGCCTTACTCGTTAACTG
ATF1 GCGCCGTGCTAGGATCCCGT Non-Targeting Control 92 ATCTGAGCGTTTTCGGCCGC
ATF1 TTATCTTCTGAAGATACACG Non-Targeting Control 93 TGACGCGATAGAGTTGGCTT
ATF1 TTGTACGACCACCTGATTGC Non-Targeting Control 94 GGAATTACGACTAACCGATT
ATG2A CACTGCACAGTGCGCGTGTC Non-Targeting Control 95 GGGTGCCCACTAATAGCCGC
ATG2A CCTCTGCACACGGACCTCGA Non-Targeting Control 96 TGCAGTCGCGCTGAGCGTCA
ATG2A GGAACGTGGTGTGGCCGTCG Non-Targeting Control 97 GGATTGAATGGCTAACGCGG
ATG2A GGAGTCAATGGAGTCACCGC Non-Targeting Control 98 GACGTAGCCTTCCGAAATAT
ATG2A GGCGGCTGATGCACGTCCAC Non-Targeting Control 99 GGTTCGAGACCTACTTAAGT
ATG2A GGTCTTCGGCACCTAGCGGG Non-Targeting Control 100 CGGCTTTGTTGCCCGTAAGC
ATG2A GTACCTGTCCGACAAGTGTG Non-Targeting Control 101 TAGGCGCCCGTAGCATTGGA
ATG2A TTATACCGAACATGGCTACA Non-Targeting Control 102 GCGGCGTCTGGGAATCGTTC
ATXN2L AACTTACCACAACAGCTGTA Non-Targeting Control 103 TTCAATCACCTCACGGTAAG
ATXN2L AAGACACTCACAGGTGACTG Non-Targeting Control 104 CGGTTTACATCTGCCCATCG
ATXN2L CAAACTGGCAGCCCCCCGGT Non-Targeting Control 105 GGGTATAGACGCGATCCTCA
ATXN2L CCACAATGTCCTCCCGACGA Non-Targeting Control 106 ACAGCGCTCTCGTGTACTAT
ATXN2L CTAGCTCTTACCATCTGTGG Non-Targeting Control 107 ACTAGCCTGTTCGCGAGTAG
ATXN2L CTTCAAGACGCTAAGCTCAA Non-Targeting Control 108 GACCGCGTGAGATAACGTCA
ATXN2L TCCTCCTTTAAGATCCGGGG Non-Targeting Control 109 AAAACATCGACCGAAAGCGT
BCLAF1 ACCTAGAAGATCTATATGAC Non-Targeting Control 110 ACACCGAAGCACCTGTACGT
BCLAF1 AGACGACCTTATGGGTACAG Non-Targeting Control 111 CCTACGCGGTAGGGAACTTT
BCLAF1 ATTCATCGATAGACTCAGAT Non-Targeting Control 112 AAGCACTAGTCCGTATGATG
BCLAF1 GCTTGATAGGGGTAATACCA Non-Targeting Control 113 AGGCGCCAACATTGACCGTA
BCLAF1 TAAAGAGACTGGATATGTAG Non-Targeting Control 114 CGTCGGGTAGCTATTTCTTT
BCLAF1 TACCTGTTAGAATCATCAAG Non-Targeting Control 115 TACTGGAGTTTGCGACTCGG
BCLAF1 TTCCTCTTGATGATTCTAAC Non-Targeting Control 116 AACATCTCGTTAGGGGTATC
BIN1 ACCTGGCCTCCGTCAAAGGT Non-Targeting Control 117 GTCAGGTAATAGTCGGACTC
BIN1 AGTCACGCATTGCCAAGCGG Non-Targeting Control 118 TTCGAGGTCCGGACAGGTCG
BIN1 CATCACTCCTACCTGAGATG Non-Targeting Control 119 AGCTGCGCGCTACTGGATCA
BIN1 CCAGCTGCTTGTTGAAATTC Non-Targeting Control 120 GCAAAAACCCAACGCTATTC
BIN1 CTGCTCAAACTGCTCATCCT Non-Targeting Control 121 GCCGCCGATTTCATAAGTAA
BIN1 TGAGGCAAACAAGATCGCAG Non-Targeting Control 122 GTTCCGTGAGGGTTACTTCA
BPGM AAGAAATCTACAACGACCGG Non-Targeting Control 123 TGTCTTTAAACACGCCATCG
BPGM ACTCAACAGCGAAGGAATGG Non-Targeting Control 124 ACAAAATGCCGTGCGTCAAT
BPGM CTTGGATCAACTGCCACGGT Non-Targeting Control 125 ACGCTCAGCACCCGCTATGC
BPGM GATGAGGCCCAACAGCACGC Non-Targeting Control 126 CGAAACCCTCTTAAGTTAAC
BPGM GGATCGCCTCTTGGTCACCC Non-Targeting Control 127 CCATTCTCAACCGGTCCAAT
BPGM GGCCTTGATCGGTCTCAACA Non-Targeting Control 128 GTTATTGACCCGTCGGGAGT
BPGM TCCTTTAAGCTTTCCGACCG Non-Targeting Control 129 GGTTTCACTTCGAGACCGGC
BRD8 AAGAGGAGGCTGAAGTAAAG Non-Targeting Control 130 CCCCAACTTTCGCGACTCCG
BRD8 AGGAGGTGATTATCCACTTG Non-Targeting Control 131 CGGCACACCAATGCGTTCGT
BRD8 ATAAGTACCTATATCTCTCC Non-Targeting Control 132 ATCGATATACCGCCATAAAA
BRD8 CAGGAGTCAGGACTTAGATG Non-Targeting Control 133 GGGACGCGAAAGAAACCAGT
BRD8 CTGTTGAAGATGTTATTGTT Non-Targeting Control 134 TGTCATTAGCGTAACGATAT
BRD8 GATATTGCTGTGTCTTACAC Non-Targeting Control 135 AGGGCGAGCAGCAGAGTACG
BRD8 TCTTGCTTGACCGTCATTTC Non-Targeting Control 136 CGTCCAGAAGAACGGCCCCT
BRD8 TGGGACACAGACTCTACAGG Non-Targeting Control 137 GATGGCGCGCAGTTGAGTCA
C10orf91 ACGCAGAGAAAGCGCTCTCG Non-Targeting Control 138 GCGATCGGAGTGCCACGATA
C10orf91 ATGCGTCCAGCAAGCTCCCA Non-Targeting Control 139 GTTACCTGCTACGAAAACGA
C10orf91 CATGTGTACTGAGTTATCCT Non-Targeting Control 140 ATACCAGATGCGTCCGCTTG
C10orf91 CCATGTGTACTGAGTTATCC Non-Targeting Control 141 AGGATCGTGTACCGGGGACG
C10orf91 CGCATGACCAGGATTCTGGG Non-Targeting Control 142 CGACAACGTGCAGGTGTATC
C10orf91 GAAATGTGGAGTTTCCTCCC Non-Targeting Control 143 TTATGTGAGCACGCCATTAC
C10orf91 TGCAGCTACCTCTCAGCTCC Non-Targeting Control 144 CGACGGTAATGCACCTACTA
C10orf91 TTCCCCGCTTCAGGCTTCGA Non-Targeting Control 145 CAGCGCCGAAACTCTTTCCG
C10orf91 TTTCTCTACAGCGTGTCCAT Non-Targeting Control 146 TCGTAAACACACGACCAAGT
C10orf95 AGCAACGCAGCTACAAAGTG Non-Targeting Control 147 ACTACTCCGGCAAATACTCG
C10orf95 AGCCCCGCTCTGGATCCCGC Non-Targeting Control 148 CTAATCACGACCTCACCCTA
C10orf95 AGCTGGCCGCCGCCCAAACA Non-Targeting Control 149 TTGCGTCAGCGCTGCACATC
C10orf95 CCTACGCCACGACCCTGCGC Non-Targeting Control 150 CGGTGTGCCCCCAAATATTG
C10orf95 GAAGCGGTGGTATTCCCGTG Non-Targeting Control 151 TATACTGCGGATCAATCTGA
C10orf95 GGGTCGTGGCGTAGGCCGGA Non-Targeting Control 152 ACGATCGGTAATGGTCTGTT
C10orf95 GGGTGACGCGCACGTCGGCG Non-Targeting Control 153 GGGCCTACGATCAGAGGTGT
C15orf41 ACATGCCAAACATCATACTT Non-Targeting Control 154 AGTTGAATGGACCTCGACTA
C15orf41 CAATTGAAAGTTATTACCAG Non-Targeting Control 155 GAGTAATTTCGAACGTATTG
C15orf41 GAGGTTTCTACAGGAACACG Non-Targeting Control 156 TTCCACGGTAAAATCGGTCA
C15orf41 TCTGCTGAGCATCTTCTCCC Non-Targeting Control 157 CCGGCAAGAAACTATACTTG
C15orf41 TGCTTCCGAAGTATGATGTT Non-Targeting Control 158 CCGCTGTCTCACTAATCTCA
C15orf41 TGCTTGATGCAGTCCACTAG Non-Targeting Control 159 TGCTACCTTCGGGACCACCA
C15orf41 TGGTAGGCGGCACAGACACT Non-Targeting Control 160 CTTAGCTGACCGACAAGGTG
C16orf59 AAGCAGCTTCCCAGAACTCG Non-Targeting Control 161 CCCTTCTGGCGGGCCAAACA
C16orf59 AAGGCTGTACGAGTTCGAAG Non-Targeting Control 162 TCTGACGATTAATGCTTCTA
C16orf59 AGGGCCAGAAACTAATGGAG Non-Targeting Control 163 CAGACGGTTGGTAAGGACGC
C16orf59 CACCGGCGCGAGCAGCCCGC Non-Targeting Control 164 GGGACTGATATATGGCGAAC
C16orf59 CGGGCTTTGAAGCCACCTCC Non-Targeting Control 165 CAGGTTTGCACGCATAGCTA
C16orf59 GGGTCCTCTCCATTAGTTTC Non-Targeting Control 166 GGCCGTCGTATTCCCCCAAG
C16orf59 TCAGACACGAGACCCACCAA Non-Targeting Control 167 CTCCCATTGATCTACGATGG
C16orf59 TTGCAATTGTCGCTGTGCGC Non-Targeting Control 168 TTTCGTGCCGATGTAACACA
C1orf86 AACCAGGGGCGGCCGCCAGA Non-Targeting Control 169 GCCTATCGGCATTCCCACTG
C1orf86 CCGACAGTGAAGACTTCAGT Non-Targeting Control 170 CAACGACGGGCCTAGTCTCA
C1orf86 CGCGGCTGGGGTTGAGCCGC Non-Targeting Control 171 GATATCCCGCGAAAAAATCT
C1orf86 CGGCGGCTCAACCCCAGCCG Non-Targeting Control 172 CGCCTCTCACGTGTAGGCTT
C1orf86 GCAGCCGGTAGGAACGGCCC Non-Targeting Control 173 GGGCGCTAAGATATATGCCC
C1orf86 GGAGCTGATCCTGGATCACG Non-Targeting Control 174 CGTTGGGCATAGCGAACACT
C1orf86 GGGGCCCGGGCCGTTCCTAC Non-Targeting Control 175 GCGGGGCGGTGACTTTCAAG
C1orf86 TCACCCCCCAGGAGAAACCA Non-Targeting Control 176 AAGGGCGTGCCCTGCGTTGT
C2orf82 CACCGTCGCGCCAGGACCCG Non-Targeting Control 177 GATCCAGGAGTGATCGAGTA
C2orf82 CATCGTGATCGCCGCCCTGC Non-Targeting Control 178 AGCATTTGCGCGGCAACTGT
C2orf82 CCAGCAGCAGCGCCATGCGC Non-Targeting Control 179 TTGTCCCTGAGAAAACGCGG
C2orf82 CTCTTACCTGTGAGCACCGC Non-Targeting Control 180 GTCCTCATCCGGTCAGGCTG
C2orf82 CTTACCTGTGAGCACCGCAG Non-Targeting Control 181 TATAGCTGTTTCGAAGGCGC
C2orf82 GCCCACGCTGTGGAACGAGC Non-Targeting Control 182 TGAATCGTAACCTCGCCATT
C2orf82 GCCGTCGGGAGAAGGCCCCG Non-Targeting Control 183 AGGACTAGTGTCGCACTCAG
C2orf82 GGCCGGCTCGTTCCACAGCG Non-Targeting Control 184 GGCACTCCGAAAGACCTTAT
C9orf41 ACCTAGCATAGCTATTTCCC Non-Targeting Control 185 GACCGCAAAGTGGTCCGAAG
C9orf41 ATGCTAGGTTATGCTTGTCA Non-Targeting Control 186 GTTGCGAGTTACTATTGGTT
C9orf41 ATGTATGCAATCATTCACAA Non-Targeting Control 187 TCTAAAGCCGTCCTGATGTT
C9orf41 GCCAGCATCTACATTTGACA Non-Targeting Control 188 GCCGTGGTATCAAGTCGGTA
C9orf41 GGGCTCCTTACCCGTAGTAG Non-Targeting Control 189 CGCAATCCCTTAGGATAGCC
C9orf41 TACTCAAGCCAGGTGGAATT Non-Targeting Control 190 CTAGAGGGGTATAGCAACAA
C9orf41 TCCATGTCAAATGTAGATGC Non-Targeting Control 191 GAAAACACGATGACGTCTCT
CABIN1 AGTGATTAGGTTATCCAAAC Non-Targeting Control 192 GACGCCCTAATGCCCATCGT
CABIN1 CTGGAGAACCTAACCAACGG Non-Targeting Control 193 GGATATTGAGTAAACCCGAT
CABIN1 GGGGGATCCGGATGAGCCTC Non-Targeting Control 194 TGACTCGGGCAATATCGGTT
CABIN1 GTAATCGTGGTCAATCGGAG Non-Targeting Control 195 GATCTAGTCCTCTAATCGAT
CABIN1 GTACTTCATCTGCAAAGCTT Non-Targeting Control 196 GGTACCTGAACAACGGCACC
CABIN1 GTAGTGCAGCAAGTAAACGG Non-Targeting Control 197 TGGCGGCCCAAACTTAACAC
CABIN1 TGAAATGATAATCAGCCAGG Non-Targeting Control 198 GGGCGGTCAGGTCGCTCCGA
CACNA1A CGTCAGTTTCATCCTCGGCG Non-Targeting Control 199 TCCGGAGGCTCAAACCAAGT
CACNA1A CTCACCAGCCGTTCAGACAT Non-Targeting Control 200 CCCGTGGCGTGCGCACCTGT
CACNA1A GAATTGCATCGTCCTCGCAC Non-Targeting Control 201 GGCTGGTTGACGACTCCTGA
CACNA1A GACACAGAACCATACTTCAT Non-Targeting Control 202 GCCATTCTAGTCCCGGCATA
CACNA1A GCGCTCCAGCCACGTACGAG Non-Targeting Control 203 TGAATCGAATACAAACGATG
CACNA1A GTTTGACCTACGGACGCTGA Non-Targeting Control 204 CCAATGATAAGCCCGAACGG
CACNA1A TCCACAAAGGCTCCTACTTG Non-Targeting Control 205 AGCGATTCACGTATTAGATG
CACNA1A TCTCACCTTGTACGACGGTG Non-Targeting Control 206 ATGCTGCAGCTTTACGATCA
CALB1 AGCCGAGTATACAGACCTAA Non-Targeting Control 207 GTGTATGATGCTTCGACTTA
CALB1 CAGTATGGGCAAAGAGATGA Non-Targeting Control 208 ACAGCCCTCACGAGCCCGAA
CALB1 CCAGATCTCGAAAAACTGTG Non-Targeting Control 209 GCTGTTGTAACGGTAGATAT
CALB1 CCAGCAGCTGAAGTCCTGTG Non-Targeting Control 210 CATTGCACGCCACAGCATTG
CALB1 CGAAAGAAGGCTGGATTGGT Non-Targeting Control 211 CCAGCAATACCCCGGTATGG
CALB1 TACCTTCATGAATTCCTCAC Non-Targeting Control 212 TCGAGATGCGCAGCAGATGA
CALB2 ACAGGAAATGGGTATATTGA Non-Targeting Control 213 ACGGGGTGAAACCATGTCGT
CALB2 ATGTCAAAGAGTGACAACTT Non-Targeting Control 214 AGCTAGCGATGGCTCTAAGT
CALB2 CTCCAGCGCCGAGTTTATGG Non-Targeting Control 215 GGTCCGCGCACAAGAGCAGG
CALB2 GAACTGGGACGCCGTCAGCT Non-Targeting Control 216 TCCTCGATAGCTGGAATCCA
CALB2 GCTGACGGCGTCCCAGTTCC Non-Targeting Control 217 TACGGATCACCAAATCTTAG
CALB2 GGCAAGGAAAGGCTCTGGCA Non-Targeting Control 218 ACCGCTCATATAGGTAAAAA
CALB2 GGGACGCCGTCAGCTCGGCC Non-Targeting Control 219 AGTATTGTGGTGTCGTCAAC
CALB2 TGGAAGCACTTTGACGCAGA Non-Targeting Control 220 GCTCGCAAGTATTTAAGGAC
CASC4 ACAATAATACCTTTCCCATG Non-Targeting Control 221 GCCAGGGTTCTTGGTCCCGA
CASC4 CAAGAAACAGATCGACCAGA Non-Targeting Control 222 GTCGCTGCGCCAGTGAGAAC
CASC4 CAAGCAATCATATTCCACAT Non-Targeting Control 223 CAGGCTGCGCTTCGCAAGCT
CASC4 CATATTCTAACCTCTTCACA Non-Targeting Control 224 GATTGTGGTCGCTCAAAACC
CASC4 CATCATTTGATTGAATCTTT Non-Targeting Control 225 CTTAGGATTCCGAGGTATCT
CASC4 GAACAACATATCGTATCAGA Non-Targeting Control 226 GAACTGGCAAACAGGCGTGG
CASC4 GGGCCTCGGGAAGAGATGCG Non-Targeting Control 227 ATAGCAGGACGAGGTTCCTT
CASC4 TGCTCCAGTAGTTGAAGGCG Non-Targeting Control 228 GCACGCTGTACAGACGACAA
CCDC115 ACGAACGGTGTTGAACGCCC Non-Targeting Control 229 GAGAGCGTTAGCGTGGGATG
CCDC115 AGCTGGTGTCCACGCCCCAG Non-Targeting Control 230 TTCAATTCACCGAGGGCGCA
CCDC115 AGTTCCTCACAGTCTACGTC Non-Targeting Control 231 ATGTCTAGACCTAATCGTTT
CCDC115 ATGTGGGAAGCATACTGCAG Non-Targeting Control 232 GCTGAACGCCGACAGGACGG
CCDC115 CCGGTTCTGGGGTCTTAGTG Non-Targeting Control 233 GCCCAGACGCCCTAGAATAG
CCDC115 GCCTCCAGAACCGCATTGAC Non-Targeting Control 234 GGGATGCGTCTTGCTAAACC
CCDC115 GGCTTCGACCCCAGTCAATG Non-Targeting Control 235 ATCGTTGCTGACAGGATCTA
CCDC115 GGGGGCTCACCTGCTTCGCG Non-Targeting Control 236 TAGTCTCACCTGATGGCGTG
CCDC121 AACTGAGCGAGCCAGACAGG Non-Targeting Control 237 GTTATCCTGTCGAAGTAAAG
CCDC121 AATTTGTTCTGCATATCTGG Non-Targeting Control 238 CAGCGGTGCTATTTGGTCTT
CCDC121 AGCACCGAACGAATAAACTA Non-Targeting Control 239 CGCACATCTAAAGTTACTAC
CCDC121 CCAGCGGAAACAGCTACTGG Non-Targeting Control 240 GTAGGGTACAGCGTCAGCTT
CCDC121 CTGAGACAGCTTCAAAGACA Non-Targeting Control 241 GAAATGCTATGCTTCGGTTC
CCDC121 TAATCAGTGCCTAAATAGAC Non-Targeting Control 242 AATGCGAGTGTATCCGCAGT
CCDC121 TCGGGCTTATTCGGTAGCCG Non-Targeting Control 243 TTTATGCATTTAATACGCCG
CCDC121 TTGGAACATCCTGTCTATTT Non-Targeting Control 244 TCCGTCTGCTTCATGAGCGG
CCL19 AAGTTCCTCACGATGTACCC Non-Targeting Control 245 CTAACGGACTGCAGAACGGA
CCL19 ACCCCAGGTTCACCACACTG Non-Targeting Control 246 CATGGCCTACGGTGTCTTTG
CCL19 ACCCTCCATGGCCCTGCTAC Non-Targeting Control 247 CTGGCCGAATCTCACTATGT
CCL19 AGTTCCTCACGATGTACCCA Non-Targeting Control 248 GGGGCTTACGTGAAGGGCGG
CCL19 CCCACAACTCACACTACAGC Non-Targeting Control 249 ACACCCATTCTCATAACGGA
CCL19 GAGCTGGCGGCCCCTCAGTG Non-Targeting Control 250 GGCCACGAAGGGCGAAAAGG
CCL19 GGGAAGTCCAGAGAACCAGC Non-Targeting Control 251 TAACCGATACTCCCCACATT
CCL19 TGCAGCCATCCTTGATGAGA Non-Targeting Control 252 GAGAGTGCGCCTTGATAGTA
CCL3L3 AGCCATGGTGCAGAGGAGGA Non-Targeting Control 253 GGATTTGTCGCTTGCCACAC
CCL3L3 ATTCTGTGGAATCTGTCGGG Non-Targeting Control 254 ATTGCTCTGTCGCATCAATC
CCL3L3 CACAGCTTCCTAACCAAGAG Non-Targeting Control 255 CTCAGTGGATACGATTTGCT
CCL3L3 CCCCTCAGGCACTCAGCTCC Non-Targeting Control 256 ACTACTGGCTATCCGCGCCA
CCL3L3 GAGGACGGCAAGGGCAGCAG Non-Targeting Control 257 ACCCAATGTGGCGGAGCCGA
CCL3L3 TAGTCAGCTATGAAATTCTG Non-Targeting Control 258 TAGGAGCTGTATCTAGTGGC
CCL3L3 TGCCGTCCTCCTCTGCACCA Non-Targeting Control 259 CCAATCTTGAACGTCATGTT
CCL3L3 TGGACTCACGTGGTGCAGAG Non-Targeting Control 260 ACCCATATATGCTGCCGCAC
CCL5 AAGGAGTATTTCTACACCAG Non-Targeting Control 261 CATAGGTCCCTAGCAACTCC
CCL5 ACTGCCCCGTGCCCACATCA Non-Targeting Control 262 TTCGTAGGAACTAAACTGTA
CCL5 AGGTACCATGAAGGTCTCCG Non-Targeting Control 263 CGGTGCTGTGAAAGCCGAGC
CCL5 CTGAGACTCACACGACTGCT Non-Targeting Control 264 ACGGTTATGGTCTCATGGGG
CCL5 GCAATGTAGGCAAAGCAGCA Non-Targeting Control 265 AACTAGAATAGGCGGGCTTG
CCL5 GTAGAAATACTCCTTGATGT Non-Targeting Control 266 TAATCACATTGCTTAACCGG
CCL5 TCAAGACCAGGACTTACATG Non-Targeting Control 267 CGCCCGTTTATGTGGCTACC
CCL5 TCCCGAACCCATTTCTTCTC Non-Targeting Control 268 GAGTACAGCGATTCCTCATG
HOXB4-EX1-1 GTGCACCGTGCAGCGCTACG Non-Targeting Control 269 TTTCTAGTTACTACTGGACG
HOXB4-EX1-2 ACCGCCCGGTCTGTCCCCTC Non-Targeting Control 270 CACGCACAATCCTTCACGCA
HOXB4-EX1-3 GCCCGAGGGGACAGACCGGG Non-Targeting Control 271 TGCCGCTATACTAAAACCTT
HOXB4-EX1-4 CGAGGGGACAGACCGGGCGG Non-Targeting Control 272 GTTTACTCATATCCAGTCAC
HOXB4-EX1-5 TGGCGGCGCAGGAGCCCGAG Non-Targeting Control 273 TCGGCTCCTGAAGCCAGTAT
HOXB4-EX1-6 AGCCGGAGGCGGGCTTCGGG Non-Targeting Control 274 TCGATGTAGCCCCGCCCAAG
HOXB4-EX1-7 CACCGCCCGGTCTGTCCCCT Non-Targeting Control 275 AGACCCCGTAGGCAGGACGT
HOXB4-EX1-8 GGAGCCCGAGGGGACAGACC Non-Targeting Control 276 TCCCAAGGGTTTAAGTCGGG
HOXB4-EX1-9 GTGGCGGCGCAGGAGCCCGA Non-Targeting Control 277 CGTGCCTTTACATTCACTTT
HOXB4-EX1-10 AGCGCTGGCCGGGCTCCGGG Non-Targeting Control 278 GCTGTTCCGAAGTTGAGAAT
HOXB3-EX3-1 GGTGCCGGGACCGCACTTTG Non-Targeting Control 279 ACTAGAGTCATGATCAGCGA
HOXB3-EX3-2 ACTAGCAACAGCAGTAATGG Non-Targeting Control 280 CTGCCCCAGGCGTAATCCTC
HOXB3-EX3-3 GTGCCGGGACCGCACTTTGG Non-Targeting Control 281 GTCCCGTGATTTTAGCCAGG
HOXB3-EX3-4 AGCAACAGCAGTAATGGGGG Non-Targeting Control 282 GGTCTCACCTGCACCCCGAA
HOXB3-EX3-5 GGGGGCGGGCCCAGCAAAAG Non-Targeting Control 283 TAGTCAACATTCGCAAGAGG
HOXB3-EX3-6 GCAACAGCAGTAATGGGGGC Non-Targeting Control 284 GTAGCTGCTGTAAATCGCAT
HOXB3-EX3-7 CTGTTGCTAGTGGCACTGGT Non-Targeting Control 285 CGAAACCTCCTAACTGAGAG
HOXB3-EX3-8 CCCATTACTGCTGTTGCTAG Non-Targeting Control 286 ATAAGCCACACTACCCGCCT
HOXB3-EX3-9 CACTAGCAACAGCAGTAATG Non-Targeting Control 287 TACGTAAGTGACGACAGGAA
HOXB3-EX3-10 AGCTCAACGGCAGCTGCATG Non-Targeting Control 288 CTTTATCTGGCGTGGGGTAT
DPY30-EX4-1 TGATCCAGGTAGGCACGAGT Non-Targeting Control 289 CCCCTATGCAGACTACAATT
DPY30-EX4-2 GTTGTGCCTATCTTATTACA Non-Targeting Control 290 CTGGTGACCGACAATTACAC
DPY30-EX4-3 CACAACTGTCTGATCCAGGT Non-Targeting Control 291 ACGTGGGGACATATACGTGT
DPY30-EX4-4 AGAAAAGTCATCAAAGCAGA Non-Targeting Control 292 GTTCCCCGGGAAGTCTATGC
DPY30-EX4-5 AGGCACGAGTTGGCAAAGAC Non-Targeting Control 293 ATTTCCCTACGGAGATATCC
DPY30-EX4-6 TTTGCCAACTCGTGCCTACC Non-Targeting Control 294 ATCAAGTCAGGTTATGCGGG
DPY30-EX4-7 TAGGCACAACTGTCTGATCC Non-Targeting Control 295 GGATACCTGGGCCGACTTTC
DPY30-EX4-8 GCAAGTCCCTGTAATAAGAT Non-Targeting Control 296 CGCAGGCTAGATGACACCAG
DPY30-EX4-9 AGTTGTGCCTATCTTATTAC Non-Targeting Control 297 TTCGGAACTTACTCAGGGTA
DPY30-EX4-10 GGGACTTGCTGTGCTTGCAA Non-Targeting Control 298 AAGCGGGCACACATGACAAG
WDR5-EX3-1 TCCGTGAAATTCAGCCCGAA Non-Targeting Control 299 GTAAAGAAGCGGAAAGGTCC
WDR5-EX3-2 AATTCAGCCCGAATGGAGAG Non-Targeting Control 300 TACGTCATTAAGAGTTCAAC
WDR5-EX3-3 ATTCGGGCTGAATTTCACGG Non-Targeting Control 301 CGATGGATCCCTAGTTCCTG
WDR5-EX3-4 CGGAGGACACTGCTTTGGTG Non-Targeting Control 302 GCTGCGGCGAGATCACATAA
WDR5-EX3-5 TTTCACGGAGGACACTGCTT Non-Targeting Control 303 CAGAGCCTTGCGCAATTTTG
WDR5-EX3-6 CTTGCCAGCCACTCTCCATT Non-Targeting Control 304 CCGCGCATTTCAGAGCACAA
WDR5-EX3-7 GCTCTAAAGTTCACCCTTGC Non-Targeting Control 305 ACCTATTGTCCCTTCAAGCT
WDR5-EX3-8 CAGCCCGAATGGAGAGTGGC Non-Targeting Control 306 TTGCAAAGCTGATCGGCTGT
WDR5-EX3-9 TTGCCAGCCACTCTCCATTC Non-Targeting Control 307 AAAATTATCGGAAACGGTAG
WDR5-EX3-10 TCCATTCGGGCTGAATTTCA Non-Targeting Control 308 AGTCATAACTGAGTGAATCG
HOXA5-EX1-1 AACTCCCTAAGCAACTCCAG Non-Targeting Control 309 TAGTTACAGACTCAGCGGGT
HOXA5-EX1-2 CAGCAGAGAGGGGGTTGGCA Non-Targeting Control 310 CACTTACACATGAGGCGGTA
HOXA5-EX1-3 AAGCAACTCCAGCGGCGCCT Non-Targeting Control 311 ATAGAAGTGTGACCGCTGGG
HOXA5-EX1-4 CCCACATCAGCAGCAGAGAG Non-Targeting Control 312 GTATTAAGATGCGTCTTAGA
HOXA5-EX1-5 TGGCACGGCGTCCGGAGCCG Non-Targeting Control 313 ACTGAGTGGGTAACACGCAT
HOXA5-EX1-6 CCACATCAGCAGCAGAGAGG Non-Targeting Control 314 CCTAAGGGGTACCACCATGG
HOXA5-EX1-7 GATGTGGGTGCTGCCGGCGT Non-Targeting Control 315 TCCCCGAGACCATCTTAGGG
HOXA5-EX1-8 CACCCACATCAGCAGCAGAG Non-Targeting Control 316 TACCCTGGATTGTCCTTGCG
HOXA5-EX1-9 GCTGGCAGGGGCGTCCTCCT Non-Targeting Control 317 ACGCCATATTTCTGGCTCTA
HOXA5-EX1-10 CGCACTCGCCTGCTCGCTGC Non-Targeting Control 318 CATCTGTAGGGTTGCAAGCC
HOXA10-EX1-1 AGATCGAAACCGCGCCCCGG Non-Targeting Control 319 TAGCTCGAGTCATTTCTCTA
HOXA10-EX1-2 GAGATCGAAACCGCGCCCCG Non-Targeting Control 320 TTTAACTGTCCCGGTGTGCA
HOXA10-EX1-3 AGCCTCCGGCTCGGCCGATG Non-Targeting Control 321 CCTCGTCCAGATTCCGGCGG
HOXA10-EX1-4 GCCCGCGCTAGCCTCCGGCT Non-Targeting Control 322 TGGATCGGCAGTGGTACTGG
HOXA10-EX1-5 GGGGGGCGGCGGCGAATCGA Non-Targeting Control 323 AAATACAAGCTATAGCGATA
HOXA10-EX1-6 CTCCCGCCCGCGCTAGCCTC Non-Targeting Control 324 CATGAGCGCATTGAATAATA
HOXA10-EX1-7 CCGGCTCGGCCGATGCGGCC Non-Targeting Control 325 GACTTTGGTTGAGCTTCAAT
HOXA10-EX1-8 GCCGAGCCGGAGGCTAGCGC Non-Targeting Control 326 GTTGGCATATTGGCCCAGAC
HOXA10-EX1-9 GCCGCTGCCGCAAGCCAGCG Non-Targeting Control 327 GGAACCCTCCCTGCGATAGA
HOXA10-EX1-10 GGCGCGCAGCAACTCGGGGC Non-Targeting Control 328 CGACCCGGAGGATGAGATGT
HOXA45-R-1 AAGATAAATCTGCACACCCT Non-Targeting Control 329 TATTTTGACTTGACGCAGGC
HOXA45-R-2 TCACAGTCAATTCACCCGCT Non-Targeting Control 330 CGGGATGGTCCCTGCCGAGA
HOXA45-R-3 CACAGTCAATTCACCCGCTT Non-Targeting Control 331 TAGATTGGCCCCACAAAGCG
HOXA45-R-4 GTTGGGAGAGCTGGCCCAAG Non-Targeting Control 332 GAACCCAACCTTTTACCGCA
HOXA45-R-5 TGTACTAAAGCGTGCTCTGC Non-Targeting Control 333 GTACACACTTATGCCATCAC
HOXA45-R-6 TTGGGAGAGCTGGCCCAAGC Non-Targeting Control 334 TTCCTGCCCGAACTGCAGAA
HOXA67-F-1 TCCCGGCGACGGCCACGGCG Non-Targeting Control 335 CGGCTGAGGCACCTGGTTTA
HOXA67-F-2 TGCCACGCCGTGGCCGTCGC Non-Targeting Control 336 AGGTTGAATACCCCTTACTA
HOXA67-F-3 GCCGGTCCCGGCGACGGCCA Non-Targeting Control 337 CCTGCGCGTAGAACAGTGGT
HOXA67-F-4 CGCTCGCTGCTGCCACGCCG Non-Targeting Control 338 AATCGCAGGTATCCCAGAGC
HOXA67-F-5 GCCACGCCGTGGCCGTCGCC Non-Targeting Control 339 ACAAACGACCTTGAGCAGGG
HOXA67-F-6 GCTGCAGCTGGCGCCGGTCC Non-Targeting Control 340 GTACATTCCAGTATTCACGC
HOXA67-F-7 GCTGGCGCCGGTCCCGGCGA Non-Targeting Control 341 GGCTGGTTGACCTTCCCGCT
HOXA67-F-8 ATTATTTATTGCGACCGTGC Non-Targeting Control 342 GATGTGATCTATGGTTGCGA
HOXA79-R-1 GAGGCTGCAGTACCAAACGG Non-Targeting Control 343 ACGTCAACTGCTGGAGTGGG
HOXA79-R-2 AACGGCGGCCAGCAGATGGC Non-Targeting Control 344 ATTTAAACCGTTACACAGTC
HOXA79-R-3 ACCAAACGGCGGCCAGCAGA Non-Targeting Control 345 CACGCCAACTAAAACTGCAG
HOXA79-R-4 GGAGCCACACTGCCATCTGC Non-Targeting Control 346 CCTAGAGGTCCCAAGGCGTG
HOXA79-R-5 GCGGCCAGCAGATGGCAGTG Non-Targeting Control 347 CCGTTGATCCCCAGGCGTGC
HOXA79-R-6 CGGCGCGGAAGCCTCTTGCA Non-Targeting Control 348 CCTCGATGGTCACCTGTAGC
HOXA1011-N-1 GGAAGTGCGCCATCTCGTGG Non-Targeting Control 349 GTGCGCATGGGCTGATGTTA
HOXA1011-N-2 ATCGGAAGTGCGCCATCTCG Non-Targeting Control 350 AGACTCGTATTGTCATATTA
HOXA1011-N-3 GGCGCGCAGCCGCCACGAGA Non-Targeting Control 351 GGATCTAGCTACCTCAAAAG
HOXA1011-N-4 CTGGAACTCCGGCCCAACCT Non-Targeting Control 352 AGAACCCAGACGCCAGCGGT
HOXA1011-N-5 CCGGCGGCTTTGACATTGAT Non-Targeting Control 353 GGGACATCCTTGCCGTCTCA
HOXA1113-F-1 GGAGGCTTGTCAACGCGAGG Non-Targeting Control 354 AGCATTCTCACCAAGACCGA
HOXA1113-F-2 TAGCTGGATTAGTAGATCAA Non-Targeting Control 355 GAGTGTAAGCTAACACTCTG
HOXA1113-F-3 TTAGCTGGATTAGTAGATCA Non-Targeting Control 356 ATACAATACTTTGGCGCATA
HOXA1113-F-4 TTGGTTGAAGAATTACAAGG Non-Targeting Control 357 CTCCCTGCCGGCCGGGTTAG
HOXA1113-F-5 GCTCATGAATTGGCCTTAGC Non-Targeting Control 358 GAACCTCCCCGAATATCTGG
HOXA13-F-1 GAATGCTAGACTTCAAAAAG Non-Targeting Control 359 ATCTTCAGGGTAACTACGAA
HOXA13-F-2 CTAGACTTCAAAAAGCGGCA Non-Targeting Control 360 TTCTAAGCCACGTGTGGTAC
HOXA13-F-3 GCTAGACTTCAAAAAGCGGC Non-Targeting Control 361 AGAAACTGAACTATCCTACT
HOXA13-F-4 TAGACTTCAAAAAGCGGCAG Non-Targeting Control 362 TCAATTCTCACTCACGACCA
HOXA13-F-5 CTGCTCCTCGGGCCGAGACT Non-Targeting Control 363 CGAAGTCTTTCTTAGATGGT
HOXA13-F-6 GGAAACCGAGTCTCGGCCCG Non-Targeting Control 364 ATGCGAAACGACATTTATTA
HOXA13-F-7 CGGCAGGGGAAACCGAGTCT Non-Targeting Control 365 CATGATAGATCAGTCTTCCC
HOTTIP-1 GGCTGGAGATCCTACTTGAG Non-Targeting Control 366 AGTGGGGCGCTAAGTGGGGG
HOTTIP-2 CCAAAATAGAGTGAAATAGC Non-Targeting Control 367 CCCAATGGCTTCTGCGTGAC
HOTTIP-3 CAAGAAAAAGGGGCTCTTTG Non-Targeting Control 368 CTTTTTTTATTTATCGATCG
HOTTIP-4 GTAGGATCTCCAGCCTGCAG Non-Targeting Control 369 TGTAGCTAAGTGAGTATGCC
HOTTIP-5 GACTGGTTCTTGGGCAAAGA Non-Targeting Control 370 AGTAGACGGACGGTGAGCTG
HOTTIP-6 CAGGCTGGAGATCCTACTTG Non-Targeting Control 371 TCTACGTGTAGTTGTACATA
HOTTIP-7 GTTGCATTTCCCAGGCACAG Non-Targeting Control 372 GGTTTTATAAGGGTGGGCCT
HOTTIP-8 AGAGGAAAGGCTTCTTGGAC Non-Targeting Control 373 TCGGAAGCAAACTTCTGGAG
HOTTIP-9 TAGGATCTCCAGCCTGCAGA Non-Targeting Control 374 TTAGCCAGTAGTGCATATGA
HOTTIP-10 ACAAGAAAAAGGGGCTCTTT Non-Targeting Control 375 GGGACTGTAGGAACATCCGC
HOTAIRM1-1 AGCTGCTGCGGCGACTGCAA Non-Targeting Control 376 AAGAATTAGGCACGGTTACT
HOTAIRM1-2 CTAGGCGGCGGCAGCTGCTG Non-Targeting Control 377 TTTTTCTCACCCGATGAATC
HOTAIRM1-3 GCGGGGCGGGCAGCGGAGTC Non-Targeting Control 378 AAACCCTATGCCCAAATGAG
HOTAIRM1-4 CGCAGCAGCTGCCGCCGCCT Non-Targeting Control 379 CATTAGTCTGATACCTGTGC
HOTAIRM1-5 CTCCCGGAGGCCTGGCGGGG Non-Targeting Control 380 GGTGCTTAGCTCTGCGCACA
HOTAIRM1-6 TCCCAGCCCCCACCTCCCGG Non-Targeting Control 381 ATGCCTTAGACTTAACCTCG
HOTAIRM1-7 CCAGTTCATCTTTCATTGAA Non-Targeting Control 382 CCAGTGCCCTTTTGTCGCAA
HOTAIRM1-8 CAAAGGCCGATTTGGAGTGC Non-Targeting Control 383 AGCGATCTGGACACTCTCCA
HOTAIRM1-9 GCCCGCCCCGCCAGGCCTCC Non-Targeting Control 384 AGTCTTAAAGACCCTAAGCT
HOTAIRM1-10 GCCTCCCAGCCCCCACCTCC Non-Targeting Control 385 AGGTAAGCCCCTTAGAACTG
HOXB45-R-1 GGGGCTCCTCGGGAGCAGAA Non-Targeting Control 386 GTGTAAATCTGTCCAAGTAG
HOXB45-R-2 CTCTAGCCCTGTGAGCACAG Non-Targeting Control 387 GACCTATGCCAGAAAGTTCG
HOXB45-R-3 GGGCTCCTCGGGAGCAGAAG Non-Targeting Control 388 ATGCGCAGCTCCAGAATTTT
HOXB45-R-4 AGGGGCTCCTCGGGAGCAGA Non-Targeting Control 389 GGTCCCTCAGGGTGCAACTT
HOXB45-R-5 AGCGGCCCCTTCTGCTCCCG Non-Targeting Control 390 GCCCCAAGCTAGAACTCAGC
HOXB45-R-6 GAAGGGGCCGCTGTGCTCAC Non-Targeting Control 391 CCATTCCGTAAGGGCTTGGA
HOXB45-R-7 AGCTTGGAGCAGGGGCTCCT Non-Targeting Control 392 GGTCTGCTCCAATGGGAACC
HOXB45-R-8 GCTTGGAGCAGGGGCTCCTC Non-Targeting Control 393 GAGCAATCCAAAGTTAACGG
HOXB56-R-1 CCGCGCTCCCGTCGGTCGCC Non-Targeting Control 394 TTCTTAGAAGTTGCTCCACG
HOXB56-R-2 TCCCGTCGGTCGCCGGGAGG Non-Targeting Control 395 ATCTCTATACTGTCACTCGC
HOXB56-R-3 GAGCAGAGCGCGCCACCTCC Non-Targeting Control 396 GAACGTAGAAATTCCCATTT
HOXB56-R-4 CCCGCGCTCCCGTCGGTCGC Non-Targeting Control 397 CATCATAAATGTACAACGGG
HOXB56-R-5 CGCCACCTCCCGGCGACCGA Non-Targeting Control 398 TCCCTCCTAGTCAAGAAGAG
HOXB56-R-6 GCCACCTCCCGGCGACCGAC Non-Targeting Control 399 CGACTGACCCCTGGGTGAAG
HOXB56-R-7 CCGGCGACCGACGGGAGCGC Non-Targeting Control 400 GGGTGGTCATTCTCTACTTG
HOXB6-F-1 GCCGCGTGTCTCCGAACGGA Non-Targeting Control 401 AGTGAGTGACAACCAGATCG
HOXB6-F-2 GCTGCCATCTACCGTCCGTT Non-Targeting Control 402 TATGACCCTGTTACATTGCC
HOXB6-F-3 GGCAGCAGACCGCATAATTT Non-Targeting Control 403 TGAGCATGTCGGGAGTAACT
HOXB6-F-4 TGGCAGCAGACCGCATAATT Non-Targeting Control 404 TGGGGACGTTTATCAATATA
HOXB6-F-5 ACCGTCCGTTCGGAGACACG Non-Targeting Control 405 CGTCCCTTCGTCTCTGCTTA
HOXB89-R-1 GGAGCAAGGGTGCCATCTAG Non-Targeting Control 406 GTTTTTGGTTAATTGCCTAC
HOXB89-R-2 TTCGCAGAGCAGCCGCTAGA Non-Targeting Control 407 CATTAGCAGCCCAGCGCCCA
HOXB89-R-3 GGGAGTTTCACATGGAGCAA Non-Targeting Control 408 ATCAGCCCATTTCTGCGCAC
HOXB89-R-4 CTAGCGGCTGCTCTGCGAAA Non-Targeting Control 409 GTGAAACAGAGGGTCCATCA
HOXB89-R-5 CCGCTCCAGGGAGTTTCACA Non-Targeting Control 410 CGTAGTAAATATCTAGCTAA
HOXB89-R-6 AGGGAGTTTCACATGGAGCA Non-Targeting Control 411 ATTAAACGACACCTTATTCT
HOXB9-1-N-1 CGAGACAGAGACCAACCTCT Non-Targeting Control 412 CCCTCAGGAGCTACTAAGGT
HOXB9-1-N-2 AACGCCAGGGCGCCGCCTAG Non-Targeting Control 413 GAGGGGGCTTCAAACATGTG
HOXB9-1-N-3 GACAGAGACCAACCTCTAGG Non-Targeting Control 414 TCGCAAGGAAGCCAGCTAAG
HOXB9-1-N-4 CCAACCTCTAGGCGGCGCCC Non-Targeting Control 415 CGGAGCTTAGCGTGGGGGCG
HOXB9-1-N-5 TCAGCGCGGACTCAACGCCA Non-Targeting Control 416 GCTCCCATCCATAGTAAAAA
HOXB9-1-N-6 CCAGGGCGCCGCCTAGAGGT Non-Targeting Control 417 TGACTAGCTCTTACATATTC
HOXB9-1-N-7 TTCAGCGCGGACTCAACGCC Non-Targeting Control 418 CCTTATGGAATCAGACCGTT
HOXB9-1-N-8 CGAGAGAATCTTGTTCAGCG Non-Targeting Control 419 ATAGCGGATGTCCTTGGAAA
HOXB9-2-F-1 TACCGTGGACAGACACTAGA Non-Targeting Control 420 ACGCATGCTTCCCAAAGCGT
HOXB9-2-F-2 AACACTCGGCTTTCTGAGCG Non-Targeting Control 421 AGTGTATCTTCCACCTGTCT
HOXB9-2-F-3 TTACCGTGGACAGACACTAG Non-Targeting Control 422 AGTATGAGACTCATAGGGTG
HOXB9-2-F-4 TCTAGTGTCTGTCCACGGTA Non-Targeting Control 423 GAAACGAGAAGTTTGTACTA
HOXB9-2-F-5 CACCCTCTAGTGTCTGTCCA Non-Targeting Control 424 GTTGATCGAAAATGGGAGAA
HOXB9-2-F-6 GTGTCTGTCCACGGTAAGGC Non-Targeting Control 425 TAGGGGATTAGCTGACAGTC
HOXB9-2-F-7 ACGTTGGACCCGCCTTACCG Non-Targeting Control 426 GCTAAGGTCATGTTTGCAAT
HOXB9-2-F-8 GTCCCGGGCCTGGAAACACT Non-Targeting Control 427 GACACTATCCAACCCAAGAG
HOXB9-3-F-1 GGCCAAACACTGACCCCTGC Non-Targeting Control 428 GAGTTATTTATTCTCTCGAG
HOXB9-3-F-2 GGGCGCCGCCTTCCCTCGGG Non-Targeting Control 429 CAGTCGTTTCTATGGGATCT
HOXB9-3-F-3 CCTTCCCTCGGGCGGCCGGC Non-Targeting Control 430 AAAATCGATGGGCTGAATCT
HOXB9-3-F-4 TTCCCTCGGGCGGCCGGCAG Non-Targeting Control 431 GACGCCTTGCCCGGCTCACA
HOXB9-3-F-5 GCCGCCTTCCCTCGGGCGGC Non-Targeting Control 432 ATTTAGTAATGCACACCCAG
HOXB9-3-F-6 CTTCCCTCGGGCGGCCGGCA Non-Targeting Control 433 TAGTTCTAATCGTTCCTTGA
HOXB9-3-F-7 GACCCCTGCCGGCCGCCCGA Non-Targeting Control 434 CACCCTTATATTCAGTAACT
HOXB9-3-F-8 GGCCGGCAGGGGTCAGTGTT Non-Targeting Control 435 TGCCCACTTAGCAACACTCT
HOXB9-3-F-9 TGACCCCTGCCGGCCGCCCG Non-Targeting Control 436 TGCCTCTCCCTTACCCGGAC
HOXB9-3-F-10 GCCCGAGGGAAGGCGGCGCC Non-Targeting Control 437 AGAGCATGATGACCCGTGAC
HOXB13-F-1 TAGGACCATTAAAAAGACGT Non-Targeting Control 438 GGTGTCACCACCGCTTACCA
HOXB13-F-2 TTAGGACCATTAAAAAGACG Non-Targeting Control 439 ACGCTCTCCTGGCAACAAGT
HOXB13-F-3 GGTGAGCCTCTGTCGGAAGG Non-Targeting Control 440 GGCGTTAATTAAACTGTTTT
HOXB13-F-4 GTGGTGAGCCTCTGTCGGAA Non-Targeting Control 441 CAGGGTTGCGCAGAGGACTC
HOXB13-F-5 TGGTGAGCCTCTGTCGGAAG Non-Targeting Control 442 AAGTGACGGTGTCATGCGGG
HOXB13-F-6 CTGGAGTGGTGAGCCTCTGT Non-Targeting Control 443 TGTCAGTAGTCAGGACCCCG
HOXB13-F-7 AGTGGTGAGCCTCTGTCGGA Non-Targeting Control 444 CATTAAACCTTGCCCCACAA
HOXB13-F-8 GCCCGCAGGTTCTCCTGGAG Non-Targeting Control 445 CGGCACTAGAAGTTTTTGAA
HOXBLINC-1 AAGCGCCTCTCAGCGAAGGG Non-Targeting Control 446 CCAGTTATAATTAGGGGTTT
HOXBLINC-2 CAGCTGTAAAGAAAAATGCT Non-Targeting Control 447 TAACCCAGAAGCCCATTCAG
HOXBLINC-3 GAAGAGGCGGCTGGGTGTGA Non-Targeting Control 448 GCAGTACTACTGAGTTTTTC
HOXBLINC-4 CCCTTCGCTGAGAGGCGCTT Non-Targeting Control 449 CGACCCATGGATGTGAACCC
HOXBLINC-5 TGGTGTAATAAAAGTCCTTT Non-Targeting Control 450 GACAGTGAAATTAGCTCCCA
HOXBLINC-6 TGCCCGTCATTAAATATCCG Non-Targeting Control 451 TGTTCTACTTTCGAAGTTAA
HOXBLINC-7 TGCTGGGAGACCAAGCAGAT Non-Targeting Control 452 GGGAGTTGATTGTTTCGAGA
HOXBLINC-8 GAGGCGGCTGGGTGTGAAGG Non-Targeting Control 453 TAGAATTTGACCAAAGGCAC
HOXBLINC-9 GGGAGGAGGAAGAGGCGGCT Non-Targeting Control 454 CTTCTAGCTGGTTCATTGCT
HOXBLINC-10 ACAGCTGTAAAGAAAAATGC Non-Targeting Control 455 CCCTGTGAAGGAGGCGTAAG
HOXC5-F-1 AGGATGCAATTCCCCCACAT Non-Targeting Control 456 CAAGCATTTAGACACCTGTC
HOXC5-F-2 AACAAGCCCACAGCGACACC Non-Targeting Control 457 CGGCCAAAGAATTAGAAGTT
HOXC5-F-3 AATTCCCCCACATAGGCACC Non-Targeting Control 458 TGAACGGTGAAGAGATAGGG
HOXC5-F-4 GACACCTGGTGCCTATGTGG Non-Targeting Control 459 AGCCGGCTTGTGACAGTGAA
HOXC5-F-5 CGACACCTGGTGCCTATGTG Non-Targeting Control 460 AGGGGCAGGGCTATCTTATG
HOXC5-F-6 ATAGGCACCAGGTGTCGCTG Non-Targeting Control 461 GTAAACTTTGTCTGGAGTAT
HOXC5-F-7 GCGACACCTGGTGCCTATGT Non-Targeting Control 462 GAATAGATTTGTCAGTTAGG
HOXC5-F-8 TAGGCACCAGGTGTCGCTGT Non-Targeting Control 463 AGTTCTGTTCGATAGATGCC
HOXC5-F-9 AGCGACACCTGGTGCCTATG Non-Targeting Control 464 GTGATAATGATGTATTCTCG
HOXC89-F-1 CATTGGACCAAATGGACGCG Non-Targeting Control 465 GTTTTCAGTTGCCCAACAGC
HOXC89-F-2 TGGACCAAATGGACGCGAGG Non-Targeting Control 466 CGCGCAGAAGGCAAGCAGGG
HOXC89-F-3 AGCGCCACCTCGCGTCCATT Non-Targeting Control 467 ATTTTCGAAAGCTTAGGCCA
HOXC89-F-4 CCGGACTGCATTGGACCAAA Non-Targeting Control 468 GTTTCGAAACTTGAAGTAAG
HOXC89-F-5 CTGTTGCTCAATGTTAGAGG Non-Targeting Control 469 TTCTAAGCGCCCTGGGGACA
HOXC89-F-6 GCGCTGTTGCTCAATGTTAG Non-Targeting Control 470 ATCCTAGGTACAAAAGGACG
HOXC89-F-7 TTGCTCAATGTTAGAGGCGG Non-Targeting Control 471 GTATTACTGATATTGGTGGG
HOXC10-F-1 GCCATCTAGCAGCTGCCTCG Non-Targeting Control 472 CTTAAGGCGAGAAAAATTAG
HOXC10-F-2 GGCAGGCGGAGCGCGCAGAG Non-Targeting Control 473 GGATGTTTCTGTGCGCACAT
HOXC10-F-3 GCTCCGGTGCCCCTACCCCG Non-Targeting Control 474 TCAGTATCGGCTGCTGGTAA
HOXC10-F-4 TTGTTCGCGGGGAAGGGCTC Non-Targeting Control 475 CACCATAGAACCTGAAATAC
HOXC10-F-5 TAGCAGCTGCCTCGGGGTAG Non-Targeting Control 476 AGCTGAAAATATACGTATTC
HOXC10-F-6 GCGCCATCTAGCAGCTGCCT Non-Targeting Control 477 GGATTAATTCGCTAAATGAT
HOXC10-F-7 CTAGCAGCTGCCTCGGGGTA Non-Targeting Control 478 ATAAGCTACTCTGAGTTCCT
HOXC10-F-8 TCTAGCAGCTGCCTCGGGGT Non-Targeting Control 479 GTGAACTGCAATCTTATTAT
HOTAIR-1 TCAGGTCCCTAATATCCCGG Non-Targeting Control 480 ATGCAAGACAGCCTCCCAGC
HOTAIR-2 TGAGGGTCTAAGTCCCGGGT Non-Targeting Control 481 TGTAGTCTGGGGTAGACTCC
HOTAIR-3 TCCGGGATATTAGGGACCTG Non-Targeting Control 482 CTGCCCTCTTGAAATAGCCA
HOTAIR-4 ACCAACACCCCTGCTCCTGG Non-Targeting Control 483 AGGGATCGTTAGGAAGGGAA
HOTAIR-5 GCCGCCAGGAGCAGGGGTGT Non-Targeting Control 484 CACATAACATGAGGTATCAG
HOTAIR-6 TAAGAGAGCACCAGGCACTG Non-Targeting Control 485 CTTCCTGCGTGGCTTTAAAC
HOTAIR-7 TGTTGGTCTGTGGAACTCCC Non-Targeting Control 486 ATAGCTAAAGTTGATGTGTA
HOTAIR-8 AGCACCAGGCACTGAGGCCT Non-Targeting Control 487 AGGGAAACCTCTATGGGTAA
HOTAIR-9 AACTCCCAGGCCTCAGTGCC Non-Targeting Control 488 CCAGAGCCTTGGTTTATATC
HOTAIR-10 CAGACCAACACCCCTGCTCC Non-Targeting Control 489 TGTAGATATAGGGTGTCTAC
HOXD48-F-1 GAGGAAATCGCGCCCCCTCC Non-Targeting Control 490 GCGAATGCCTGAAAGTATAA
HOXD48-F-2 CGCTTTCTCCGCGCTCCCGG Non-Targeting Control 491 TTGCAATGCTGCTATAGAAG
HOXD48-F-3 GCTTTCTCCGCGCTCCCGGA Non-Targeting Control 492 AAGGCAATTTACTGGATCCT
HOXD48-F-4 CGAGGAAATCGCGCCCCCTC Non-Targeting Control 493 CTGCACTGTGGAGACGCCCG
HOXD48-F-5 CTTTCTCCGCGCTCCCGGAG Non-Targeting Control 494 GGAGAGGAAAATCGGCACAG
HOXD48-F-6 TTTCTCCGCGCTCCCGGAGG Non-Targeting Control 495 TCAGGATCAGGGTGTATGGC
HOXD48-F-7 TCGCGCCCCCTCCGGGAGCG Non-Targeting Control 496 GGGAGGTGGCTTTAGGTTTT
HOXD48-F-8 CCTCGCTTTCTCCGCGCTCC Non-Targeting Control 497 AGGATGGATTGAGCAGCGGT
HOXD48-F-9 GCTCCTACAAGCGCAGCACG Non-Targeting Control 498 AACAGGAAACGTGACTAAAG
HOXD89-F-1 GGAGCAACAGCGCTCTCTAG Non-Targeting Control 499 GCAAAAGTGGCATAAAACCG
HOXD89-F-2 AGTGGACTGGAGGTGGCATT Non-Targeting Control 500 TGACACATTGGCTGGGTGTT

2. sgRNA library cloning

2.1. Clone the synthesized oligonucleotides into the CRISPR lentiviral backbone vector (lentiCRISPRv2).

2.1.1. Digest the LentiCRISPRv2 vector with BsmBI restriction enzyme at 37 °C for 2 h.

2.1.2. Look for the presence of the larger band (around 12,873 bp) on the gel after BsmBI digestion, and then purify it with the gel extraction kit.

NOTE: A 2kb small filler piece is also present on the gel after digestion, but this should be ignored.

2.1.3. Ligate the synthesized oligonucleotides and digested LentiCRISPR vector with 150 ng of digested LentiCRISPR DNA, 1 μL of 10 μM oligos, 2 μL of 10x T4 ligase buffer, 1 μL of T4 ligase, and then incubate them at 16 °C overnight.

2.2. Transform the lentiviral CRISPR/sgRNA library into electro-competent cells for amplification.

2.2.1. Prepare the electroporator at 1.8 kV, 200 ohms and 25 μF. Then pre-warm the recovery SOC media in a 37 °C water bath, and pre-warm LB ampicillin antibiotic plates at 37 °C.

2.2.2. Thaw the competent cells on ice for 10 min.

2.2.3. Prepare 1.5 mL micro-centrifuge tubes and 1 mm electroporation cuvettes on ice.

2.2.4. Mix 1 μL of a 10 ng/μL library plasmid DNA into 25 μL of competent cells in a 1.5 mL micro-centrifuge tube, and gently mix by flicking the bottom of the tube a few times manually.

2.2.5. Once the cuvette is cold enough, transfer the DNA/competent cell mixture to it. Tap twice on the countertop and wipe any water droplets from the exterior of cuvette with a tissue paper. Then place the cuvette in the electroporation module and press pulse.

2.2.6. Immediately add 975 μL of 37 °C pre-warmed SOC media. Mix by pipetting up and down and transfer to a 15 mL tube.

2.2.7. Rotate and incubate at 37 °C for 1 h.

2.2.8. Dilute 100 μL cells into 900 μL of SOC media and place 100 μL on a LB ampicillin antibiotic agar plate. Incubate overnight at 37 °C.

2.3. Extract the plasmid DNA from the combined colonies using a maxi-prep column as detailed in the manufacturer’s protocol.

2.3.1. Scrape all the colonies from the LB agar plate and inoculate a starter culture of 2 mL of LB ampicillin antibiotic medium and incubate overnight at 37 °C with vigorous shaking (approx. 200 x g).

2.3.2. Dilute the starter culture 1:500 into 100 mL of LB ampicillin medium and incubate at 37 °C for 12-16 h with vigorous shaking (approx. 200 x g).

2.3.3. Harvest the bacterial cell pellet by centrifugation at 6,000 x g for 15 min at 4 °C.

2.3.4. Re-suspend the bacterial pellet in 10 mL of suspension buffer.

2.3.5. Lyse the suspended pellet with 10 mL of the lysis buffer, and vigorously invert 4-6 times. Incubate the lysate for 5 min at room temperature.

2.3.6. Neutralize the lysate with 10 mL of chilled Neutralization Buffer. Mix by gently inverting the tubes 4-6 times and incubate it for 20 min on ice.

2.3.7. Spin down at 13,500 x g for 30 min at 4 °C. Promptly transfer the supernatant containing the plasmid DNA to a new tube.

2.3.8. Repeat step 2.3.7, and promptly transfer the supernatant containing the plasmid DNA to a new tube.

2.3.9. Equilibrate the column by applying 10 mL of equilibration buffer and allow the column to empty by gravity flow.

2.3.10. Add the supernatant to the column and allow it to enter the resin by gravity flow.

2.3.11. Wash the column with 2 x 30 mL of washing buffer.

2.3.12. Elute the DNA with 15 mL of elution buffer.

2.3.13. Precipitate the DNA with 10.5 mL of room-temperature isopropanol to the eluted DNA. Mix and spin down immediately at 15,000 x g for 30 min at 4 °C, and gently decant the supernatant.

2.3.14. Wash the DNA pellet with 5 mL of 70% ethanol, centrifuge DNA pellet at 15,000 x g for 10 min and discard the clear supernatant.

2.3.15. Repeat step 2.5.14 twice more.

2.3.16. Centrifuge DNA pellet at 15,000 x g for 10 min, and gently decant the supernatant without disturbing the DNA pellet.

2.3.17. Air-dry the pellet for 5-10 min, and dissolve the DNA in a required volume of buffer (TE buffer, pH 8.0).

3. The high titer sgRNA library lentivirus generation

3.1. Cell preparation: Culture HEK293T cells in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% (vol/vol) fetal bovine serum (FBS) and 1% (vol/vol) penicillin-streptomycin (PS) antibiotic in T-25 flasks. Place them in the incubator at 37 °C and 5% CO2.

3.2. Package lentivirus: Co-transfect HEK293T cells with 20 μg of purified library vectors from step 2, 15 μg of the package plasmid (psPAX2) and 10 μg of the envelope plasmid (pMD2.G) for 48 h before harvesting the viruses.

3.3. Virus collection: After 48 h, collect the virus supernatant and filter the virus supernatant through a 0.45 μm low protein binding PVDF membrane.

3.4. Virus concentration: Concentrate the lentiviral supernatant by 50-fold using the concentrator and test the virus MOI in step 5.

3.5. Virus storage: Aliquot the concentrated viruses and store in a −80 °C freezer.

4. Optimized puromycin concentration

4.1. Leukemia cell culture: Culture MOLM13 AML cells in RPMI 1640 supplemented with 10% (vol/vol) fetal bovine serum (FBS) and 1x penicillin-streptomycin (PS) antibiotics in a T-125 flask. Place them in an incubator at 37 °C and 5% CO2.

NOTE: Cells are typically passed every 4-5 d at a split ratio of 1:4 or 1:6, never allowing cells to reach more than 70% confluency.

4.2. Set up MOLM13 cells in a 12-well plate with a density of 1.0 x 104 cell/mL, at a total volume of 2 mL per well (2.0 x 104 cells).

4.3. Time-course assay: Treat MOLM13 cells with puromycin for 7 days in increasing concentrations (0.1 μg/mL, 0.2 μg/mL, 0.5 μg/mL, 1.0 μg/mL and 2.0 μg/mL)

4.3.1. Set up MOLM13 cells without puromycin treatment on day 0 and set up 3 replicate wells without puromycin treatment as a control from day 0 to day 7.

4.3.2. Treat MOLM13 cells with 0.1 μg/mL, 0.2 μg/mL, 0.5 μg/mL, 1.0 μg/mL and 2.0 μg/mL, separately, with each experimental condition containing 3 replicate wells.

4.3.3. Count the live cell ratio and make a survival curve from day 0 to day 7 containing all conditions.

4.4. Survival curve: Stain cells with Trypan blue and count viability daily to obtain the survival curves for each puromycin concentration.

4.5. Optimizing minimal puromycin concentration: Determine the minimal puromycin concentration through Trypan blue staining, in which all MOLM13 cells are killed between 5-7 days.

5. Titration of lentiviral library in MOLM13 leukemia cells

5.1. AML cells preparation: Collect MOLM13 AML cells with the transduction medium (RPMI 1640, 10% FBS, 1% PS, and 8.0 μg/mL coating medium) at a density of 1.5 x 106 cells /mL.

5.2. Place MOLM13 cells in the 12-well plate with 1.5 x 106 cells in each well.

5.3. Thaw the lentivirus: Remove the concentrated lentivirus from the −80 °C freezer and thaw it on ice.

5.4. Mix MOLM13 cells with a different dose of the concentrated lentivirus in separate wells, including 0, 1, 2.5, 5, 7.5 and 10 μL (total 6 groups).

5.5. Immediately centrifuge these mixtures at 1,000 x g for 2 h at 33 °C and transfer the 12-well plates back to the incubator at 37 °C and 5% CO2 for 4 h.

5.6. After 4 h, spin down the infected cells at 400 x g for 5 min at room temperature.

5.7. Gently aspirate the supernatant without disturbing the cell pellet, and re-suspend the transduced cells with fresh media (RPMI 1640, 10% FBS and 1% PS), and then transfer them to T-25 flasks and incubate at 37 °C for 48 h without puromycin.

5.8. After 48 h, split these cells into 2 flasks (2 groups): an experimental group treated with 1 μg/mL puromycin for 5 days, and a control group without puromycin treatment for 5 days.

5.9. Carry out puromycin selection for 5 days with 1 μg/mL puromycin according to the step 4 until all the non-transduced control cells are dead. Exchange for fresh media every 2 days.

5.10. Measure the optimized MOI value for transduction by dividing the number of live cells treated with puromycin with the number of cells without puromycin treatment.

6. Transduction of the pooled CRISPR-Cas9 KO library

6.1. Transduction with lentivirus: Infect 1.5 x 106 MOLM13 cells with 0.3 MOI of sgRNA pooled lentivirus in medium (RPMI 1640, 10% FBS, 1% PS, and 8 μg/mL coating medium) in 6-well plate and use the cells without the lentivirus infection as a control.

6.2. Immediately centrifuge the 6-well plate at 1,000 x g for 2 h at 33 °C to spinfect the cells and transfer the plates back to the incubator at 37 °C and 5% CO2 for 4 h.

6.3. Spin down the infected cells at 400 x g for 5 min at room temperature.

6.4. Gently aspirate supernatant without disturbing the cell pellet, and re-suspend the transduced cells with fresh media (RPMI 1640, 10% FBS and 1% PS), and then transfer them to T-25 flasks and incubate at 37 °C for 48 h without puromycin.

6.5. After 48 h, treat cells with 1 μg/mL puromycin for 5 days. Exchange for fresh media after 2 days and keep at an optimal cell density.

6.6. Seed the single clone in 96-well plates with limiting dilution methods and incubate these single clones at 37 °C and 5% CO2. Culture them for 3-4 weeks.

6.7. After a single cell grows up into a population, transfer half of the cells into 24-well plates for further culture under puromycin selection and verify these clones in the next step. Keep the rest of the cells.

7. Screening of the pooled CRISPR-Cas9 KO library with one-step RT-qPCR

7.1. Determine the effectiveness of the sgRNA integrated clone screening by evaluating the expression of the marker gene HOXA9 with one step reverse-transcriptase polymerase chain reaction (one-step RT-qPCR).

NOTE: HOXA9 are highly expressed in MOLM13 AML cells in leukemogenesis22,23.

7.2. Count the sgRNA integrated MOLM13 cell and transfer 1 x 104 cells per well to a 96-well PCR plate.

7.3. Centrifuge the tube at 1,000 x g for 5 min, and then thoroughly remove and discard the supernatant with a pipet without disturbing the cell pellet.

7.4. Wash cells with 125 μL of PBS buffer, and centrifuge the tube at 1,000 x g for 5 min. Then remove 120 μL of the supernatant using a pipette and retain approximately 5 μL of PBS in each well.

7.5. Add 50 μL of the cell lysis master mix containing 48 μL of cell lysis buffer, 1 μL of proteinase K solution (10 mg/mL) and 1 μL of DNase solution (1 mg/mL) to each well. Then pipet up and down 5 times to re-suspend the cell pellet.

7.6. Incubate the mix for 10 min at room temperature, followed by 5 min at 37 °C, and then 75 °C for 5 min.

7.7. Store the cell lysate at −80 °C freezer.

7.8. The preparation of one-step RT-qPCR reaction: Thaw the one-step reaction mix and other reaction components to 4 °C. Then spin down briefly to collect solutions at the bottom of tubes, and place on ice without light. Mix and spin gently.

7.9. Add 1 μL of cell lysate to the PCR wells with the RT-qPCR reaction mix, including 1 μL of the marker gene’s forward primer (300 nM) and reverse primer (300 nM), 0.125 μL of reverse transcriptase (10 U/μL), and 5 μL of one-step reaction mix (2x).

7.10. Seal wells with optically transparent film, and gently vortex and mix the reaction components.

7.11. Place the 96-well PCR plate on a real-time PCR instrument.

7.12. Run the reverse transcription reaction for 10 min at 50 °C, followed by polymerase inactivation and DNA denaturation for 1 min at 95 °C.

7.13. Perform RT-PCR with 40 cycles of PCR reaction: denaturation for 15 s at 95 °C, annealing/extension and plate fluorescence reading for 20 s at 60 °C, and then melt curve analysis at 65-95 °C via 0.5 °C increments at 2-5 s/step.

7.14. Set up upregulated, downregulated and no change groups according to the expression levels of HOXA9 gene by comparison to the control, separately. Use β-actin gene as a housekeeping gene control.

8. Verification of integrated sgRNAs positive clones through genotyping and Sanger sequence

8.1. Verify the HOXA9 decreased expression clones through Sanger sequencing and perform PCR with 50-100 ng MOLM13 genome DNA, 5 μL polymerase reaction buffer (10x), 1 μL forward primer (10 μM) (AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG) and 1 μL reverse primer (10 μM) (TCTACTATTCTTTCCCCTGCACTGTTGTGGGCGATGTGCGCTCTG), 1 μL dNTP (10mM), 1 unit polymerase (5 U /μL). Perform the PCR reaction with the initial denaturation at 94 °C for 30 s, and then more denaturation at 94 °C for 20 s, annealing at 56 °C for 20 s, extension at 68 °C for 20 s (total 30 cycles), final extension at 68 °C for 10 min, and then holding at 4 °C.

8.2. Extract and purify the PCR products (size 285 bp) with a PCR Purification Kit.

8.3. Ligate the purified PCR products into the T vector with 2 μL T4 ligation buffer (10x), 50 ng T vector DNA (50 ng / μL), 25 ng purified PCR DNA (285 bp), 1 μL T4 ligase (3 units/μL), and place the ligation mix into an incubator at 16 °C overnight.

8.4. Transfer the ligation mix into DH5α competent cell, grow on a LB ampicillin antibiotic agar plate, and incubate overnight at 37 °C.

8.5. Pick the single clones from the LB plate and verify them by genotyping and Sanger sequencing.

9. Detection of sgRNAs induced Indel mutation by nuclease digestion assay

9.1. Detect the sgRNA integrated single clone induced Indel rates by a nuclease test assay.

9.2. Separately prepare PCR amplicons with 50-100 ng Indel mutant (test) and wild‐type (WT, reference) DNA as PCR template, 5 μL polymerase reaction buffer (10x), 1 μL dNTP (10mM), 1 unit polymerase (5 units / μL), 1 μL forward primer (10 μM)(5’-GAGATGGCGGCGCGGAAG-3’), and 1 μL reverse primer (10 μM) (5’-AAATATAGGGCGGCTGTTCACT-3’). The PCR reaction was performed with initial denaturation at 98 °C for 30 s, and then denaturation at 98 °C for 20 s, annealing at 56 °C for 20 s, extension at 72 °C for 30 s (total 30 cycles), and final extension at 72 °C for 10 min, and holding at 4 °C.

9.3. Set up the heteroduplex mixture group with 200 ng of the “reference” (20 ng / μL) and 200 ng of “test” (20 ng / μL) PCR amplicons in 0.2 mL PCR tube, and the homoduplex mixture group with only 400 ng of “reference” PCR amplicons as a control.

9.4. Separately incubate the heteroduplex and homoduplex mixture at 95 °C for 5 min in a 1 L beaker filled with 800 mL of water and then cool down gradually to room temperature to anneal and form heteroduplex or homoduplexes.

9.5. Separately digest 400 ng of the annealed heteroduplex and homoduplex mixture with 1 μL indel mutation detection nuclease (2.5 units / μL) and 2 μL nuclease reaction buffer (10x) at 42°C for 60 min.

9.6. Analyze the digested samples with agarose gel electrophoresis, the heteroduplex mixture DNA should be cut into small fragments (70-250 bp), and the homoduplex DNA (320 bp) should not be cut.

REPRESENTATIVE RESULTS:

CRISPR-Cas9 technology is a powerful research tool for functional genomic studies. It is rapidly replacing conventional gene editing techniques and has high utility for both genome-wide and individual gene-focused applications. Here, the first individually cloned loci-specific CRISPR-Cas9-arrayed sgRNA library contains 1,070 sgRNAs consisting of sgRNAs targeting 303 random targeting genes, 60 positive controls, 500 non-Human-targeting controls, and 207 CTCF elements or lncRNA targeting genes in four HOX loci (Figure 1, Table 1). This library targets all CTCF core binding motifs, HOX gene associated lncRNAs, known regulatory elements, and several HOX genes as positive controls in the HOX loci. It also contains sgRNAs targeting random non-HOX genes, non-human genes and intergenic regions as negative controls. To enhance efficiency and specificity of CTCF site knock-out (KO) by lentiCRISPR transduction, each targeting site contains 5-10 sgRNAs (Table 1). In the protocol described here, sgRNA libraries are designed according to CTCF binding sites at the HOXA/B/C/D loci and lncRNAs in these loci, which is based on the Broad Institute sgRNA tools (Figures 1, 2). After transduction at a low multiplicity of infection with a MOI of 0.3 in MOLM13 cells carrying the MLL-AF9 fusion, the infection rate is less than one sgRNA/cell followed by puromycin selection, and then the resistant clones grown from seeded single cell were screened for impairment of HOXA9 gene expression.

Figure 2: Schematic diagram representing the part of integrating sgRNA vector sequence and PCR amplification primers.

Figure 2:

The PCR amplification primers were designed according to the blank sequence of the sgRNA lentiviral vector. The forward primer (P1) was highlighted in yellow, the reverse primer (P2) was highlighted in red, and the sgRNA was highlighted in green in the sgRNA lentiviral vector.

The workflow for sgRNA library screening was briefly described (Figure 3). First, the virus containing sgRNA library were generated in HEK293T cells with the help of two vectors (psPAX2 and pMD2.G). sgRNA pooled library lentiviruses were concentrated and transduced into MOLM13 AML cells with polybrane (8.0 μg/mL). After a 48 h transduction, cells were treated with the optimal concentration of puromycin. After 5 days, the cells were seeded one cell/well into 96-well plates and the single clones were generated in the presence of puromycin. Finally, sgRNA single clones integrated into genome were identified by one-step RT-PCR, Sanger sequencing and Indel mutation detection (Figure 3). The puromycin resistant single clones are identified through one-step droplet digital RT-qPCR (RT-ddqPCR) according to altering expression of HOXA9 oncogene (Figure 4). Genotyping and Sanger sequence were performed for sgRNA library construction and verification (Figures 2, 4).

Figure 3: Schematic diagram representing the workflow for sgRNAs library design, construction and verification.

Figure 3:

This workflow is as follows. First, the sgRNA library was designed and cloned into a lentiviral CRISPR vector, and then the lentivirus was packaged with the sgRNA library lentiviral vector, psPAX2 and pMD2.G vectors in the HEK293T cells. Next, MOLM13 cells were infected with a low MOI (0.3) virus and these cells underwent puromycin selection. Then, the single clone was seeded in a 96-well plate. Finally, the sgRNA single clones integrated into a genome were identified by one-step RT-qPCR, Sanger sequence and Indel mutation detection.

Figure 4: Pooled CRISPR-Cas9 KO library screening identified with one-step RT-qPCR and Sanger sequence.

Figure 4:

A. One step RT-droplet digital PCR screening of the HOXA9 expression in single clones infected with lentivirus containing the sgRNA library. The screening of 528 sgRNA library infected clones for HOXA9 expression levels is shown (528 dots). Ten of 528 clones exhibited more than 50% reduction in HOXA9 levels (purple arrows). The red line signifies the boundary of a 2-fold decrease change by comparing with the control cells; the blue line signifies the boundary of a 2-fold increase change. B. The six clones #5, 6, 28, 121, 207 and 420 were targeted by the CBS7/9 specific sgRNA through Sanger sequence (green arrows). C. The RT-ddqPCR analysis of HOXA9 levels in WT MOLM13 and the 21 clones containing single targeted sgRNA. The HOXA9 expression data were grouped into five groups in accordance with the categories of sgRNA sequences: HOXA7/9 CTCF site, non-human targets, other CTCF sites in the HOX loci, HOX associated lncRNAs, and other human targets (This figure has been modified from Luo et al.12). For statistics, this data was represented as the mean ± SD from three independent experiments with the Student’s t-test.

sgRNA targeting MOLM13 positive clones in a 96-well PCR plate were further confirmed with the RT-qPCR method based on the expression levels of HOXA9 genes through comparison with the control cells. Out of the 528 surviving clones screened, 10 clones exhibited more than 50% reduction in HOXA9 levels (Figure 4A). sgRNAs integrated into the HOXA9-reduced, HOXA9-unchanged, and HOXA9-increased clones were further confirmed by PCR amplification of the sgRNA sequences using flanking vector primers. The purified PCR products were ligated into the T vector system through T4 ligase and sent out for identification by Sanger sequence (see step 8). The sequence data indicated that out of 30 clones sequenced, 21 clones included single sgRNA (Table 2). The categories of sgRNA were identified and analyzed according to the HOXA9 expression levels. Six of ten clones showing a reduction in HOXA9 levels contained sgRNAs targeting the CBS7/9 site, but not in the non-human genes, random human genes, and other CTCF site controls (Figure 4 and Table 2).

Table 2. Sanger sequencing results of sgRNAs presented in the selected HOXA9-decreased, HOXA9-unchanged, and HOXA9-increased clones.

HOXA9-decreased, unchanged and increased clones are highlighted in red, blue and purple, separately. (This data from Luo et al.12).

Clone # sgRNAs Targets Genome locus
#5 ACCAAACGGCGGCCAGCAGA HOXA7/9 chr7: 27200761-27200780
ACGTTCGAGTACGACCAGCT Non-target
#6 CGGCGCGGAAGCCTCTTGCA HOXA7/9 chr7: 27200725-27200744
GCTCCGGTGCCCCTACCCCG HOXC10/11 chr12:54378732-54378751
#15 GTAGGATCTCCAGCCTGCAG HOTTIP chr7: 27240871-27240890
GCTGCCATCTACCGTCCGTT HOXB6/7 chr17:46680110-46680129
GCCAGCATCTACATTTGACA C9orf41 Chr9:77631311-77631330
#28 AACGGCGGCCAGCAGATGGC HOXA7/9 chr7: 27200757-27200776
#31 CAAAGGCCGATTTGGAGTGC HOTAIRM1 chr7:27135844-27135863
TAAGAGAGCACCAGGCACTG HOTAIR chr12: 54361157-54361176
AGCTCGCCATGTCGGTTCTC Non-target
AGAGCGTTAACCTCACCGAC HOXD9/10 chr2:176983838-176983857
#121 GCGGCCAGCAGATGGCAGTG HOXA7/9 chr7: 27200753-27200772
#207 AACGGCGGCCAGCAGATGGC HOXA7/9 chr7: 27200757 -27200776
#420 CGGCGCGGAAGCCTCTTGCA HOXA7/9 chr7:27200725 -27200744
#429 TAGGATCTCCAGCCTGCAGA HOTTIP chr7: 27240872 -27240891
#479 GTAGGATCTCCAGCCTGCAG HOTTIP chr7: 27240871 27240890
#4 GTCGTCCGGGATTACAAAAT Non-target
#16 TTATACCGAACATGGCTACA ATG2A chr11: 64678504-64678523
#27 GTCGTCCGGGATTACAAAAT Non-target
#43 AGAGCGTTAACCTCACCGAC HOXD9/10 chr2: 176983838-176983857
#129 AGGTAAGCCCCTTAGAACTG Non-target
#161 CCTCGTCCAGATTCCGGCGG Non-target
 #193 AAGACACTCACAGGTGACTG ATXN2L chr16: 28836715-28836734
#222 CCCCAACTTTCGCGACTCCG Non-target
#299 TGTTGGTCTGTGGAACTCCC HOTAIR chr12:54361131-54361150
ACCCAATGTGGCGGAGCCGA Non-target
#323 CGACACCTGGTGCCTATGTG HOXC5/6 chr12:54426519-54426538
#363 TTGCTCAATGTTAGAGGCGG HOXC8/9 chr12:54399922-54399941
#468 CTCCTCGGTGTACATCACGG ADORA2A chr22: 24829387 24829406
#519 TGGTGAGCCTCTGTCGGAAG HOXB13-up chr17:46802040-46802059
AACTCCCAGGCCTCAGTGCC HOTAIR chr12:54361144-54361163
#1 ACCCTCCATGGCCCTGCTAC CCL19 chr9: 34691124-34691143
#19 GGCCAAACACTGACCCCTGC HOXB9/13 chr17: 46755965-46755984
ACCCAATGTGGCGGAGCCGA Non-target
#33 AAGAGGAGGCTGAAGTAAAG BRD8 chr5:137506062-137506081
ACCCAATGTGGCGGAGCCGA Non-target
#37 AAGGAGTATTTCTACACCAG CCL5 chr17: 34205559 -34205578
 #38 TACCTGTTAGAATCATCAAG BCLAF1 chr6: 136596978-136596997
#123 AGTGGACTGGAGGTGGCATT HOXD8/9 chr2: 176991910-176991929
CTGCTCAAACTGCTCATCCT BIN1 chr2: 127834229-127834248
#474 GCTTGACATCTCTGCTGTAG ADK chr16: 75960555-75960574

Note: HOXA9-decreased, unchanged and increased clones are highlighted in red, blue and purple

sgRNA integrated positive single clone-induced Indel mutations are determined by PCR-based genotyping and nuclease digestion based on the nuclease assay (Figure 5). The nuclease digestion assay has been performed to identify Indel mutations occurred in the CBS7/9 boundary in the representative HOXA9-reduced, HOXA9-unchanged, and HOXA9-increased clones. The results revealed that the CBS7/9 mutation has been found in 4 out of the 6 HOXA9-reduced clones: clones #5, 6, 28, and 121, but not in clones #15 and #31 (Figure 5). However, clone #15 contained the sgRNA targeting HOTTIP lncRNA site, while clone #31 contained several sgRNAs targeting HOAIRM1 lncRNA, HOTAIR lncRNA, and HOXD9/10 CTCF binding site (Figures 4B, 5 and Table 2).

Figure 5: Indel mutations of integrated sgRNAs positive clone confirmed with the PCR-based genotyping and nuclease assay.

Figure 5:

A. Genomic DNA was isolated from the representative CRISPR-Cas9 KO library screened clones that exhibited reduced, unchanged, or increased HOXA9 expression levels. The heterozygous deletion of the CTCF site located between HOXA7 and HOXA9 genes (CBS7/9 boundary) was identified by PCR-based genotyping. The HOXA9-decreased clones #5, 6, 28, and 121 exhibited deletion in the CBS7/9 boundary location (black arrows). B. The Indel mutations in the CBS7/9 site were analyzed by the nuclease digestion assay from the representative clones that exhibited reduced (red line), unchanged (blue line), or increased (purple line) HOXA9 expression levels. The HOXA9-decreased clones #5, 6, 28, and 121 exhibited mutations in the CBS7/9 boundary location (orange arrows). (This figure has been modified from Luo et al.12)

DISCUSSION:

Protein-coding gene related sgRNA libraries have been applied in a functional screening system to identifying genes and networks regulating specific cellular functions through sgRNA enrichment2428. Several non-coding region related sgRNA libraries were also shown in gene-specific functional screens for distal and proximal regulating elements, including BCL11A, Tdgf1a and drug-resistance regulating genes2830. These sgRNA libraries were all generated by a detailed bioinformatics design, oligonucleotide synthesis, and sub-cloning the oligonucleotide pool(s) into vectors. The whole genome-wide screening approach is very powerful and useful but requires computational expertise for genome-wide sgRNA design and consistent funding for the expensive synthesis; thus, it is still challenging for most laboratories. However, our loci-specific sgRNA library screening approach is both convenient and efficient to identify the specific DNA element such as the CTCF binding site involved in chromatin organization and transcriptional regulation (Figures 1 and 2). By targeting the CTCF boundaries, we applied a one-step RT-PCR to evaluate sgRNA targeted clones according to the expression level of a specific marker gene, HOXA9. In addition, we performed Sanger sequencing to confirm these positive integrated sgRNAs clones (Figures 2 and 4). To functionally confirm these positive sgRNAs targeted clones, we carried out a PCR-based genotyping and mutation detection assay in order to determine whether the sgRNA induces the target site insert or deletion mutations (Figure 5). This gives us a promising method to target specific non-coding DNA elements and evaluate their biological function in mammalian cells.

In our protocol, we mentioned that a specific oligonucleotide design will ensure more efficient sub-cloning into lentiCRIPSRV2 vectors and more reliably generate an accurate sgRNA library (steps 12). In order to obtain the high titer sgRNA library lentivirus, the lentiviral supernatant should be concentrated 50-fold using the concentrator following the protocol (step 3), and stored in a −80 °C freezer in multiple aliquots (steps 3.1 - 3.5). An additional concern is finding the optimal MOI value for transduction. If the MOI is too low, the number of infected cells will decrease and lead to sgRNA screening failure. If the MOI is too high, it will integrate more than one sgRNA into a single cell, and it will interfere with the sgRNA library screening through the one-step RT-PCR and Indel mutation detection. Therefore, before screening, finding the optimal MOI for each group of cells through titration of the lentiviral library is an important step. Titration of the lentiviral library in MOLM13 leukemia cells and evaluation of the MOI will be carried out in the protocol (steps 5.1 - 5.10). Moreover, a thorough lysing of cells for reverse transcription can ensure successful one-step RT-PCR. This can be done by increasing the incubation time for lysis at all temperature stages in the protocol (steps 7.5 - 7.6). Therefore, in order to enhance the efficient for screening of the pooled CRISPR-Cas9 KO library, thorough cell lysis and reverse transcription play a critical role in determining the one-step RT-qPCR (steps 7.1 – 7.14). Additionally, increasing the quality of PCR products can ensure successful indel mutation detection, because low quality PCR products will affect the heteroduplex/homoduplex generation process (steps 9.1 – 9.6).

In addition, the method can be used to identify the role of CTCF in HOX gene regulation in early embryonic development and certain leukemia with aberrant HOX gene signature. For example, HOX genes play critical roles during embryonic development and all four clusters of HOX gens are temporally and spatially restricted in their expression patterns in embryonic development. Furthermore, NPM1 mutations are among the most common genetic abnormality in AML and account for 30% of AML patients with normal cytogenetic karyotype31. This subset of AML exhibits an aberrant HOXA and HOXB gene signature, which becomes a dominant mechanism of leukemic transformation17. It is critical to elucidate how HOX gene are regulated in normal development and dysregulated during leukemogenesis. We and others have shown that CTCF plays an essential role in chromatin organization and gene transcription in HOX loci9,12. Thus, the HOX loci focused sgRNA library screening provides a convenient means to entangle the specific function of the CTCF binding site in HOX gene regulation during development and hematopoietic malignancies. However, a limitation of the approach is the difficulty of finding a useful marker for the high-throughput next-generation sequencing. One of the future research goals will be to find a highly selective marker and carry out genome-wide next generation sequencing in order to see the marker’s effects. Therefore, using a specific fluorescent marker-tagged gene as the tracking reporter will become a crucial tool in future research plans.

Enhancers play a multitude of critical roles in the regulation of promoter function and gene expression. However, it can also activate promoter activity from long distance in a position and orientation independent manner, and enhancers often regulate gene expression in a trans orientation. Thus, it is challenging to pinpoint the enhancer(s) for specific genes, especially in the post-genomic era. Traditional reporter assays and correlative functional analyses (e.g., chromatin immunoprecipitation and DNaseI hypersensitive assays) have been used to examine enhancer function32,33. Similarly, small scaled locus-focused screenings were also applied to explore the activities of distal and proximal regulatory elements for specific genes34. Recently, the pooled sgRNA-KO library strategy that targets non-coding regulatory elements in the HOX gene loci successfully identified a CTCF binding site located between HOXA7 and HOXA9 genes, as well as a HOTTIP lncRNA that is critical for controlling posterior HOXA chromatin domain organization, which drives ectopic HOXA gene expression in acute myeloid leukemia (AML)12. These studies demonstrated that the pooled sgRNA-KO library screening is also a powerful genetics approach to identify and evaluate biological function of non-coding elements in our genome in situ.

CTCF, as a chromatin insulator protein, plays an important role in genome organization by defining chromatin neighborhoods for specific gene expression patterns in specific cell type11,35. Alteration of topologically associated domain (TAD) structure changes the enhancer/promoter interactions, resulting in a diseased state5,11. CTCF is highly conserved in metazoan and is enriched at the TAD boundaries. However, it remains unclear whether and how CTCF contributes to maintain chromatin boundary structure and TAD formation. Although the pooled CTCF sgRNA-knockout library screening was focused on the four HOX loci, it proved to be a powerful method to identify and dissect CTCF boundaries, and define TAD domain as well as enhancer/promoter interaction and transcription within the TAD domain12. Additionally, this method can be efficiently applied to identify the lncRNA elements and transcription factors that mediate chromatin conformation and accessibility activity in HOX loci. We are also trying to explore the CRISPR/sgRNA library containing the genome-wide CTCF sites through next generation sequencing identification according to the CTCF ChIP-seq and ChIA-PET data in future research. Thus, this strategy can be extended to a whole chromosome or even the whole genome.

Supplementary Material

Video
Download video file (87MB, mp4)

ACKNOWLEDGMENTS:

The authors also thank Nicholas Cesari for editing the manuscript. The work was supported by grants from National Institute of Health (S.H., R01DK110108, R01CA204044).

Footnotes

DISCLOSURES:

We have no conflicts of interest related to this report.

REFERENCES:

  • 1.Dixon JR et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 485 (7398), 376–380, doi: 10.1038/nature11082 (2012). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Cuddapah S et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome research. 19 (1), 24–32 (2009). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Phillips JE, Corces VG CTCF: master weaver of the genome. Cell. 137 (7), 1194–1211, doi: 10.1016/j.cell.2009.06.001 (2009). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Tang Z et al. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell. 163 (7), 1611–1627, doi: 10.1016/j.cell.2015.11.024 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lupianez DG et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 161 (5), 1012–1025, doi: 10.1016/j.cell.2015.04.004 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Dowen JM et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell. 159 (2), 374–387, doi: 10.1016/j.cell.2014.09.030 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Phillips-Cremins JE et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell. 153 (6), 1281–1295, doi: 10.1016/j.cell.2013.04.053 (2013). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Narendra V, Bulajic M, Dekker J, Mazzoni EO, Reinberg D CTCF-mediated topological boundaries during development foster appropriate gene regulation. Genes & Development. 30 (24), 2657–2662, doi: 10.1101/gad.288324.116 (2016). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Narendra V et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science. 347 (6225), 1017–1021, doi: 10.1126/science.1262088 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Deng C et al. HoxBlinc RNA Recruits Set1/MLL Complexes to Activate Hox Gene Expression Patterns and Mesoderm Lineage Development. Cell Reports. 14 (1), 103–114, doi: 10.1016/j.celrep.2015.12.007 (2016). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Patel B et al. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia. 28 (2), 349–361, doi: 10.1038/leu.2013.158 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Luo H et al. CTCF boundary remodels chromatin domain and drives aberrant HOX gene transcription in acute myeloid leukemia. Blood. 132 (8), 837–848, doi: 10.1182/blood-2017-11-814319 (2018). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Dou DR et al. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nature Cell Biology. 18 (6), 595–606, doi: 10.1038/ncb3354 (2016). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Lawrence HJ et al. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood. 106 (12), 3988–3994, doi: 10.1182/blood-2005-05-2003 (2005). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Deng C et al. USF1 and hSET1A mediated epigenetic modifications regulate lineage differentiation and HoxB4 transcription. PLOS Genetics. 9 (6), e1003524, doi: 10.1371/journal.pgen.1003524 (2013). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Rawat VP, Humphries RK, Buske C Beyond Hox: the role of ParaHox genes in normal and malignant hematopoiesis. Blood. 120 (3), 519–527, doi: 10.1182/blood-2012-02-385898 (2012). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Alharbi RA, Pettengell R, Pandha HS, Morgan R The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia. 27 (5), 1000–1008, doi: 10.1038/leu.2012.356 (2013). [DOI] [PubMed] [Google Scholar]
  • 18.Rice KL, Licht JD HOX deregulation in acute myeloid leukemia. Journal of Clinical Investigation. 117 (4), 865–868, doi: 10.1172/JCI31861 (2007). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Bassett AR, Kong L, Liu JL A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells. Journal of Genetics and Genomics. 42 (6), 301–309, doi: 10.1016/j.jgg.2015.03.011 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Zhu S et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nature Biotechnology. 34 (12), 1279–1286, doi: 10.1038/nbt.3715 (2016). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kurata JS, Lin RJ MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs. RNA. 24 (7), 966–981, doi: 10.1261/rna.066282.118 (2018). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Collins CT, Hess JL Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene. 35 (9), 1090–1098, doi: 10.1038/onc.2015.174 (2016). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. The EMBO Journal. 20 (3), 350–361, doi: 10.1093/emboj/20.3.350 (2001). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology. 32 (3), 267–273, doi: 10.1038/nbt.2800 (2014). [DOI] [PubMed] [Google Scholar]
  • 25.Shalem O et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 343 (6166), 84–87, doi: 10.1126/science.1247005 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Wang T, Wei JJ, Sabatini DM, Lander ES Genetic screens in human cells using the CRISPR-Cas9 system. Science. 343 (6166), 80–84, doi: 10.1126/science.1246981 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Zhou J et al. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. The FEBS Journal. 281 (7), 1717–1725, doi: 10.1111/febs.12735 (2014). [DOI] [PubMed] [Google Scholar]
  • 28.Sanjana NE et al. High-resolution interrogation of functional elements in the noncoding genome. Science. 353 (6307), 1545–1549, doi: 10.1126/science.aaf7613 (2016). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Rajagopal N et al. High-throughput mapping of regulatory DNA. Nature Biotechnology. 34 (2), 167–174, doi: 10.1038/nbt.3468 (2016). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Korkmaz G et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nature Biotechnology. 34 (2), 192–198, doi: 10.1038/nbt.3450 (2016). [DOI] [PubMed] [Google Scholar]
  • 31.Rezaei N et al. FMS-Like Tyrosine Kinase 3 (FLT3) and Nucleophosmin 1 (NPM1) in Iranian Adult Acute Myeloid Leukemia Patients with Normal Karyotypes: Mutation Status and Clinical and Laboratory Characteristics. Turkish Journal of Haematology. 34 (4), 300–306, doi: 10.4274/tjh.2016.0489 (2017). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Yaragatti M, Basilico C, Dailey L Identification of active transcriptional regulatory modules by the functional assay of DNA from nucleosome-free regions. Genome Research. 18 (6), 930–938, doi: 10.1101/gr.073460.107 (2008). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Wilken MS et al. DNase I hypersensitivity analysis of the mouse brain and retina identifies region-specific regulatory elements. Epigenetics Chromatin. 8 8, doi: 10.1186/1756-8935-8-8 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Narlikar L, Ovcharenko I Identifying regulatory elements in eukaryotic genomes. Briefings in Functional Genomics and Proteomics. 8 (4), 215–230, doi: 10.1093/bfgp/elp014 (2009). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Hnisz D et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 351 (6280), 1454–1458, doi: 10.1126/science.aad9024 (2016). [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Video
Download video file (87MB, mp4)

RESOURCES