Skip to main content
UKPMC Funders Author Manuscripts logoLink to UKPMC Funders Author Manuscripts
. Author manuscript; available in PMC: 2021 Jun 4.
Published in final edited form as: Nature. 2020 Sep 16;589(7840):120–124. doi: 10.1038/s41586-020-2762-2

Prokaryotic viperins produce diverse antiviral molecules

Aude Bernheim 1, Adi Millman 1, Gal Ofir 1, Gilad Meitav 1, Carmel Avraham 1, Helena Shomar 2, Masha M Rosenberg 2, Nir Tal 2, Sarah Melamed 1, Gil Amitai 1, Rotem Sorek #
PMCID: PMC7610908  EMSID: EMS114626  PMID: 32937646

Abstract

Viperin is an interferon-induced cellular protein conserved in animals. It was shown to inhibit the replication of multiple viruses by producing a ribonucleotide called 3’-deoxy-3’4’-didehydro-CTP (ddhCTP), which acts as a chain terminator for the viral RNA polymerase. Here we show that the eukaryotic viperin has originated from a clade of bacterial and archaeal proteins that protect against phage infection. Prokaryotic viperins (pVips) produce a set of modified ribonucleotides that include ddhCTP, as well as ddhGTP and ddhUTP. We further provide evidence that pVips protect against T7 phage infection by inhibiting viral polymerase-dependent transcription, implying an anti-viral mechanism of action similar to the animal viperin. Our results unveil a potential repository of natural antiviral compounds produced by bacterial immune systems.


Viperin is an antiviral protein that becomes highly expressed in cells stimulated by interferons1. In humans, this protein has broad antiviral activity against DNA and RNA viruses that include the human cytomegalovirus, West Nile virus, dengue, hepatitis C, and HIV1,2. It was recently shown that viperin is an enzyme that catalyzes the conversion of CTP to 3ʹ-deoxy-3′,4ʹ-didehydro-CTP (ddhCTP) 3. This modified nucleotide lacks a hydroxyl group at the 3’ carbon of the ribose and hence, when the viral polymerase incorporates it into the nascent chain of the viral RNA, it acts as a chain terminator that does not allow further polymerization of the RNA chain3. In accordance, it was shown that ddhCTP directly inhibits the RNA-dependent replication of RNA viruses such as Zika in vivo.

It was previously noted that some bacteria and archaea encode genes that have significant sequence similarity to vertebrate viperins, although their role was unknown1315. We set out to examine whether prokaryotic homologs of the human viperin participate in defense against phages. To this end, we first performed a profile-based search for viperin homologs in a database of >38,000 bacterial and archaeal genomes. This search yielded 1,724 genes (1,112 non-redundant sequences) homologous to the human viperin, which were aggregated into 17 clusters based on sequence similarity (Methods) (Extended Data Table 1).

Viperin is a member of the radical S-adenosyl-methionine (SAM) family of enzymes, and shows both sequence and structural homology to other members of that family, particularly the housekeeping molybdenum cofactor biosynthesis enzyme MoaA13. To differentiate between viperin homologs with housekeeping properties and homologs that may participate in defense against phages, we took advantage of the fact that in prokaryotes, genes involved in antiviral activity tend to co-localize next to one another on the genome, forming “defense islands”12,16. Most clusters of viperin homologs did not show a tendency to co-localize with defense genes (Extended Data Table 1). However, in one of the clusters, 60% of the genes were found in the vicinity of CRISPR-Cas systems, restriction-modification systems (RM), and other bacterial defense genes (Figure 1a). Such a high propensity for co-localization with defense systems is a strong predictor that the genes in the cluster play a role in phage resistance7,12. We denoted the genes in the defensive cluster pVips (for prokaryotic viperin homologs). As pVips are relatively rare in prokaryotic genomes (164 genes in the cluster), we further performed an online homology search in additional genomes that were not included in our original database, retrieving 86 additional such genes and resulting in a total of 250 pVips (Extended Data Table 2).

Figure 1. pVips and the human viperin have antiviral activity in bacteria.

Figure 1

a. Representative instances of pVips and their genomic neighborhood. Homologs of the human viperin are in red, genes annotated as nucleotide kinase in brown, genes known to be involved in defense in yellow, and genes of mobile genetic elements in dark grey. RM, restriction-modification; TA, toxin-antitoxin; Gabija is a recently described defense system12. The name of the bacterial species, and the accession of the relevant genomic scaffold in the IMG database17 are indicated on the left. b. Plaque sizes of phage T7 infecting E. coli strains that express viperins. Bacteria expressing pVips, negative controls (GFP, MoaA), or the human viperin gene were grown on agar plates and phage lysate was dropped on top of them. Bar graph represents average of three replicates, with individual data points overlaid. Star represents statistically significant difference compared to negative control (GFP) (two tailed t-test, p-value<0.01). c. Growth curves of E. coli strains expressing viperins that were infected by phage T7. Light and dark grey are uninfected and infected controls (strain expressing GFP), respectively. Blue and red are uninfected and infected strains expressing viperins, respectively. The negative control (GFP uninfected, GFP infected) is the same in all four graphs. Curve corresponds to the mean of three biological replicates, each with an average of two technical replicates, and the shade corresponds to a confidence interval (CI) of 95%.

To check whether pVips can defend against phages, we selected 59 genes that span the space of the pVip sequence diversity (Extended Data Table 2) and cloned them in E. coli under the control of an inducible promoter. GFP, as well as the MoaA gene from E. coli, were similarly cloned as negative controls. We then challenged the pVip-expressing bacteria with an array of phages that span several major phage families (Myoviridae: P1; Siphoviridae: Lambda-vir, SECphi6, SECphi18, SECphi27; Podoviridae: T7; Leviviridae: MS2, Qbeta) (Figure 1b-c, Extended Data Figure 1).

About half of the tested pVips conferred clearly identifiable defense against phages. Most of these protected against T7 as evidenced by plaque assays (up to ten fold reduction in T7 plaque sizes; Figure 1b, Extended Data Figure 1a), and by a delay or absence of culture collapse in T7 infection assays in liquid culture (Figure 1c; Extended Data Figure 2a). pVips mutated in cysteine residues in the CxxxCxxC motif predicted to coordinate the iron-sulfur cluster lost the defensive capacity against T7, suggesting that the catalytic activity of pVips is necessary for defense (Extended Data Figure 2b). A subset of the pVips also protected against phages P1, lambda, SECphi6, and SECphi18, reducing the observed number of plaques by between 10 to 10,000 fold (Extended Data Figure 1). Remarkably, when the human viperin gene was cloned and expressed in E. coli under the same conditions, it protected against T7 in a manner similar to that observed for many pVips (Figure 1, Extended Data Figures 1-2).

The pVips we found are present in phylogenetically very distant organisms, suggesting an ancient evolutionary origin, rampant horizontal gene transfer, or both. We found pVips in 176 species overall, belonging to 14 bacterial and archaeal phyla that include Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria, Bacteriodetes, Euryarchaeota, and others (Extended Data Table 2). To better understand their diversity and phylogenetic distribution, we generated a phylogenetic tree of the viperin family, including pVips, eukaryotic viperins, and MoaA genes from bacteria and eukaryotes as an outgroup (Figure 2, Extended Data Table 3). We found that pVips are grouped into seven major clades that partially follow the phyletic grouping of the encoding microbes (Figure 2). Remarkably, all eukaryotic viperins form a monophyletic clade within the tree, with the closest common ancestor predicted to localize to pVip clade 2, which is mostly composed of pVips from archaeal species. The clear monophyletic organization of the eukaryotic viperin clade and its position within the pVips tree suggest that a single event in the ancient history of the eukaryotic lineage resulted in the acquisition of viperin from prokaryotes.

Figure 2. Phylogenetic tree of the viperin family.

Figure 2

Branches are colored according to major clades. Bootstrap values (derived from the ultrafast bootstrap function in the IQtree software19) are indicated for major nodes. The presence of a nucleotide kinase in the genomic vicinity of the pVip is shown by a brown rectangle in the surrounding ring (or a dark grey rectangle, in case the kinase is fused to the pVip gene). Triangles correspond to the type of ddh-nucleotide derivatives produced by a specific pVip, as measured by mass spectrometry analysis. The phylogenetic tree was generated using a set of 205 non-redundant pVip sequences.

In vertebrate genomes, the viperin gene is frequently encoded next to a cytidylate kinase gene that is co-expressed with the viperin during the interferon response3,18. This kinase phosphorylates CMP to CTP, thus generating the substrate for viperin activity3. We found that 47 of the 250 pVips (19%) were encoded next to a gene annotated as a nucleotide kinase in their genome of origin (Figure 1a, Figure 2), and that in some cases the kinase was fused to the pVip gene (Figure 2, Extended Data Table 2). This further strengthens the hypothesis that the pVip substrate is a tri-phosphorylated nucleotide. While some pVip-associated kinases were annotated as cytidylate kinases, as in vertebrates, others were annotated as thymidylate or other kinases14, suggesting that the substrates of some pVips might be tri-phosphorylated nucleotides other than CTP.

The animal viperin catalyzes the production of ddhCTP3. We therefore sought to examine whether pVips produce ddhCTP and/or other types of modified nucleotides. For this, we expressed pVips in E. coli and then extracted the fraction of small molecules from the cell lysates, presuming that the pVip-produced molecules would be present in this fraction. We analyzed these lysates with liquid chromatography followed by mass spectrometry (LC-MS) using an untargeted approach. As a positive control, we similarly analyzed cell lysates from cells expressing the human viperin protein. As expected, a compound conforming to the mass of ddhCTP was readily detected in lysates from cells expressing the human viperin, but not in negative control lysates derived from MoaA-expressing cells (Extended Data Figure 3, Extended Data Figure 4a). Additional compounds found in the human viperin sample matched the masses of ddh-cytidine (ddhC) and ddh-cytidine monophosphate (ddhCMP), possibly derived from natural decay of ddhCTP as reported to occur for CTP at neutral or acidic pH 20. Analysis of fragment ions using MS/MS provided further support that the identified masses are likely derivatives of ddhCTP, which was additionally confirmed by subjecting a synthesized ddhC standard to MS/MS analysis (Extended Data Figure 3a, Extended Data Figure 4a, Extended Data Figure 5). These results confirm that the human viperin actively produces ddhCTP when expressed in E. coli, explaining its observed anti-phage activity (Figure 1).

We then analyzed the small molecule fraction from lysates of cells expressing 27 pVips that were found to have anti-phage activity. Derivatives of ddhCTP (including ddhC, as verified by LC-MS with the synthesized ddhC chemical standard) were detected by LC-MS in the lysate of pVip50 (Figure 3a, Extended Data Figure 4), a protein derived from a methanogenic archaeon that is localized in clade 2 of the pVip tree, verifying that pVips are indeed functional homologs of the human viperin that produce similar anti-viral molecules. However, for most other pVips we could not detect ddhCTP or its derivatives in the cell lysates. We therefore searched for other masses that were markedly enriched in lysates of cells expressing pVips and absent from the negative control lysate. For ten of the pVips we found masses that conform with 3ʹ-deoxy-3′,4ʹ-didehydro-guanosine-triphosphate (ddhGTP) and 3ʹ-deoxy-3′,4ʹ-didehydro-guanosine-monophosphate (ddhGMP) (Figure 3, Extended Data Figure 4). In addition, for 15 pVips we found other molecules with masses matching 3ʹ-deoxy-3′,4ʹ-didehydro-uridine triphosphate (ddhUTP) and 3ʹ-deoxy-3′,4ʹ-didehydro-uridine monophosphate (ddhUMP) (Figure 3, Extended Data Figure 4). MS/MS analysis of fragment ions from the masses predicted as ddhGTP, ddhUTP and their monophosphorylated derivatives further supported that they most likely correspond to these molecules (Extended Data Figure 5).

Figure 3. pVips produce a variety of modified ribonucleotides.

Figure 3

a. Extracted ion chromatograms for selected pVip lysates analyzed via LC-MS. Presented are chromatograms of singly charged masses with a precision +/- 5 ppm corresponding to ddhC (m/z 226.08223, retention time (RT) of 2.2 minutes), ddhCMP (m/z 306.04856, RT 9.7), ddhCTP (m/z 465.98122, RT 10.7), ddhUMP (m/z 307.03258, RT 8.7), ddhUTP (m/z 466.96524, RT 9.9), ddhGMP (m/z 346.05471, RT 9.8), and ddhGTP (m/z 505.98737, RT 10.7). X-axis depicts RT in minutes, y-axis depicts normalized ion intensity (A.U, arbitrary units). Normalization was performed on all pVips and MoaA (negative control) samples, with maximal values set to 1.0. In black, peak assigned to ddh nucleotides. In grey, peaks that appear in the negative controls and are not assigned to ddh nucleotides. Representative of three replicates. b. Production of ddh-nucleotide derivatives by pVips. Colored boxes depict detected compounds. Colored rectangles on the left and associated numbers represent the clade of pVips as described in Figure 2. c. Chromatograms of ddh-nucleotides detected in reaction samples performed in vitro with purified pVips. The presence of a product corresponding to ddhCTP, ddhUTP, and ddhGTP is observed in samples where a pVip was incubated with SAM, dithionite, and the respective nucleotide substrate.

To confirm that pVips convert the nucleotide substrates CTP, GTP, and UTP to their 3ʹ-deoxy-3′,4ʹ-didehydro-variants, we performed in vitro biochemical assays with purified pVip enzymes. Three isolated recombinant pVips, pVip6, pVip8 and pVip56 - which were predicted to generate ddhCTP, ddhUTP and ddhGTP, respectively (Figure 3c) - were incubated with the SAM cofactor and a nucleotide substrate, in the presence of an artificial electron donor (dithionite). LC-MS analysis confirmed the appearance of the expected ddh-ribonucleotide products in the reaction samples, as compared to control reactions without nucleotide substrate (Figure 3c). Detailed analysis of the MS-MS fragmentation spectra of each compound further supported that these products correspond to ddh-ribonucleotides (Extended Data Figure 6). Together, these results suggest that pVips produce new types of anti-viral ribonucleotides which, to the best of our knowledge, were not observed before in nature.

For most pVips, predicted derivatives of a single modified nucleotide were observed in the lysate (either ddhCTP, ddhGTP or ddhUTP). However, eleven pVips were found to produce derivatives of multiple ddh-ribonucleotides. For example, in lysates derived from pVip46-expressing cells we found both ddhCTP and ddhUTP, and in lysates from pVip58 cells we detected ddhCTP, ddhUTP, ddhGTP and their derivatives (Figure 3). These results suggest that throughout evolution, some pVips may have become more promiscuous and can modify more than one ribonucleotide to its ddh antiviral form. Such pVips may have an advantage when encountering phages that can overcome one of these anti-viral molecules but not the other two.

For five of the tested pVips we did not detect any ddh nucleotide or its derivatives in the cell lysates, despite an anti-viral activity conferred by these pVips (Extended Data Figure 1, Figure 3). It is possible that these pVips produce a different antiviral molecule that could not be detected via our LC-MS protocol or, alternatively, that these pVips evolved to confer defense by another mechanism of action that does not involve the production of anti-viral molecules.

The identity of the molecules produced by the different pVips is largely consistent with their phylogenetic relatedness. All pVips from clades 4-7 seem to produce ddhUTP, with some of these also producing additional ddh-ribonucleotides. In clades 1 and 2, the latter of which resides on the same super-clade as the eukaryotic viperins, we found pVips that produce ddhCTP. Clade 3 includes pVips that appear to generate mostly ddhGTP but sometime ddhUTP (Figure 2, Figure 3).

While the human viperin and pVips produce ddh-ribonucleotides, we found that they protected against phages that have double-stranded DNA genomes (for example T7; Figure 1). We therefore hypothesized that in these cases, the products of pVips affect phage-dependent transcription rather than DNA replication. In support of this hypothesis, it was previously shown that in mammalian cells, T7 RNA polymerase-dependent transcription of GFP was impaired if the human viperin was co-expressed in the same cells21. We thus sought to examine whether T7 polymerase-dependent RNA synthesis is affected by pVips. For this we used a plasmid that encodes a GFP reporter gene under the control of a T7 promoter, and introduced it to E. coli BL21-DE3, a strain that encodes an inducible T7 RNA polymerase (Figure 4a). As expected, induction of the T7 RNA polymerase using IPTG led to accumulation of a fluorescent GFP signal (Figure 4b). But when pVips or the human viperin were co-expressed in the same cells, the GFP signal was fully repressed (Figure 4b). Repression of T7 RNA polymerase-mediated GFP expression was observed upon expression of pVips producing ddhGTP (pVip60), ddhUTP+ddhCTP (pVip8, pVip9), or ddhCTP (the human viperin) suggesting that the T7 RNA polymerase is sensitive to multiple types of modified ribonucleotides.

Figure 4. pVips inhibit T7 polymerase-dependent transcription.

Figure 4

a. Schematic representation of the reporter system for T7 polymerase-dependent transcription. E. coli BL21-DE3 encodes a chromosomal T7 RNA polymerase (T7 RNAP) under the control of an IPTG-inducible promoter. A reporter plasmid encodes GFP under the control of a T7 promoter. Upon IPTG induction, the T7 RNA polymerase is expressed and drives the expression of GFP. The pVip (or MoaA control) is encoded on a second plasmid under the control of an arabinose promoter. b-f. Application of the reporter assay for strains expressing MoaA (negative control), the human viperin, and pVips. Strains are first induced with arabinose for 45 minutes to express the pVip. At t=0, IPTG is added to express the GFP. Fluorescence/OD over time curves are presented for each strain. Grey lines correspond to no induction (no arabinose, no IPTG), green to IPTG only (GFP expressed, viperin not expressed), and red to induction with both IPTG and arabinose. Curve corresponds to the mean of two technical replicates and the shade to a confidence interval (CI) of 95%. Representative of two biological replicates. b. Strain expressing MoaA (negative control). c. Strain expressing the human viperin. c-f. Strains expressing prokaryotic viperins. g. GFP expression as measured by RNA-seq. GFP expression (RPKM) in cells expressing viperins was compared to that in cells expressing the MoaA negative control. Bar graph represents average of two replicates, with individual data points overlaid.

Notably, when the above experiment were conducted with pVips mutated to inactivate their active sites, no repression of GFP expression was observed, implying that the catalytic activity of pVips and the production of the ddh ribonucleotide products is required for expression inhibition (Extended Data Figure 7a).

To more directly confirm that the impact of pVips on T7 polymerase-dependent GFP expression was caused by reduced RNA synthesis, we examined GFP RNA levels using RNA-seq. RNA was extracted one hour after T7-mediated induction of GFP expression in cells that co-express pVips or the human viperin. We observed significant reduction in GFP RNA expression (as measured by RPKM, see Methods) when the pVips or the human viperin were expressed in the cell, as compared to control cells that expressed MoaA instead (Figure 4c). The expression levels of genes driven by induced endogenous promoters (specifically, the T7 RNA polymerase gene itself, Extended Data Figure 7b) did not show marked changes during pVip expression, further supporting that pVips specifically target transcription by the phage polymerase. Taken together, these results suggest that pVips can defend against phage T7 via suppression of transcription by the viral RNA polymerase, presumably because their products form RNA chain terminators. Notably, expression of pVips does not appear to be toxic to E. coli (Extended Data Figure 8), implying that the bacterial RNA polymerase may be less sensitive to ddh-ribonucleotides as compared to the T7 RNA polymerase. It was similarly shown that ddhCTP produced by the human viperin is not toxic to human cells3.

Bacterial anti-phage defense mechanisms are frequently encoded as multi-gene defense systems, with some genes in the system responsible for identifying the invading phage and others function in mitigating the infection7,22,23. When examining the genomic context of pVips, we identified that most appear to be part of a conserved cassette of genes (Extended Data Figure 9). The most common configuration included, in addition to pVip, two other genes: a gene comprising an ankyrin repeats domain, and a gene encoding a predicted HicA-like RNase (Extended Data Figure 9). Ankyrin repeats domains are common biological recognition motifs involved in protein-protein interactions, and it is possible that the ankyrin repeats domain may serve as a sensor for phage infection. Under this hypothesis, following phage sensing, the ankyrin domain protein would activate expression of the pVip in a manner conceptually similar to interferon-mediated activation of human viperin expression. The associated RNase may be responsible for degradation of prematurely terminated phage RNAs, or for some other auxiliary function. As the pVip gene family we discovered is largely present in non-model organisms for which phages have not been isolated, it is not trivial to study them in their natural defensive settings.

Our data suggest that pVips protect against T7 infection by inhibiting transcription from the viral RNA polymerase. It is therefore puzzling that some pVips protect against phages lambda and P1, which do not encode their own RNA polymerase and rely on the host polymerase for their transcription24. One possible explanation is that phage lambda transcribes its genome in very long operons that can reach 22kb of a continuous RNA molecule25. Even if the host polymerase incorporates the ddh-nucleotide at a very low frequency, the chances to incorporate such a nucleotide in a very long polycistron are high and would affect phage transcription much more profoundly than host transcription. A second possible explanation may be that some proteins in phage lambda alter the properties of the host RNA polymerase to favor viral transcription25, and that the altered polymerase may be more sensitive to the pVip-produced chain terminators. It was previously shown that a small change of one amino acid in a viral polymerase can dramatically affect its sensitivity to a synthetic chain terminator26. Finally, it is also possible that pVips inhibit phage lambda in a manner that is independent from the production of ddh-nucleotides.

While phylogenetically widespread, we found pVips in less than 1% of all genomes that we analyzed. It is possible that pVips are much more abundant in nature, but due to the ongoing arms race with the infecting viruses the sequences of other pVip families have diverged and are no longer alignable to the vertebrate viperin. This hypothesis predicts that additional pVips may be identified in the future, and perhaps these pVips would catalyze the production of new types of antiviral molecules in addition to ddhCTP, ddhGTP, and ddhUTP.

It was recently shown that small molecules of the anthracycline family, produced by species of Streptomyces, have natural anti-phage properties and efficiently inhibit phage replication, presumably through intercalation into phage DNA27. Our discovery of pVips reveals another strategy of chemical defense against phages and implies that fighting phages with small molecules may be a more common antiviral strategy than originally anticipated. We hypothesize that future mechanistic studies of bacterial defense systems may reveal additional genes involved in the synthesis of small-molecule antivirals that protect against infection.

Many of the most potent antiviral drugs used in the clinic are synthetic nucleoside chain terminators. These include aciclovir, a commonly used drug against herpes viruses28; azidothymidine (AZT), an anti-HIV drug used clinically since the 1980s28; and sofosbuvir, which in recent years is being used as part of a highly successful treatment for hepatitis C29. It is possible that the new chain terminators that we have discovered could be adopted for clinical treatment of human viruses. Moreover, if it turns out that pVips are just one example of a widely used chemical defense strategy in bacteria, bacteria may prove to host a potent repository of anti-viral molecules that could be harvested and adopted for clinical use. If this would be the case, then environmental bacteria, after being used for many year as a repository for the discovery of novel antibiotics, may once again serve mankind in its battle against pathogens.

Methods

A search for viperin homologs in prokaryotic genomes

The human viperin protein sequence (NCBI accession NP_542388.2) was searched against the protein sequences of all genes in 38,167 bacterial and archaeal genomes downloaded from the Integrated Microbial Genomes (IMG) database17 in October 2017, using the ‘search’ option in the MMseqs2 package30 (release 6-f5a1c) with default parameters (3 iterations), as previously described7. Hits with an e-value higher than 10-5 were discarded. The resulting set of proteins was clustered using the ‘cluster’ option of MMseqs2 release v6-f5a1c, with sensitivity parameter of ‘-s 7.5’, coverage parameter 60% and the remaining parameters being the default parameters (Extended Data Table 1). For each cluster, the fraction of genes associated with known defense genes was computed as previously described7. Additional candidate prokaryotic viperin homologs (pVips) were searched manually using the “top IMG homologs” function in IMG for the identified genes in the cluster of pVips.

To generate the phylogentic tree, the protein sequence of prokaryotic viperins, eukaryotic viperins and MoaA sequences were aligned using mafft31 (version v7.402, default parameters). The sequences of the eukaryotic viperins and MoaA proteins used in the tree are provided in Extended Data Table 3. The tree was computed with IQ-TREE19 multicore version v.1.6.5 (option –m TESTNEW in IQ-TREE). The phylogenetic model LG+R6 was ultimately used because it gave the lowest Bayesian Information Criterion (BIC) among all models available for the tree. 1000 ultra-fast bootstraps were performed in order to evaluate node support (options –bb 1000 –wbtl in IQ-TREE). The online tool iTOL32 was used for tree visualization.

Eukaryotic viperins sequences used in the phylogenetic tree were chosen as follows. A homology based-search was performed on the non-redundant eukaryotic proteins database of NCBI using HMMER 3.2.133 in the MPI bioinformatics toolkit34 with 205 non redundant pVips as a seed. This search yielded 4915 hits that were used to build an initial phylogenetic tree. The sequences of pVips, MoaA and these hits were aligned using mafft31 (version v7.402, default parameters). The tree was computed with IQ-TREE19 multicore version v.1.6.5 (option –m TESTNEW in IQ-TREE). On this tree, all the pVips were found in a monophyletic clade that also comprised 1298 eukaryotic sequences (Extended Data Figure 10). These 1298 eukaryotic protein sequences were then used to build a second phylogenetic tree. Sequences of these 1298 eukaryotic proteins, pVips and MoaA were aligned using mafft31 (version v7.402, default parameters). The tree was computed with IQ-TREE19 multicore version v.1.6.5 (option –m TESTNEW in IQ-TREE). All the eukaryotic viperin sequences represented a monophyletic clade that is internal to the pVips clades. Representative eukaryotic sequences for the tree in Figure 2 were then chosen to span the diversity of the eukaryotic viperin homologs, including sequences from mammals (human, dog, bat), lower animals such as mollusca, as well as fungi (Extended Data Figure 10).

Bacterial strains and growth conditions

Escherichia coli strains (MG1655, Keio ΔiscR35, Keio ΔiscR-F+, DH5α, BL21-DE3, BL21-ΔiscR) were grown in LB or LB agar at 37 °C unless mentioned otherwise. Whenever applicable, media were supplemented with ampicillin (100 μgml−1), kanamycin (50 μgml−1), chloramphenicol (30 μgmL−1), or tetracycline (10 μgmL−1) to ensure the maintenance of plasmids.

Plasmids and strain construction

Primers used in this study are shown in Extended Data Table 4. pVip genes were codon optimized for expression in E. coli and synthetized by Twist Bioscience (pVips 1-14) or by Genscript (pVips 15-63, MoaA control, human viperin). Synthetized pVip sequences are indicated in Extended Data Table 2. Each candidate sequence was cloned in plasmid pBad/His A (Thermofisher, Catalog number 43001). For pVips 1-14, flanking sequences were added to the synthesis for cloning purposes (before each gene “GGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTGGGCTAACAGGAGGAATTAACC”, after each gene “TAAGAATTCCCAGGCATCAAATAAAACGAAAGGCTCAGT CGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCAGCTGGTACCATATGG”) the vector fragment was generated by PCR (template pBad/His A, primer AB1, AB2) and for each pVip, overhang sequences (matching primers AB3, AB4) overlapping the plasmid backbone were added to allow Gibson assembly. pVips 1-14 were amplified by PCR (using the template of synthetized DNA, primers AB3, AB4), and PCR fragments of pVip and plasmid backbone were joined using Gibson assembly. For pVips 15-63 and the MoaA, DNA synthesis and cloning into pBad/His A was performed by Genscript Corp. The codon-optimized protein-coding sequence of the human viperin was synthesized and cloned into pBad/His A by Genscript Corp. The sequence was then modified by PCR and Gibson assembly to remove the endoplasmic reticulum (ER)-targeting sequence of the human viperin protein (residues 1-50, primers AB86, AB87, AB88, AB89). All experiments involving the human viperin were performed with this shortened version.

All of the pVip plasmids were initially cloned and propagated in DH5α, and then purified and transformed into the Keio ΔiscR35 strain. Because pVips are iron-sulfur cluster proteins, they necessitate active production of iron-sulfur clusters for their enzymatic activity3. We therefore conducted the experiments in E. coli strains deleted for iscR, a repressor of iron-sulfur cluster production in E. coli 36,37. For experiments involving phages Qbeta and MS2, the F plasmid is necessary for infection. Thus, the Keio ΔiscR F+ strain was constructed through conjugation of strain Keio ΔiscR and strain top10 F+ and then later used as the relevant genetic background.

For protein purification, codon-optimized pVip genes were amplified by PCR (Extended Data Table 4) and cloned into the aTc-inducible expression vector pASG-IBA143 (IBA Lifesciences, pIBA143_vector_F, pIBA143_vector_R), for fusion of a Twin-Strep-tag to the C terminus of the pVips (pIBA143_VipX_F, pIBA143_VipX_R). To construct the suf operon expression vector “pSuf”, the complete suf operon (sufABCDSE) was amplified from E. coli MG1655 genomic DNA, and was cloned into the pACYC-184 (NEB) backbone (Suf_operon F, Suf_operon R) together with the arabinose expression system from pBad/His A vector (Thermofisher, Catalog number 43001). Tagged pVip8 and pVip56 were transformed in BL21 ΔiscR and tagged pVip6 was transformed in BL21 pSuf.

For experiments involving the GFP reporter assay, strains were constructed as follows. BL21-DE3 was knocked out for the iscR gene through P1 transduction, with P1-ΔiscR phages propagated from strain Keio ΔiscR35 followed by kanamycin selection. The final reporter plasmid, pAB151, was constructed to encode: a. GFP under the control of T7 promoter; b. a gene cassette encoding the T7 lysozyme to limit the activity of T7 RNA polymerase; c. an insulator sequence between the chloramphenicol resistance gene and the GFP gene. pAB151 was constructed through three consecutive Gibson assemblies, each of which used two PCR fragments as described below. The first reaction used insert template pDR111 (provided by I. Kolodkin-Gal) with primers OG630, OG631, and vector template pACYC (obtained from Novagene), primers OG629, OG628, to generate plasmid pAB137. The second Gibson reaction used insert template pLysS (obtained from Novagene) with primers AB55, AB56, and vector template pAB137 with primers AB53, AB54, to generate pAB138. The third reaction used insert template pSG1 from ref 12 with primers AB121, AB122, and vector template pAB138 with primers AB119, AB1120, to generate pAB151 (Extended Data Table 4).

For the design of the inactive mutants of human viperin, pVip8, pVip9 and pVip60, the conserved closely spaced cysteine residues in the CxxxCxxC motif, which coordinate the iron-sulfur cluster 38, were mutated (Human viperin C32A, C36A, C39A ; pVip8: C22A, C26A, C29A ; pVip9: C17A, C21A, C24A ; pVip60: C192A, C196A, C199A). Mutants were built using Q5 Site directed Mutagenesis kit (NEB) using primers presented in Extended Data Table 4 (AB156-AB163).

Plaque assays

Phages were propagated on E. coli MG1655 using the plate lysate method as described in ref 39. Lysate titer was determined using the small drop plaque assay method as described in ref 40. Phages used in this study are presented in Extended Data Table 5.

Plaque assays were performed as previously described 40. Bacteria from overnight cultures were mixed with MMB agar (LB + 0.1 mM MnCl2 + 5 mM MgCl2 + 0.5% agar) supplemented with arabinose (final concentration 0.004%) for induction of pVip expression. Serial dilutions of phage lysate in MMB were dropped on top of the agar plates. After the drops dried up, plates were incubated at 37°C overnight.

Infection dynamics in liquid medium

Overnight cultures were diluted 1:100 in MMB medium and incubated at 37 °C while shaking at 250 r.p.m. for 45 minutes, at which point arabinose was added to a final concentration of 0.2%. Cells were then incubated at 37 °C while shaking at 250 r.p.m. for 45 minutes. 180ul of the diluted cultures were transferred into wells in a 96-well plate containing 20 μl of phage lysate for a final MOI of 0.001. Infections were performed with technical duplicates and OD600 was followed using a TECAN Infinite 200 plate reader with measurement every 5 min.

CFU counts were measured using the same experimental setup and time points as above. 10 ul of cells were taken right after dilution (time 0), before induction (45min), and 45 and 90 minutes after induction of pVip expression, serially diluted and plated on selective agar plates. CFU were counted after overnight incubation at 37 °C.

Cell lysates preparation

Overnight cultures of Keio ΔiscR encoding pVips, the human viperin, MoaA and GFP negative controls were diluted 1:100 in 100 ml LB medium and grown at 37 °C (250 r.p.m.) for 1 hour and 45 minutes. The expression of viperin or MoaA was induced by the addition of arabinose (final concentration 0.2%) and cells were further incubated at 37 °C (250 r.p.m.) for one hour. Cells were then centrifuged at 3,900 r.p.m. for 10 min at 4 °C and samples kept on ice throughout the cell lysate preparation. Pellets were resuspended in 600 μl PBS buffer containing 100 mM sodium phosphate (pH 7.4). The resuspended pellet was supplemented with 1 μl of hen-lysozyme (Merck) (final hen-lysozyme concentration of 10 μg/ml). The resuspended cells were then mixed with Lysing matrix B (MP) beads and cells were disrupted mechanically using a FastPrep-24 bead-beater device (MP) (2 cycles of 40 s, 6 m s−1, at 4 °C). Cell lysates were then centrifuged at 12,000g for 10 min at 4 °C and the supernatant was loaded onto a 3-kDa filter Amicon Ultra-0.5 centrifugal filter unit (Merck) and centrifuged at 14,000g for 30 min at 4 °C. The resulting flow-through, containing substances smaller than 3 kDa, was used as the lysate sample for evaluating the presence of ddh nucleotides by LC-MS.

Detection of ddh-nucleotides in cell lysates

Sample analysis was carried out by MS-Omics (Vedbæk, Denmark) as follows. Samples where diluted 1:1 in 10 % ultra-pure water and 90% acetonitrile containing 10 mM ammonium acetate at pH 9 then filtered through a Costar® Spin-X® centrifuge tube filter 0.22 μm nylon membrane. The analysis was carried out using a UHPLC system (Vanquish, Thermo Fisher Scientific, US) coupled with a high-resolution quadrupole-orbitrap mass spectrometer (Q Exactive™ HF Hybrid Quadrupole-Orbitrap, Thermo Fisher Scientific, US) at a resolution of 120,000 (at 200 m/z). An electrospray ionization interface was used as ionization source. Analysis was performed in positive ionization mode from 200 to 1000 m/z at a scan rate of 3 Hz. The UPLC was performed using a slightly modified version of the protocol described in ref 41. Peak areas were extracted using Compound Discoverer 3.1 (Thermo Fisher Scientific, US).

MS/MS of ddh-nucleotides was acquired using the same instrument with an inclusion list of the different ddh-nucleotide and ddh-nucleoside masses at a resolution of 30,000. Fragmentation was done through a higher-energy collisional dissociation cell using a normalized collision energy of 20, 40 and 60 eV where the spectrum is the sum of each collision energy. Intensity threshold was set to 2*10^4, isolation window of 0.4 m/z and injection time of 100 ms. Analysis of ddhCTP and ddhGTP derivatives was performed in positive ionization mode, and for ddhUTP derivatives in negative ionization mode.

Raw data files were processed by Compound Discoverer™ 3.0 software. Unknown compounds were detected with a 3 ppm mass tolerance, signal to noise ratio of 3, 30% of relative intensity tolerance for isotope search, and minimum peak intensity of 5*105. The compounds were grouped with a 5 ppm mass and 0.2 min retention time tolerances. Blank samples were used to remove background noise, and annotated peaks that were 5 times higher than the blanks were kept. Metabolites identified were searched against ChemSpider™ chemical structure database with 3 ppm mass tolerance, mzCloud spectral library with a precursor and fragment mass tolerance of 3 and 5 ppm respectively, and an internal MSMS library through mzVault with the same tolerance as mzCloud. Two data sources were searched in the ChemSpider database: Human Metabolome Database (HMDB) and E. coli Metabolome Database (ECMDB).

The raw data files for the MS and MS/MS data in this section, as well as additional technical details, are available for download on the Metabolights repository under study number MTBLS1750.

Quantification of 3’-deoxy-3’,4’-didehydro cytidine (ddhC)

The 3’-deoxy-3’,4’-didehydro cytidine molecule was synthesized by Jena Bioscience (Jena, Germany) at purity of 97.5% and was used as a standard for ddhC quantification in cell lysates using LC-MS. Sample analysis was carried out by MS-Omics (Vedbæk, Denmark) as follows. Samples were diluted 1:1 in 10 mM ammonium formate and 0.1% formic acid in ultra-pure water. The analysis was carried out using the LC-MS setup described above. An electrospray ionization interface was used as ionization source performed in positive ionization mode. The UHPLC method is based on Waters Application note 2011, 720004042en (Waters Corporation, Milford, US). Peak areas of 3’-deoxy-3’,4’-didehydrocytidine (ddhC) were extracted using Trace Finder™ Version 4.1 (Thermo Fisher Scientific, US) and quantified using an external calibration with the standard.

pVips purification and in vitro enzymatic assays

Overnight cultures of BL21-ΔiscR (pVip8 and pVip56) or BL21 pSuf (pVip6) cells freshly transformed with plasmids encoding the tagged pVip, were seeded at an initial OD600 of ~0.06 in 1-2 L of selective LB medium. pSuf expression was induced at OD600 0.2-0.3 (0.2% arabinose, 100 μM FeCl3, 100 μM L-cysteine). pVip expression was induced at OD600 0.6–0.8 (50 ng/mL aTc) and incubated at 37 °C with shaking for 3-4h. Pellets were then harvested by centrifugation and stored at -20 °C.

Frozen cell pellets were resuspended in cold lysis buffer [50 mM Tris·HCl, 500 mM NaCl, 5 mM dithiothreitol (DTT), 0.5 M arginine, and 20% glycerol], and sonicated with a Branson Sonifier (15 sec ON, 45 sec OFF, 10 min total ON, 30% amplitude) on ice. Lysates were subjected to centrifugation for 30 min at 17,000 g and 4 °C. The lysate was loaded onto a StrepTactin Superflow High Capacity (IBA Lifesciences) column, previously equilibrated with 20 column volumes of Buffer W (100 mM Tris-HCl pH 8, 300 mM NaCl, 5 mM DTT, 10% glycerol). The column was washed twice with 10 column volumes of Buffer W and eluted with buffer E (50 mM Tris-HCl pH 8, 300 mM NaCl, 5 mM DTT, 2.5 mM desthiobiotin, 20% glycerol). The presence of the pVip proteins in the resulting fractions was confirmed by SDS-PAGE. Purified proteins were frozen in liquid nitrogen and stored at – 80 °C.

Protein reconstitution

Purified protein solutions were thawed on ice and introduced into in an MBraun anaerobic chamber maintained at <0.1 ppm oxygen. All subsequent steps were performed in anaerobic conditions at 12 °C. Purified pVips were incubated for 1 hour with 50 mM DTT with gentle shaking. Protein solutions were supplemented with 8-fold molar excess Fe(NH4)2(SO4)2, incubated for 15 min with gentle shaking, followed by the addition 8-fold molar excess of Na2S droplet by droplet. After incubation for 3-4h to overnight with slow shaking, the reconstituted pVips were transferred to the Reaction Buffer (50 mM HEPES pH 7.5, 150 mM KCl, 5 mM DTT, 20% Glycerol) using PD-10 desalting columns (GE Healthcare) and concentrated using an Amicon Ultra centrifugal 10 kDa filter to a final protein concentration of 20-50 μM. Proteins were then flash-frozen with liquid nitrogen and stored at – 80 °C.

In vitro enzymatic assays

For pVip6 and pVip8, reactions were performed in a total volume of 100 μL containing: 20-50 μM reconstituted enzyme in Reaction Buffer, 2 mM S-Adenosyl methionine (SAM), 1 mM of nucleotide substrate, and 5 mM sodium dithionite. Reactions were carried out inside the anaerobic chamber maintained at <0.1 ppm oxygen. A 10 μL aliquot was removed from the reaction mixture (sample before reaction). Reactions were then initiated with sodium dithionite and incubated at 37 °C for 1-2 h. After incubation, samples were taken out of the anaerobic chamber and stored at -80 °C until analysis.

For pVip56, to obtain sufficient amounts of ddhGTP for MS/MS analysis, an enzymatic reaction in a total volume of 1ml was performed, containing 113 mM pVip56, 2mM SAM, 2mM GTP and 5mM dithionite in Reaction Buffer. Reactions were carried out in anaerobic conditions as previously described and incubated at 37 °C for 3 hours. To remove the protein, 10K centrifugal filters were used. The flow through was diluted 2-fold into cold 10 mM ammonium bicarbonate buffer pH 9.0 (buffer A), then loaded onto Capto™ HiRes Q 5/50 (GE Healthcare) pre-equilibrated with buffer A. The column was washed with 25 mL of buffer A and elution was performed using linear elution gradient (100 mL) of 200 mM to 800 mM ammonium bicarbonate, pH 9. The purified product was lyophilized and resuspended in water prior to LC-MS analysis.

LC-MS analysis of in vitro assays

LC-MS measurements were performed with a Thermo Scientific Q Exactive Orbitrap mass spectrometry system equipped with a Dionex Ultimate 3000 UHPLC system. The software Thermo Xcalibur was used for instrument control and data processing. Prior analysis, 10 μL of sample from enzymatic assays were mixed with 40 μL of acetonitrile:methanol organic mixture (5:3 v/v ratio). The mixtures were vortexed, centrifuged at 17,000g for 2 min and 3 μL of supernatant were injected onto an SeQuant® ZIC®-pHILIC 5μm polymeric 100 x 2.1 mm HPLC column. The mobile phase was composed of 20 mM ammonium carbonate pH 9.5 (solvent A) and 100% acetonitrile (solvent B). Samples were separated using a constant flow rate of 0.2 mL/min: 80% solvent B was held for 2 min, followed by a gradient from 80% to 20% of solvent B for 15 min, before immediately returning to 80% solvent B for equilibration for 9 min. Data analysis was performed using the Thermo Scientific FreeStyle software.

T7 dependent GFP expression assay

Overnight cultures of BL21-DE3 ΔiscR cells containing pAB151 and pVip-encoding plasmids (or plasmids encoding MoaA or the human viperin) were diluted 1:100 in LB medium and incubated in a 96-well plate format at 37 °C with shaking of 250 r.p.m. until OD600 reached 0.1. Arabinose was then added to a final concentration of 0.2%. After 45 minutes of incubation at 37 °C, 250 r.p.m., the expression of T7 RNA polymerase was induced by the addition of IPTG to a final concentration of 0.1 mM. Fluorescence levels (wavelength excitation 488nm, emission 520nm) and cell density (OD600) were monitored using TECAN Infinite 200 plate reader with measurement every 15 min.

Quantification of GFP transcripts using RNA-seq

BL21-DE3 ΔiscR cells containing pAB151 and pVip-encoding plasmids (or plasmids encoding MoaA or the human viperin) were diluted 1:100 in 5 ml LB medium supplemented with antibiotics (chloramphenicol, kanamycin and ampicillin). These cells were grown at 37 °C with shaking of 250 r.p.m. to OD600 of 0.3 and expression of the viperin (or MoaA) protein was induced by the addition of arabinose (final concentration 0.2%). After 45 minutes of incubation at 37 °C, 250 r.p.m., the expression of T7 RNA polymerase was induced by the addition of IPTG to a final concentration of 0.1 mM. After one hour, samples were centrifuged for 10 minutes at 4000 r.p.m in 4 °C. The supernatant was discarded, and pellets were used for RNA extraction. Bacterial pellets were lysed using TRIzol and phenol-chloroform. Bacterial pellets were treated with 100ul of 2mg/ml lysozyme (in Tris 10mM EDTA 1mM pH 8.0) and incubated at 37 °C for 5 minutes. 1ml of TRI-reagent was added, samples were then vortexed for 10 seconds before addition of 200μl chloroform. Following another vortexing step, the samples were left at room temperature for 5 minutes to allow phase separation and then centrifuged at 12000g, 4 °C for 15 minutes. The upper phase was added to 500μl of isopropanol. Samples were then incubated overnight at -20 °C. Finally, following 30 minutes centrifugation at 12000g at 4 °C, samples were washed twice with ice cold 70% ethanol, and resuspended in 50μl water. RNA levels were measured using Nanodrop. All RNA samples were treated with TURBO™ DNase (Life technologies, AM2238). Ribosomal RNA depletion and RNA-seq libraries were prepared as described in ref42, except that all reaction volumes were reduced by a factor of 4.

RNA-seq libraries were sequenced using Illumina NextSeq platform, Reads were mapped as described in ref42 to the reference genome of E. coli BL21 DE3 (NC_012892) as well as the plasmids present in the relevant strain (pAB151 and plasmids encoding pVip/MoaA/human viperin). RNA-seq-mapped reads were used to generate reads-per-gene and RPKM counts.

Extended Data

Extended Data Figure 1. pVips protect against phage infection.

Extended Data Figure 1

Bacteria expressing pVips, GFP or MoaA (negative controls), or the human viperin gene were grown on agar plates and tenfold serial dilutions of the phage lysate were dropped on the plates. a - h. Efficiency of plating (EOP) data, representing plaque-forming units per millilitre; each bar graph represents average of three replicates, with individual data points overlaid.

Extended Data Figure 2. T7 infection in liquid culture in the presence of pVips.

Extended Data Figure 2

a. For each pVip, growth curves of liquid cultures infected by phage T7 (MOI 0.001) are shown. Light and dark grey are uninfected and infected controls (strain expressing GFP), respectively. Light and dark red are uninfected and infected strains expressing pVips, respectively. Two technical replicates are presented as individual curves; representative of three biological replicates. The negative controls (GFP uninfected, GFP infected) are the same for pVips 6, 7, 8, 10, 15, 27, 37, 39, 42, 50, 54, MoaA, and for pVip12, 19, 32, 44, 46, 47, 48, 57, 58, 60, 61, 62, 63. b. The catalytic activity of pVips is required for defense against T7 phage. For each pVip and its respective mutant (mutation of three cysteines in the active site), growth curves of liquid cultures infected by phage T7 (MOI 0.001) are presented. Light and dark grey are uninfected and infected controls (strain expressing MoaA), respectively. Light and dark red are uninfected and infected strains expressing viperins, respectively. Light and dark blue are uninfected and infected strains expressing catalytically inactive mutants. Two technical replicates are presented as individual curves; representative of three biological replicates.

Extended Data Figure 3. Detection of ddhCTP and ddhCTP derivatives in cell lysates from an E. coli strain expressing the human viperin.

Extended Data Figure 3

a.Extracted ion chromatogram of the ddhC standard. b-d. Extracted ion chromatogram for singly charged masses that are predicted to correspond to ddhC (m/z 226.08223, retention time (RT) of 2.2 minutes)(b), ddhCMP (m/z 306.04856, RT 9.7)(c), ddhCTP (m/z 465.98122, RT 10.7)(d) in cell lysates from an E. coli strain expressing the human viperin. Representative of three replicates.

Extended Data Figure 4. Detection of ddh-ribonucleotides in lysates of cells that express pVips.

Extended Data Figure 4

a. Quantification of ddh-cytidine (ddhC) in lysates of cells expressing pVips. Detection and quantification of ddhCwas performed using LC-MS with a synthesized chemical standard (Methods). For MoaA, the measurement was under the limit of detection (LOD 0.0003 uM). Bar graph represents average of three replicates, with individual data points overlaid. b-h.Relative abundance for singly charged masses that are predicted to correspond to ddhC (m/z 226.08223, retention time (RT) of 2.2 minutes)(b), ddhCMP (m/z 306.04856, RT 9.7)(c), ddhCTP (m/z 465.98122, RT 10.7)(d), ddhUMP (m/z 307.03258, RT 8.7)(e), ddhUTP (m/z 466.96524, RT 9.9)(f), ddhGMP (m/z 346.05471, RT 9.8)(g), and ddhGTP (m/z 505.98737, RT 10.7)(h). Average relative abundance is presented as bar graph, with individual data points from three biological replicates overlaid. Limit of detection (LOD) is indicated by a dashed grey line. A compound was defined as present, in Figure 3, if all three replicated were above the LOD.

Extended Data Figure 5. MS/MS fragmentation spectra for predicted compounds.

Extended Data Figure 5

MS/MS data were acquired in positive ionization mode for a synthesized chemical standard ddhC (a) as well as for masses from the human viperin cell lysate predicted to correspond to ddhC (b), and ddhCMP (c). Similar data were obtained for masses from the pVip21 cell lysate predicted to correspond to ddhGMP (d), and ddhGTP (e). MS/MS data were acquired, in negative ionization mode, from the pVip47 cell lysate for masses predicted to correspond to ddhUMP (f), and ddhUTP (g). In all panels, assignment of hypothetical structures is indicated for informative fragment ions. The ddhC molecule is annotated to level 1, and all other molecules are annotated to level 2b, per the Metabolomics Standards Initiative nomenclature.

Extended Data Figure 6. MS/MS fragmentation spectra for predicted compounds from in vitro reactions with purified pVips.

Extended Data Figure 6

(a-b) MS/MS data were acquired in positive ionization mode for the product detected in reaction samples using purified pVip6 or purified pVip56 and CTP and GTP as nucleotide substrates respectively; the resulting products are predicted to correspond to ddhCTP (a) and ddhGTP (b). (c) MS/MS data were acquired in negative ionization mode for product detected in reaction samples using purified pVip8 UTP as substrate; the resulting product is predicted to correspond to ddhUTP (c).

Extended Data Figure 7. Transcription during induction of WT and mutant pVips.

Extended Data Figure 7

a. The catalytic activity of pVips is required for defense against T7 phage and repression of viral transcription. Application of the reporter assay (same as presented in Figure 4a) for strains expressing the human viperin, pVips and their cognate catalytically inactive mutants. Strains are first induced with arabinose for 45 minutes to express the pVip. At t=0, IPTG is added to express the GFP. Fluorescence/OD over time curves are presented for each strain. Dark and light red correspond to induced and non-induced wild type viperins, respectively; Dark and light blue correspond to induced and non-induced mutant viperins, respectively. Grey curve corresponds to negative control (WT viperin, no addition of IPTG). Two technical replicates are presented by individual curves. Representative of two biological replicates. b.T7 RNAP expression as measured by RNA-seq. The expression (RPKM) of T7 RNAP in cells expressing viperins was compared to that in cells expressing the MoaA negative control. Bar graphs represent average of two replicates, with individual data points overlaid.

Extended Data Figure 8. Heterologous expression of pVips is not toxic in E. coli.

Extended Data Figure 8

Expression of pVips, human viperin or negative controls (GFP, MoaA) was induced at 45min by addition of arabinose (final concentration 0.2%). CFU were measured right after dilution from overnight culture (t=0), before induction (t=45), and 45 and 90 minutes after induction (t=90, t=135).

Extended Data Figure 9. Putative multi-gene defense systems that include pVips.

Extended Data Figure 9

Representative instances of pVips and their genomic neighborhood. Genes predicted to be part of the pVip-containing defense system are highlighted. Genes known to be involved in defense are in yellow. Genes of mobile genetic elements are in dark grey. RM, restriction-modification; TA, toxin-antitoxin. The name of bacterial species, and the accession of the relevant genomic scaffold in the IMG database17 are indicated on the left. Panels a-d represent four common configurations of putative pVip-containing systems found in bacterial and archaeal genomes.

Extended Data Figure 10. Phylogenetic tree of pVips and putative eukaryotic viperins.

Extended Data Figure 10

MoaA sequences were used as an outgroup (grey). pVips are depicted in red and putative eukaryotic viperins selected for the phylogenetic tree presented in Figure 2 are depicted in blue.

Extended Data Table 1. Clusters of genes retrieved by the homology-based search of human viperin in prokaryotic genomes.

Genes used to calculate defense scores were those present on DNA scaffolds of sufficient size with at least ten genes from each side of the viperin homolog.

pVip number IMG ID IMG Genome ID Genome Name Domain Phylum Class Order Family Genus Species Kinase nearby Protein_sequence Amino Acid Seuqence Length Tested experimentally Codon optimized nucleic acid sequence
1 2695043264 2693429896 Lutibacter oricola DSM 24956 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Lutibacter Lutibacter oricola N MRNLVEKGIIPAVNFHLWKACNYKCKFCFGTFNDVKKNNLEYEEAKRTVQNLAGFGFEKITFSGGEPTLCKYLPKLLKIAKNAGMTTSIVTNGSMLNYDWLNENKDYLDWIAISIDSINIETNIRSGRFNKNNSFTEEIYIELIQLIKEIGFKLKINTVVSNFNKNEDFNEFINWVKPERWKIFQALPIEVQNDKYKDDFMVNQFEFNNYLKRHKSSSYIKESNYDMKGSYIMVDPIGRFFENSKGIHKYSSKINSVGVERALSEINYCFKKFINREGLYDWE 283 Y ATGCGTAACTTGGTAGAGAAAGGAATCATCCCAGCTGTGAATTTCCACTTATGGAAAGCATGTAATTATAAATGTAAATTTTGTTTCGGAACATTCAATGACGTCAAGAAGAATAATTTGGAATATGAGGAAGCCAAACGTACTGTACAAAACCTGGCTGGATTTGGATTTGAAAAGATTACCTTTTCGGGCGGTGAGCCTACTTTATGTAAATATTTACCCAAACTCCTGAAAATTGCCAAGAATGCGGGTATGACGACGTCCATTGTCACGAACGGAAGTATGCTTAATTATGATTGGTTAAATGAAAATAAAGATTATTTGGATTGGATCGCAATCTCGATTGATAGCATTAACATCGAAACGAATATTCGCTCAGGTCGTTTTAATAAGAATAACTCGTTTACCGAGGAAATCTATATTGAATTAATCCAACTCATTAAAGAGATTGGCTTCAAACTCAAAATCAATACAGTCGTATCCAATTTTAATAAGAATGAAGATTTTAATGAATTTATCAATTGGGTGAAACCTGAACGCTGGAAAATCTTTCAAGCCTTACCTATCGAGGTCCAGAATGATAAATACAAAGATGACTTTATGGTGAATCAATTTGAGTTCAACAATTACCTCAAACGCCATAAAAGCTCATCCTATATTAAAGAAAGTAATTATGATATGAAAGGGTCGTATATCATGGTCGATCCAATTGGCCGCTTCTTTGAAAATAGCAAAGGCATTCATAAGTACTCCAGCAAAATTAATTCGGTTGGCGTTGAACGTGCACTCTCCGAAATTAACTATTGCTTCAAGAAATTTATCAATCGCGAAGGCCTGTATGATTGGGAGTAA
2 2684559953 2681813561 Chryseobacterium gambrini DSM 18014 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium Chryseobacterium gambrini Y METSFEGIIPSVNYHLWEPCNMKCRFCFATFQEAKKILPKGHLPKEQSLELIKQIAGMGFKKITFAGGEPTICPWISDLIAAAKESGMTTMLVTNGTKLNETFFKKNQKNLDWIILSIDSLNDTTNIKSGRAFKGKEPLTAEAYKLLIDEIKRYGFQLKINTVVHHLNYNESLMDLILYAQPKRWKVFQVLPMKGENDEHIEEFIISQQQFDHFIANHQFLKDHEILVSEDNSEMKDSYVMIDPAGRFFTNKEGFQEYSRPILEAGAKKAYDEMDYSYRNFLDRGGLYQWD 291 Y ATGGAGACCTCATTTGAAGGAATTATCCCTTCTGTCAATTATCATCTGTGGGAACCTTGTAATATGAAATGCCGTTTCTGCTTTGCGACGTTTCAGGAAGCAAAGAAAATCCTGCCTAAAGGTCATCTTCCTAAAGAACAATCTCTTGAATTAATCAAGCAGATTGCAGGCATGGGCTTTAAGAAAATTACCTTTGCTGGTGGTGAGCCTACTATTTGTCCCTGGATTTCGGATTTAATTGCCGCGGCAAAAGAATCAGGTATGACCACGATGTTGGTTACCAACGGGACCAAGCTGAATGAAACATTCTTTAAGAAGAACCAGAAGAATCTGGACTGGATCATCCTTTCAATTGACTCACTGAATGATACAACCAATATTAAGTCAGGACGCGCGTTTAAAGGAAAAGAGCCGCTGACCGCGGAAGCTTACAAATTGTTAATCGATGAAATTAAGCGCTACGGTTTTCAACTCAAAATCAACACGGTCGTACATCACTTGAATTACAATGAGTCACTGATGGATTTGATTTTATATGCCCAGCCCAAACGCTGGAAGGTCTTTCAGGTGCTGCCGATGAAGGGTGAGAATGATGAACACATTGAAGAATTTATTATCAGTCAGCAGCAGTTCGATCACTTCATTGCTAACCATCAATTTCTGAAAGATCATGAGATTTTGGTTTCGGAAGATAATTCGGAAATGAAAGACTCTTACGTCATGATTGATCCTGCAGGCCGTTTCTTTACCAATAAGGAAGGCTTTCAGGAATACAGCCGCCCAATCCTTGAAGCAGGAGCTAAGAAAGCCTATGATGAGATGGATTACAGTTATCGCAACTTTCTGGACCGCGGTGGTTTGTATCAATGGGATTAA
3 2507146842 2506783068 Methanofollis liminatans GKZPZ, DSM 4140 Archaea Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanofollis Methanofollis liminatans N MPTPSTIRSVNWHLISACNYSCRFCFARNLGETPVSFSEGCRILTRLVGAGMEKINFAGGEPLLHPQLFEYCRVAHDLGMTVSITTNGSRLTPELVRTHRGYIDWIALSVDSASEETEARLGRGDGQHVGHCIRLSDAIRETGIRLKINTTVTALSRDEDMTGFVRRTDPDRWKVLQMLHIRGENDGAVADLSVTDAEFRAFADRHAGVILRGGVLPVFESSAMIEGSYFMVTPGGRVKTDTGRVIRKYSLDEVLGSGVFAYVDEGQYLRRGGVYAW 277 Y ATGCCAACCCCTAGCACAATCCGCAGCGTGAACTGGCATTTGATCTCGGCCTGCAACTACTCGTGCCGTTTCTGTTTTGCCCGCAACCTCGGCGAAACCCCTGTTAGCTTCAGTGAGGGCTGCCGCATCTTGACCCGTCTTGTGGGTGCCGGTATGGAGAAAATCAATTTTGCCGGCGGTGAACCGCTGCTTCACCCCCAGCTCTTCGAATACTGCCGTGTTGCGCATGATTTGGGCATGACTGTCAGCATCACCACGAACGGATCGCGTCTTACGCCAGAACTGGTCCGCACTCACCGCGGCTATATCGACTGGATCGCCTTAAGCGTAGATTCAGCAAGTGAGGAGACCGAGGCGCGCCTGGGCCGTGGCGACGGACAGCACGTGGGACACTGTATCCGTTTGAGCGATGCGATCCGCGAAACGGGAATCCGCTTAAAGATCAATACAACGGTGACTGCACTGAGCCGCGATGAGGATATGACCGGTTTCGTTCGCCGCACCGATCCTGACCGCTGGAAGGTTCTGCAGATGTTACATATCCGCGGGGAGAATGATGGGGCGGTGGCGGATTTAAGTGTGACCGACGCCGAGTTCCGTGCATTTGCAGACCGTCACGCGGGCGTCATCCTGCGTGGTGGCGTTCTTCCGGTCTTTGAGTCTTCGGCAATGATCGAGGGCTCCTATTTCATGGTAACTCCTGGCGGTCGCGTGAAGACCGACACCGGCCGTGTTATCCGTAAATATAGTCTGGATGAGGTATTGGGTTCAGGGGTCTTTGCCTATGTAGATGAGGGACAGTACCTGCGTCGTGGTGGTGTCTATGCGTGGTGA
6 2624749465 2623620517 Selenomonas ruminatium S137 Bacteria Firmicutes Negativicutes Selenomonadales Selenomonadaceae Selenomonas Selenomonas ruminantium N MAYKVNLHITQKCNYACKYCFAHFDHHNDLTLGQWKHIIDNLKTSGLVDAINFAGGEPVLHRDFAAIVNYAYDQGFKLSIITNGSLMLNPKLMPPELFAKFDTLGISVDSINPKTLIALGACNNSQEVLSYDKLSHLITLARSVNPTIRIKLNTVITNLNADEDLTIIGQELDIARWKMLRMKLFIHEGFNNAPLLVSQADFDGFVERHAEVSHDIVPENDLTRSYIMVDNQGRLLDDETEEYKVVGSLLAEDFGTVFDRYHFDEATYASRYAG 274 Y ATGGCATACAAAGTAAACTTACACATCACGCAAAAGTGCAACTACGCGTGCAAATACTGTTTCGCCCACTTTGACCACCACAACGACTTGACTCTGGGTCAGTGGAAACATATCATTGACAACCTGAAAACATCTGGCCTTGTGGATGCCATCAATTTCGCCGGCGGTGAGCCAGTGCTGCACCGCGACTTCGCCGCGATCGTGAACTACGCATACGATCAGGGCTTCAAGCTGTCAATTATCACTAATGGGTCCTTAATGCTGAATCCAAAATTGATGCCGCCAGAACTTTTCGCAAAATTCGATACCCTGGGTATCTCGGTAGACTCGATCAATCCGAAAACGTTAATTGCGCTGGGCGCCTGCAACAACTCCCAGGAAGTTTTATCCTACGACAAGTTGTCACATTTGATTACATTGGCTCGTTCTGTTAATCCTACCATCCGCATCAAACTGAATACGGTTATCACGAATCTTAACGCGGACGAAGACTTGACTATCATTGGTCAGGAACTTGACATCGCGCGCTGGAAAATGCTTCGTATGAAGCTTTTCATCCACGAAGGGTTCAACAATGCCCCGCTTTTAGTCAGCCAGGCGGACTTCGATGGCTTCGTGGAACGTCATGCGGAAGTTAGCCACGATATCGTTCCGGAAAACGACTTAACCCGCAGTTATATCATGGTTGACAATCAGGGCCGTTTACTCGATGACGAAACCGAGGAATACAAAGTGGTGGGGTCCCTGTTAGCGGAAGACTTCGGCACCGTTTTCGATCGTTACCACTTTGACGAAGCCACCTACGCAAGCCGCTATGCAGGTTAA
7 2739066738 2738541339 Fibrobacter sp. UWT3 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter sp. UWT3 N MNIKTIVINWHITEACNYRCSFCFAKWNKPAEIWSNPENVRKIIVNIRDHFRSQGVFNIRLNIVGGEPIMFPERLWNVVETAYENGMDISIITNGSHLENIRPFAHLISQVGISIDSLDHETNMKIGRECGGKTICLDALRQKIEDLRKVNPDIKIKLNTVVSKHNFNEVLVERFAELHIDKWKILRQRPFNGNSGISDYQFYAFLRNNYNEGLMQANVLKRHTELPLSFLIDGSDRQDQETKQVIYIEDKDVMTESYLMISPDGRLFQNGSDEYTYSRPLTEVPFAEALSDIRFDSEKFESRYATWPTQEAVYEMEYFFHLVEDDYDDFDCFTDLSDD 339 Y ATGAACATCAAGACCATTGTGATCAACTGGCACATCACGGAAGCATGCAACTATCGCTGCAGTTTCTGCTTCGCCAAGTGGAACAAACCAGCCGAAATCTGGTCGAATCCGGAAAACGTCCGTAAGATTATCGTGAACATCCGCGACCATTTCCGCTCTCAGGGTGTATTCAACATCCGCTTGAACATTGTAGGTGGAGAGCCGATTATGTTCCCCGAACGCCTGTGGAACGTTGTTGAGACGGCTTACGAAAACGGTATGGATATTTCGATCATCACCAACGGCTCACACTTAGAAAATATCCGCCCGTTCGCGCACCTTATTTCGCAAGTTGGCATTTCCATCGACAGCTTAGATCATGAAACCAACATGAAAATTGGCCGTGAATGCGGCGGGAAGACCATCTGTCTGGACGCTCTGCGCCAAAAGATCGAGGACTTACGCAAGGTAAATCCCGATATCAAGATTAAACTGAATACCGTAGTATCAAAGCACAACTTCAACGAGGTGTTGGTCGAGCGTTTTGCCGAACTGCATATCGACAAGTGGAAAATCCTGCGTCAGCGTCCGTTCAACGGTAATTCGGGCATTAGCGATTACCAGTTCTACGCGTTCTTGCGCAACAACTACAATGAAGGATTGATGCAGGCCAACGTTTTAAAGCGCCACACTGAACTCCCATTGTCGTTTCTTATTGACGGCTCTGATCGCCAAGACCAGGAAACAAAGCAGGTCATCTATATCGAGGACAAGGACGTTATGACGGAAAGCTACTTAATGATTTCGCCGGATGGTCGCCTGTTCCAAAACGGTAGCGACGAGTACACCTACTCCCGTCCTTTAACCGAGGTGCCCTTCGCGGAAGCCTTAAGCGACATCCGTTTTGATAGCGAAAAGTTCGAAAGCCGCTACGCAACCTGGCCTACGCAGGAAGCGGTGTATGAAATGGAGTACTTCTTCCACCTCGTCGAGGACGATTATGACGACTTCGACTGCTTTACCGACTTGTCTGACGACTAA
8 2521798317 2521172648 Psychrobacter lutiphocae DSM 21542 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Psychrobacter Psychrobacter lutiphocae N MHNHNKIANKELVVNWHITEACNYRCGYCFAKWGKQKGELIQDVASISQLMDAISGLPAVLNQMHAANFEGVRLNLVGGETFLNYRKIKEVVKQAKKRGLKLSAITNGSRINNDFINLIANNFASIGFSVDSVDNSTNLNIGRVEKNAVMNPEKIIHTIASIRAINPKIEIKVNTVVSDLNKSEDLSDFIGQVMPNKWKIFKVLPVVANHHLISEEQFTRFLRRHQRFGEIIYAEDNTEMVDSYIMIDPIGRFFQNSDFNNGYYYSRPILQVGIHQAFNEINFNANKFYSRYKRASLN 298 Y ATGCATAATCATAATAAGATTGCGAATAAAGAACTTGTCGTTAATTGGCATATTACCGAAGCATGCAACTATCGCTGTGGATATTGTTTTGCGAAATGGGGTAAGCAGAAAGGCGAGCTTATTCAAGATGTGGCGAGTATCAGTCAACTGATGGATGCTATCAGCGGCCTGCCTGCGGTCCTGAATCAAATGCATGCCGCGAATTTTGAAGGTGTTCGTCTGAACCTTGTGGGCGGCGAGACGTTTCTTAATTATCGCAAAATTAAAGAGGTGGTGAAACAGGCTAAGAAACGCGGTTTAAAACTCTCTGCGATTACCAATGGCAGCCGCATCAACAATGACTTTATCAACCTGATTGCGAATAACTTTGCAAGCATTGGATTTTCAGTTGACAGCGTAGATAATAGTACCAATCTTAATATTGGGCGCGTTGAGAAGAATGCCGTCATGAATCCCGAGAAAATCATCCATACGATCGCATCAATCCGTGCCATTAATCCCAAGATCGAGATTAAAGTAAATACAGTGGTGAGTGATCTCAATAAGTCAGAGGACCTTAGCGACTTCATTGGTCAAGTTATGCCTAATAAATGGAAAATCTTTAAGGTGTTACCCGTCGTCGCCAATCATCATCTTATTTCCGAAGAACAGTTCACCCGTTTTCTTCGTCGCCATCAGCGTTTTGGGGAAATTATTTATGCCGAGGATAACACCGAAATGGTCGACTCCTATATCATGATCGATCCGATTGGCCGCTTCTTTCAGAACTCGGACTTTAACAATGGCTATTATTATTCGCGTCCTATCTTGCAGGTCGGCATCCATCAAGCGTTTAATGAGATTAATTTTAACGCAAATAAGTTTTATTCGCGTTATAAACGTGCGTCTCTTAATTGA
9 2574301464 2574179732 Vibrio porteresiae DSM 19223 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio porteresiae Y MSKVNQLVINYHITEKCNYDCHYCYAKWAKPNELHRDLHQMKAVLAKLADYFLGSNPIRAQLKYESVRLNFAGGEPVLLKERFIEALDYAKELGFETSLITNGHLLTDDFISNHGSKFQMLGISYDAISENVQKQVGRVTRSGAILTAERLQNIFQQMRQFAPNTELKINTVVNQYNTEENLTSLMEVLLPNKWKVLRVLPVFKSIAAITDEQFSAFVERHRSANSFMSVENNDSMTGSYLMISPDGSFFQNGDQFGGYIKSRSLVTTPIGIALAETGFDPVKFANRY 288 Y ATGAGCAAAGTGAATCAACTTGTGATCAACTATCACATCACCGAAAAGTGTAATTACGATTGCCATTATTGTTATGCCAAGTGGGCAAAGCCGAATGAGCTCCATCGTGATTTGCACCAAATGAAAGCAGTGCTCGCCAAATTGGCAGACTATTTTCTTGGTTCAAACCCAATTCGCGCACAATTAAAATATGAGTCGGTACGTCTTAACTTTGCGGGTGGCGAGCCTGTGTTACTGAAAGAGCGCTTTATTGAAGCGCTTGACTATGCGAAAGAGCTTGGCTTTGAAACTAGTTTGATCACAAACGGTCATTTGTTGACCGATGATTTTATCTCAAATCATGGCTCAAAATTTCAAATGCTGGGCATTAGCTACGATGCAATTTCAGAAAACGTTCAAAAGCAAGTCGGACGCGTGACCCGCAGTGGGGCGATCTTAACCGCAGAACGCCTGCAAAATATCTTCCAACAAATGCGTCAATTTGCTCCGAATACAGAATTGAAAATTAATACCGTGGTAAACCAATATAATACTGAGGAGAACCTGACGTCGCTGATGGAAGTTCTTCTGCCGAATAAGTGGAAGGTGCTCCGTGTACTCCCGGTCTTTAAAAGCATTGCTGCCATCACCGATGAACAGTTTTCGGCTTTTGTCGAGCGTCATCGTAGTGCGAATAGCTTTATGTCTGTAGAAAATAACGACAGTATGACTGGCAGCTATCTGATGATCAGCCCAGATGGAAGCTTCTTCCAAAATGGCGATCAATTCGGCGGCTATATTAAAAGCCGCTCATTGGTTACCACGCCAATTGGAATTGCCCTCGCAGAAACCGGCTTTGATCCTGTCAAATTTGCTAATCGCTACTAA
10 2720695169 2718218250 Vibrio vulnificus ATL 6-1306 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio vulnificus Y MTTAQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIDNLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALARLTQSQTGIKTKINTVINSLNWEEDFTNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPIYFESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKKTNIDIVDVS 305 Y ATGACCACGGCTCAATCGCGTAAAACAAAAGAATTAGTGATCAATTGGCACATGACTGAAGTCTGCAATTACAGCTGTAAATACTGTTTTGCGAAATGGGGCCGCCCGAAAGAACTTCATCGTTCTGAACAGGCTATCGATAACTTACTTGATAAGCTGGCCGACTACTTCATCAAAGGCACGCCAGTATTAAAAGAAAAGCTGGGATACGAATCCGTCCGTCTTAACTTTGCTGGTGGGGAACCTATGATGTTAGGTAATACCTTCGTCACCGCGCTGGTTCTGGCTAAACAAAAGGGCTTTAAAACCAGCACCATCACGAATGGCCATTACTTGATTCATGGCAAATCCCCGCTGCCGAAAGATACTTTAGACATGATTGGTATCAGTTTTGACAGCCAGTACCTGAGTACACGTATGAAAATTGGTCGTAACGATCGTAAAGGTAACTCTTTTGGCGTCAATGATTTAACGCATGCGCTTGCCCGTCTTACCCAGAGCCAAACCGGCATCAAGACGAAGATTAATACGGTTATTAACTCATTAAATTGGGAAGAGGACTTCACTAATTTAATCAGCTCTCTGAATCCTTACAAATGGAAAGTGCTGCAGGTAATGCCATATGGCGATAATGAACTCCTGATTAGCAAAGAGCAGTTCGATAATTTTGTTCATCGTCATTCAGGCCTGGGTCTCCCTATTTATTTTGAGAGCAATTCCACTATGACCGAATCTTACCTCATGATTTCCCCCGAGGGCTGCTTTTACCAAAACACAGCCAATAAAAGTGGATATAAATACTCAGAATGCATTAATAGCTGCGGTGTGGAGAAAGCACTGAGCCAAATCGAGTTTAATCCCATTACCTTTGCGTCGCGTTATAAGAAGACCAATATTGACATTGTTGATGTAAGCTAA
11 2632766730 2630968672 Shewanella baltica OS678 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Shewanellaceae Shewanella Shewanella baltica N MSTQNSSAENSTSSLVNVDELVINWHITEACNYNCSYCFAKWGKPKELHRSLPEIERFLDNLSEYFIQGFHPLKKELGYESVRLNFAGGEPMMLGSTFFIALMLAKQKGFKTSVITNGHYLINSRLEFPKNVLDMVGISFDSQDLNTRVKIGRSDRKGNSLSVEELKTAIGNLVSTQKGIKTKINTVVNSLNCEEDFSELITELKPFKWKVLQAMPYGDDELLISRDKFDNFVATHSGIGLPIFAESNSTMTESYLMIDPKGRFYQNSSNGSGYVYSESINLCGVENALVQIEFNPIVFSSRYRKVDVDVVEL 313 Y ATGAGCACTCAAAATTCGTCGGCTGAAAATTCAACGAGCAGCCTCGTAAATGTCGATGAGCTTGTTATTAATTGGCACATCACGGAAGCCTGCAACTATAACTGTTCTTATTGTTTTGCCAAGTGGGGCAAACCGAAAGAACTCCATCGTTCCCTGCCAGAGATTGAACGTTTCTTAGATAACCTCAGCGAATATTTCATCCAAGGATTCCACCCGTTAAAGAAAGAATTGGGATACGAATCTGTGCGCTTAAACTTTGCCGGCGGTGAACCAATGATGCTGGGCAGTACGTTCTTTATTGCACTGATGCTTGCCAAACAGAAAGGCTTTAAAACATCCGTTATTACGAACGGCCATTATTTGATCAATTCCCGTCTGGAATTTCCCAAGAATGTGCTCGACATGGTCGGCATTTCGTTTGACTCGCAAGATTTAAATACTCGCGTGAAAATTGGTCGCAGCGACCGCAAAGGCAACAGTCTTAGTGTGGAAGAATTGAAAACCGCCATCGGCAACTTGGTTAGCACACAGAAAGGGATCAAAACGAAGATCAATACGGTAGTTAATTCACTTAATTGTGAAGAGGACTTTTCGGAACTGATTACTGAGTTGAAGCCGTTTAAATGGAAAGTCCTTCAAGCTATGCCCTATGGTGATGACGAATTATTGATTAGCCGCGATAAATTTGATAACTTTGTAGCCACCCATTCGGGAATCGGACTTCCGATTTTCGCTGAGAGCAATAGCACCATGACAGAGTCCTATTTGATGATTGACCCTAAGGGCCGTTTCTATCAGAACAGTTCAAATGGATCTGGCTATGTGTATTCAGAATCCATCAACTTATGTGGCGTCGAAAATGCCCTTGTGCAGATCGAGTTTAACCCGATTGTTTTCTCGTCCCGCTATCGCAAAGTAGATGTTGATGTAGTTGAATTGTGA
12 2698137626 2695420938 Ruegeria intermedia DSM 29341 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Ruegeria Ruegeria intermedia N MISSKRWKIDELVVNWHLTEACNFGCQFCYAQWKKADKREVWRDEAKTLRLLSEISRFFAPANPRNPLSDYLEWSRVRLSIAGGEPTLLGDPLVRIAQQAKRLGLDVSLITNGSRLETVEKVLPYLALLGLSLDSAKPDTNATIGRLDRRGNQVCLTQIHELLSTARTQANGPKIKINTVVNSANHTEDFSPLLYALQPDRWKVLRMLPATNSALEIGSHEFDAFVRRHHVFKGIMSVEDNHVMEKSYLMIDPNGRFFQNGTGQKEYKYSNPILEEGLRNALSQIAFCPERFALRYRPVFPGEVA 305 Y ATGATTTCGAGCAAACGTTGGAAAATCGACGAACTGGTTGTTAACTGGCACTTAACGGAAGCGTGCAACTTCGGGTGCCAGTTCTGCTACGCGCAATGGAAGAAGGCCGATAAGCGCGAAGTCTGGCGCGACGAAGCCAAGACGCTTCGTCTTCTCTCAGAGATCAGTCGTTTCTTTGCGCCCGCCAACCCGCGTAACCCCCTTAGTGACTATTTGGAGTGGTCCCGTGTACGCCTGTCGATTGCCGGCGGTGAACCTACTCTGCTCGGTGACCCTCTGGTGCGTATTGCCCAGCAGGCTAAGCGCCTGGGGCTTGACGTATCTTTAATCACCAACGGCAGTCGTTTAGAGACTGTTGAAAAGGTCCTTCCGTATCTTGCGCTCCTTGGGCTTTCGTTGGATTCAGCCAAGCCCGATACTAATGCCACAATCGGCCGTCTGGACCGCCGTGGCAATCAGGTCTGTTTGACCCAAATTCATGAACTGCTGTCGACGGCGCGCACTCAAGCAAACGGACCGAAGATCAAGATCAATACTGTTGTAAATAGCGCGAACCATACGGAAGATTTCTCTCCTTTGTTATACGCACTCCAGCCGGATCGCTGGAAGGTATTGCGCATGCTCCCGGCGACTAACTCGGCGCTGGAAATCGGCAGCCACGAATTCGATGCGTTCGTACGCCGCCACCACGTATTTAAAGGAATCATGTCCGTTGAGGACAACCATGTTATGGAGAAATCATACCTGATGATTGATCCTAATGGACGCTTCTTCCAAAATGGCACAGGCCAAAAGGAATACAAGTATAGTAATCCGATCCTGGAAGAGGGTTTGCGCAATGCCCTGTCCCAGATCGCATTTTGTCCAGAACGCTTCGCGCTTCGCTACCGCCCCGTTTTCCCCGGTGAGGTTGCGTGA
13 2744653400 2744054531 Marinobacter sp. YWL01 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter Marinobacter sp. YWL01 N MLHYSAHNPKQLVINWHLTEACNYSCRYCYAHWQRDEDVKDLIRQEYQIHQLLLELREFFDPINSRNPLAWKMAWANTRLNIAGGEPLLFPSVVEETVKFASRVGLKASLITNGSLLTERIARKIGSGLEVLGISIDSADAFSNQLIGRLNSKGEFLDVRQLQSAVDAIRERNPAIKIKLNTVVNRVNWEDDFSDLISLLQPDKWKILRALPVTDRSMTINEEKFQSFVQRHRRYHRIAVVENNQDMQESYIMVDPQGRFFQNSPCSAGYQYSQPILEVGAEKAFEQVNFNPERFLSRYSKEAGGIE 307 Y ATGTTGCACTACTCCGCGCACAATCCGAAACAGCTCGTGATCAACTGGCATCTTACCGAAGCCTGCAACTATAGCTGCCGTTATTGCTACGCGCATTGGCAGCGCGATGAAGATGTAAAAGATTTAATCCGCCAAGAATATCAGATTCATCAGCTGCTGCTCGAGTTGCGTGAGTTCTTCGATCCGATCAATTCACGTAATCCATTGGCATGGAAAATGGCATGGGCCAATACTCGCTTGAATATCGCCGGCGGTGAACCTCTGTTATTTCCATCGGTAGTTGAAGAGACCGTAAAGTTCGCATCCCGCGTGGGACTGAAGGCCTCGCTGATCACGAACGGTTCTTTACTCACGGAACGCATTGCCCGCAAGATCGGCTCTGGGCTTGAGGTGCTGGGCATCTCGATTGATTCTGCCGATGCCTTTTCGAATCAGTTAATTGGCCGCCTTAACTCAAAAGGTGAGTTTCTGGATGTTCGTCAGTTGCAGAGCGCAGTCGACGCCATCCGTGAGCGTAACCCAGCCATCAAGATTAAGCTGAACACGGTCGTAAATCGTGTGAACTGGGAAGATGATTTCTCCGATCTCATCAGCCTGCTGCAACCGGATAAGTGGAAGATTCTGCGCGCCTTACCCGTCACTGATCGTTCAATGACCATCAATGAGGAAAAGTTTCAGAGCTTCGTACAACGTCACCGTCGTTATCACCGTATTGCCGTAGTAGAGAACAACCAGGACATGCAGGAGAGCTACATCATGGTCGATCCGCAGGGCCGCTTCTTCCAGAACAGTCCTTGTTCCGCCGGATATCAGTACTCGCAGCCAATTTTAGAGGTAGGCGCGGAGAAAGCGTTTGAGCAGGTCAACTTCAATCCGGAGCGCTTTCTCTCTCGTTATAGTAAGGAAGCAGGCGGCATCGAATGA
14 2654783232 2654587543 Pseudomonas nitroreducens B Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas nitroreducens N MVYLRSGEGAMRPHVSELVINWHITEACNYKCRYCYAKWDGAGRELLHDWTRVRNLLDELQAFFHPENDANPLSRHMTWSSTRLNLAGGEPLLYQDALLRALDYARSKGIGASIITNGSRLTNGLIDRLAPLVSMLGLSLDSANSTKNIGIGRVDSRGSLLDVESLPEMLGRAKSQNSALRLKVNTVVNALNHQEDMSPIIHALAPHRWKVLRMLQVVTHDLAVSSEDFLAFVARHDALREVMCVEDNDDMSESYIMIDPLGRFFQNTAGLKGYHYSNTIDVIGAERAFSEWRFSTGAYAARYRDALVEGRE 312 Y ATGGTTTATCTCCGTTCTGGCGAAGGTGCGATGCGTCCACATGTTTCTGAATTGGTCATCAACTGGCACATCACAGAAGCGTGTAACTACAAGTGCCGCTACTGCTATGCGAAATGGGATGGTGCTGGACGTGAGCTCTTGCACGACTGGACACGCGTCCGTAATCTTCTCGATGAACTCCAGGCTTTCTTTCATCCGGAGAACGATGCCAATCCACTTAGCCGTCACATGACGTGGTCTTCAACACGTTTGAACCTGGCTGGTGGGGAGCCGCTTCTGTATCAGGATGCCCTGTTACGCGCACTGGATTATGCACGCAGCAAGGGAATTGGGGCCTCGATTATCACCAATGGATCTCGCCTTACGAACGGGCTTATTGACCGTCTCGCACCGTTGGTTTCGATGCTCGGGCTGAGCCTGGATAGCGCAAATTCGACCAAGAACATTGGCATTGGTCGCGTCGATTCACGTGGCTCATTGCTCGACGTAGAAAGTTTGCCCGAAATGCTGGGACGCGCGAAGTCGCAGAATTCAGCTCTGCGTCTGAAGGTAAATACGGTGGTCAATGCGCTGAACCACCAAGAGGACATGTCCCCAATCATTCATGCTCTCGCACCACATCGCTGGAAGGTGCTCCGCATGCTTCAGGTTGTGACCCATGACTTAGCCGTGAGTTCCGAAGACTTTCTCGCCTTTGTCGCGCGCCATGACGCACTCCGCGAGGTCATGTGCGTTGAGGACAACGACGACATGAGCGAGTCTTACATCATGATCGATCCCCTGGGTCGCTTCTTTCAGAACACCGCGGGTCTCAAGGGTTACCACTACTCGAACACGATTGACGTGATTGGTGCAGAGCGTGCTTTCAGCGAATGGCGTTTTAGTACCGGGGCATATGCTGCTCGTTACCGCGACGCGCTTGTAGAGGGTCGTGAATGA
15 646713396 646564524 Coraliomargarita akajimensis DSM 45221 Bacteria Verrucomicrobia Opitutae Puniceicoccales Puniceicoccaceae Coraliomargarita Coraliomargarita akajimensis N MKPAIPPTINLHTIRACNYGCKYCFAGFQDCDTGVMPQADLHEILRQFAATTGMAIHPAKVNFAGGEPMLSPTFVEDICYAKSLGLTTSLVTNGSLLSERLLDKLSGQLDLLTISIDSLKPGTNRAIGRTNRQNPLTVSEYLDRILKARTRGITVKLNTVVNRLNLDEDMTDFIREAQPIRWKLFKVLKIQNENSAHFDSWAIRDEEFVHFVERHRKVESSGVTLVPESNEQMYGTYGIISPDGRFIDNSQGTHRYSPRIVDVGITQAFADVNFSMAGFQQRGGIYSIKRSTTNRSLQTSALHPKRELTK 310 Y ATGAAACCGGCAATTCCGCCGACAATCAATTTACATACAATTCGCGCATGCAACTATGGCTGCAAATATTGTTTTGCGGGATTTCAAGATTGTGATACAGGCGTCATGCCGCAGGCGGATCTTCATGAAATCCTGAGACAATTTGCAGCGACAACAGGAATGGCAATCCATCCGGCGAAAGTCAATTTTGCTGGCGGAGAACCGATGCTTTCTCCGACATTTGTTGAAGATATTTGCTATGCCAAATCACTGGGACTTACAACATCACTGGTTACAAACGGCTCTCTGCTTTCAGAAAGATTACTGGATAAACTGTCAGGACAGCTTGATCTTTTAACAATTAGCATCGATTCTCTGAAACCGGGCACAAATAGAGCAATCGGAAGAACAAATCGCCAAAACCCGCTGACAGTGAGCGAATATTTAGATCGCATTCTGAAAGCGAGAACACGCGGCATCACAGTCAAACTGAACACAGTTGTGAACAGACTGAACCTGGATGAAGATATGACAGATTTTATCAGAGAAGCACAGCCGATCCGCTGGAAACTTTTTAAAGTTCTGAAAATCCAAAACGAAAACAGCGCTCATTTTGATTCTTGGGCCATCCGCGATGAAGAATTTGTGCATTTTGTCGAAAGACATCGCAAAGTGGAATCAAGCGGCGTTACACTTGTGCCGGAAAGCAATGAACAGATGTATGGCACGTATGGCATTATCTCTCCGGATGGAAGATTTATTGATAACTCTCAGGGCACACATAGATATTCACCGCGCATTGTCGATGTTGGAATCACACAAGCATTTGCCGATGTTAATTTTAGCATGGCTGGCTTTCAACAGCGCGGCGGAATCTACTCAATCAAAAGAAGCACAACAAACCGCTCTCTGCAAACATCAGCCCTTCATCCGAAAAGAGAACTTACAAAATAA
17 2504625218 2504557017 Marinomonas sp GOBB3-320 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae Marinomonas Marinomonas sp. GOBB3-320 N MTALTLGTHTASTDLVINFHMTESCNYQCSYCYATWDDLEAKNELHRLSGQVESLLQNLADYFLQTNPLRAEMGYQNVRLNFAGGEPMLLGQRFLDAVTFANQLGFRTSLITNGHYLTGDILDELAPSLDVLGISYDTADHALAQSIGRVDRKKRWIGAEQLVQMCARYRSLNPSGILKLNTVVNAVNCNDSLLDLMNEIKPNKWKLLRVLPVHDHQLTITQVEYQAYIQRHAALSSIIVEEDNDAMTHTYLMINPEGRFYQNSDAGCGYIVSDSILTSGVEQTLSQVPFNVSGFKQRYQLIPALVL 307 Y ATGACAGCATTAACACTGGGCACACATACAGCGAGCACAGATCTGGTCATCAACTTTCACATGACAGAATCTTGCAACTATCAGTGCTCATATTGTTATGCTACATGGGATGATCTGGAAGCCAAAAATGAATTACATCGCCTGTCAGGCCAGGTTGAAAGCCTGCTTCAAAACCTGGCAGATTATTTTCTGCAGACAAACCCGCTTCGCGCGGAAATGGGCTATCAAAATGTTAGACTTAACTTTGCTGGCGGAGAACCGATGTTACTGGGCCAGCGCTTTTTAGATGCAGTGACATTTGCGAACCAACTGGGATTTAGAACATCACTGATCACAAACGGCCATTATCTTACAGGAGATATTCTGGATGAATTAGCTCCGAGCCTGGATGTGCTTGGCATTTCTTATGATACAGCCGATCATGCTTTAGCCCAAAGCATTGGCAGAGTCGATCGCAAAAAACGCTGGATCGGAGCTGAACAATTAGTTCAGATGTGCGCCAGATATAGATCACTGAATCCGTCTGGCATTCTGAAACTGAATACAGTTGTGAACGCGGTCAACTGTAACGATTCTCTTTTAGATCTTATGAACGAAATCAAACCGAACAAATGGAAACTGCTTCGCGTCCTTCCGGTTCATGATCATCAGTTAACAATTACACAAGTGGAATATCAGGCATATATCCAAAGACATGCAGCGCTGTCAAGCATTATCGTCGAAGAAGATAATGATGCGATGACACATACATATCTTATGATTAATCCGGAAGGACGCTTTTATCAAAACTCAGATGCTGGCTGTGGATATATTGTTTCTGATTCAATCCTGACATCAGGCGTGGAACAGACACTTAGCCAAGTGCCGTTTAACGTCTCTGGATTTAAACAACGCTATCAACTGATCCCGGCCCTGGTTCTTTAA
18 2506474236 2506381025 Methanoplanus limicola M3, DSM 2279 Archaea Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoplanus Methanoplanus limicola N MPMHSTIKSVNWHITPRCNYRCRFCFAQNFHDGTVPYDKGLEILEILADAGMTKINFAGGEPLLHPGILDYCRESKKLGMTVSITTNGSKLNPSKIRKMAGIVDWIGLSIDSSLDTVEAELGRGTGNHVSNCLESAIYLHQAGIKLKVNTCVTALTFQENMIPLIRMLNPDRWKVLQMMHIDGENDFARDLEISAGDFRYFVERHRNVLLENGTSPVFESADDMESSYFMLTPGGFVKSDAGRKVTLYPLDEVIEKGIDNFVSEMKYQERGAIYEWS 277 Y ATGCCGATGCATAGCACAATCAAATCTGTCAATTGGCATATTACACCGAGATGCAACTATAGATGCCGCTTTTGTTTTGCTCAAAACTTTCATGATGGAACAGTTCCGTATGATAAAGGCCTTGAAATTTTAGAAATCCTGGCAGATGCGGGAATGACAAAAATCAACTTTGCCGGCGGAGAACCTCTGCTTCATCCGGGCATTCTGGATTACTGTAGAGAAAGCAAAAAACTGGGAATGACAGTTAGCATCACAACAAATGGCTCAAAACTGAACCCGAGCAAAATTCGCAAAATGGCTGGAATTGTGGATTGGATCGGCTTATCAATTGATTCAAGCCTGGATACAGTGGAAGCCGAACTTGGCCGCGGAACAGGCAATCATGTCTCTAACTGCCTTGAATCAGCTATCTATTTACATCAAGCCGGAATCAAACTGAAAGTTAACACATGTGTGACAGCACTGACATTTCAGGAAAATATGATTCCGCTGATCAGAATGCTTAACCCGGATCGCTGGAAAGTGCTTCAAATGATGCATATCGATGGAGAAAACGATTTTGCAAGAGATTTAGAAATTAGCGCGGGCGATTTTCGCTATTTTGTCGAAAGACATCGCAATGTTTTACTGGAAAACGGAACAAGCCCGGTCTTTGAATCTGCAGATGATATGGAATCTTCATACTTTATGCTGACACCGGGCGGATTTGTGAAATCTGATGCGGGCAGAAAAGTCACACTTTATCCGTTAGATGAAGTTATCGAAAAAGGAATCGATAACTTTGTTTCTGAAATGAAATATCAGGAAAGAGGCGCAATTTATGAATGGTCATAA
19 2506475787 2506381025 Methanoplanus limicola M3, DSM 2279 Archaea Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoplanus Methanoplanus limicola N MSKTASIRSVNWHLISACNYSCKFCFARNLGEKPVPYSEGLEILKRLHEAGMEKINFAGGEPLLHPHIFDYCHEAHDLGMVVSVTTNGSKLTEKLVHENRRHIDWIGLSVDSACEDTEILLGRGRGGHVGHCTEISDAIREAEIRLKINTTVTALSWMENMGNFIRRVNPDRWKVFQMLHIKGENDDAVPWLSITDSQFDYFKNNHKKVILKNSTGPVFEFADMMESSYFMLTPGGKVKTDTGRVITKFQLEAVLHRGVSNYVFEDQYFGRGGVYAW 277 Y ATGTCTAAAACAGCGTCTATTAGATCAGTGAATTGGCATCTGATCTCTGCATGCAACTACTCATGCAAATTTTGTTTTGCGAGAAACCTTGGCGAAAAACCGGTCCCGTATTCAGAAGGACTTGAAATTTTAAAACGCCTGCATGAAGCTGGCATGGAAAAAATCAACTTTGCCGGCGGAGAACCGCTGCTTCATCCGCATATTTTTGATTATTGTCATGAAGCCCATGATCTTGGCATGGTTGTGAGCGTGACAACAAACGGATCTAAACTTACAGAAAAACTGGTCCATGAAAACAGACGCCATATTGATTGGATCGGCTTAAGCGTTGATTCTGCATGCGAAGATACAGAAATTTTACTGGGCAGAGGACGCGGCGGACATGTGGGACATTGTACAGAAATTTCAGATGCAATCAGAGAAGCGGAAATCCGCCTGAAAATCAACACAACAGTTACAGCACTGAGCTGGATGGAAAATATGGGCAACTTTATCAGACGCGTGAATCCGGATAGATGGAAAGTCTTTCAAATGCTTCATATCAAAGGAGAAAACGATGATGCGGTGCCGTGGTTATCAATCACAGATAGCCAGTTTGATTACTTTAAAAACAACCATAAGAAAGTTATTTTAAAAAATAGCACAGGCCCGGTTTTTGAATTTGCTGATATGATGGAATCAAGCTATTTTATGCTGACACCGGGCGGAAAAGTTAAAACAGATACAGGAAGAGTGATCACAAAATTTCAACTGGAAGCTGTCCTTCATCGCGGCGTCTCTAACTACGTTTTTGAAGATCAGTACTTTGGACGCGGCGGAGTTTATGCCTGGTAA
20 2509664214 2509601008 Methanomethylovorans hollandica DSM 15978 Archaea Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanomethylovorans Methanomethylovorans hollandica N MYDKHVRSINWHITDRCNCNCIFCFARNLGEEITDIEEAVKLLEYLKSIGMQRINFAGGEPMLHPLIFDLVKIAKEMGFVTSIVSNGYYLNQESIKKISLWLDWIGLSVDSCCEEVQFSLGRGNGDHIRHIREIVPYIHENGIKLKINTVVTKLNFREDMKPLIKELNPIRWKILQALPIKGQNDKNIQNIQVSGIEFDQFIKTNKDIVLSSGDSPVFETNDDMVDSYLMIGPNGSVIKNSNMEHAVEDMRINGIEEIDSIVDWKKYHQRGGDHWISQ 278 Y ATGTACGATAAACATGTTAGATCTATCAACTGGCATATTACAGATCGCTGCAATTGTAACTGCATCTTTTGCTTTGCAAGAAACCTGGGAGAAGAAATCACAGATATTGAAGAAGCGGTCAAACTGCTTGAATATCTGAAATCAATCGGCATGCAACGCATTAATTTTGCTGGCGGAGAACCGATGCTTCATCCGTTAATCTTTGATCTGGTTAAAATCGCCAAAGAAATGGGATTTGTCACATCTATCGTTTCAAACGGCTACTACCTTAACCAAGAATCAATTAAGAAAATTTCACTGTGGCTGGATTGGATCGGACTGAGCGTGGATTCTTGCTGTGAAGAAGTCCAGTTTAGCCTTGGCAGAGGAAACGGCGATCATATTAGACATATCCGCGAAATTGTGCCGTATATTCATGAAAACGGCATCAAACTTAAAATCAACACAGTTGTGACAAAACTGAACTTTAGAGAAGATATGAAACCGCTGATCAAAGAACTGAATCCGATCCGCTGGAAAATTCTGCAAGCACTTCCGATCAAAGGACAGAACGATAAAAACATCCAAAACATCCAGGTCTCTGGCATCGAATTTGATCAGTTTATCAAAACAAACAAAGATATTGTTCTTTCAAGCGGAGATAGCCCGGTGTTTGAAACAAACGATGATATGGTCGATTCTTACCTGATGATTGGACCGAACGGCTCTGTTATCAAAAATTCAAACATGGAACATGCTGTGGAAGATATGAGAATCAATGGCATTGAAGAAATCGATTCAATCGTTGATTGGAAAAAATATCATCAACGCGGCGGAGATCATTGGATTAGCCAGTAA
21 2515428782 2515154070 Lewinella persica DSM 23188 Bacteria Bacteroidetes Saprospiria Saprospirales Lewinellaceae Lewinella Lewinella persica N MTTPSFIPSVNFHLIKPCNMGCKYCFARFNDVASKSLTRGGLPKEDALAVVSALADFGFEKITFAGGEPTLYPWLTDVIELAKNKGMTTMLVTNGSRLNEAFYLRHAGLLDWITVSIDSLSVGTNLAIGRAKHGNQVFAREDYEVIAAMIHDYSYRLKINTVVSRYNHEEDMNDFIAHAKPERWKVFQALPIVGENDEYLEEFEITAEEFQQFLGRHGSQAKLVKENNDEMRGSYAMVDPKGCFFTNVNGQLEASSPILTVGCDAALREMNYDLTKFHDRGGRYDW 286 Y ATGACAACACCGTCATTTATTCCGAGCGTCAATTTTCATCTTATCAAACCGTGCAACATGGGCTGCAAATACTGTTTTGCAAGATTTAACGATGTTGCGTCTAAATCACTTACACGCGGCGGATTACCGAAAGAAGATGCACTGGCGGTTGTGTCTGCTCTTGCCGATTTTGGATTTGAAAAAATCACATTTGCTGGCGGAGAACCGACATTATATCCGTGGCTGACAGATGTTATCGAACTGGCCAAAAACAAAGGCATGACAACAATGCTTGTGACAAACGGATCAAGATTAAACGAAGCATTTTATCTGCGCCATGCCGGCCTGCTTGATTGGATTACAGTGAGCATCGATAGCCTTTCTGTCGGAACAAATTTAGCTATTGGCAGAGCCAAACATGGAAACCAAGTCTTTGCTCGCGAAGATTATGAAGTTATTGCAGCGATGATCCATGATTACTCTTACAGACTGAAAATCAACACAGTCGTTTCACGCTACAACCATGAAGAAGATATGAACGATTTTATCGCACATGCGAAACCGGAAAGATGGAAAGTTTTTCAGGCATTACCGATTGTGGGCGAAAACGATGAATATCTGGAAGAATTTGAAATCACAGCAGAAGAATTTCAACAGTTTCTTGGCAGACATGGAAGCCAAGCGAAACTGGTGAAAGAAAATAACGATGAAATGAGAGGCAGCTATGCAATGGTTGATCCGAAAGGCTGCTTTTTCACAAATGTCAACGGACAGCTGGAAGCGTCAAGCCCGATCCTTACAGTTGGATGTGATGCTGCCTTACGCGAAATGAACTACGATCTGACAAAATTTCATGATAGAGGCGGACGCTATGATTGGTAA
22 2518436022 2518285547 Pelobacter carbinolicus Bd1, GraBd1 Bacteria Proteobacteria Deltaproteobacteria Desulfuromonadales Desulfuromonadaceae Pelobacter Pelobacter carbinolicus N MQQQSQNKREAAIPAVNFHLWRHCNMRCRFCFARFKTERQDSKEVGREKSLAVIEEASRAGIAKITFAGGEPLLCPWLTDALKHSKAIGMTTMVVTNGSLVTDRWLGENACYVDWIALSIDSPAPATNLASGRAVGGIRPLGASEYRSLAAQVRHHDIRLKVNVTVSRFNVEEDPSSLLLEILPERLKVFQVLPISEHNDHCFADLGISIKQFSAFVRRLDPLRQFCEVVVEDNEAMTGSYVMIDPQGRFFSNIGGRYRFSLPIWQVGWATALSEIETSVARFRSRGGFYRW 292 Y ATGCAACAGCAATCACAGAATAAACGCGAAGCAGCGATCCCGGCGGTTAATTTTCATCTGTGGAGACATTGCAACATGAGATGCCGCTTTTGTTTTGCTCGCTTTAAAACAGAAAGACAAGATAGCAAAGAAGTGGGACGCGAAAAATCTCTTGCCGTCATCGAAGAAGCATCAAGAGCGGGCATTGCTAAAATCACATTTGCAGGCGGAGAACCGCTGCTTTGCCCGTGGCTTACAGATGCGTTAAAACATTCAAAAGCTATTGGCATGACAACAATGGTTGTGACAAATGGCTCACTGGTTACAGATCGCTGGCTGGGCGAAAACGCCTGTTATGTGGATTGGATTGCACTGTCTATCGATTCACCGGCACCGGCGACAAATCTTGCCAGCGGACGCGCAGTGGGCGGAATCAGACCTCTTGGCGCGAGCGAATATAGATCTTTAGCTGCCCAGGTCCGCCATCATGATATTAGACTGAAAGTCAACGTTACAGTGTCTCGCTTTAACGTTGAAGAAGATCCGTCATCACTGCTGCTTGAAATCCTGCCGGAAAGACTTAAAGTCTTTCAAGTTCTTCCGATTTCAGAACATAACGATCATTGCTTTGCGGATTTAGGAATTTCAATCAAACAGTTTAGCGCTTTTGTGAGACGCTTAGATCCGCTGCGCCAATTTTGTGAAGTCGTTGTGGAAGATAATGAAGCCATGACAGGAAGCTATGTCATGATTGATCCGCAGGGCAGATTTTTCTCAAACATTGGCGGCAGATATAGATTTTCTTTACCGATTTGGCAAGTCGGCTGGGCTACAGCCCTGTCTGAAATCGAAACATCAGTTGCAAGATTTAGATCAAGAGGCGGCTTTTATAGATGGTAA
23 2522341593 2522125098 Tolumonas lignilytica BRL6-1 Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Tolumonas Tolumonas lignilytica N MEAVYNWHVTERCQYSCKYCFAKWGNTKEIWQNVKLTSALLDQIRIHGREPFGEGYKTAPIRLNFAGGEPLLLKQRLIDIAKESKSLGLKTSLITNGERLGQSLELVSKLDMIGLSIDSFDEATNRAIGRIRSSGKALSFQDVYDLVTKIRTINPEILLKFNVVVNKYNYRENLIPKLLSLSPQKIKVLQELSAGGNVSSTNDEMFSHFISNNQCDCSNVYIEDRNSMIQSYLMINPSGRFYQNGNQNDYFYSAPIHEVGLLRAMKSISFNQQQFSNRYNGAKK 284 Y ATGGAAGCAGTCTATAACTGGCATGTTACAGAAAGATGCCAGTACTCTTGCAAATACTGTTTTGCTAAATGGGGCAACACAAAAGAAATTTGGCAGAATGTCAAACTTACATCAGCCCTGCTTGATCAAATTCGCATTCATGGCCGCGAACCGTTTGGCGAAGGATATAAAACAGCTCCGATCAGACTTAATTTTGCCGGCGGAGAACCGTTACTGCTTAAACAGCGCCTGATCGATATTGCAAAAGAAAGCAAATCTTTAGGCCTGAAAACATCACTTATTACAAACGGCGAAAGATTAGGACAAAGCCTTGAACTGGTTTCTAAACTGGATATGATCGGACTGAGCATCGATTCTTTTGATGAAGCAACAAATCGCGCGATTGGCAGAATCCGCTCAAGCGGAAAAGCACTGTCATTTCAAGATGTTTACGATCTGGTGACAAAAATCAGAACAATCAACCCGGAAATCCTGCTGAAATTTAACGTTGTGGTCAACAAATACAACTACCGCGAAAACCTGATCCCGAAACTTTTATCACTTAGCCCGCAGAAAATCAAAGTGCTGCAAGAACTTAGCGCTGGCGGAAACGTCTCTTCAACAAACGATGAAATGTTTTCACATTTTATTAGCAATAACCAGTGCGATTGTTCTAACGTTTACATCGAAGATAGAAATTCTATGATTCAATCATATCTGATGATCAACCCGTCAGGCCGCTTTTATCAGAACGGAAACCAAAACGATTACTTTTACAGCGCACCGATTCATGAAGTGGGCCTGCTTAGAGCGATGAAATCTATCTCATTTAACCAACAGCAATTTTCTAACCGCTATAATGGAGCCAAAAAATAA
24 2524269675 2524023156 Conchiformibius kuhniae DSM 17694 Bacteria Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae Conchiformibius Conchiformibius kuhniae N MDELVVNWHITEACNYNCRYCFAKWEGNERELIHNPLNIGILIREIPKLLEILNENFGTCFKYIRLNLVGGEPLLYPEAIREIIHCARQSGLLLSLITNGSLLNQDWVNIISESFVQIGFSVDSIHEQTNVAIGRGSNREVFKASMILQYINAIRTYAPNIGIKINTVVNEYNFQEDMNDFIHKANPQKWKIFKMLPIITNNLSVSNQQFETFLLNHQAFRSIISSENNDEMTQSYLMIDPEGRFFQNHHHGVKVYQYSHPIHKVGIQNAFNEITFHVDKFHHRYIPLNPMR 292 Y ATGGATGAACTTGTTGTGAACTGGCATATTACAGAAGCATGCAACTACAACTGCAGATACTGTTTTGCGAAATGGGAAGGCAATGAACGCGAACTTATCCATAATCCGTTAAACATCGGAATCCTGATCAGAGAAATCCCGAAACTGCTTGAAATCCTGAACGAAAACTTTGGCACATGCTTTAAATACATCCGCCTGAACCTGGTTGGCGGAGAACCGTTACTGTATCCGGAAGCTATCAGAGAAATTATCCATTGTGCCCGCCAATCTGGCCTTTTACTGTCACTTATCACAAACGGATCTCTTCTGAACCAGGATTGGGTGAACATCATCTCTGAATCATTTGTTCAAATCGGCTTTTCAGTGGATAGCATCCATGAACAGACAAACGTCGCTATTGGCAGAGGAAGCAATCGCGAAGTTTTTAAAGCCTCTATGATCCTGCAATACATCAACGCAATCAGAACGTATGCACCGAACATCGGAATCAAAATCAACACAGTCGTTAACGAATACAACTTTCAAGAAGATATGAACGATTTTATCCATAAAGCAAATCCGCAGAAATGGAAAATCTTTAAAATGCTTCCGATCATCACAAACAACTTAAGCGTTTCTAACCAACAGTTTGAAACATTTCTGCTTAACCATCAAGCGTTTAGATCAATCATCTCAAGCGAAAACAACGATGAAATGACACAGAGCTATTTAATGATTGATCCGGAAGGCAGATTTTTCCAAAACCATCATCATGGAGTGAAAGTCTATCAGTATAGCCATCCGATTCATAAAGTGGGAATCCAGAACGCATTTAACGAAATCACATTTCATGTCGATAAATTTCATCATAGATATATCCCGCTGAATCCGATGCGCTAA
25 2525334630 2524614668 Methanocorpusculum bavaricum DSM 4179 Archaea Euryarchaeota Methanomicrobia Methanomicrobiales Methanocorpusculaceae Methanocorpusculum Methanocorpusculum bavaricum N MVQTNIKSANWHFTSKCNYSCKFCSRQNCTSDLMSLKSVDNILTHLKNLGIEKLNLVGGEPMMHSLFYDLIRLAYEKDFVVCVTTNGSFLNKNTIQKMQPYVSWIGISIDSVSDITAAEMGRGNGHHLAHIKEIIQFIHEAGIKLKINTVVTKQTKDEDMRDVIAELSPSRWKVFQFLTIVGQNDKISSEFSISSKEFDEYCDRHRLIKLGNGTEKIFSPVFESAECMADSYFMVDADGLVEINTPRGVIHISLEAVTNNNIEEMLNLKNYKERGAVYEW 280 Y ATGGTTCAAACAAACATTAAAAGCGCAAACTGGCATTTTACAAGCAAATGCAACTACTCTTGCAAATTTTGTTCAAGACAGAACTGTACATCTGATCTTATGTCTCTGAAATCAGTTGATAACATCCTGACACATCTTAAAAACCTGGGAATCGAAAAACTGAACCTTGTGGGCGGAGAACCGATGATGCATTCACTGTTTTATGATCTGATTCGCCTTGCGTATGAAAAAGATTTTGTTGTGTGCGTGACAACAAACGGCTCATTTCTGAACAAAAACACAATCCAAAAAATGCAGCCGTATGTGAGCTGGATTGGCATCTCTATTGATAGCGTCTCTGATATTACAGCAGCGGAAATGGGCAGAGGAAATGGCCATCATTTAGCACATATCAAAGAAATCATCCAATTTATCCATGAAGCGGGAATCAAACTGAAAATCAACACAGTCGTTACAAAACAGACAAAAGATGAAGATATGAGAGATGTCATCGCTGAACTTTCACCGAGCCGCTGGAAAGTTTTTCAATTTCTGACAATCGTGGGCCAGAACGATAAAATCTCAAGCGAATTTTCTATTTCTTCAAAAGAATTTGATGAATACTGCGATAGACATCGCTTAATCAAACTGGGAAACGGCACAGAAAAAATTTTTAGCCCGGTCTTTGAAAGCGCTGAATGTATGGCCGATTCTTATTTTATGGTGGATGCTGATGGACTGGTCGAAATCAATACACCGAGAGGCGTCATCCATATTTCACTTGAAGCCGTTACAAACAACAACATCGAAGAAATGCTGAACCTGAAAAATTATAAAGAACGCGGCGCAGTTTATGAATGGTAA
26 2557036911 2556921023 Pseudoalteromonas sp. H105 PacBio methylation Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas Pseudoalteromonas sp. N MKNDTTNKPYINELVINWHITEACNYNCTYCFAKWGKPNELHRSLESIEKLLDELASHFIKGSSSFKEKLGYESVRLNIAGGEPMMLGSTFSIVLMLAKQKGFQTSIITNGSYLLNEKFDIPKNTLDMVGISFDSQDYDIRQRIGRVDRKGNSLSSDELKLALSKLEKTQKGIKTKINTVVNQYNWQEDFSSLISEINPYKWKVLHVMPYGDDDLLISNGQFNSFVDKHLGRDLPVYAESNSAMTESYLMIDPKGRFYQNSSGGSGYKYSECINDVGAGKALEQINFNHAVFIARYFPVEGISIVENEGAA 311 Y ATGAAAAACGATACAACAAACAAACCGTACATCAACGAACTTGTTATCAACTGGCATATCACAGAAGCATGCAACTACAACTGCACATACTGTTTTGCGAAATGGGGAAAACCGAACGAACTGCATAGATCTCTGGAATCAATCGAAAAACTGCTTGATGAACTGGCAAGCCATTTTATCAAAGGCTCAAGCTCTTTTAAAGAAAAACTGGGATACGAATCAGTTCGCCTTAACATTGCTGGCGGAGAACCGATGATGCTTGGCAGCACATTTTCTATCGTGCTGATGCTTGCCAAACAAAAAGGCTTTCAGACAAGCATCATCACAAACGGATCTTATTTACTGAACGAAAAATTTGATATTCCGAAAAATACATTAGATATGGTGGGAATCTCATTTGATAGCCAAGATTACGATATTAGACAGCGCATCGGCAGAGTCGATCGCAAAGGAAACTCTTTATCAAGCGATGAACTGAAACTGGCGCTTTCAAAACTGGAAAAAACACAAAAAGGCATCAAAACAAAAATCAACACAGTTGTGAACCAATATAACTGGCAGGAAGATTTTTCTTCACTTATTTCAGAAATCAACCCGTATAAATGGAAAGTCTTACATGTTATGCCGTATGGCGATGATGATCTTTTAATTTCAAACGGACAGTTTAACAGCTTTGTTGATAAACATCTTGGCAGAGATTTACCGGTGTATGCTGAATCAAATAGCGCCATGACAGAAAGCTATTTAATGATTGATCCGAAAGGCCGCTTTTATCAAAATAGCTCTGGCGGATCTGGATACAAATACTCAGAATGTATCAACGATGTCGGCGCTGGAAAAGCCCTGGAACAGATCAACTTTAACCATGCAGTTTTTATCGCGAGATATTTTCCGGTGGAAGGCATTTCTATCGTCGAAAATGAAGGAGCAGCGTAA
27 2574506394 2574179788 Desulfovibrio senezii DSM 8436 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio Desulfovibrio senezii N MHNLTSLVLNWHLTESCNYRCRYCYAIWEASIRHRELIRDPEHTAVFLRELYRFFGPGNSLNPLAKRLSWNAVRLNLAGGEPALHSRRLLSVANQARGQGFEVSLISNGSLLDHELMKRLAPLLNWLGISIDSAVAATNVEIGRVDRCGRLIDLNELVLNLEMARQSNPGLRIKINTVVNRLNHAEDLYSLIRNLYPDKWKVLRMLPVVNEHLAVTDEQFAAFIARHKPFANILRAENHQDMRESYLMIDPSGRFFQNSPIAGQGYAYSQPILEVGADAAFAQVHFAHERFSSRYALDVRGEAI 304 Y ATGCATAATCTTACATCTCTGGTTCTTAACTGGCATTTAACAGAATCATGCAATTATAGATGCCGCTATTGTTATGCAATTTGGGAAGCGTCAATCAGACATCGCGAACTTATTAGAGATCCGGAACATACAGCAGTGTTTCTTCGCGAACTGTACAGATTTTTCGGACCGGGCAATTCACTGAACCCGCTTGCCAAACGCCTTAGCTGGAATGCAGTCAGATTAAACCTGGCTGGCGGAGAACCGGCCTTACATAGCAGACGCCTGCTTTCTGTTGCTAATCAAGCAAGAGGCCAGGGATTTGAAGTGTCTTTAATCTCAAACGGCAGCTTACTGGATCATGAATTAATGAAAAGACTGGCGCCGCTTTTAAATTGGCTGGGAATTTCTATCGATTCAGCTGTGGCAGCGACAAACGTCGAAATTGGCAGAGTTGATCGCTGTGGAAGATTAATCGATCTGAACGAACTTGTTCTGAACCTGGAAATGGCCCGCCAAAGCAATCCGGGCCTGAGAATTAAAATCAACACAGTTGTGAATCGCCTTAACCATGCGGAAGATCTTTACTCTCTGATCCGCAACCTGTATCCGGATAAATGGAAAGTCCTGAGAATGCTTCCGGTCGTTAACGAACATCTTGCCGTTACAGATGAACAGTTTGCTGCCTTTATTGCACGCCATAAACCGTTTGCAAATATCTTACGCGCGGAAAACCATCAAGATATGAGAGAATCATATCTGATGATTGATCCGTCAGGCAGATTTTTCCAAAATTCACCGATTGCTGGCCAAGGATATGCCTATAGCCAGCCGATCCTTGAAGTGGGAGCAGATGCAGCGTTTGCGCAAGTCCATTTTGCTCATGAACGCTTTTCAAGCAGATATGCGTTAGATGTGAGAGGAGAAGCTATCTAA
28 2574517928 2574179790 Endozoicomonas numazuensis DSM 25634 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Endozoicomonadaceae Endozoicomonas Endozoicomonas numazuensis N MKNQTVSELVINWHITEACNYDCKFCYAKWGRPDEIHREPKLINDTLNSLANFFLHSGNKLKEQMGYENVRLNFAGGEPFLLKKKFTDVLSAAHKAGFKLSIITNGHYLTPSFIQENAGILDMVGISFDAQSQMDREIIGRVDRHGRSFETQNLVETVNLFRCINDNIKIKVNTVVNSVNWEEDFSELIHQLKPEKWKVLQVLPVLDSVSLEVTDHQFNDFARRHQLNGLNPLVESNEVMAGSYLMIDPKGRFYQNSYGNKGYQYSSSIAQVGAETALTQIDFSPDHFSARYRN 294 Y ATGAAAAACCAAACAGTGAGCGAATTAGTCATTAACTGGCATATCACAGAAGCATGCAACTACGATTGCAAATTTTGTTACGCGAAATGGGGCAGACCGGATGAAATCCATAGAGAACCGAAACTGATCAACGATACATTAAACTCTCTGGCTAATTTCTTTCTGCATTCAGGCAACAAACTTAAAGAACAGATGGGATACGAAAACGTCCGCCTGAATTTTGCAGGCGGAGAACCGTTTCTGCTGAAGAAAAAATTTACAGATGTTCTTTCAGCAGCGCATAAAGCGGGCTTTAAACTTAGCATCATCACAAACGGACATTACCTGACACCGTCTTTTATCCAAGAAAATGCTGGCATCCTGGATATGGTTGGAATTTCTTTTGATGCCCAATCACAGATGGATCGCGAAATTATCGGCAGAGTGGATAGACATGGCAGATCATTTGAAACACAGAACCTGGTCGAAACAGTTAATCTTTTTAGATGTATCAACGATAACATCAAAATCAAAGTGAATACAGTTGTGAATAGCGTCAACTGGGAAGAAGATTTTTCTGAACTTATCCATCAACTGAAACCGGAAAAATGGAAAGTGCTTCAGGTCTTACCGGTTCTGGATTCAGTTAGCCTTGAAGTGACAGATCATCAATTTAACGATTTTGCAAGACGCCATCAGCTTAATGGCTTAAACCCGCTGGTCGAATCAAATGAAGTTATGGCGGGCAGCTATCTTATGATTGATCCGAAAGGAAGATTTTACCAAAACTCTTATGGCAACAAAGGCTATCAATATTCAAGCTCTATCGCTCAAGTGGGAGCTGAAACAGCCTTAACACAGATTGATTTTAGCCCGGATCATTTTTCTGCCAGATATAGAAATTAA
29 2582805913 2582580599 Composite genome from Lake Mendota Epilimnion pan-assembly MEint.metabat.6813 Bacteria Bacteroidetes unclassified unclassified unclassified unclassified unclassified N LLTYGQSLKQVIMQTKTTRVIPAVNYHLWQACNMRCKYCFATFQDVKKSILPKGHLPLDKSLSLIEQLAQHGFQKITFAGGEPTLCPWLDQLIIHAKQLGLTTMIVSNGTGITIDKLNQWKGYLDWITLSIDSVKTETHNNIGRAIKTQINYMNLISLIKQFNFRFKINTVVNRYNYQEDLSGLINSSEPERWKIFKALQVDGQNSEKFKEIQITDEEFKEFLSINNAQSISAAVVEDNEDMRGSYVMIDPAGRFYDSTKGFHTYSAPILEVGISKALSMVDINDEKFKKRGGFYSW 297 Y ATGCTTACGTATGGCCAAAGCCTGAAACAGGTGATCATGCAAACAAAAACAACAAGAGTGATTCCGGCTGTCAATTATCATCTTTGGCAGGCCTGCAACATGCGCTGCAAATACTGTTTTGCAACATTTCAAGATGTCAAAAAATCTATCCTGCCGAAAGGCCATTTACCGCTGGATAAATCTCTTTCATTAATCGAACAACTTGCACAGCATGGATTTCAGAAAATTACATTTGCGGGCGGAGAACCGACATTATGTCCGTGGTTAGATCAGCTGATTATCCATGCTAAACAACTGGGACTTACAACAATGATTGTCTCTAATGGCACAGGAATCACAATCGATAAACTTAACCAATGGAAAGGCTATTTAGATTGGATTACACTGTCAATCGATAGCGTTAAAACAGAAACACATAACAACATCGGAAGAGCCATCAAAACACAGATCAACTACATGAACCTTATTTCTTTAATCAAACAATTTAACTTTAGATTTAAAATCAACACAGTTGTGAACCGCTATAACTATCAGGAAGATCTGTCAGGCCTTATCAATTCAAGCGAACCGGAACGCTGGAAAATTTTTAAAGCGTTACAGGTTGATGGACAAAACTCAGAAAAATTTAAAGAAATCCAGATCACAGATGAAGAATTTAAAGAATTTCTGAGCATCAACAACGCACAAAGCATTTCTGCAGCGGTCGTTGAAGATAATGAAGATATGAGAGGCAGCTATGTTATGATCGATCCGGCGGGCCGCTTTTACGATAGCACAAAAGGATTTCATACATATTCTGCTCCGATCCTTGAAGTTGGAATTTCTAAAGCCTTATCAATGGTGGATATTAACGATGAAAAATTTAAAAAACGCGGCGGCTTTTATAGCTGGTAA
30 2582946381 2582580664 Composite genome from Trout Bog Hypolimnion pan-assembly TBhypo.metabat.2746 Bacteria Verrucomicrobia unclassified unclassified unclassified unclassified unclassified N MNNDPDIQDAKLKNHSQMLTIPEAVNYHLNKNCNFRCRGCYAVFNDEPTSHGVMLPRDKMFEVVSAVAAVPLPEGKTLRKLTFAGGEPTLCPWLPELIAHAKALGLVTMLVTNGLRCTREYLARIAPALDWLTLSVDSLAQQTNIMIGRCDGRGMPLDSTTYATILADAQELGIRTKVNTVVNSVNQHEDLSQFLACSGIVRWKVLQVMAVAGQNDEHITELAVSRAEFDTFVARHSGLSANGIRIVPEPVESIRGSYAMIDRFGRFFDSRTGTHSYSDSILDVGVIPAFSQILFDREAFEKRGGSYDFVNQTTGGQIPRVDSIPA 326 Y ATGAATAACGATCCGGATATTCAAGATGCGAAACTGAAAAACCATAGCCAGATGCTGACAATTCCGGAAGCTGTGAACTACCATCTGAACAAAAACTGCAACTTTAGATGCCGCGGCTGTTATGCAGTGTTTAATGATGAACCGACATCTCATGGAGTCATGCTTCCGAGAGATAAAATGTTTGAAGTTGTGTCAGCGGTTGCAGCGGTGCCGTTACCGGAAGGCAAAACACTTCGCAAACTGACATTTGCTGGCGGAGAACCGACACTTTGCCCGTGGCTGCCGGAACTTATCGCTCATGCCAAAGCACTGGGCCTTGTCACAATGCTTGTTACAAACGGATTAAGATGTACACGCGAATATCTTGCCAGAATTGCGCCGGCTTTAGATTGGTTAACACTGTCAGTCGATAGCCTGGCACAACAGACAAATATTATGATCGGCAGATGCGATGGCCGCGGAATGCCGCTTGATTCAACAACGTATGCAACAATCCTGGCCGATGCACAAGAACTTGGAATTAGAACAAAAGTTAACACAGTCGTTAACAGCGTGAATCAACATGAAGATTTATCACAGTTTCTGGCATGTAGCGGCATCGTTCGCTGGAAAGTCTTACAAGTTATGGCGGTGGCTGGACAGAACGATGAACATATTACAGAACTGGCCGTTTCAAGAGCAGAATTTGATACATTTGTTGCGCGCCATTCTGGCCTGTCAGCTAATGGAATTAGAATCGTGCCGGAACCGGTCGAAAGCATCCGCGGCTCTTATGCGATGATTGATAGATTTGGCAGATTTTTCGATTCAAGAACAGGAACACATTCATATAGCGATTCTATTCTGGATGTGGGAGTCATCCCGGCCTTTAGCCAGATCCTTTTTGATAGAGAAGCATTTGAAAAACGCGGCGGATCTTATGATTTTGTTAACCAAACAACAGGCGGACAGATCCCGCGCGTGGATTCTATTCCGGCTTAA
31 2596421479 2595698251 Kibdelosporangium aridum DSM 43828 Bacteria Actinobacteria Actinobacteria Pseudonocardiales Pseudonocardiaceae Kibdelosporangium Kibdelosporangium aridum N MVSSGPPESPHVPSVNYHVWQACNMRCRFCFATFQGVRKNVLPAGHLDRPDAMRIVRALARAGFTKINFAGGEPFLCPWLVDLVVYAKKLGMVTSVVTNGSYFDRSVASDLLKHLDWLVLSVDSLHPATAIRIGRVKAHKPISKRQYLAICERVHAAGVNLKINTVVTSANYGEDFRDFIIRARPRRWKIMQMLPLQGPDSRCAEDLIVDRDGFNHFVAKNRRVRKNGIVVVPETSSDMVGSYAMIDPAGRFYDNVSGQYKYSQPILDVGVRAAFSEVDVSAARFLARDGLYDFWGGWKWRRVGSWAQLRGYLRNRWRPSAVSSATPLTTAATAEPVWLQARISRRTDVLESGQATAVISST 362 Y ATGGTGTCAAGCGGACCGCCGGAATCACCGCATGTGCCGAGCGTCAACTATCATGTCTGGCAAGCCTGCAATATGAGATGCCGCTTTTGTTTTGCAACATTTCAGGGCGTCCGCAAAAACGTTCTTCCGGCGGGACATTTAGATAGACCGGATGCTATGCGCATTGTGAGAGCACTTGCGCGCGCTGGATTTACAAAAATCAATTTTGCCGGCGGAGAACCGTTTCTGTGTCCGTGGCTGGTTGATCTTGTTGTGTATGCTAAAAAACTTGGCATGGTCACAAGCGTCGTTACAAACGGATCTTATTTTGATAGATCAGTTGCGTCAGATCTGCTTAAACATTTAGATTGGCTTGTTCTGAGCGTGGATTCTCTGCATCCGGCCACAGCAATTCGCATCGGCAGAGTGAAAGCGCATAAACCGATTTCAAAACGCCAATATCTTGCTATCTGCGAAAGAGTGCATGCAGCGGGCGTCAACCTGAAAATCAACACAGTGGTCACAAGCGCCAACTACGGAGAAGATTTTAGAGATTTTATCATCAGAGCACGCCCGAGACGCTGGAAAATTATGCAAATGCTTCCGTTACAGGGCCCGGATTCTCGCTGTGCGGAAGATTTAATCGTCGATAGAGATGGATTTAACCATTTTGTTGCTAAAAACAGACGCGTGAGAAAAAATGGCATTGTTGTGGTCCCGGAAACATCTTCAGATATGGTCGGAAGCTATGCGATGATCGATCCGGCTGGCCGCTTTTACGATAACGTTTCAGGACAATACAAATATAGCCAGCCGATTCTGGATGTTGGCGTGAGAGCTGCCTTTTCTGAAGTCGATGTTTCAGCAGCGCGCTTTCTGGCGAGAGATGGACTTTATGATTTTTGGGGCGGATGGAAATGGAGACGCGTTGGCAGCTGGGCACAGTTAAGAGGCTATCTGAGAAATCGCTGGAGACCGTCTGCCGTTAGCTCTGCAACACCGCTTACAACAGCTGCCACAGCCGAACCGGTGTGGTTACAAGCAAGAATTTCAAGAAGAACAGATGTCCTGGAATCAGGACAGGCGACAGCTGTTATCTCAAGCACATAA
32 2609132705 2608642208 Phormidium sp. OSCR GFM (version 2) Bacteria Cyanobacteria unclassified Oscillatoriales Oscillatoriaceae Phormidium unclassified Y MVDFQKKTTPLVINWHLLEPCNFGCRYCYAQWNKSQLPLVFKERHLSEKLISQIASLQKKSPYIRLSFAGGEPLLDKDISHKIGFSYNLGIKNSIITNGSLISKNLSLDSVSKLSMLGISIDSASQKTNQKIGRSLNGKACNYENVIRFLDESRDINPNLRIKVNTVVNQFNWNEDLSELIMRIKPDKWKILRVLPATPKSKKEAIYYEQYEQFRVTHNHIPFAQFEDNSDMICSYLMIDPHGRFFYNSEEGYKYTESILKIGMETALKNVNFDYGKFSIRYRGSIV 287 Y ATGGTCGATTTTCAAAAGAAAACAACACCGTTAGTTATCAACTGGCATCTGCTTGAACCGTGCAATTTTGGCTGCAGATATTGTTATGCTCAATGGAACAAATCTCAGCTTCCGTTAGTGTTTAAAGAACGCCATCTGTCAGAAAAACTGATTTCACAAATCGCTAGCCTGCAGAAAAAATCACCGTACATCAGACTTAGCTTTGCCGGCGGAGAACCGTTACTGGATAAAGATATTTCTCATAAAATCGGCTTTTCATACAACCTTGGAATCAAAAACAGCATCATCACAAATGGCAGCTTAATCTCTAAAAACCTGTCTCTTGATTCAGTTAGCAAACTGTCTATGCTGGGAATTTCAATCGATTCTGCATCACAAAAAACAAACCAGAAAATTGGCAGATCACTGAATGGAAAAGCGTGCAACTACGAAAACGTTATCAGATTTTTAGATGAAAGCCGCGATATTAATCCGAACCTGCGCATCAAAGTGAACACAGTTGTGAACCAATTTAACTGGAACGAAGATCTTTCTGAACTGATCATGAGAATCAAACCGGATAAATGGAAAATTCTGCGCGTCCTTCCGGCAACACCGAAATCAAAGAAAGAAGCAATCTACTACGAACAATACGAACAGTTTAGAGTTACACATAACCATATTCCGTTTGCTCAGTTTGAAGATAACAGCGATATGATTTGTTCTTACCTTATGATCGATCCGCATGGCAGATTTTTCTATAACTCAGAAGAAGGATACAAATACACAGAAAGCATCCTTAAAATCGGAATGGAAACAGCCCTGAAAAACGTGAACTTTGATTACGGCAAATTTAGCATCAGATATAGAGGCTCAATCGTCTAA
33 2618018523 2617270916 Marinobacter zhejiangensis CGMCC 1.7061 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter Marinobacter zhejiangensis N MSTTSHPVPVVVNWHLTEACNFSCRYCYAHWERAESIKDLIREEHQVRALVTELGRFFRSDEAARKFGFQGVNPRLNIAGGEPLLFPSALQTAIHQARRLGIRASLITNGSFLTEELCESLAPGLDMLGVSIDSGNVDTNNLIGRVDSHGRLLNLDSLSRSFKVLRRCNPALAVKLNTVVNRLNWQDDLSNVVDLVEPEKWKILRALPLVDQSTSVTDIQFQAFVARHAAYRSIAVVEDSQDMQESYIMVDPQGRFFQNSPYSVGYQYSQPILEVGAEKAFEQVNFDPERFLSRYSKEAGDAT 303 Y ATGTCTACAACATCACATCCGGTCCCGGTTGTGGTCAATTGGCATCTTACAGAAGCGTGCAACTTTTCTTGCAGATATTGTTATGCCCATTGGGAACGCGCAGAATCAATCAAAGATCTGATCAGAGAAGAACATCAAGTTCGCGCTCTTGTGACAGAATTAGGCAGATTTTTCCGCAGCGATGAAGCAGCGAGAAAATTTGGCTTTCAGGGAGTTAATCCGCGCCTTAACATTGCAGGCGGAGAACCGCTGCTTTTTCCGTCTGCATTACAAACAGCGATCCATCAGGCTAGACGCTTAGGCATTAGAGCGAGCCTGATCACAAATGGATCTTTTCTGACAGAAGAACTTTGCGAATCATTAGCTCCGGGCCTGGATATGCTTGGAGTGAGCATTGATTCTGGCAATGTCGATACAAATAACTTAATCGGCAGAGTGGATTCACATGGCAGACTGCTGAACTTAGATTCACTGAGCAGATCTTTTAAAGTCCTGAGACGCTGTAATCCGGCACTGGCGGTTAAACTTAACACAGTTGTGAATCGCCTTAACTGGCAAGATGATTTAAGCAATGTCGTTGATCTGGTTGAACCGGAAAAATGGAAAATTCTGAGAGCCCTTCCGTTAGTCGATCAGTCAACAAGCGTTACAGATATTCAATTTCAGGCTTTTGTGGCCAGACATGCTGCCTATCGCTCTATTGCAGTGGTCGAAGATTCACAAGATATGCAGGAAAGCTATATCATGGTTGATCCGCAAGGCAGATTTTTCCAAAATTCACCGTATAGCGTCGGCTATCAATATTCACAGCCGATTCTGGAAGTTGGCGCAGAAAAAGCGTTTGAACAAGTGAACTTTGATCCGGAAAGATTTCTTTCTCGCTATTCAAAAGAAGCTGGAGATGCCACATAA
34 2619892213 2619618891 Cryomorphaceae bacterium EBPR_Bin_135 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Cryomorphaceae unclassified unclassified N MIPSVNFHLWQPCNMRCKFCYATFQDVKRSILPKGHLPKEQAIEVVRHLAAHGFQKITFAGGEPTLCPWLPELIRTAKEAGMTTMIVTNGSRLTDDYLSNLRPHLDWVALSIDSLDEQTNRAIGRANTGRTPIAAEGYFALVDRVKAHSFRLKLNTVVNRLNWKEDLSAFIRYAKPQRWKLLQALPIIGQNDAHIDALTVTESQFEAFVQRHAALADITRIVPETNAQVRGSYVMVDPAGRFFDNAEGTHRYSLPILEVGTRIAIQQMGYDEGKFEERGGVWDWQATTPKLNQATM 296 Y ATGATTCCGTCTGTCAATTTTCATCTTTGGCAACCGTGCAACATGAGATGCAAATTTTGTTATGCGACATTTCAGGATGTTAAACGCTCAATTCTTCCGAAAGGCCATTTACCGAAAGAACAAGCTATCGAAGTTGTGAGACATCTTGCAGCGCATGGATTTCAGAAAATCACATTTGCCGGCGGAGAACCGACATTATGTCCGTGGCTTCCGGAATTAATTCGCACAGCTAAAGAAGCCGGCATGACAACAATGATCGTTACAAATGGCTCAAGACTGACAGATGATTATCTGTCAAACCTTCGCCCGCATCTGGATTGGGTGGCTCTTTCAATCGATAGCTTAGATGAACAAACAAATAGAGCAATTGGCCGCGCGAACACAGGAAGAACACCGATCGCTGCCGAAGGCTATTTTGCTCTTGTTGATAGAGTGAAAGCCCATAGCTTTCGCTTAAAACTGAATACAGTCGTTAATCGCCTGAACTGGAAAGAAGATCTTTCTGCATTTATCAGATACGCGAAACCGCAACGCTGGAAACTGCTTCAGGCCTTACCGATTATCGGACAAAACGATGCTCATATCGATGCCCTGACAGTGACAGAATCACAATTTGAAGCATTTGTCCAGAGACATGCAGCGTTAGCGGATATTACACGCATCGTCCCGGAAACAAATGCACAAGTTAGAGGCAGCTATGTTATGGTCGATCCGGCAGGCAGATTTTTCGATAACGCGGAAGGAACACATCGCTATAGCTTACCGATTCTGGAAGTGGGAACAAGAATTGCGATCCAACAGATGGGCTATGATGAAGGAAAATTTGAAGAACGCGGCGGAGTTTGGGATTGGCAAGCTACAACACCGAAACTGAATCAGGCCACAATGTAA
36 2631333032 2630968323 Nitrincola sp. A-D6 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae Nitrincola Nitrincola sp. A-D6 N MSIPTQELVINFHMTEVCNYRCTYCYAKWNDNQFRNELHLQPGQVEQLLSSLADFFLSANPFKQEFPYQTVRINFAGGEPMVLGKQFINALDTAKALGFRTSIITNGHFLTPDMLQQSSSKLDMLGISFDTADELIAQSIGRADRRGHWLNANQLVRIANTYRQLNSKGQLKINTVVNPFNWYENMSSLIAQVQPDKWKLLRVLPVHDVRQVITSEQYQAYVDRHAPHVSNLIAEDNDAMWASYLMINPQGRFYQNNGPEKGHLLSDPILKAGVEQAFSQIPFDFHAFANRYTHGVKS 298 Y ATGTCTATTCCGACACAGGAATTAGTCATCAATTTTCACATGACAGAAGTTTGCAACTACAGATGCACATACTGTTACGCTAAATGGAACGATAACCAATTTCGCAATGAACTGCATCTTCAACCGGGACAGGTTGAACAACTGCTTTCAAGCCTTGCTGATTTCTTTCTGAGCGCCAATCCGTTTAAACAGGAATTTCCGTATCAAACAGTGAGAATTAACTTTGCAGGCGGAGAACCGATGGTCCTGGGCAAACAGTTTATCAATGCGCTTGATACAGCAAAAGCGTTAGGCTTTCGCACATCTATTATCACAAACGGACATTTTCTGACACCGGATATGCTTCAACAGTCTTCAAGCAAACTGGATATGCTGGGAATTAGCTTTGATACAGCTGATGAACTTATTGCCCAGTCTATCGGCAGAGCGGATAGACGCGGACATTGGTTAAATGCTAACCAACTGGTCAGAATTGCCAATACATATCGCCAGCTGAACTCAAAAGGCCAACTTAAAATCAACACAGTTGTGAACCCGTTTAACTGGTATGAAAACATGTCTTCACTTATTGCTCAAGTTCAGCCGGATAAATGGAAACTGCTGAGAGTCTTACCGGTTCATGATGTGCGCCAAGTCATCACAAGCGAACAATATCAAGCGTATGTTGATAGACATGCGCCGCATGTGTCAAATTTAATTGCCGAAGATAACGATGCAATGTGGGCGAGCTATCTGATGATCAATCCGCAGGGCCGCTTTTATCAAAATAACGGCCCGGAAAAAGGACATCTTTTATCTGATCCGATTCTTAAAGCAGGAGTTGAACAGGCGTTTTCACAAATCCCGTTTGATTTTCATGCTTTTGCCAACCGCTATACACATGGCGTGAAATCATAA
37 2632937107 2630968711 Shewanella sp. cp20 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Shewanellaceae Shewanella Shewanella sp. cp20 N MSKANQLVINYHITEKCNYDCHYCYAKWAKPNELHRNLDDMKLVLSRLADYFLSPNPIQQQLQYQSVRLNFAGGEPLLLKQLFIEALDYAIELGFKTSIITNGHLISDQFIIEHSHKLQLLGISYDSCHIGGQQKIGRITASGKVLSAARLQSIFHQVKRQSPTTELKINTVVNQFNVEEDFTALITALQPNKWKVLRVLPVFDSIQTIRDPQFEAFVARHQAVKQVMSVENNDSMTNSYLMLSPDGAFFQNGDQAQGYFKSRPLLTTPIDVALAETGFDAVKFAQRYVSATQVLGAA 298 Y ATGTCAAAAGCTAACCAGCTTGTTATCAACTACCATATCACAGAAAAATGCAACTACGATTGCCATTACTGTTACGCTAAATGGGCCAAACCGAACGAACTTCATAGAAACTTAGATGATATGAAACTTGTCTTATCACGCTTAGCTGATTATTTTCTGAGCCCGAATCCGATTCAACAGCAATTACAGTATCAAAGCGTTAGACTGAACTTTGCCGGCGGAGAACCGCTGCTTTTAAAACAGCTTTTTATTGAAGCACTGGATTATGCCATCGAACTTGGCTTTAAAACATCTATCATCACAAACGGACATTTAATCTCTGATCAGTTTATCATCGAACATTCACATAAACTGCAACTGCTTGGCATTAGCTATGATAGCTGTCATATCGGCGGACAGCAAAAAATTGGCAGAATCACAGCAAGCGGAAAAGTTCTGTCTGCAGCGAGACTTCAAAGCATTTTTCATCAGGTGAAACGCCAATCTCCGACAACAGAACTGAAAATCAACACAGTTGTGAACCAGTTTAACGTGGAAGAAGATTTTACAGCACTGATTACAGCGCTTCAACCGAACAAATGGAAAGTCTTACGCGTTCTGCCGGTGTTTGATAGCATTCAGACAATCAGAGATCCGCAATTTGAAGCATTTGTCGCGCGCCATCAGGCAGTCAAACAAGTTATGTCAGTGGAAAACAACGATTCTATGACAAATTCATACCTGATGCTTAGCCCGGATGGAGCATTTTTCCAAAACGGCGATCAGGCGCAAGGATATTTTAAATCAAGACCGCTGCTGACAACACCGATTGATGTGGCACTGGCGGAAACAGGCTTTGATGCTGTCAAATTTGCCCAGCGCTATGTCTCAGCGACACAAGTTCTTGGAGCTGCCTAA
38 2633985761 2630968972 Methanococcoides methylutens DSM 2657 Archaea Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanococcoides Methanococcoides methylutens Y MSGEFKDIEKGRQKLETLKAKGIEKINFAGGEPLLYKNLNQLLKMAKDIGFTVSIVTNAALLNEKNLREMSEYVDWVGISVDSVDEEIERQLGRGNGNHVEHVRKVCKLVHENGMKLKINSTITKINYSEDMKPFILSLAPDRWKVFQILHMKGQNDDALDLTLTSEEFNVFRSLNGGLMLNNGSYPTFESAEDMLNSYFIIGPDGNILLSKGNQRSTIPFESLENMELIDLVDEDKYLGRGGNYDWN 248 Y ATGAGCGGAGAATTTAAAGATATTGAAAAAGGCAGACAAAAACTGGAAACACTTAAAGCTAAAGGAATCGAAAAAATCAACTTTGCCGGCGGAGAACCGCTGCTTTACAAAAACCTTAACCAGCTGCTGAAAATGGCTAAAGATATTGGCTTTACAGTTTCTATCGTGACAAATGCAGCGCTTCTGAACGAGAAAAATCTGAGAGAAATGTCAGAATATGTCGATTGGGTTGGAATTTCAGTGGATAGCGTCGATGAAGAAATCGAAAGACAATTAGGCCGCGGAAATGGCAACCATGTTGAACATGTGCGCAAAGTCTGCAAACTTGTCCATGAAAACGGCATGAAACTGAAAATCAACAGCACAATCACAAAAATCAACTACTCTGAAGATATGAAACCGTTTATCTTAAGCCTGGCACCGGATAGATGGAAAGTTTTTCAAATTCTGCACATGAAAGGCCAGAATGATGATGCGCTTGATCTGACACTGACATCAGAAGAATTTAATGTGTTTCGCAGCTTAAACGGCGGACTTATGTTAAATAACGGATCTTATCCGACATTTGAATCAGCGGAAGATATGCTGAACTCTTACTTTATCATCGGACCGGATGGCAACATTCTGCTTAGCAAAGGAAATCAGAGATCTACAATCCCGTTTGAATCACTGGAAAACATGGAACTGATCGATCTGGTTGATGAAGATAAATATCTTGGCCGCGGCGGAAATTATGATTGGAACTAA
39 2634960437 2634166261 Burkholderiales-76 (UID4002) Bacteria Proteobacteria Betaproteobacteria Burkholderiales unclassified unclassified unclassified N MMHSLARKGRVRPQLLELVINWHITEACNYRCRYCYAHWAGAGRELVHNIPATTLMLENLWQYFDPKNLANPLRRQMDWQGVRLNLAGGEPLLYPERVQQILPVARDIGFTTSLITNGSRLSPERSQQLAPYLSMLGVSLDSGISTINRQIGRQSRHGQLLNIEQLEEAIGKAKHHNPKLQIKLNTVVNALNCHEDLSALIQRLAPHRWKVLRMLPVVTDELMVSDSDFQGFVARHQPLGDILCAEDNTDMVESYVMIDPLGRFFQNALGQFGYRYSRPIQEIGVDQAFAAVGMDSAKFCARYLGSLDEVAE 312 Y ATGATGCATTCACTGGCACGCAAAGGCAGAGTGCGCCCGCAACTGCTTGAACTTGTCATTAATTGGCATATCACAGAAGCATGCAACTATAGATGCCGCTATTGTTATGCCCATTGGGCTGGCGCCGGAAGAGAACTTGTCCATAATATCCCGGCGACAACACTGATGCTTGAAAACTTATGGCAGTATTTTGATCCGAAAAATCTGGCTAACCCGCTTAGACGCCAAATGGATTGGCAGGGAGTTCGCTTAAATCTGGCCGGCGGAGAACCGTTACTGTATCCGGAACGCGTTCAACAGATTCTGCCGGTGGCAAGAGATATTGGCTTTACAACAAGCCTGATTACAAATGGCTCAAGACTGTCACCGGAACGCAGCCAACAGCTTGCCCCGTATCTTTCTATGTTAGGCGTGAGCTTAGATTCTGGAATTTCAACAATCAACAGACAAATTGGCAGACAGTCAAGACATGGCCAACTTTTAAACATCGAACAGCTGGAAGAAGCAATTGGCAAAGCGAAACATCATAATCCGAAACTGCAAATCAAACTGAACACAGTTGTGAATGCTTTAAACTGCCATGAAGATCTGTCAGCACTTATTCAGAGACTGGCGCCGCATCGCTGGAAAGTCTTAAGAATGCTGCCGGTCGTTACAGATGAACTTATGGTTTCAGATAGCGATTTTCAAGGCTTTGTGGCACGCCATCAGCCGCTTGGAGATATTCTGTGTGCGGAAGATAACACAGATATGGTGGAATCTTATGTCATGATTGATCCGTTAGGCAGATTTTTCCAAAACGCACTGGGCCAGTTTGGATATAGATATTCACGCCCGATTCAAGAAATCGGCGTCGATCAGGCGTTTGCAGCGGTTGGAATGGATTCAGCTAAATTTTGTGCCAGATATTTAGGCTCACTGGATGAAGTTGCAGAATAA
40 2635314107 2634166348 Actinomadura echinospora DSM 43163 Bacteria Actinobacteria Actinobacteria Streptosporangiales Thermomonosporaceae Actinomadura Actinomadura echinospora N MGMPDSPRVPVETVNFHLWQPCNMSCRFCFATFRDVRRTVLPEGHLERADAERVVAGLAEAGFTKLTFAGGEPLLCPWLANLVTLAHRLGMVTSVVTNGSLLDEAALARFHGVLDWITVSVDSPRPQTLQLLGRTTAGRAIGGDEYLALFRRIRELGFRLKMNTVVTAGNWREDMADFVIEARPERWKVFQALPVAGQNSGRVDPLLTTLEQFEDFVSRHLRVEPAGIRLIPEDNDVMTGSYAMVDPAGRFFDSVDSRGYTYSEPILRVGVHRAISQVRISRVKFLVRGGLYDFTPEPEPVAGLLAADESGRM 313 Y ATGGGCATGCCGGATAGCCCGAGAGTTCCGGTGGAAACAGTCAATTTTCATCTTTGGCAACCGTGCAACATGTCTTGCAGATTTTGTTTTGCAACATTTCGCGATGTTAGACGCACAGTGTTACCGGAAGGACATCTGGAAAGAGCAGATGCGGAACGCGTTGTGGCTGGCTTAGCTGAAGCCGGATTTACAAAACTGACATTTGCCGGCGGAGAACCGCTGCTTTGTCCGTGGCTGGCTAATCTTGTGACATTAGCCCATAGATTAGGCATGGTCACATCAGTCGTTACAAACGGCTCACTGCTGGATGAAGCAGCGCTGGCGAGATTTCATGGCGTTCTTGATTGGATTACAGTCTCAGTTGATAGCCCGCGCCCGCAAACACTGCAGCTTTTAGGCAGAACAACAGCAGGACGCGCGATTGGCGGAGATGAATATCTTGCATTATTTAGACGCATCAGAGAACTGGGCTTTCGCCTTAAAATGAATACAGTGGTCACAGCGGGAAACTGGAGAGAAGATATGGCAGATTTTGTTATCGAAGCGAGACCGGAACGCTGGAAAGTGTTTCAAGCTCTGCCGGTCGCCGGCCAAAATTCAGGCAGAGTTGATCCGCTGCTTACAACACTTGAACAATTTGAAGATTTTGTTTCAAGACATCTTCGCGTGGAACCGGCTGGCATTAGATTAATCCCGGAAGATAACGATGTCATGACAGGCAGCTATGCAATGGTTGATCCGGCGGGCAGATTTTTCGATTCTGTTGATTCACGCGGCTATACATATAGCGAACCGATTTTAAGAGTGGGAGTCCATCGCGCTATTAGCCAAGTGAGAATCTCTCGCGTCAAATTTCTTGTTAGAGGCGGATTATATGATTTTACACCGGAACCTGAACCTGTTGCTGGATTACTGGCTGCAGATGAATCTGGACGCATGTAA
41 2637497700 2636415666 Photobacterium leiognathi mandapamensis KNH6 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium Photobacterium leiognathi N MSIQELVINFHMTELCNFRCEYCYATWETNNSQQELHHSNSNIEKLITKVSKYFLNDNPIKDKLNYQDVRINFAGGEPIMLGDRFVNAILLAKKLGLRTSLITNGHLLSSSMLSKISPHLDMLGISFDTADHLLAESIGRVNRKNDWLSPEKLEYIVNKYRSINPKGIVKINTVVNAFNWREDLTEVIGKITPNKWKLLRVLPVYSNKSAVDEDKFLLYIERHNSFSDIISIENNDDMWQSYLMLNPEGSFYQNTEPCKGIKQSPSILDISIHEALSFIDFNPNSFIKRYKK 292 Y ATGAGCATCCAAGAACTGGTGATCAACTTTCACATGACAGAACTGTGCAACTTTCGCTGCGAATACTGTTACGCTACATGGGAAACAAACAACTCACAACAGGAACTGCATCATTCAAATAGCAACATCGAAAAACTTATCACAAAAGTCAGCAAATATTTTCTGAACGATAACCCGATCAAAGATAAACTGAACTACCAGGATGTTAGAATTAACTTTGCCGGCGGAGAACCGATCATGCTGGGCGATCGCTTTGTGAATGCAATTCTGCTTGCGAAAAAACTTGGCTTAAGAACATCTCTTATCACAAACGGACATTTACTGTCAAGCTCTATGCTGTCAAAAATTAGCCCGCATTTAGATATGCTGGGCATCTCTTTTGATACAGCTGATCATCTTTTAGCCGAATCAATTGGAAGAGTTAATCGCAAAAACGATTGGCTTAGCCCGGAAAAATTAGAATACATCGTGAACAAATACCGCTCTATCAACCCGAAAGGCATTGTCAAAATCAACACAGTTGTGAACGCATTTAACTGGCGCGAAGATCTGACAGAAGTCATTGGAAAAATCACACCGAATAAATGGAAACTGCTTAGAGTCCTTCCGGTTTATTCTAACAAATCAGCGGTTGATGAAGATAAATTTCTGCTGTACATCGAAAGACATAATTCTTTTTCAGATATTATCTCTATCGAAAACAACGATGATATGTGGCAATCATATCTGATGCTTAATCCGGAAGGCAGCTTTTATCAAAACACAGAACCGTGTAAAGGAATTAAACAGAGCCCGTCTATCCTGGATATTAGCATCCATGAAGCTCTTTCTTTTATCGATTTTAACCCGAACTCATTTATCAAAAGATATAAAAAATAA
42 2639213731 2636416084 Planktothricoides sp. SR001 Bacteria Cyanobacteria unclassified Oscillatoriales Microcoleaceae Planktothricoides Planktothricoides sp. SR001 Y MQPISVNFHLCNNCNYHCDFCFATFRDVTEYLTLNEVKQILLLLHSAGTKKINFAGGEPTLHPHLGEILAESRRLGFVTSIVSNGARIPELLERYGSDIDWVALSVDSASEVIQKQLGRGNGDHVRNSIALFDLLHQKGIHTKLNSVITRLNFQEDMSEFVRRVRPERWKVFQVLPVDGQNDGSVEEMLISPQEFNQFVKFHQNILDKQLQPIAESNELMKDSYVMIDPQGRFYNATMGRYLYSSKILEVGVDAALDQVGWNVANFLARGGVYAWE 276 Y ATGCAACCGATTAGCGTTAACTTTCATCTTTGCAACAACTGTAACTACCATTGCGATTTTTGTTTTGCAACATTTAGAGATGTGACAGAATACCTGACACTGAACGAAGTCAAACAGATTCTGCTTTTACTGCATTCTGCTGGCACAAAGAAAATTAACTTTGCCGGCGGAGAACCGACACTTCATCCGCATTTAGGCGAAATTCTGGCAGAATCAAGACGCCTTGGATTTGTGACAAGCATTGTCTCTAATGGCGCGAGAATCCCGGAACTTTTAGAACGCTATGGAAGCGATATTGATTGGGTTGCACTGTCTGTGGATTCTGCGTCAGAAGTTATCCAAAAACAGCTTGGCAGAGGAAATGGCGATCATGTGCGCAACTCTATCGCGTTATTTGATCTGCTTCATCAAAAAGGCATTCATACAAAATTAAATTCAGTGATCACAAGACTGAACTTTCAGGAAGATATGAGCGAATTTGTCAGACGCGTTAGACCGGAACGCTGGAAAGTGTTTCAAGTCTTACCGGTTGATGGACAGAATGATGGCTCAGTCGAAGAAATGCTGATTAGCCCGCAAGAATTTAACCAGTTTGTTAAATTTCATCAAAACATTCTTGATAAACAATTACAGCCGATCGCTGAATCTAACGAACTGATGAAAGATAGCTATGTTATGATTGATCCGCAGGGAAGATTTTATAACGCCACAATGGGCCGCTATCTGTATTCAAGCAAAATCCTTGAAGTTGGAGTGGATGCAGCGCTTGATCAAGTCGGCTGGAATGTTGCTAACTTTTTAGCCCGCGGCGGAGTCTATGCTTGGGAATAA
43 2641427518 2639762959 Actinobacteria bacterium OK074 Bacteria Actinobacteria Actinobacteria unclassified unclassified unclassified Actinobacteria bacterium OK074 N MSRTDRKGKGKGRGSVESRGESGAEADLSGSGAEIVVNLHVTERCNYRCSFCFGKWGIRGADDPGADGGVDGVFGDPGRAFLLVSDVFRLLSVAGPSSSTNIPVRFNFAGGEPALLRTLPEVVEYCRSLGATTSFVSNGLMLRRFGIPWLARNFDLVGLSVDSAVESTNLRIGRATSAGRVFDIGEIVSAVRALRSVSDCPVKINTVVNRKNVYEDLSPALRDLAPEKWKVLQMLPVYDSTDEVTADEFQAFVHRHAEFADIMTVEDNDQMTASYLMIDPLGRFFWTTDSEGRSVADATGYVYSRPILEVGAAAAYRECEISWAKYARRY 330 Y ATGTCAAGAACAGATCGCAAAGGCAAAGGAAAAGGCAGAGGAAGCGTGGAATCTCGCGGCGAAAGCGGAGCAGAAGCGGATCTGTCAGGCAGCGGAGCGGAAATTGTTGTGAATCTTCATGTCACAGAAAGATGCAACTATCGCTGCAGCTTTTGTTTTGGCAAATGGGGAATCAGAGGCGCAGATGATCCGGGAGCGGATGGCGGAGTTGATGGAGTGTTTGGCGATCCGGGAAGAGCTTTTCTGCTTGTCTCAGATGTTTTTCGCTTACTGAGCGTCGCCGGCCCGTCAAGCTCTACAAACATCCCGGTTAGATTTAACTTTGCTGGCGGAGAACCGGCCCTTTTAAGAACACTTCCGGAAGTCGTTGAATATTGCCGCAGCTTAGGAGCTACAACATCATTTGTGAGCAATGGACTGATGCTTAGACGCTTTGGCATTCCGTGGTTAGCAAGAAACTTTGATTTAGTTGGCCTGTCTGTGGATTCAGCGGTCGAATCTACAAATCTGAGAATCGGCCGCGCAACATCAGCGGGACGCGTTTTTGATATTGGCGAAATCGTGTCTGCTGTCAGAGCCCTTCGCTCTGTTTCAGATTGTCCGGTGAAAATCAACACAGTGGTCAACAGAAAAAACGTGTACGAAGATCTGTCTCCGGCACTTCGCGATTTAGCGCCGGAAAAATGGAAAGTCCTGCAAATGCTTCCGGTTTATGATTCAACAGATGAAGTTACAGCTGATGAATTTCAGGCCTTTGTGCATAGACATGCAGAATTTGCGGATATTATGACAGTCGAAGATAACGATCAAATGACAGCATCATACCTGATGATCGATCCGCTGGGCAGATTTTTCTGGACAACAGATAGCGAAGGACGCTCTGTGGCTGATGCCACAGGCTATGTCTATAGCAGACCGATTCTGGAAGTTGGCGCAGCGGCTGCCTATCGCGAATGTGAAATCTCTTGGGCTAAATATGCCAGACGCTATTAA
44 2648875132 2648501185 Chondromyces crocatus Cm c5 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Chondromyces Chondromyces crocatus N MTKSKGRALLQMMPSTGWDGLDVEHEMVLLGRGSEGGRVHPLPRSVNYHLWKPCNMRCTFCFATFDDMGAGLLPKGHLLQDDAIAVVATLARRFEKITFAGGEPTLCPWLVELMEVAKRAGAVTMLVTNGSRLTPEYLGRLQGKLDWLTLSIDSASEKTHALLGRAVKGAAMATERYVEVVGNARALGMRIKVNTVVTTLNAGEKMSELLLALRPERWKILQALPVEGQNSGRIEPLVCSKEAFAAFVKRHRHLEGQGMVLVPEDHEAITGSYAMVDPAGRFFDDITGQHRYSKPILDVGLEQAWSQVGFLPQRFEARGGDYEF 324 Y ATGACAAAAAGCAAAGGCCGCGCGCTGCTTCAAATGATGCCGTCTACAGGCTGGGATGGACTGGATGTGGAACATGAAATGGTCTTACTGGGCAGAGGATCAGAAGGCGGACGCGTCCATCCGCTGCCTAGAAGCGTTAATTATCATCTTTGGAAACCGTGCAACATGAGATGCACATTTTGTTTTGCAACATTTGATGATATGGGCGCGGGACTTTTACCGAAAGGACATCTGCTTCAAGATGATGCAATTGCGGTTGTGGCTACATTAGCCAGACGCTTTGAAAAAATCACATTTGCTGGCGGAGAACCGACACTGTGTCCGTGGCTGGTTGAACTTATGGAAGTGGCCAAACGCGCTGGCGCCGTCACAATGTTAGTTACAAATGGAAGCCGCCTGACACCGGAATATTTAGGCAGACTGCAGGGAAAACTTGATTGGCTTACACTGTCTATCGATTCAGCAAGCGAAAAAACACATGCATTATTAGGAAGAGCTGTCAAAGGAGCAGCGATGGCGACAGAAAGATATGTTGAAGTCGTTGGCAATGCAAGAGCGTTAGGAATGCGCATCAAAGTGAATACAGTGGTCACAACACTGAACGCTGGCGAAAAAATGTCAGAACTTTTACTGGCCCTTAGACCGGAACGCTGGAAAATTCTTCAAGCACTGCCGGTCGAAGGCCAGAACTCTGGAAGAATCGAACCGCTTGTTTGCTCAAAAGAAGCCTTTGCTGCCTTTGTGAAAAGACATCGCCATCTTGAAGGCCAGGGAATGGTTTTAGTGCCGGAAGATCATGAAGCAATTACAGGAAGCTATGCTATGGTTGATCCGGCCGGCAGATTTTTCGATGATATTACAGGACAACATAGATACTCTAAACCGATCCTGGATGTGGGCCTTGAACAAGCATGGTCACAGGTCGGATTTTTACCGCAGAGATTTGAAGCGCGCGGCGGAGATTATGAATTTTAA
45 2649163162 2648501251 Moritella viscosa 06/09/139 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Moritellaceae Moritella Moritella viscosa Y MKTFTPLNELVINYHITEACNYACKFCYAKWNKPNELHSQNDQAEQLLQQLADFFIKNRDNLVQQQMPYRNVRLNLAGGEPLILKQRFAEIANKAVELGFNLSLITNGHYLTNEFIDNYASLFSMIGISFDSQFSLGRIQIDRVDRKGYSLTNRELLSKVARLRAVNPAIKIKINTVVNSVNQDENFNQLITQIAPYKWKVLRVLPVLNYNLTISKAQFGAFVTRHSKLQQLMSVEDNQSMINSYLMLDPKGRFYKNKMVDGDYQYSDCLLEGGVKAALIQVNTNWQRFAQRYQTESKSFFRKANKIKLLPDFLQIKSAGVATKLAEGIHPQSLGAKKIRCLPKLYRIRISYSYRVLIGLEDNHWTSLGLYSRQSFTTLLNRRRR 385 Y ATGAAAACATTTACACCGTTAAACGAACTGGTCATCAACTACCATATCACAGAAGCCTGCAACTACGCATGCAAATTTTGTTACGCTAAATGGAACAAACCGAACGAACTTCATTCACAGAACGATCAAGCTGAACAGCTGCTTCAACAGCTGGCCGATTTCTTTATCAAAAACAGAGATAACCTTGTTCAACAGCAAATGCCGTATAGAAATGTGCGCCTTAACTTAGCAGGCGGAGAACCGCTGATCCTTAAACAACGCTTTGCTGAAATTGCCAACAAAGCAGTTGAACTTGGCTTTAACTTAAGCCTGATCACAAACGGACATTACCTGACAAACGAATTTATCGATAACTATGCGAGCCTGTTTTCTATGATTGGCATCTCATTTGATAGCCAATTTTCTTTAGGACGCATTCAAATCGATAGAGTTGATCGCAAAGGCTATTCACTTACAAATCGCGAATTACTGAGCAAAGTCGCGAGATTACGCGCTGTTAACCCGGCCATCAAAATCAAAATCAACACAGTTGTGAATAGCGTGAACCAAGATGAAAATTTTAACCAACTGATCACACAGATTGCACCGTATAAATGGAAAGTCCTTAGAGTTTTACCGGTGCTGAACTACAACCTTACAATCTCTAAAGCACAATTTGGAGCGTTTGTCACACGCCATAGCAAACTTCAGCAACTGATGTCTGTTGAAGATAACCAGTCTATGATCAACTCATACCTTATGTTAGATCCGAAAGGCAGATTTTACAAAAACAAAATGGTGGATGGAGATTATCAGTATTCTGATTGCCTTTTAGAAGGCGGAGTGAAAGCAGCGTTAATCCAAGTCAATACAAACTGGCAGAGATTTGCTCAACGCTATCAGACAGAATCAAAATCATTTTTCAGAAAAGCCAACAAAATCAAACTGCTTCCGGATTTTCTGCAAATTAAATCTGCGGGCGTGGCTACAAAACTTGCAGAAGGCATCCATCCGCAGTCATTAGGAGCAAAGAAAATTAGATGTCTGCCGAAACTTTACAGAATCCGCATTTCTTACTCATATCGCGTCTTAATTGGCCTGGAAGATAATCATTGGACATCACTGGGACTTTATTCAAGACAGAGCTTTACAACATTACTGAACAGACGCAGACGCTAA
46 2649993803 2648501459 Photobacterium swingsii CAIM 1393 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium Photobacterium swingsii Y MSTKQLVINFHMTERCNYNCHYCYAKWEKPNEIHKQEGTVNQLLTNLSNYFLNPNPVQSELGYDSVRLNFAGGEPLLLKNKFIDAIDCAISLGFDISIITNGHLLTESFIKEQAHRMSMIGISYDSANQACQQQIGRNTRSGSVITPRQLSNISHLIRKHAPKTELKINTVVNQFNINEDLSSLISEVKPDKWKLLQVLGIYDEIPEISDSDFTNFVTRHQSLNSVMSIEDNASMRGSYLMIDPSGCFFQNENTHSGYLKSRSLLTTPVGIALKESGFNPKKFSARYK 288 Y ATGTCAACAAAACAGCTTGTCATCAACTTTCACATGACAGAAAGATGCAACTACAACTGCCATTACTGTTACGCAAAATGGGAAAAACCGAATGAAATCCATAAACAGGAAGGCACAGTTAACCAACTGCTTACAAACCTTAGCAACTATTTTCTGAACCCGAACCCGGTCCAATCTGAACTGGGATACGATTCAGTTAGACTGAACTTTGCTGGCGGAGAACCGTTACTGCTTAAAAACAAATTTATCGATGCTATCGATTGCGCCATTAGCTTAGGCTTTGATATTTCTATCATCACAAACGGACATTTACTGACAGAATCTTTTATCAAAGAACAGGCCCATCGCATGTCAATGATTGGCATCTCTTATGATTCAGCAAATCAAGCGTGTCAACAGCAAATTGGCAGAAACACACGCTCTGGATCAGTGATCACACCGAGACAGCTGAGCAACATTTCTCATCTTATCCGCAAACATGCACCGAAAACAGAACTGAAAATCAACACAGTTGTGAACCAGTTTAACATCAACGAAGATTTATCAAGCCTGATCTCTGAAGTTAAACCGGATAAATGGAAACTTTTACAAGTGCTGGGCATCTATGATGAAATTCCGGAAATCAGCGATTCTGATTTTACAAACTTTGTGACAAGACATCAGTCACTGAATAGCGTCATGTCTATTGAAGATAACGCGTCAATGCGCGGCAGCTATCTTATGATCGATCCGAGCGGATGCTTTTTCCAAAATGAAAACACACATTCTGGCTATCTGAAATCAAGAAGCCTGCTTACAACACCGGTTGGCATTGCACTGAAAGAATCAGGATTTAACCCGAAAAAATTTAGCGCGCGCTATAAATAA
47 2651203508 2648501771 Flammeovirga pacifica WPAGA1 Bacteria Bacteroidetes Cytophagia Cytophagales Flammeovirgaceae Flammeovirga Flammeovirga pacifica N MNKLVSGNNIIPSVNFHLWEPCNMRCKFCFAKFQDVKSTILPKGHLKKEQTLEIVEQLAEYGFQKITFVGGEPTLCPWISELIKKANLLGMTTMIVTNGSNLSKDFLVQNQSYLDWITLSIDSINSSTNKVVGRSTNSIHPDRIYYNQLIQTIYEYGYRLKINTVVTKANLNEDLNDFVNDAKPERWKVFQVLPVRGQNDNDIDELLISEKEFNEYVNRHSKNKFLITETNTDMTNTYVMVDPAGRFFNNQNGNYMYSDHILEVGVQKAFEEMGYNYDKFIDRKGIYQWK 290 Y ATGAATAAACTGGTCTCTGGCAACAACATCATCCCGTCAGTTAACTTTCATCTTTGGGAACCGTGCAACATGAGATGCAAATTTTGTTTTGCAAAATTTCAGGATGTGAAATCTACAATCCTGCCGAAAGGCCATCTGAAGAAAGAACAAACACTGGAAATTGTTGAACAGCTTGCAGAATACGGATTTCAAAAAATCACATTTGTGGGCGGAGAACCGACATTATGTCCGTGGATTTCAGAACTGATTAAGAAAGCAAATCTGCTTGGCATGACAACAATGATCGTGACAAACGGATCTAACCTGTCAAAAGATTTTCTGGTCCAAAACCAGAGCTATCTTGATTGGATCACACTGAGCATCGATTCTATCAATTCAAGCACAAACAAAGTTGTGGGCAGATCAACAAATAGCATTCATCCGGATCGCATCTACTACAACCAACTTATCCAGACAATCTACGAATACGGATATAGACTGAAAATCAACACAGTCGTTACAAAAGCAAACCTTAACGAAGATCTGAACGATTTTGTCAACGATGCGAAACCGGAAAGATGGAAAGTCTTTCAGGTTTTACCGGTGCGCGGCCAAAACGATAACGATATTGATGAACTGCTGATCAGCGAAAAAGAATTTAATGAATACGTTAACAGACATTCTAAAAACAAATTTCTGATCACAGAAACAAACACAGATATGACAAACACGTATGTTATGGTCGATCCGGCTGGCAGATTTTTCAACAACCAGAACGGAAACTACATGTATAGCGATCATATCCTTGAAGTTGGCGTGCAAAAAGCCTTTGAAGAAATGGGATACAACTACGATAAATTTATTGATCGCAAAGGAATCTATCAATGGAAATAA
48 2651490945 2648501840 Vibrio crassostreae J5-19 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio crassostreae N MSTENHLVINTTNETTSSQLNELVINWHITEACNYNCTYCFAKWGRPNELHQSLDAIEKLLDKLANYFIHDDPEIKRILGYQDVRLNFAGGEPMMLGSSFSTALVMAKQKGFKTSIITNGSYLLLRSRFELPLNTLDMVGISFDSQQHPVRRELGRIDRKGNSLNIDELKLAIQHLSRTQKGLKTKINTVVNALNWEEDFSQLISSISLDKWKVLQVMPTGRSDLLVSDEQFSSFVERHSGKGLPISAESNNTMTESYLMVDPNGRFYQNSKGMSGRYSYSERITDVGVETALNQINFNCNRFKSRYYAGNPSNIRGEVLA 321 Y ATGAGCACAGAAAACCATCTGGTGATCAACACAACAAACGAAACAACATCAAGCCAACTGAACGAACTGGTCATTAATTGGCATATCACAGAAGCATGCAACTACAACTGCACATACTGTTTTGCGAAATGGGGCAGACCGAACGAACTTCATCAGTCTTTAGATGCTATCGAAAAACTGCTTGATAAACTTGCCAACTACTTTATCCATGATGATCCGGAAATCAAAAGAATCCTGGGCTATCAAGATGTTCGCCTTAATTTTGCAGGCGGAGAACCGATGATGCTTGGATCTTCATTTTCAACAGCATTAGTGATGGCGAAACAGAAAGGCTTTAAAACATCAATCATCACAAACGGAAGCTATTTACTGCTTAGATCTCGCTTTGAACTTCCGCTGAACACATTAGATATGGTCGGAATTAGCTTTGATTCTCAACAGCATCCGGTTAGACGCGAACTGGGCAGAATCGATCGCAAAGGAAACAGCCTTAATATTGATGAACTGAAACTTGCAATCCAACATCTGTCAAGAACACAGAAAGGCCTGAAAACAAAAATCAACACAGTTGTGAACGCGCTTAATTGGGAAGAAGATTTTTCACAACTGATTAGCTCTATCAGCCTTGATAAATGGAAAGTGTTACAGGTCATGCCGACAGGAAGAAGCGATTTACTGGTTTCTGATGAACAATTTTCATCATTTGTGGAACGCCATTCAGGCAAAGGATTACCGATCTCAGCTGAAAGCAATAACACAATGACAGAAAGCTATCTGATGGTCGATCCGAACGGCAGATTTTACCAAAATTCTAAAGGCATGTCAGGAAGATATTCTTATTCAGAACGCATTACAGATGTCGGAGTTGAAACAGCCCTTAATCAGATCAACTTTAACTGTAACAGATTTAAATCTCGCTACTACGCTGGCAACCCGTCAAATATTCGCGGAGAAGTTTTAGCCTAA
49 2651585264 2648501863 Aeromonas caviae CECT 4221 Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Aeromonas Aeromonas caviae N MSLPVQIVINWHLTEACNYRCHYCYATWHKMTCQRELIRDPERTARFLAELYHFFRPENSANPLAGQFEWRSIRLNLAGGEPLLHAGKLPSIVTQARDLGFEVSLITNGSYLNDGLLNSLAPQLVWLGISIDSASAANNHAIGRVDYRGRQLDLNGLAANLDKARQLNPELRIKLNTVVNQINHHEDLGPLIVSLAPDKWKVLRMLPVVNQHLTVNDEQFAAFVSRHNPFSQILCIEDNLDMHESYLMVDPYGRFFQNTPLLPAGQAGREH 271 Y ATGTCATTACCGGTGCAGATTGTCATCAACTGGCATCTGACAGAAGCATGCAATTATAGATGCCATTATTGTTATGCGACATGGCATAAAATGACATGTCAAAGAGAACTGATCCGCGATCCGGAAAGAACAGCACGCTTTCTTGCGGAATTATATCATTTCTTTCGCCCGGAAAATTCTGCTAACCCGCTGGCCGGCCAGTTTGAATGGAGATCAATCCGCCTGAACCTTGCTGGCGGAGAACCGCTGCTTCATGCCGGCAAACTTCCGAGCATTGTGACACAAGCTAGAGATTTAGGATTTGAAGTCTCTCTGATCACAAATGGCTCATATCTGAACGATGGATTACTGAATAGCCTTGCCCCGCAGCTGGTTTGGCTTGGCATTAGCATCGATTCAGCAAGCGCAGCGAATAACCATGCGATTGGCAGAGTGGATTATAGAGGACGCCAATTAGATCTGAACGGACTGGCTGCCAATCTTGATAAAGCTAGACAGTTAAACCCGGAACTGCGCATCAAACTTAACACAGTTGTGAACCAAATCAACCATCATGAAGATTTAGGCCCGCTGATCGTTAGCCTTGCGCCGGATAAATGGAAAGTGCTTAGAATGTTACCGGTCGTTAACCAACATTTAACAGTCAATGATGAACAGTTTGCAGCGTTTGTTAGCCGCCATAACCCGTTTTCTCAAATCCTTTGCATCGAAGATAATTTAGATATGCATGAATCTTACCTGATGGTTGATCCGTATGGCAGATTTTTCCAAAATACACCGCTTTTACCTGCTGGACAGGCTGGAAGAGAACATTAA
50 2661858798 2660238307 Methanogenic archaeon ISO4-H5 Archaea Euryarchaeota Thermoplasmata unclassified unclassified unclassified methanogenic archaeon ISO4-H5 N MNTETTSVRKFRSANIHIYGKCNYRCEHCFDRCLTKNYMRPSDWVDTLTFLKEYGVEKINLAGGEPTLYPFLDQMCYLVKGMGFKLSIVSNGSLITEDWMARMEGVVDWIGLSIDSIDEADEIQIGRGRGGHLENIVQVADMAHRHGIKVKLNITVVRRSWMKDFRPFIEKVRPERVKCFRALTLKNANDDVPDTWSITDKQFEDFRRRHEDIGCIVFEDNEDMVSSYVMFDPMGRWMVDSGYEKRFISFEVLRREGLDREVDVEKYFGRNAVYEW 276 Y ATGAATACAGAAACAACAAGCGTGCGCAAATTTAGATCTGCTAACATCCATATCTACGGCAAATGCAACTATCGCTGCGAACATTGTTTTGATAGATGTCTTACAAAAAACTACATGAGACCGAGCGATTGGGTCGATACACTGACATTTCTGAAAGAATACGGAGTTGAAAAAATCAACCTGGCCGGCGGAGAACCGACACTTTACCCGTTTTTAGATCAAATGTGCTACCTGGTTAAAGGCATGGGATTTAAACTGTCTATTGTGTCAAACGGCAGCCTTATCACAGAAGATTGGATGGCACGCATGGAAGGCGTTGTGGATTGGATTGGACTTTCTATTGATTCAATCGATGAAGCGGATGAAATTCAAATCGGCCGCGGAAGAGGCGGACATTTAGAAAATATCGTGCAGGTCGCAGATATGGCGCATAGACATGGAATTAAAGTCAAACTGAACATCACAGTCGTTAGACGCTCTTGGATGAAAGATTTTCGCCCGTTTATTGAAAAAGTGCGCCCGGAAAGAGTCAAATGCTTTAGAGCTCTGACACTTAAAAATGCCAACGATGATGTTCCGGATACATGGTCAATCACAGATAAACAGTTTGAAGATTTTAGACGCAGACATGAAGATATTGGCTGTATCGTGTTTGAAGATAATGAAGATATGGTCTCAAGCTATGTTATGTTTGATCCGATGGGCCGCTGGATGGTGGATTCAGGATACGAAAAACGCTTTATTAGCTTTGAAGTCCTGCGCAGAGAAGGCCTTGATCGCGAAGTTGATGTGGAAAAATACTTTGGAAGAAACGCTGTTTACGAATGGTAA
51 2665950188 2663763173 Legionella santicrucis SC-63-C7 Bacteria Proteobacteria Gammaproteobacteria Legionellales Legionellaceae Legionella Legionella santicrucis N MERYEFSEILVNYHLNEVCNYNCRYCFSKWEIPEKLKREQDITARLAVLKELQRFFYRTDNNNPMRELMSWNKVRINFSGGEPMLIHKIDEIIKEAHQLGFKPSLVTNGSLLNTNNLLKLAPYLVKLGISLDSPNLETLQKIGRMTKSGKTYSTQSILASVKRAREINSNIIIKINTIVNVLNKDEDFSSLIDSIQPDEWSAIQVLDFFDKDSAISIEEFNRFIDFHRQRYPHLLFSENNEDYSASFLMISPENNFFSNRGQFEGKGYKHSEPIHIVGAEKALAQIDFDYAKYIQRHKGKHILYDLPIAHGYT 313 Y ATGGAAAGATACGAATTTTCTGAAATCCTGGTCAACTACCATCTTAACGAAGTTTGCAACTACAACTGCCGCTACTGTTTTTCAAAATGGGAAATCCCGGAAAAACTGAAAAGAGAACAAGATATTACAGCTCGCCTGGCCGTTCTTAAAGAACTGCAGAGATTTTTCTATCGCACAGATAACAACAACCCGATGAGAGAACTGATGAGCTGGAACAAAGTGCGCATTAATTTTTCTGGCGGAGAACCGATGCTGATCCATAAAATCGATGAAATCATCAAAGAAGCTCATCAATTAGGCTTTAAACCGAGCCTGGTGACAAACGGATCTCTGCTTAACACAAACAATTTACTGAAACTGGCCCCGTATCTGGTCAAACTTGGCATCAGCCTTGATTCTCCGAATTTAGAAACACTGCAAAAAATTGGCAGAATGACAAAATCAGGAAAAACATACTCAACACAGAGCATCCTGGCATCAGTCAAAAGAGCGCGCGAAATTAACAGCAACATCATCATCAAAATCAACACAATCGTTAACGTGCTTAACAAAGATGAAGATTTTTCATCACTGATCGATTCAATTCAACCGGATGAATGGAGCGCTATCCAGGTTCTGGATTTCTTTGATAAAGATTCTGCCATCTCAATCGAAGAATTTAACCGCTTTATCGATTTTCATAGACAACGCTATCCGCATCTTTTATTTAGCGAAAACAACGAAGATTACTCTGCATCATTTCTTATGATTTCTCCGGAAAACAATTTCTTTTCAAACAGAGGCCAGTTTGAAGGCAAAGGATATAAACATTCTGAACCGATCCATATTGTTGGAGCAGAAAAAGCATTAGCGCAAATCGATTTTGATTACGCGAAATACATCCAGCGCCATAAAGGCAAACATATCCTTTACGATTTACCGATTGCGCATGGATATACATAA
52 2674184607 2671180787 Pseudomonas stutzeri C2 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas stutzeri N MSKDNSIFPISPVKVAPAHVDALTINWHVTEACNYRCQYCYAKWTDHPCPRELFHDRDRSQHLLAELFRYFQPTNTSNPLRDALSWRTLRLNLAGGEPSILGERLLDITRAAKQVGFEVSLISNASRLTSDVLKQLAPQLTYLGVSLDSTHSGTNLAIGRVERSGQRLSLNELTANLDFAREVNPALKIKINTVVNALNADEDLSGLITRVRPERWKVLRMLPIVDATLAVSDVAFAAFVERHSAFRSIQCVEDNSDMCESYLMVDPYGRFFQNQAAGKGDYLYSRPILPSGAAAAFSEMRFNPAGFRSRYTTAQGEAS 319 Y ATGTCAAAAGATAATAGCATTTTTCCGATCTCACCGGTCAAAGTTGCTCCGGCCCATGTCGATGCACTTACAATTAATTGGCATGTTACAGAAGCGTGCAACTACAGATGCCAATACTGTTACGCTAAATGGACAGATCATCCGTGTCCGCGCGAATTATTTCATGATAGAGATCGCAGCCAACATCTGCTTGCCGAACTGTTTAGATATTTTCAGCCGACAAATACAAGCAACCCGTTACGCGATGCGCTGTCTTGGAGAACACTTCGCTTAAACCTGGCTGGCGGAGAACCGAGCATTCTGGGAGAAAGACTGCTGGATATTACACGCGCAGCGAAACAAGTTGGCTTTGAAGTGTCATTAATTAGCAATGCATCAAGACTGACATCTGATGTTCTGAAACAACTTGCACCGCAGTTAACATATCTGGGAGTGTCACTTGATAGCACACATTCTGGCACAAACTTAGCGATCGGAAGAGTCGAACGCAGCGGCCAGAGACTTTCTTTAAACGAACTTACAGCTAACTTAGATTTTGCCCGCGAAGTTAATCCGGCTCTGAAAATCAAAATCAACACAGTTGTGAACGCACTTAACGCGGATGAAGATCTTTCTGGCTTAATTACAAGAGTCCGCCCGGAAAGATGGAAAGTTCTGCGCATGCTTCCGATCGTGGATGCTACACTTGCCGTGTCAGATGTCGCCTTTGCTGCCTTTGTGGAAAGACATTCTGCATTTCGCTCAATTCAATGCGTCGAAGATAACTCAGATATGTGTGAAAGCTACCTGATGGTTGATCCGTATGGCAGATTTTTCCAAAACCAGGCAGCGGGCAAAGGAGATTATCTGTATTCAAGACCGATTCTTCCTTCAGGAGCTGCCGCAGCGTTTTCTGAAATGCGCTTTAATCCGGCTGGATTTAGATCACGCTATACAACAGCACAGGGCGAAGCGAGCTAA
53 2684813341 2684622550 Aquabacterium parvum B6 Bacteria Proteobacteria Betaproteobacteria Burkholderiales unclassified Aquabacterium Aquabacterium parvum N VNHPSTVNIAHLKELVVNWHVTEACNFKCQYCYAEWQKGEHLREVIHRPEARTRLLAELAQFFAPGNASNPLTRDLRWNSIRLNIAGGEPLLYDREVLSIAQQARDLGFAVSVITNGSLLSPELTKELAPLISMLGVSVDSISSDTNKLIGRVSRGGKTLAIEQLTEIFKNARQENPSISIKINTVVNEANRHEGMTDAVQSFGPDKWKIFRMLPITTDRLMVTSDDYKKFIDRHEGHGLPMSVEDNSDMIQSYIMVDPQGRFFQNQPESCLYQYSRPIHEVGAGAAFNEVKFSMNAYTRRYLVGGGA 308 Y ATGAATCATCCGTCAACAGTTAACATCGCTCATCTGAAAGAACTTGTTGTGAATTGGCATGTGACAGAAGCATGCAACTTTAAATGCCAATATTGTTATGCCGAATGGCAGAAAGGAGAACATTTAAGAGAAGTCATTCATCGCCCGGAAGCTAGAACACGCCTGCTTGCTGAACTGGCCCAATTTTTCGCTCCGGGCAATGCCAGCAACCCGCTTACAAGAGATTTACGCTGGAATAGCATCAGACTGAACATTGCCGGCGGAGAACCGTTACTGTATGATAGAGAAGTTCTTTCAATCGCACAACAGGCGCGCGATTTAGGATTTGCAGTGAGCGTCATTACAAATGGCAGCCTTTTATCTCCGGAACTGACAAAAGAATTAGCGCCGCTGATTTCTATGCTTGGAGTTTCAGTGGATAGCATCTCAAGCGATACAAACAAACTTATTGGCAGAGTGTCACGCGGCGGAAAAACACTGGCAATCGAACAACTTACAGAAATCTTTAAAAACGCGAGACAGGAAAACCCGTCTATTTCAATCAAAATCAACACAGTCGTTAATGAAGCAAACCGCCATGAAGGAATGACAGATGCGGTCCAATCATTTGGCCCGGATAAATGGAAAATCTTTAGAATGCTGCCGATCACAACAGATCGCCTGATGGTTACATCTGATGATTACAAAAAATTTATCGATAGACATGAAGGACATGGCTTACCGATGTCTGTTGAAGATAACTCAGATATGATCCAAAGCTACATCATGGTTGATCCGCAAGGCAGATTTTTCCAAAACCAGCCGGAATCTTGTCTTTATCAGTATTCACGCCCGATTCATGAAGTGGGAGCGGGCGCAGCGTTTAATGAAGTCAAATTTAGCATGAACGCTTATACAAGACGCTATTTAGTTGGCGGAGGCGCCTAA
54 2693697599 2693429564 Vibrio metoecus YB4D01 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio metoecus N MTTIQPSKTKELVINWHLTEVCNYGCIYCFAKWGRPNELHRFSQEVATLLDNLADYFIKGTPTLKDELGYESVRLNFAGGEPMVLGNTFITALTLAKQKGFKTSIITNGHYLVNRELALPENTLDMIGVSFDSQNLDTRRKIGRIDRKGNSFGTEELKQVLANLTQSQRGIKTKINTVVNRLNLDEDFSELIMELKPYKWKILHVMSNGNDELLISKRQFDSFVERHSRLGLPIFSESNSTMTESYLMIDPQGRFYQNSANKVGYTFSESINLCGVENALTQIEFNPRTFASRYRKADIDVVEL 304 Y ATGACAACAATTCAACCGTCAAAAACAAAAGAACTGGTGATCAATTGGCATCTTACAGAAGTCTGCAACTATGGCTGCATTTATTGTTTTGCTAAATGGGGAAGACCGAACGAACTGCATCGCTTTAGCCAGGAAGTCGCAACACTGCTTGATAACCTTGCGGATTACTTTATCAAAGGCACACCGACATTAAAAGATGAACTGGGATATGAATCAGTTAGACTTAATTTTGCAGGCGGAGAACCGATGGTGTTAGGAAACACATTTATTACAGCACTTACACTGGCGAAACAAAAAGGCTTTAAAACAAGCATCATCACAAACGGACATTATCTGGTGAACCGCGAACTGGCGCTTCCGGAAAATACACTTGATATGATCGGAGTCTCTTTTGATTCACAAAACTTAGATACAAGACGCAAAATTGGCAGAATCGATCGCAAAGGCAATTCATTTGGAACAGAAGAACTTAAACAGGTTCTGGCAAACCTTACACAAAGCCAGAGAGGCATCAAAACAAAAATCAACACAGTTGTGAACCGCCTGAACCTGGATGAAGATTTTTCTGAACTTATCATGGAACTGAAACCGTACAAATGGAAAATCCTGCATGTTATGTCAAACGGAAACGATGAACTGCTGATTAGCAAAAGACAATTTGATTCTTTTGTGGAAAGACATTCACGCCTTGGCTTACCGATTTTTAGCGAAAGCAACTCTACAATGACAGAAAGCTATCTGATGATCGATCCGCAAGGCAGATTTTACCAAAATTCAGCTAACAAAGTCGGATACACATTTTCAGAAAGCATCAACCTGTGTGGCGTTGAAAACGCCCTGACACAGATCGAATTTAATCCGCGCACATTTGCATCAAGATATAGAAAAGCCGATATTGATGTCGTTGAATTATAA
55 2694112273 2693429660 Helicobacter bilis Missouri Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Helicobacteraceae Helicobacter Helicobacter bilis N MDTITLNWHITEQCNYKCHYCFAKYTKCNMQEIHRNKENITTLLTKLYNSIGAIYDTDFLRLNIAGGEPLLSKNLGFIVESAYKLGFKISIITNASLLTKEFIESYIALFTMFGISVDSINTETNKHIGRCSKTHNNNTAYLKDTINFLKAKNKDMQIKINTVVNRYNYKENMSEFIESIKPDKWKIFQALSINADKNYCNKTQYKYFLRTHKHLKSCITDEDKDLMTNSYIMIDPYGRFYQNTKGNNRGYTYSPILLDLADKDIANYLKVDMIKYKKDVI 281 Y ATGGATACAATTACATTAAACTGGCATATCACAGAACAATGCAATTATAAATGCCATTACTGTTTTGCAAAATATACAAAATGTAACATGCAGGAAATCCATAGAAACAAAGAAAACATCACAACACTGCTTACAAAACTGTACAACTCTATTGGCGCTATCTATGATACAGATTTTCTGCGCCTGAACATTGCCGGCGGAGAACCGTTACTGTCAAAAAATCTTGGCTTTATTGTGGAAAGCGCATACAAACTGGGATTTAAAATCAGCATCATCACAAACGCGTCTCTTCTGACAAAAGAATTTATCGAAAGCTACATCGCTCTTTTTACAATGTTTGGCATTTCAGTTGATAGCATCAACACAGAAACAAACAAACATATCGGAAGATGCTCTAAAACACATAACAACAACACAGCATACCTGAAAGATACAATCAACTTTCTTAAAGCGAAAAACAAAGATATGCAAATCAAAATCAACACAGTTGTGAACCGCTACAACTACAAAGAAAACATGTCTGAATTTATCGAATCAATCAAACCGGATAAATGGAAAATCTTTCAAGCACTGTCAATCAACGCGGATAAAAACTACTGCAACAAAACACAGTACAAATATTTTCTTAGAACACATAAACATTTAAAATCTTGTATTACAGATGAAGATAAAGATCTTATGACAAACTCATACATCATGATCGATCCGTATGGAAGATTTTACCAGAACACAAAAGGCAACAATCGCGGATATACATATAGCCCGATCCTGCTTGATCTGGCTGATAAAGATATTGCCAACTACCTGAAAGTCGATATGATTAAATATAAGAAAGATGTTATCTAA
56 2701115162 2700988679 Fibrobacter sp. UWH6 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter sp. UWH6 N MNIKTIVINWHITESCNYKCKYCFAKWNRVKEIWTNPDNVRKILENLKSIRLEDCLFTQKRLNIVGGEPILQQERLWQVIKMAHEMDFEISIITNGSHLEYICPFVHLISQVGVSIDSFDHKTNVRIGRECNGKTISFQQLKEKLEELRTLNPGLNIKINTVVNEYNFNEILVDRMAELKIDKWKILRQLPFDGKEGISDFKFNTFLFNNLKEEKMPKKDPLSNFLAAFSAPQKQNNVIFVEDNDVMTESYLMIAPDGRLFQNGHKEYEYSHPLTEISIDEALEEINFDQEKFNNRYENYATEEAKYRMEEFFLMNEYEDVSFDCCCPFGDKD 333 Y ATGAATATCAAAACAATTGTCATCAACTGGCATATTACAGAAAGCTGTAACTACAAATGTAAATACTGCTTTGCTAAATGGAACCGCGTTAAAGAAATTTGGACAAATCCGGATAACGTGAGAAAAATTCTGGAAAACCTTAAATCTATCCGCCTTGAAGATTGCCTGTTTACACAGAAAAGACTTAACATCGTCGGCGGAGAACCGATCCTTCAACAGGAAAGATTATGGCAGGTTATCAAAATGGCCCATGAAATGGATTTTGAAATTTCTATCATCACAAATGGCTCACATCTTGAATATATTTGTCCGTTTGTGCATTTAATCTCTCAAGTCGGAGTTTCAATCGATAGCTTTGATCATAAAACAAACGTCAGAATCGGCCGCGAATGCAACGGAAAAACAATTTCATTTCAACAGCTGAAAGAAAAATTAGAAGAACTGCGCACACTTAATCCGGGCCTGAACATCAAAATCAACACAGTTGTGAACGAATACAACTTTAACGAAATCCTGGTTGATCGCATGGCAGAACTTAAAATCGATAAATGGAAAATCCTGAGACAGCTGCCGTTTGATGGCAAAGAAGGAATTTCAGATTTTAAATTTAACACATTTCTGTTTAACAACCTTAAAGAAGAAAAAATGCCGAAGAAAGATCCGCTGAGCAACTTTCTGGCAGCGTTTTCTGCACCGCAAAAACAGAATAACGTGATCTTTGTCGAAGATAACGATGTGATGACAGAAAGCTACCTGATGATTGCGCCGGATGGCAGACTGTTTCAAAACGGACATAAAGAATACGAATACTCACATCCGCTGACAGAAATTAGCATCGATGAAGCACTTGAAGAAATCAACTTTGATCAGGAAAAATTTAACAACCGCTACGAAAACTACGCTACAGAAGAAGCCAAATACAGAATGGAAGAATTTTTCCTGATGAACGAATACGAAGATGTTTCTTTTGATTGCTGTTGCCCGTTTGGAGATAAAGATTAA
57 2718503187 2718217692 Flavobacterium lacus CGMCC 1.12504 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium Flavobacterium lacus N MITTINFHVIKACNYKCKFCYATFNDISSKGISKENQFEIIKELANSRMFKKINFAGGEPTLVPYIDEFIIYAKNLGFETSIVTNASKINYDWIKNISPYLDILALSVDSLNEISNLKSGRNQNGKTVSKDKLIELAQACRQYGVNLKINTVVSQFNKDECLTNLINELNPFRWKILQATKVEGQNEKQFDLTMISSTEFYNFCSKNKNKLNFDIKTIEEPENLIQGSYLMVDMLGRFYDSSKGSHSYSEPILKIGLKSAINQVSVNSNKFVKREGNYTIKLNQVA 286 Y ATGATCACAACAATCAACTTTCATGTTATCAAAGCATGCAACTACAAATGCAAATTTTGTTACGCCACATTTAACGATATTTCAAGCAAAGGCATCTCTAAAGAAAACCAATTTGAAATCATCAAAGAATTAGCAAACTCAAGAATGTTTAAGAAAATTAATTTTGCGGGCGGAGAACCGACACTTGTCCCGTACATCGATGAATTTATCATCTACGCTAAAAACCTGGGATTTGAAACATCAATCGTTACAAACGCCAGCAAAATCAACTACGATTGGATCAAAAACATCTCTCCGTATCTGGATATTCTGGCTCTTTCAGTGGATAGCCTTAACGAAATCAGCAACCTGAAATCTGGCAGAAATCAGAACGGAAAAACAGTTTCAAAAGATAAACTGATCGAACTGGCACAAGCGTGCCGCCAGTATGGCGTGAACCTGAAAATCAATACAGTTGTGAGCCAATTTAACAAAGATGAATGTCTTACAAACCTGATCAACGAACTGAACCCGTTTCGCTGGAAAATCCTTCAGGCAACAAAAGTGGAAGGACAAAACGAAAAACAGTTTGATCTTACAATGATTTCTTCAACAGAATTTTACAACTTTTGTAGCAAAAACAAAAACAAACTGAATTTTGATATTAAAACAATCGAAGAACCGGAAAATCTGATTCAAGGCTCTTATTTAATGGTCGATATGCTGGGCAGATTTTATGATAGCTCTAAAGGATCACATAGCTATTCTGAACCGATTCTGAAAATCGGCCTTAAATCAGCAATCAACCAAGTCTCTGTTAATTCAAACAAATTTGTGAAACGCGAAGGAAACTATACAATCAAACTTAATCAGGTCGCGTAA
58 2721736750 2718218507 Pseudoalteromonas ulvae TC14 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas Pseudoalteromonas ulvae N MEIHMTSIQELVINFHMTEACNYRCGYCYATWQDNSSDTELHHASENIHSLLLKLADYFFADNSLRQTLKYQSVRINFAGGEPVMLGSRFIDAILFAKQLGFATSIITNGHLLSTVMLKKIAVHLDMLGISFDTGDYLIAQSIGRVDRKKSWLSPARVLDVVTQYRALNPKGKVKINTVVNAYNWRENLTQTITQLKPDKWKLLRVLPVYSKEMTVLQWQYESYVHKHQVHADVIVVEDNDDMWQSYLMINPEGRFYQNAGACKGLTYSPPVLEVGVEEALKYINFNAEAFSKRYQSIHLPLAMSAGA 308 Y ATGGAAATTCACATGACATCAATCCAAGAACTGGTGATCAACTTTCACATGACAGAAGCATGCAACTATAGATGCGGCTATTGTTATGCCACATGGCAGGATAATTCAAGCGATACAGAATTACATCATGCAAGCGAAAACATCCATTCTCTGCTTTTAAAACTGGCAGATTATTTCTTTGCGGATAACTCTCTGAGACAAACACTGAAATACCAGTCAGTGCGCATTAACTTTGCTGGCGGAGAACCGGTCATGCTGGGAAGCCGCTTTATTGATGCTATCCTTTTTGCCAAACAATTAGGCTTTGCCACAAGCATTATCACAAATGGACATCTGCTTTCTACAGTTATGCTGAAGAAAATTGCTGTGCATCTGGATATGCTTGGCATTTCATTTGATACAGGAGATTACCTGATCGCCCAAAGCATCGGCAGAGTTGATCGCAAAAAATCTTGGCTGTCACCGGCAAGAGTGCTTGATGTTGTGACACAGTATCGCGCGCTTAATCCGAAAGGAAAAGTCAAAATCAACACAGTCGTTAACGCTTACAACTGGAGAGAAAACCTGACACAAACAATCACACAGCTGAAACCGGATAAATGGAAACTGCTGCGCGTCCTGCCGGTTTACTCTAAAGAAATGACAGTCCTTCAATGGCAGTATGAAAGCTATGTTCATAAACATCAAGTGCATGCGGATGTCATCGTGGTCGAAGATAACGATGATATGTGGCAAAGCTATCTGATGATTAATCCGGAAGGCAGATTTTATCAGAACGCAGGCGCGTGTAAAGGACTTACATATTCTCCGCCGGTTTTAGAAGTTGGAGTGGAAGAAGCACTTAAATACATCAACTTTAACGCTGAAGCCTTTTCAAAACGCTATCAGAGCATTCATCTTCCGTTAGCGATGTCTGCAGGCGCGTAA
59 2728147792 2724679805 Shimia sagamensis DSM 29734 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Shimia Shimia sagamensis N LDELVINWHVNEACNYRCNYCYAKWTDQRNFRDLALDGDKTTALLAELWQYFNPSNKDNALRSELNWKSVRLNFAGGEPLLNTDALHRAMRIAHALGFNVSIITNGSRLNDATLLKIAPYLQWLGLSVDAIDATTNTKIGRIDRRNQLLNLKELVSSINKARSLSPTMKLKINTVVSDANETADLSPLIAEFKPEKWKVLRVLPMVSNSGTVSDKSFTRFVDRHAGFQSIMQAEDNFDMLGTYLMIDPKGRFFQNHTRAKEAGYDYSAPILDTGAKNALESIGFSAFGFAQRYQH 295 Y ATGGATGAACTTGTGATTAACTGGCATGTCAATGAAGCATGCAACTACAGATGCAACTACTGTTACGCGAAATGGACAGATCAAAGAAATTTTCGCGATTTAGCTCTGGATGGCGATAAAACAACAGCTCTGCTTGCCGAATTATGGCAGTACTTTAACCCGTCAAACAAAGATAACGCTTTAAGAAGCGAACTGAACTGGAAATCTGTGCGCCTTAATTTTGCCGGCGGAGAACCGTTACTGAACACAGATGCTCTTCATAGAGCCATGCGCATCGCACATGCGTTAGGCTTTAATGTCTCAATTATCACAAACGGAAGCCGCCTGAATGATGCAACACTTTTAAAAATTGCGCCGTATCTTCAATGGCTTGGCTTAAGCGTCGATGCAATCGATGCGACAACAAACACAAAAATTGGAAGAATCGATAGACGCAACCAGCTGCTTAACCTGAAAGAACTGGTTTCAAGCATCAATAAAGCACGCTCTCTGTCACCGACAATGAAACTTAAAATCAACACAGTTGTGTCTGATGCAAATGAAACAGCGGATCTTTCACCGTTAATTGCGGAATTTAAACCGGAAAAATGGAAAGTCCTGAGAGTTCTTCCGATGGTTAGCAACTCTGGCACAGTGTCAGATAAATCATTTACAAGATTTGTTGATCGCCATGCTGGATTTCAAAGCATTATGCAGGCCGAAGATAACTTTGATATGCTTGGCACATACCTGATGATCGATCCGAAAGGCAGATTTTTCCAAAATCATACACGCGCTAAAGAAGCCGGCTATGATTATTCTGCACCGATTTTAGATACAGGAGCAAAAAATGCGCTGGAATCTATCGGCTTTTCAGCTTTTGGATTTGCCCAACGCTATCAACATTAA
60 2733913669 2731957952 Lacinutrix sp. JCM 13824 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Lacinutrix Lacinutrix mariniflava Fused MKTKITLSGFAGTGKSTVGKRIQEQLNFEFVSVGNYSRQYAMEKYGLTINEFQEQCKAQPELDNEIDEKFRLECNSKENLVIDYRLGFHFIKNAFHVLLKVSDESASKRIRLANRSDEVTSTKAIQQRNQKMRDRFQDNYGVDFTNDKNYDLVIDTDDLTANEVADLIIEHYQKSNAVSKIPSVNFHLWQPCNMRCKFCFATFLDVKQEYVPKGHLPEDEALEVVRKIAAAGFEKITFAGGEPLLCKWLPKLIKTAKQLGMTTMIVTNGSKLTDSFLKENKAYLDWIAVSIDSLDEENNIKIGRAITGKKPLSKAFYYDLIDKIHQYGYGLKINTVVNKVNYKDNLASFIAKAKPKRWKVLQVLPIKGQNDNKIDAFKITDEEYANFLDTHKDVETIVPESNDEIKGSYVMVDPAGRFFDNAAGTHNYSKPILEVGIQEALKTMNYDLDKFLNRGGVYNWNTNKNQDLRKEEVSYE 476 Y ATGAAAACAAAAATTACACTGTCAGGCTTTGCCGGCACAGGAAAAAGCACAGTTGGAAAAAGAATCCAAGAACAGCTTAACTTTGAATTTGTGAGCGTCGGCAACTATTCTCGCCAATATGCGATGGAAAAATACGGACTGACAATCAACGAATTTCAAGAACAGTGCAAAGCTCAGCCGGAACTTGATAACGAAATCGATGAAAAATTTAGATTAGAATGTAACTCTAAAGAAAACCTGGTGATCGATTATCGCCTTGGCTTTCATTTTATCAAAAACGCGTTTCATGTGCTGCTTAAAGTCTCAGATGAATCAGCCAGCAAAAGAATTAGACTGGCAAACAGATCAGATGAAGTCACAAGCACAAAAGCTATCCAACAGCGCAATCAAAAAATGAGAGATCGCTTTCAGGATAACTATGGAGTTGATTTTACAAACGATAAAAACTACGATCTTGTGATCGATACAGATGATCTGACAGCCAATGAAGTCGCAGATCTGATCATCGAACATTACCAAAAATCAAACGCGGTGTCTAAAATTCCGTCAGTCAATTTTCATCTTTGGCAGCCGTGCAACATGAGATGCAAATTTTGTTTTGCGACATTTTTAGATGTCAAACAAGAATACGTTCCGAAAGGCCATTTACCGGAAGATGAAGCTCTGGAAGTTGTGCGCAAAATTGCAGCGGCTGGATTTGAAAAAATCACATTTGCCGGCGGAGAACCGTTACTGTGTAAATGGCTTCCGAAACTGATTAAAACAGCAAAACAGCTTGGCATGACAACAATGATCGTCACAAATGGATCTAAACTTACAGATTCATTTTTAAAAGAAAACAAAGCGTATCTGGATTGGATTGCTGTTTCTATCGATTCACTTGATGAAGAAAACAACATCAAAATCGGCAGAGCCATTACAGGCAAAAAACCGCTGAGCAAAGCATTTTACTACGATCTTATCGATAAAATCCATCAATACGGCTACGGACTGAAAATCAACACAGTCGTCAACAAAGTTAACTACAAAGATAACCTGGCATCTTTTATTGCGAAAGCTAAACCGAAACGCTGGAAAGTCCTGCAAGTTCTTCCGATCAAAGGCCAGAACGATAACAAAATCGATGCGTTTAAAATCACAGATGAAGAATACGCTAATTTTCTTGATACACATAAAGATGTTGAAACAATTGTGCCGGAAAGCAATGATGAAATCAAAGGCTCTTATGTTATGGTTGATCCGGCCGGCAGATTTTTCGATAATGCCGCAGGAACACATAACTACTCAAAACCGATTTTAGAAGTGGGAATCCAAGAAGCACTGAAAACAATGAACTACGATTTAGATAAATTTCTGAACAGAGGCGGAGTTTACAACTGGAACACAAACAAAAACCAGGATTTACGCAAAGAAGAAGTGAGCTATGAATAA
61 2741341560 2740891962 Marine group II.A Euryarchaeota archaeon SCGC AG-487_M08 (contamination screened) Archaea Euryarchaeota Candidatus Poseidoniia Candidatus Poseidoniales unclassified unclassified Candidatus Poseidoniales archaeon N MQAIFSGADKQQNNALPAAVNWHFWPWCNYACKFCFASFEDIPRGDRLGKEEALKIPAMLAAAGAEKITFVGGEPTLCPYLGDLVIAAKKADLVTCIVSNGSGLTEQFLSEYSPYIDWIGLSIDASNDDLHEQIGRGLKKDLAIQRSHHLELSKIVWGRCQSFGIRMKLNTVVCSVNKDDTMLELVRQLRPGRWKIFEVLPVAGQNDEFIEGLVLKDGEFDTWLSRHKDVELDGIQFVPESNDLMRGSYAMLDALGRFYSNVDGRHQYASPILDVGVEEGWNETRFLEERFIERGGIYDW 300 Y ATGCAAGCGATTTTTAGCGGCGCTGATAAACAACAGAATAACGCGTTACCGGCAGCGGTGAATTGGCATTTTTGGCCGTGGTGCAACTATGCGTGCAAATTTTGTTTTGCTTCATTTGAAGATATTCCGAGAGGCGATCGCTTAGGAAAAGAAGAAGCCCTGAAAATTCCGGCAATGCTTGCTGCCGCAGGCGCGGAAAAAATCACATTTGTTGGCGGAGAACCGACACTTTGCCCGTATCTGGGAGATCTTGTGATTGCGGCAAAGAAAGCAGATTTAGTTACATGTATCGTGTCAAATGGCAGCGGACTGACAGAACAATTTCTTTCTGAATACTCACCGTACATTGATTGGATCGGACTTAGCATTGATGCCTCTAACGATGATTTACATGAACAAATTGGCAGAGGCCTGAAGAAAGATTTAGCAATCCAGAGATCACATCATCTGGAACTTAGCAAAATTGTTTGGGGCCGCTGCCAGTCATTTGGAATCAGAATGAAACTGAATACAGTTGTGTGTAGCGTGAACAAAGATGATACAATGTTAGAACTGGTCAGACAACTGAGACCGGGCAGATGGAAAATTTTTGAAGTGCTTCCGGTCGCCGGACAGAATGATGAATTTATCGAAGGCCTTGTCCTGAAAGATGGAGAATTTGATACATGGTTATCACGCCATAAAGATGTCGAACTGGATGGCATTCAATTTGTTCCGGAATCTAATGATCTTATGAGAGGCAGCTATGCAATGTTAGATGCACTGGGCCGCTTTTATAGCAACGTTGATGGAAGACATCAGTATGCTTCTCCGATCTTAGATGTCGGCGTTGAAGAAGGATGGAACGAAACACGCTTTCTGGAAGAACGCTTTATTGAAAGAGGCGGAATCTATGATTGGTAA
62 2743907592 2740892545 Fibrobacteria bacterium GUT31 IN01_31 Bacteria Fibrobacteres Fibrobacteria unclassified unclassified unclassified Fibrobacteria bacterium GUT31 N MQIIYNWHITERCNYSCKYCFAKWNKAAETEIYEDYEKVEKILTNLSQKETISKLIGKEVTSVRLNFAGGEPLMLKKGVFSKIVIKAKEMGFVTSLITNGSLLKSCPDILKYLDMVGISIDSLDEAVCLDIGRCSNKNYISKEKLENIIDTIKSSNHKIRLKFNVVVSKYNYNMNIVEQLQAYEPNRLKILRQLPFNGEEGITDAQFELFLSINRKSLEKENVVIENKNDIIQSYLMIDPQGRFFQNGNEKAYCYSDPIYDVGLEQAFSQIKFDKEKFMSRYNQ 284 Y ATGCAAATCATCTACAACTGGCATATCACAGAAAGATGCAACTACTCATGCAAATACTGTTTTGCAAAATGGAACAAAGCAGCGGAAACAGAAATCTACGAAGATTACGAAAAAGTCGAAAAAATCCTGACAAACCTTTCTCAGAAAGAAACAATTTCAAAACTGATCGGCAAAGAAGTCACAAGCGTTCGCCTTAACTTTGCAGGCGGAGAACCGTTAATGCTGAAGAAAGGCGTTTTTAGCAAAATTGTCATCAAAGCGAAAGAAATGGGCTTTGTTACATCACTGATTACAAATGGAAGCCTGCTTAAATCTTGTCCGGATATTCTGAAATATCTGGATATGGTTGGCATTTCTATCGATTCACTTGATGAAGCAGTGTGCTTAGATATTGGAAGATGTAGCAACAAAAACTACATCTCTAAAGAAAAATTAGAAAACATCATCGATACAATCAAATCAAGCAACCATAAAATCCGCCTGAAATTTAATGTTGTGGTCTCTAAATACAACTACAACATGAACATCGTGGAACAACTTCAGGCTTATGAACCGAACAGACTTAAAATTTTACGCCAACTGCCGTTTAATGGCGAAGAAGGAATTACAGATGCCCAGTTTGAACTGTTTCTGTCAATCAACAGAAAAAGCCTTGAAAAAGAAAACGTTGTGATCGAAAACAAAAATGATATTATCCAAAGCTATTTAATGATCGATCCGCAAGGCAGATTTTTCCAGAACGGAAATGAAAAAGCATATTGCTATTCTGATCCGATTTATGATGTTGGCTTAGAACAAGCCTTTTCACAGATCAAATTTGATAAAGAAAAATTTATGAGCAGATATAATCAGTAA
63 2744633848 2744054527 Pseudoalteromonas sp. XI10 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas Pseudoalteromonas sp. XI10 Y MNKTIDELVINYHVTEVCNYSCKFCYAKWDRPNELHANENSAELMLEKLASYFFDVNSNQVKAVFPYKTVRINFAGGEPLILKKRFAQLIMKAKSLGFNLSLITNGHYLTNSFINNYGAMFSMIGISFDSQYMTTREDIGRIDRKDKSFGTHDLIKAVKQLRKVNPSITIKINTVVNSLNYQESFEQLIAEIKPEKWKVFQVLPVLNDNLLISDEQFTVFVNRHASLKEVMVAEDNEAMTTSYLMINPQGRFYQNSSTQNGYIYGDLILDVGVEKALEVCQINWETFASRYKKDNTISLISNSEYQLKNKQNKIALNQGV 320 Y ATGAACAAAACAATCGATGAACTGGTTATCAACTACCATGTCACAGAAGTTTGCAACTACTCTTGCAAATTTTGTTACGCTAAATGGGATAGACCGAATGAATTACATGCAAATGAAAACTCAGCGGAATTAATGCTGGAAAAACTGGCCAGCTATTTCTTTGATGTCAATTCTAACCAGGTGAAAGCTGTCTTTCCGTACAAAACAGTTAGAATCAACTTTGCCGGCGGAGAACCGCTTATTCTGAAAAAACGCTTTGCACAACTGATCATGAAAGCGAAATCACTTGGCTTTAATCTGAGCCTTATTACAAACGGACATTACCTTACAAATTCTTTTATCAACAACTATGGCGCGATGTTTTCAATGATTGGAATCAGCTTTGATTCTCAGTATATGACAACAAGAGAAGATATTGGCAGAATTGATCGCAAAGATAAATCATTTGGAACACATGATCTGATCAAAGCAGTTAAACAACTGCGCAAAGTGAACCCGAGCATCACAATCAAAATCAACACAGTTGTTAATTCACTGAACTACCAAGAATCATTTGAACAGCTTATCGCGGAAATCAAACCGGAAAAATGGAAAGTTTTTCAGGTGCTTCCGGTCTTAAATGATAACCTGCTTATTAGCGATGAACAATTTACAGTCTTTGTTAACAGACATGCTTCTCTTAAAGAAGTGATGGTCGCTGAAGATAACGAAGCCATGACAACAAGCTATTTAATGATTAATCCGCAAGGCCGCTTTTATCAAAATTCATCAACACAAAACGGCTACATCTACGGAGATCTGATTCTGGATGTTGGAGTGGAAAAAGCACTGGAAGTGTGTCAGATTAACTGGGAAACATTTGCGTCACGCTACAAGAAAGATAACACAATCAGCCTTATTTCTAATTCAGAATACCAGCTGAAAAACAAACAAAACAAAATCGCCCTTAATCAAGGCGTCTAA
64 2741409035 2740891993 Candidatus Heimdallarchaeota archaeon LC_3 Archaea Candidatus Heimdallarchaeota unclassified unclassified unclassified unclassified Candidatus Heimdallarchaeota archaeon LC_3 N LSITNNITLQDKILSLSYHLTKVCNFKCRFCYAHFNKVEKNHLSEKEAKKIINLLYKSGTRKITFAGGEPTLINYLPKLIIYASNLGMTTVLITNGYKITQSYLDLMDNKLDWVGLSIDSGIEEINIRLGRGTGGHVERSLRVADLLEKNDIIIKLNTVVTSLTWNEDMNWLVDKVNPKRWKVFQILPILGENDDAADMIVTPKQYTHFTEVHKKNNPVIERNENMKGGYVMIDPEGRFFNNDTGILTHGPSILDVGVEKAFEFSTFSYSTFLGREGNYKWD 282
65 2504129180 2503982047 Anabaena cylindrica PCC 7122 Bacteria Cyanobacteria unclassified Nostocales Nostocaceae Anabaena Anabaena cylindrica Y MKPISVNFHLWKPCNYHCRFCFATFPDIEGALTLNDAKHLLFLLREAGAEKLNFAGGEPTLHPNIGELVAESHRLGFITSLVSNGARMNQLLEKHANEMDWVALSVDSASEVIQKNLGRGNGNHVIQSIALFDKLHQYSIRVKLNTVVTNLNYQENMSAFVRRVRPERWKIFQVLPVQGQNDGSVEELLISPQQFQEFVERHQPLINEGFQVIPESNDLMKDSYIMVNPQGQFYNITKDNGLLRLFYGEN 250
66 637160692 637000327 Treponema denticola ATCC 35405 Bacteria Spirochaetes Spirochaetia Spirochaetales Spirochaetaceae Treponema Treponema denticola N MYNSKQFLRTVNWHFVNSCNMSCKYCFVSCCKELPLEESISVLEKLKGHFDRINFVGGEPTVSSKLIPLVKKAKEYGFIVSMVTNGFNLYHKPETFDEILTDFSIIGISIDSLNENTNVLIGRSVKNSVLSRDDYIDLCKKIKLAGCKLKINTVVSRVNLDENFNDFYETVMPDRIKLLQVLRPAGRLKQDYTDFLIEEDDYLEFVQRHHKFSEVICSENNELMLNSYYILNSDACFLDNKSGCISGSLLENDLKSVLKNVYVDENKYRARYA 273
67 637364324 637000336 Vibrio vulnificus CMCP6 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio vulnificus Y MTEVCNYSCKYCFAKWGRPKELHRSEQAIDNLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALARLTQSQTGIKTKINTVINSLNWEEDFTNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPIYFESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKKTNIDIVDVS 288
68 637468954 637000337 Vibrio vulnificus YJ016 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio vulnificus Y MQCTNQHYSYQLKGVVFMNKANQLVINYHITEKCNYDCHYCYAKWAKPNELHRNVDEMKRVLSKLAEYFLSPNPIQQQLQYQSVRLNFAGGEPLLLKQRLIDALDFAIELGFETSIITNGHLISDEFIAKHSHKLQLLGVSYDACRYEVQKQIGRITRSGNVLSVERLQSIFKQVKRHSPSTKLKINTVVNQFNSEEDFTGVMASLQPDKWKVLRVLPVFDSIQTISDQQFESFIERHQSLVHCMSAENNDSMTNSYLMLSPDGAFFQNGNGSSGYFKSRPLLTTPIDVALAESGFDAIKFAQRYH 306
69 637586319 637000206 Photobacterium profundum SS9 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium Photobacterium profundum Y MSTKQLVINYHMTERCNYNCHYCYAKWEKPNEIHKQDGTVNQLLTNLSNYFLNPNPIQSELGYDSVRLNFAGGEPLLLKNKFINAIDCAISLGFDISIITNGHLLTENFIKEHAHRMSMIGISYDSANQACQQQIGRNTRSGSVITPRQLSNISHLIRKHAPKTELKINTVVNQFNINEDLSSLISEVKPDKWKLLQVLGIYDEIPEISDSDFTNFVTRHQSLNSVMSIEDNASMRGSYLMIDPSGCFFQNENAHSGYLKSRSLLITPVGIALKESGFNPKKFSARYK 288
70 637752529 637000204 Pelobacter carbinolicus Bd1, GraBd1 Bacteria Proteobacteria Deltaproteobacteria Desulfuromonadales Desulfuromonadaceae Pelobacter Pelobacter carbinolicus N MQQQQAQSKKDAAIPAVNYHLWGSCNMRCRFCFARFKTERQESKEVGWQKSLAVIAEASRAGIAKITFAGGEPLLCPWLADVLKHSKAFGMTTMVVTNGSLVTDRWLGENARYIDWLALSIDSPVTATNFASGRAVGGIRPLGATEYRSLAAKIRRHNIRLKVNVTVSRFNVEEDPSSLLLEILPERLKVFQVLPIFGQNDHCFADLGISIKKFSAFVRRLDPLRNFCQVVVEDNEAMTGSYLMIDPQGRFFSNTGGRYRFSLPVWQVGWATALSEIETSVARFRSRGGFYSW 293
71 639797708 639633052 Psychromonas ingrahamii 37 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Psychromonadaceae Psychromonas Psychromonas ingrahamii N MSNSYDELVINYHVTEICNYSCKFCYAKWGRPNEIHTQGNNAELMLEKLASYFFNDEGNKVKDEFPYKSVRINFAGGEPLILKKRFSQLIVKTKELGFNLSIITNGHYLTNAFIDNYGSLFSMIGISFDSQYSDARKNIGRIDRKGNSFDEADLINTVARLRAVNSSITVKVNTVVNTLNYKESFTTLMTELNLDKWKVFQVLPVLNSHLLVTDEEFSEFVLHHAKLQDFMVVEDNDAMTNSYLMINPQGRFYQNSQTEEGYKYGELILDVRVDLALSVCAINWETFTSRYKKDAINDAVDLIDNNEYQFKQKEQSSVVSEG 322
72 640805406 640753033 Marinomonas sp. MWYL1 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae Marinomonas Marinomonas sp. MWYL1 N MKTSISNTANSNALVSGAQDLNAHTAKTDLVINFHMTESCNYRCSYCYATWDDLEAKNELHRLSGQVESLLQNLADYFLQPNPLQAEMGYQNVRLNFAGGEPMLLGQRFLDAVKFANQVGFRTSLITNGHYLTNDILDELAPSLDVLGISYDTADHALAQGIGRVDRKKRWIAAEQLMQMCSRYRSLNPTGILKLNTVVNAVNCNDSLLDLMGEIKPNKWKLLRVLPVHDHQLTITQAEYQGYVQRHSALSRIIVEEDNEAMTHTYLMINPEGRFYQNSDAGSGYIVSDSILTSGVEQALSQVPFNVSGFKQRYQLIPSVTV 322
73 640830189 640753049 Shewanella baltica OS185 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Shewanellaceae Shewanella Shewanella baltica N MSTQNNSAESSTISLVNNVNELVINWHITEVCNYNCSYCFAKWGKPNELHRSLPEIETFLDNLSEYFIKGSPPLKNELGYESVRLNFAGGEPMMLGSTFFIALMLAKQKGFKTSIITNGHYLINCHLDLPKNVLDMVGISFDSQYLSSRKKIGRVDRKGNSLSVEDLKAALGNLVSTQKGIKTKINTVVNIHNCDEDFSELITVLKPYKWKVLQAMPYGDDELLISRNKFDNFVAAHSGMGLPIFAESNSTMTESYLMIDPKGRFYQNSSNGAGYEYSESISLCGVENALAQIEFNPRVFSSRYRKVDVDIVES 314
74 641096015 640963011 Beggiatoa sp. PS Bacteria Proteobacteria Gammaproteobacteria Thiotrichales Thiotrichaceae Beggiatoa Beggiatoa sp. PS N MLRDELVINYHITEKCNYACRHCYAKWNVNDNQEIHTDMTQVEILLNNLYDFFSKRSKRLRLNLAGGEPLLCKHIGKIIELANSIGFRVSIISNGSALTEKFVRSHAKQLSVLGLSIDSLQPSRLKKIGRLSRNGQHLSEQKWFELIKLLRDSNETLLIKINTVVCQFNYDEYLGEFIDKIAPDKWKIFRVLPLDNNSVRISHHEFSLFLDNHKQVTMPYYIENNEDMTESYIMVDPIGRFYQNSPAHHGYTYSQCITEIGIEKAFNQINFNLDKYHNRYILRR 284
75 641147750 640963027 Marinobacter algicola DG893 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter Marinobacter algicola N MRTNILIFSANRSATPPAKVPAVYELTINWHVTEACNYSCQYCYAKWKDYPNPRELFHDRRRTRDLLNELFRYFHPTNTNNPLREELSWKTVRLNLAGGEPSILGNRLLDIAEIAREVGFQLSIISNGSRLTRSMIKEIAPHLTCLGISLDSANPTTNMEIGRALRSGKLLDPQELAGNIRLALKINPRLTVKLNTVVNLLNVGEDLSGLVQEIRPQRWKILRMLPIVDASLAISDEEFAAFVQRHRAFQSVQCVEDNRDMCESYLMIDPFGRFFQNHPSLAGGYLYSDPILSVGAHAAFSKMAFNSASFQSRYTGELGGTQ 322
76 641288534 641228507 Shewanella baltica OS195 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Shewanellaceae Shewanella Shewanella baltica N MSTQNSSAENSTSSLVNVDELVINWHITEACNYNCSYCFAKWGKPKELHRSLPEIERFLDNLSEYFIQGFHPLKKELGYESVRLNFAGGEPMMLGSTFFIALMLAKQKGFKTSVITNGHYLINSRLEFPKNVLDMVGISFDSQDLNTRVKIGRSDRKGNSLSVEELKTAIGNLVSTQKGIKTKINTVVNSLNCEEDFSELITELKPFKWKVLQAMPYGDDELLISRDKFDNFVATHSGIGLPIFAESNSTMTESYLMIDPKGRFYQNSSNGSGYVYSESINLCGVENALVQIEFNPIVFSSRYRKVDVDVVEL 313
77 643461066 643348574 Shewanella baltica OS223 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Shewanellaceae Shewanella Shewanella baltica N MSTQNSSAENSTSSLVNVDELVINWHITEAYNYNCSYCFAKWGKPKELHRSLPEIERFLDNLSEYFIQGFHPLKKELGYESVRLNFAGGEPMMLGSTFFIALMLAKQKGFKTSVITNGHYLINSRLEFPKNVLDMVGISFDSQDLNTRVKIGRSDRKGNSLSVEELKTAIGNLVSTQKGIKTKINTVVNSLNCEEDFSELITELKPFKWKVLQAMPYGDDELLISRDKFDNFVATHSGIGLPIFAESNSTMTESYLMIDPKGRFYQNSSNGSGYVYSESINLCGVENALVQTEFNPIVFSSRYRKVDVDVVEL 313
78 646369858 646311927 Fibrobacter succinogenes S85 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter succinogenes N MPTNAINFPKNFQNADSFARFAKVSPLVVNWHALEHCNYKCSFCYSDWNSRDEAWNTPENVRKVIENIARFHADYFGADAAPWRLSVVGGEPILFPKKAQFMVKTAVACGAEVSIITNGSHLENALPFAHLLSQVGISLDSFVHETNLKIGRQCNGHTLSFEEISDKIAALRAVNPNVRVKVNTVVNQNNFGEVLVDKVAALGATKYKILRQMPFGGNKGITDDEFHVFIRNNYREDLFGHDDGKRHIFIEDNSVMTQSYLMIAPNGCLFQNGGAEYRYSRPLMETPFEEALKDINFSAEKFFSRYTSTATDAILARMHECAA 323
79 646419713 646311963 Thermomonospora curvata DSM 43183 Bacteria Actinobacteria Actinobacteria Streptosporangiales Thermomonosporaceae Thermomonospora Thermomonospora curvata N MVMANSPQVPVETVNFHLWQPCNMSCLFCFATFRDVRRTVLPQGHLDRRDAERVVRLLAEAGFSKITFAGGEPLLCPWLPDLVELACDLGVTTALVTNGSLLDEAMLDRLAGTLEWITVSIDSLRPRTLRSLGRATAGRVMDEAGYLALCRRIRQRGFRLKVNTVVTSRNWREDLSGFIVAAGPERWKVFQVLPVEGQNSRKVDPLLITPEQFESFISRHLHVELAGIALIPEDNDAMTGSYAMVDPAGRFFDAVEPGGYRYSEPILRVGVHRALSQVTVSRAKFLARGGLYEANLRRRPSPGRRYAAAASRAVR 315
80 647622404 647533121 Campylobacterales sp. GD 1 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Helicobacteraceae Sulfurimonas Sulfurimonas gotlandica N MNEITINWHIIQQCNYKCTYCFAKYKRSFEKEIQVSKKDIEVLLNKVYSFFSQEYKGTVVRLNIAGGEPTLSRNIDFIIKKAYEIGFKVSLISNSSKITNRFIESNAKYLSMFAISIDSIEKSTNLNIGRSYKNEILDVSRIIKSIEQFRKINKNIQIKINTVVNEHNYQEYLGHFIDLINPIKWKVFQALSMDKDIEYCSIEQFNVFLDKHEGIDSKIYIESNDDMKDSYIMIDPHGRFYQNTNITYNYSDSILNSSVADAFQSIEFNLNKFNKRYKNEI 281
81 649804297 649633054 Helicobacter felis CS1, ATCC 49179 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Helicobacteraceae Helicobacter Helicobacter felis N MQLKINTVVNSYNYGEYLGDFIQSVQPHKWKIFKMLPIIDRSLAINDKEFQAFLDRHQQFASIISSENNDEITHSYLMLDPFGRFFQNRKEQEGYIYSAPIIETGIQKALKQIPFSLEKFSQRYLNTQ 128
82 650410387 650377991 Marinobacter adhaerens HP15 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter Marinobacter adhaerens N MTYSTNPVPIVVNWHLTEACNFSCRYCYAYWERAESVKDLIKNEHQVRALVAELGRFFGSEAATRRFGFYGVEPRLNIAGGEPLLFPSAVQAAVHQARQVGFRASIITNGSFLTEELCSSLAPDLDMLGVSVDSGQPDTNKLIGRVDRQGRFLELAALSNCIEVLRQRNPPLKIKLNTVVNRMNWKDSLSSVVDTIEPWKWKILRALPVIDQSTSVSDYQFQAFVDRHSAYRSISVVEDNQDMQESYIMVDPQGRFFQNSPCSAGYQYSQPILEVGAEKAFEQVNFDPERFLSRYSKEAGGAV 303
83 650419199 650377942 Fibrobacter succinogenes S85 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter succinogenes N MIGLEGKDPMPTNAINFPKNFQNADSFARFAKVSPLVVNWHALEHCNYKCSFCYSDWNSRDEAWNTPENVRKVIENIARFHADYFGADAAPWRLSVVGGEPILFPKKAQFMVKTAVACGAEVSIITNGSHLENALPFAHLLSQVGISLDSFVHETNLKIGRQCNGHTLSFEEISDKIAALRAVNPNVRVKVNTVVNQNNFGEVLVDKVAALGATKYKILRQMPFGGNKGITDDEFHVFIRNNYREDLFGHDDGKRHIFIEDNSVMTQSYLMIAPNGCLFQNGGAEYRYSRPLMETPFEEALKDINFSAEKFFSRYTSTATDAILARMHECAA 332
84 650463340 650377984 Vibrio furnissii 2510/74, NCTC 11218 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio furnissii N MNHAKQLVINYHITEKCNYDCHYCYAKWAKPNELHRNMADMKLMLSRLADYFLSPNSIQQQLGYQRVRLNFAGGEPLLLKQRFIEALDYARELGFDVSIITNAHLITDEFIAQHSHKLQMLGISYDACNPEVQQQIGRSTSSGKILSAERLGSIFQQVRAVSPQTELKINTVVNQFNTKEDFNTLMETIQPNKWKVLRVLPVFDSIQTIRDEQFDAFVERHQSISHLMSVESNDSMTNSYLMLSPDGSFFQNGNGSDGYFKSRPLIFTEIETALAETGFDVTKFAQRYK 289
85 650537321 650377925 Coprococcus catus GD/7 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus Coprococcus catus N MLKKYKVNLHVLEACNFRCFHCFSRFGSNKIMGLKDWKQIVDNCMESQVVSEFNIAGGEPLLYKDLIGLTKYIREKGAKVSMITNGFLMNEEWIQKYGQLFNTIGFSVDSVNDETNQKIGRCINTGSVISASRVTKLCELIRKYAPDCKIKINTVVTTRNRDEQLSDFIDTIKPDRWKILKMKTFVYGTFSNMSLQVSAAEFDEFVRQNKIVNEKTRIVVEPDMKASYILIGPNGWLLDNAANEMTPVEICDCKKEKLKEGLKKLTLDEKRYCNRYAL 278
86 650742368 650716002 Acidiphilium multivorum AIU301 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Acidiphilium Acidiphilium multivorum N MVNDQIGGIHVLPPLVINWHITEACNYSCKFCYAKWQAERETRELIHNPARSRQLLEALYALFGPQAPDNPLSGRMAYRGVRLTLAGGEPFLYRRLCLDLINVARGIGFEISVITNASRLGIAEMRELAPNLSILGISVDSGNDHTNGAIGRKDGKGVALSLGDLRERIAAARSINPKINLKINTVVNAHNWQEDFSDAIGQLCPDRWKVLRVLPARTDALVITQAEFDAFVARHRAFRNIMSVEDNADMTQSYLMIDPHGRFFQNRVGRPGYDYSAPILEVGAAEAFKQIIFSPSGFVSRYPSVELPEVA 311
87 650921542 650716044 Lacinutrix sp. 5H-3-7-4 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Lacinutrix Lacinutrix sp. 5H-3-7-4 Fused MINKITLSGFAGTGKSTVGEILKEQLNFEFISVGNYSRGFAMEKYGMTINQFQKHCVDHPELDNLIDDKFKSVCNTKSNIVVDYRLGFHFIKNAFNVLLKVSDEKASERIRLGNRQNEATSPKEIKLRNDTMRMRFLKQYNVDFTNDNNYDLVINTGNLTPNEVAQKIIKHYQESKALIEIPSINFHLWEPCNMRCKFCFATFQDVKQTILPKGHLPESEALKVVEQIANAGFEKITFAGGEPLLCKWLPNLIKRAKQLGMTTMIVTNGSKLTDAFLKENTAYLDWIAVSIDSLEGENNIEIGRAITGKKPLSKTYYYDLVKAIKNYGYGLKINTVVNKVNYKDNLTEFIEYAKPKRWKVLQVLPIKGQNDIKIDDFKITDTEYTHFLNTHKNVETIVPESNDEIKGSYVMVDPAGRFFDNAQGTHNYSKPILEVGIKEALKTMNYDLDKFLNRGGIYNWNNDKHVDLISE 471
88 2501733929 2501651210 Photobacterium profundum 3TCK Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium Photobacterium profundum Y MTKIQTDKTIELVINWHVTEVCNYGCKYCFAKWGRPNELHRSEKEIVKLLDNLADYFIKGTSTLKEELGYESVRLNFAGGEPMMLGDTFVTALTLAKQKGFKTSTITNGHYLINGKLALPNNSLDMIGISFDSQSLDTRNKIGRKDRKGNSFGADDLKLALANLTQSQRGIKTKINTVVNSLNLDEDFSELITDLAPYKWKILHVMPYGNDELLISKTQFDKFVLRHSGLGLPLFPESNSTMTESYLMINPQGCFYQNSSNKAGYKYSESINSCGVNKALSQIEFNPKTFASRYQTVNVDVVEL 304
89 2502233141 2502171154 Thermoplasmatales archaeon BRNA1 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales unclassified unclassified Thermoplasmatales archaeon BRNA1 N MNTETTSVRKFRSANIHIYGKCNYRCEHCFDRCLTKNYMRPADWVDTLTFLKEYGVEKINLAGGEPTLYPFLDQMCYLVKGMGFKLSIVSNGSLMTEDWMERMEGVVDWIGLSIDSVDEEDEILIGRGRGGHLENIVQVAQMARRHGIKVKLNITVVRRSWMKDFKPFIERVNPDRVKCFRALTLKNANDDIPDTWSITDEQFDDFRRRHEDIGNIVFEDNEDMVSSYVMFDPMGRWMVDSGYEKRFISFEVVRREGLDREVDVDKYFGRNAVYDW 276
90 2509552219 2509276055 Treponema saccharophilum PB, DSM 2985 Bacteria Spirochaetes Spirochaetia Spirochaetales Spirochaetaceae Treponema Treponema saccharophilum N MNKIFNLHFTDFCNFNCRCCYAKKDKNCLSFDDIQKIIENIAGYFEKHGITDGRVNIAGGEPTTSKDLQKIIDAVVSKGIKASLITNGILLTEEFVRENAGKLTMIGLSIDSLNDGTNRILGRCEGVGGRVFDYGRLVAICRCIKECGITLKINVVASKLNFNEDIKRLLDDVRPKRFKILQMLPTTPFAEENALSESEFDKYVQKYDGYNPVTEKQENIKKAYLIIDSSGFVTTNNLHFDKKHNALEKSLDEILDDIDFDFESEAARYK 270
91 2512440669 2512047059 Haemophilus haemolyticus M21621 Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus Haemophilus haemolyticus N MNELVINWHITEACNFKCQYCFAKWQKPCKKELLHSDNEVSKLIEQFQMLLTLINHKYQSHFEQIRLNLVGGETFLYRSAIKNIIMQAKKHNMILSAITNGSKLTPELNQIIANQFKMIGFSIDSIKDNTNLLIGRQTNNKAMDYQLLLRNIEIIRSINPTIQIKINTVVNKHNYSESLSEFISQVKPTKWKIFKVLPNMNDSLSINDQQFHYFLENHHQFENIISAENNEEMTHSYLMVDPSGRFFQNIEQQTGYQYSEPILSVGIEKAFQQIPFELVKFLHRYH 286
92 2519473577 2519103099 Methanolobus psychrophilus R15 Archaea Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanolobus Methanolobus psychrophilus N MTGNKIQSVNWHITGKCNYNCKFCYVQNLNAEIKDIETAHQILHKLRYTKTDQLDIQKINFVGGEPFLHPNFYDLLSMAYDMGFVTSIVTNGSFINKDNIEKISRYTDWIGISVDSIDNQVEAELGRGRGKHVTHALEVADLVHDHGIKLKVNTTVTRPTYKEDMHNLIETMDPHRWKIFQMLHIEGQNDSCVSDLSITDQQFESFRIRHQDIRLQNNIKPTFETNDDMIGSYLILDPAGKVLSNGDGKYTPFELDQFLLNPAVVVNSRKYVGREGVYAW 280
93 2519473579 2519103099 Methanolobus psychrophilus R15 Archaea Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanolobus Methanolobus psychrophilus N MINLTEGFLPGRVIDVVNWHITPRCGYNCKFCNVHNCYFEIRDMKYAKKNLKKLKELEEQDVHINTLNIAGGEPLLHPNLFDLLKMGNEEGFNLWITTNGTLLNETNIDQLSNYIDGISVSVDCISNIKQKKIGRGYGTHVSEMLNVSDRIHDTGIKLGVNTLVTKLNYKDDLHALLHRLDPYQWNVYQTLPCLYQNNYLRSIEVNENDFYLFLRRHSHLRFGPCNEPTFWSKNDMQKKYYFLVDGTIRI 250
94 2519484486 2519103103 Brachyspira pilosicoli B2904 Bacteria Spirochaetes Spirochaetia Brachyspirales Brachyspiraceae Brachyspira Brachyspira pilosicoli N MSIFNSLKLNWHFINNCNMHCKFCYASKDSCNINLFKIAEKLKPFKYINLVGGEPTIYKNYIHLLHYLKSQGHILSIVSNGSMFLKDNSILKTTLKCCDVIGLSIDSLDKETCIKIGRSVKNSKPITKEEYLYLTYKIKESGKALKINTVVNRYNYKENLNSFIEKALPNKWKIFQVLPIENLNFCKELLISNEEFNYFLNTHAENERIMYSENNDNMTSSYIMLDAKGRFFNNIDNKYIYSNSLFDDDVDLYEEFFKMNYSIDKYYNRYKKAN 274
95 2519815572 2519103180 Curvibacter lanceolatus ATCC 14669 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Curvibacter Curvibacter lanceolatus N MRSLNRPGALQRRISDELISQLAPLISMIGVSLDSDHNATNLAIGRVDARGALLNNKELAGLMAKAKTLNPGLVIKLNTVVSALNADADMGNAIATFRPDRWKVFHMLPVTTDDLAVSYERFEAFVARHMRYGGVMCVEDNDAMNESYLMLDPLGRFFQNTRDCRGYEYSRSVDVVGARQAFTDWRFAAASFASRYRQPPLEVVPGTIQPVQAGSIP 217
96 2521802859 2521172649 Rheinheimera perlucida DSM 18276 Bacteria Proteobacteria Gammaproteobacteria Chromatiales Chromatiaceae Rheinheimera Rheinheimera perlucida N MNTNHTETLVINWHITEVCNYSCHYCYAAWKKPDEKRELFHDSNSTKKLLLELYNCIQFQYNKLDTSNSPTYKKVRLNFAGGEPLLLSKKLLPIMLEAKKIGFDVSIITNGSLLTEELMAQMAPLLTWFGISIDSTRLSSNHLIGRHTTHQQKLDVDRLLSIIDMGKQANPHLKIKLNTVVNAINVFDDLSDIVERLAPQKWKVLQMLPIITTKNVIDEARFEKFIARHHAFQNIICAEKNDDMRNSYLMIDPHGRFFQNSLAEAGSGYVYSSPILSVGASLALQEIQFSTEKFNRRYASNNAGGSCDVL 310
97 2522303848 2522125086 Succinimonas amylolytica DSM 2873 Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Succinivibrionaceae Succinimonas Succinimonas amylolytica N MTAQNSSSVSGCTSGFAPIAVSGTATPQMPRHGLKFNLHIIETCNYRCRHCFAHFGSCRVLRFDTWRKIIDRCRSLVPGCSFNIAGGEPLMHPDFTAITSYIHSLGHPVSVISNGFLMTDAWLKRHVPLLSCLGLSIDSMNPETLKKIGRCTGSGRILGSERLASLLDTVVQISGNCSIKINTVVSALNKSENMARFIRTMPVSRWKIFKMNLFRNASFSNADIVVSDHEYRDYAERNTGLRISDRDAALSVKTRISDTCEAVLESDLHAAYLMIDARGFLVDNTLNDSYVPVADAANGDLAAGLARLSFNDRLYRSRYTF 321
98 2524107537 2524023060 Ferrimonas kyonanensis DSM 18153 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Ferrimonadaceae Ferrimonas Ferrimonas kyonanensis N MTSVNEMVINFHMTETCNYRCEYCYATWEGNDSQAELHHSFGDIQSLLRKLSNYFFTSNALKTALGYRAVRINFAGGEPVMLGGRFVKAVLLAKSLGFRTSIITNGHLLSTTMMRRIGPHLDMLGLSLDTSDALLAQSIGRVDRKGAWLSPEKACDIVSAYRQANPSGTVKINTVVNAFNWREDMSSMVVQLQPERWKLLRVLPVYTHQLTVTSSQYRAYVERHAAFSDVVTIEDNHDMWQSYLMLNPQGCFYQNSAACQGVVQSPPVLEVGVEAALESIDFNVQAFAKRYPHTHSDASQA 301
99 2525610838 2524614740 Pseudomonas stutzeri MF28 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas stutzeri N MPNPTPLVINWHLTETCNYHCQYCYATWNESARPRELIHSPERTMALLSELYRFFRPGNRINPLASRMIWGAVRLNLAGGEPLLHVGKLPAIVSQARALGFEVSLISNGSHLDHELLDRLAPQLSWLGISIDSTCPATNRAIGRVDRRDRLLALDDLASGLANARQANPGLCLKLNTVVNRLNHSEDLGPLIRRFAPDKWKVLRMLPVVSKDLIVSDRQFAAFVARHRAFNHILCAEDNQDMRESYLMVDPHGRFFQNSPLIAGQGYAYSHPILEVGAEAAFDQIAFEPERFSARYIPVVMGEGA 305
100 2525930338 2524614816 Halodesulfovibrio aestuarii DSM 10141 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Halodesulfovibrio Halodesulfovibrio aestuarii N MQIVLNWHLTEQCNYRCKYCFAQWGRCAEVWRDRDLTSALLAELASWRQQEILSPIILNGGESHCRINFVGGEPLMIGGRLTEIVQEASEQYGFKTSLITNGSLLGRNLKIVSHLDLLGVSVDSFLVDTNRSIGRYSRTSQPLNYYDIKELIQSVRERNPLIKIKFNTVVSQHNWTEVVIPEIAMLHPEKLKIFRQYPYLDQQGITDQMFKSFLKNNSVKQPYVFVEDNAAMQQSYLMIDPSGRFFQNGNGEKYSFSQKIHEVGLPTALEQIKFNSEKYIQRY 283
101 2528325157 2528311002 Comamonas testosteroni ZNC0007 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Comamonas Comamonas testosteroni N MTYLFIGEGDTRPHVPELVINWHLTEACNYKCQYCYAKWDSNDKELIHDWDRTRKMLDELMTFFHPSNDANPLQKSMRWSGVRLNLAGGEPLLYPDAVLHVLAYAKAVGMSTSIITNGSRFTPELMNQLAQQVSMLGISIDSANATTNREIGRIDSQGRTKSWQEVAALMQQAKQLNPELAIKINTVVNALNAHEDLSEPIAALAPDRWKVFRMLPVVTDDLAISPEEFARFVRRHHRHADVMCAEDNNEMSESYLMIDPLGRFFQNTKGQKGYSYSRPIDTVGAKQAFRDWRFAVTSFTSRYPAHAIEAIQ 312
102 2812941770 2529293096 Sulfurimonas gotlandica GD1 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Helicobacteraceae Sulfurimonas Sulfurimonas gotlandica N MNEITINWHIIQQCNYKCTYCFAKYKRSFEKEIQVSKKDIEVLLNKVYSFFSQEYKGTVVRLNIAGGEPTLSRNIDFIIKKAYEIGFKVSLISNSSKITNRFIESNAKYLSMFAISIDSIEKSTNLNIGRSYKNEILDVSRIIKSIEQFRKINKNIQIKINTVVNEHNYQEYLGHFIDLINPIKWKVFQALSMDKDIEYCSIEQFNVFLDKHEGIDSKIYIESNDDMKDSYIMIDPHGRFYQNTNITYNYSDSILNSSVADAFQSIEFNLNKFNKRYKNEI 281
103 2532381218 2531839141 Kingella kingae PYKK081 Bacteria Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae Kingella Kingella kingae N MYKPKKLLDELQQMPTIINQQQNTQFQNIRLNLVGGEIFLYPDLMTMIIHEAKLRGFGLSAITNGSLISDDMIDLVAKNFSMIGFSVDSLNDETNRQIGRMSKDEVLQIDKVKQCIHTIKKINPNIYLKINTVLNSLNYQGDLSEFLLDCQLNKWKVFKMLPIVTHDLSINDEQFQHFINNHRHFSAILNAEDNDEMTASYLMIDPLGRFFSNESQSGYIYSEPITQIGVETAFNYIQFETQKFKNRYKIHLL 253
104 2532646932 2531839206 Thauera sp. 63 Bacteria Proteobacteria Betaproteobacteria Rhodocyclales Zoogloeaceae Thauera Thauera sp. 63 N MHNPAPLVINWHLTEACNYRCRYCYAGWNESANSRELIHCQERTAALLGELYRFFQPSNRANPLASRMNWNAVRLNLAGGEPLLHAGKLPAMVSHARALGFEVSLISNGSHLDHEQLRRLAPQLTWLGISIDSAISATNRAIGRVDRRDRLLDLHTLESSLASARQSNPGLRLKLNTVVNRLNHSEDLSELLRCFAPEKWKVLRMLPVVNQELVVSDQEFMAFITRHQAFSRILCAEDNQDMRESYLMVDPHGRFFQNSLLIAGQGYRYSRPILEVGAAAAYSDVAFDSARFTARYALSDVAGRSA 306
105 2538932271 2537561856 Brachyspira hampsonii 30446 Bacteria Spirochaetes Spirochaetia Brachyspirales Brachyspiraceae Brachyspira Brachyspira hampsonii N MSIFNSLKLNWHFINNCNMHCKFCYASKDICNIDLFKIASILKPFKYINLVGGEPTIYKNYIPLLYYLKSQNHILSIVSNGSMLLKDKSILNATLECCDVIGLSIDSLDKETCLKIGRSIGNSSTITEKEYLYLTSKIKESGKELKINTVVNRYNYKENLNSFIEKTLPNKWKIFQVLPIENLNSCKELLISDEEFNYFLNTHAANERIIYSENNNNMTSSYIMLDAKARFFNNIDNKYIYSKSLLEDDADLYEEFFKMNYSIDKYYNRYKKAN 274
106 2540642849 2540341105 Methanoculleus bourgensis MS2 Archaea Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoculleus Methanoculleus bourgensis N MPAHSVIRSVNWHLISTCNYSCRFCFARNLGEQPVSFSEGLTILSHLADAGMEKINFAGGEPLLHPRLFDYCRAARDLGMTVSITTNGSLLSQKLIGEHAACIDWIALSVDSASESTEKRLGRGYGQHVQHCIGLSDAVREAGIRLKINTTVTRLTWEEDMADFIQRTSPDRWKVLQMLHIQGENDGAMADLAVTDKQFQTFCARHADVILRGGVQPVFESSAMIEGSYFMITPGGCVKTDTGRVIRKYPLADVLHSGVMEYVDPVLYLGRGGVYAW 277
107 2540668036 2540341115 Candidatus Methanomethylophilus alvus Mx1201 Archaea Euryarchaeota Thermoplasmata Methanomassiliicoccales Candidatus Methanomethylophilaceae Candidatus Methanomethylophilus Candidatus Methanomethylophilus alvus N MRNNGIIKSANLHLTGICNYDCEHCFARNLSRKHITPAEWEPIIDYLAKIGVTKINFAGGEPVLYPQLKELASLVKSKGFTTSIVSNGSLMDEKWFKEMDGLLDWVGLSVDSPSEEDEIVIGRHCRGIRHLENVVRVSEMAHVHGMKVKLNITVVRRSWNKDFHPLVSAMNPERTKVFRALTLKNENDDIPDVWSITDEQFADFKQKHCDIGNIVFEDNSDMVDTYLMFDPLGKWMVNNDQIKAYLPFEILRDKGVEYMLDVEKYYGRDAVYEW 274
108 2540825991 2540341170 Pseudodesulfovibrio piezophilus C1TLV30 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Pseudodesulfovibrio Pseudodesulfovibrio piezophilus N MSTVETLATDRFIPAINLFVTKHCNMRCRFCFGSCKMRSPLSSQDQDGVFVDVIRQCHQQGISKITFVGGEPLLYPKLKLLIRLAHDLGITTCVVSNGALLTKEWLREVSGMLDWIGISIDSLSVDTNWSIGRISNGVPMSKLVYEQLVDWVHDYGMRLKINTTVCRWNHHEDMSSFYRDTNPHRIKMFQALTIDGVNDEESTKFSVSDEQFTHYVERHLRQGIKAVAEASNDMVGSYLMVSPDGCFFDNTHGSYRLSRPISRVGFSSAIKDISVNHTKFMDRGGMYRW 289
109 2541039228 2540341248 Ruminococcus flavefaciens AE3010 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus Ruminococcus flavefaciens N MKKLKVNLHLIEACNYRCRHCFAHFDKHNVLTPETWINIIDNAVASGMVTSFNFAGGEPLLYPHLTSLAEYANSLGCKCSVITNGSCIDEEWIKNNVSLFTTIGFSLDSFFPDTLRKIGRCDTNGRVLDLDRIKEIFTLIKKYNPSIKIKVNTVVSAINKDETPGELIRKHDLPVDRWKILRMSPFENDRFSNKDITVTDEEYTEYITRNLSAFGINTISEKVLYNTDAGMEIVCESNLNGTYIMIDAGGYLVDDTKNSNYVRVINCADTPFSDGISKLTFDSEIYEARYKK 292
110 2541315631 2541046975 Treponema medium ATCC 700293 Bacteria Spirochaetes Spirochaetia Spirochaetales Spirochaetaceae Treponema Treponema medium N MQTTHCLTVNWHFTAACNFKCRYCFMHNSLSLTRKDYMVVLKKLTGSFQRINFVGGEPTVSPLLIPLVRDAYHAGFDCSIVTNGFNLIHHTQQFEAIYPLLSCIGISVDSLNKETNAAIGRCCKGHVITRTEYEQLCAAIKSHGIRLKINTVVSKLNVHEDFTHFYEAVQPDRIKLFQVLKPNTQLKNDYGDLLITKADFNSFVLRHKTAGSFGENIVAEDNAAMTNAYYILDSECRFIDNKTGKKSPSLANDGMTVEKALSYIEVDAAKYQARYIA 277
111 2546450678 2545824694 Marinobacter santoriniensis NKSG1 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter Marinobacter santoriniensis N MHTSTLISLPKPVTTQTARVSAVDELTINWHVTEACNYRCQYCYAKWKDYPNPRELFHDHGHTRDLLIELFRYFHPANSSNPLRNELSWKALRLNLAGGEPSILGERLLEIAQVAREVGFQLSIISNGSRLTRSMIKELAPHLTCLGISLDSSDPKTNMEIGRALKNGKLLDLQELKANVHLARKINPLLTVKLNTVVNLLNVGEDLSSLIQEIRPQRWKILRMLPIVDASLAISDGEFAAFVQRHRAFQSVQCVEDNRDMSESYLMIDPFGRFFQNHPSLAEGYLYSDPILSVGAHAAFSKMAFNSASFQSRYTGELGGTQ 322
112 2546738312 2545824767 Bacteriovorax sp. DB6_IX Bacteria Proteobacteria Oligoflexia Bacteriovoracales Bacteriovoracaceae Bacteriovorax Bacteriovorax sp. DB6_IX Y MMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALARLTQSQTGIKTKINTVINSLNWEEDFTNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPIYFESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKKTNIDIVDVS 223
113 2547718745 2547132187 Acinetobacter sp. MDS7A Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter sp. MDS7A N MKQLKNIINLSKKYNFRLSAITNGSLFNEIDMKFIAQNFSSLGISVDSINEYTNLAIGRKSKQNTFNPSQVLTAINKIKKYNPMIEIKINTVVNKLNASEDLSYFISQIKPNKWKIFKLLPVYSNKLDITEQEFHQFIEKHSNFKSIISSENNNDMTESYLMIDPLGRFFQNGYTSGYKYSSPLWQVSAETALKQIKFDSQKFVNRYKKIF 211
114 2551476655 2551306039 Vibrio harveyi ZJ0603 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio harveyi N MPTKTHGVANANAANRMTSSQLNELVINWHITEACNYNCTYCFAKWGKPNELHRSLSSIEQLLDKLANYFILGNPESKRMLGYQDVRLNFAGGEPMMLGSAFSTALVMAKQKGFQTSIITNGSYLLRRRFELPVNTLDMIGISFDSQQPSVRRELGRIDRRGNSLNEDELQLALQLLSHTQKGLKTKINTVVNALNWEEDFTHLISSIAVDKWKVLQVMPTDKHELLISDDQFRRFVEKHSGKGLPISPESNNTMTESYLMIDPNGRFYQNNNGMPGYSYSERITDVGVEAALSQVNFNCNRFKSRYHVKNMSNISDEVLI 321
115 2551491916 2551306042 Vibrio genomosp. F10 ZF-129 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio genomosp. F10 N MTTIQPGKTKELVINWHLTEVCNYGCKYCFAKWGRPNELHRSSQKVATLLDNLADYFIKGTPTLKDELGYERVRLNFAGGEPMMLGNTFITALKLAKQKGFKTSIITNGHYLVNSKLALPENTLDMIGISFDSQRLDTRDKIGRKDRKGNSFGTEDLKRALANLTQSQKGIKTKVNTVVNSVNLDEDFSELMMELKPYKWKILHVMPNGNDELLISKRQFDSFVERHSGLGLPIFSESNSTMTESYLMIDPQGRFYQNFANKVGYTFSESINLCGVENALTQIEFNPRTFASRYRKADIDVVEL 304
116 2551562099 2551306058 Vibrio splendidus 12E03 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio splendidus N MSTENHLVINTTNETTSSQLNELVINWHITEACNYNCTYCFAKWGRPNELHQSLDAIEKLLDKLANYFIHDDPEIKRILGYQDVRLNFAGGEPMMLGSSFSTALVMAKQKGFKTSIITNGSYLLLRSRFELPLNTLDMVGISFDSQQHPVRRELGRIDRKGNSLNIDELKLAIQHLSRTQKGLKTKINTVVNALNWEEDFSQLISSISLDKWKVLQVMPTGRSDLLVSDEQFSSFVERHSGKGLPISAESNNTMTESYLMVDPNGRFYQNSKGMSGRYSYSERITDVGVETALNQINFNCNRFKSRYYAGNPSNIRGEVLA 321
117 2551596444 2551306067 Vibrio rumoiensis 1S-45 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio rumoiensis N MSTETHLITNTTNETASSHSQLNELVINWHITEACNYNCTYCFAKWGKPNELHRSLDAIEKLLDKLASYFIHGDPEIKRTLGYQDVRLNFAGGEPMLLGSSFSTALGLAKQKGFKTSIITNGSYLLRSRFELPPNTLDMVGISFDSQQHLVRRELGRIDRKGNSFNIDDLKLAIQHLSHTQKGLKTKINTVVNVLNWEEDFSPLISTMSLDKWKVLQVMPTGKSDLLVSDEQFSSFVERHSGKGLPISAESNNTMTESYLMVDPNGRFYQNSKGMSGYSYSERITDVGVETALNQINFNCNRFKSRYYAGKPSNICGEVLA 321
118 2553401559 2551306520 Aliivibrio logei ATCC 35077 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Aliivibrio Aliivibrio logei N MNQANQLVINYHITEKCNYDCHYCYAKWAKPNELHRNVDDMKRVLSNLAEYFLFPNPIQKQLQYQSVRLNFAGGEPLLLKQRFIDALDYAIELGFKTSIITNGHLITDQFIVDHSHKLQLLGISYDSYSIEGQQQIGRITPAGKVLSPERLQSIFKQIKSQSPTTELKINTVVNQYNTEENFTDLIAEIQPNKWKVLRVLPVFDSIQPISNQQFDTFVERHQSVAHFMSAENNDSMTNSYLMLSPDGAFFQNGNNEQGYFKSRSLLTTSVDIALAETGFDAAKFAQRYQ 289
119 2553886541 2551306646 Vibrio harveyi AOD131 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio harveyi N MPTKTHGVANANAANRMTSSQLNELVINWHITEACNYNCTYCFAKWGKPNELHRSLSSIEQLLDKLANYFILGNPESKRMLGYQDVRLNFAGGEPMMLGSAFSTALVMAKQKGFQTSIITNGSYLLRRRFELPVNTLDMIGISFDSQQPSVRRELGRIDRRGNSLNEDELQLALQLLSHTQKGLKTKINTVVNALNWEEDFTHLISSIAVDKWKVLQVMPTDKHELLISDDQFRRFVEKHSGKGLPISPESNNTMTESYLMIDPNGRFYQNNNGMPGYSYSERITDVGVEAALSQVNFNCNRFKSRYHVKNMSNISDEVLI 321
120 2558097217 2556921621 Acinetobacter towneri DSM 14962 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter towneri N MPKLTKELVVNWHITEACNYKCDYCFAKWDSDSKEVLHSQIKIETLIEQIENIRHILNKSSQTVYFDQLRLNLVGGETFLYMKQLKNIINLSKKYNFRLSAITNGSLFNEIDMKFIAQNFSSLGISVDSINEYTNLAIGRTSKQNTFNPSQVLTAINKIKKYNPMIEIKINTVVNKLNASEDLSYFISQIQPNKWKIFKLLPVYSNKLDITEQEFHQFIEKHSSFKSIISSENNNDMTESYLMIDPLGRFFQNGYTSGYKYSSPLWQVSAETALKQIKFDSQKFVNRYKKIF 292
121 2559286049 2558860239 Spiroplasma culicicola AES-1 Bacteria Tenericutes Mollicutes Entomoplasmatales Spiroplasmataceae Spiroplasma Spiroplasma culicicola N MYTIEQLNSIKLNFHFSMFCNMRCKFCFYAPLIAKAKREDNLNNWLEIIKKVAFFKAINFAGGEPTLYWNQLKQMAKLCKELGLKVTLITNGTVIKNKSQNEVNDLLQYFNSVGISMDSIDLNINQNSGRAIGNKSALSEDDYLEVGAKIKKAGCQLKINSVVHSLNKNTRMIDFIEKIDPYKWKIMQVSSVGQEFHKDFIISKSDFDKFLEINDIKNKHSFVKSIEDETTVTSTYVMIDGEGYFYNSDQIYNKNNKSILKENVDVLEEFNKCNFDINSQLDRYKNEK 288
122 2559416375 2558860277 Treponema primitia ZAS-1 Bacteria Spirochaetes Spirochaetia Spirochaetales Spirochaetaceae Treponema Treponema primitia N MGNKASIINLHLLDACNYRCGHCFAHFNMPKVLPLEQWKRVIDNIIANSDVKRFNLAGGEPLLYPEIDNLIRYIASKHIETSIITNGLLLNENRINFFSGMVSMVGISIDSLNDETLRRIGRCTYKDELLNHSHCVSICKSIKTHDIKLKINTLVSTLNKNEDFHSFIKEVQPDRWKILKMKHFENAQYNNKIFIPNNYDYESFVARHSDMPLIAEREMKNAYIMVDAWGNLVDTGTENNAIVASLLEIDFAESFSRLNFNYDVYNQRYVA 271
123 2562001279 2561511079 Selenomonas sp. FC4001 Bacteria Firmicutes Negativicutes Selenomonadales Selenomonadaceae Selenomonas Selenomonas sp. FC4001 N MAYKVNLHITQKCNYACKYCFAHFDNNNDLSLDQWKHIIDNLKNSGIVDAINFAGGEPVLHKDFPAIVSYAYNQGFRLSLITNGSLMLNPNLMPPELFKRVDTLGISVDSINPQTLIALGACNKSQEVLTFDKLTQLIALALSVNPNIRIKLNTVITKLNEKEDLTIIGKQLNIARWKFLRMKLFIHNNFNNSPLLSNQGEFDNFVARHTKVSRDVVPENDLTRSYIMIDNQGQLLDDETENYNVVGSLLTEDFTKVFARYSFDESTYASRYAS 274
124 2563081558 2562617115 Myxococcus hansupus DSM 436 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Myxococcaceae Myxococcus Myxococcus hansupus N MRCRFCFATFQDVRQTVLPKGHLPREEALQLVKLLAARFQKLTFAGGEPLLCPWLPELVRAAKGQGATTMLVTNGSRLTHERLSLFEGALDWVTLSIDSPFPETHVALGRAVQGKAIDAGDYLNIANLIRDAGIRFKVNTVVTSLNAHEDQTEFLRRLMPERWKLLRVLPVDGQNSGKVEPLLCSDEAFLGFVARHQCLATEGVTLVPEDNEDMRGSYAMVDPAGRFFDNAEGRHRYSEPILHRGIDAAWSQVHFSMPRFERRGGNYDFGGAR 273
125 2563230595 2562617155 Helicobacter bilis ATCC 43879 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Helicobacteraceae Helicobacter Helicobacter bilis N MDAITLNWHITEQCNYKCHYCFAKYTKCNMQEIHRNKENITTLLTKLYNSIGAIYNTDSLRLNIAGGEPLLSKNLGFIVESAYKLGFKISIITNASLLTKEFIESYIALFTMFGISVDSINTETNNHIGRCSKTHNNNTAYLKDTINFLKAKNKDMQIKINTVVNRYNYKENMSEFIESIKPDKWKIFQALSINADKNYCNKTQYKYFLRTHKHLKSCITDEDKDLMTNSYIMIDPYGRFYQNTKGNNKGYTYSPILLDLADKDIANYLKVDMIKYKKRCNLV 283
126 2565569616 2563367142 Vibrio halioticoli NBRC 102217 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio halioticoli N MKQANQLVINYHITEKCNYDCHYCYAKWAKPNELHRNLDDMKAVLRKLAQYFFSPNPIWQELRYDSVRLNFAGGEPLLLKQRFIDALDYAVELGFKTSIITNGHLIDDQFIAEHSQKLQLLGISYDSSHFETQQQIGRVTPKSKNLTSERLQSIFQKVRHYSPNTELKINTVVNQFNHQENFTSLIGDLHPNKWKVLRVLPVFDSIQTISNQDFDAFVTRHQLVGDVMSVENNDSMTNSYLMLSPDGAFFQNGNNEQGYFKSRLLLSSDVEVALTETGFNATKFAQRYELVTV 293
127 2565702223 2563367170 Helicobacter bilis WiWa Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Helicobacteraceae Helicobacter Helicobacter bilis N MDTITLNWHITEQCNYKCHYCFAKYTKCNMQEIHRNKENITTLLTKLYNSIGAIYDTDFLRLNIAGGEPLLSKNLGFIVESAYKLGFKISIITNASLLTKEFIESYIALFTMFGISVDSINTETNKHIGRCSKTHNNNTAYLKDTINFLKAKNKDMQIKINTVVNRYNYKENMSEFIESIKPDKWKIFQALSINADKNYCNKTQYKYFLRTHKHLKSCITDEDKDLMTNSYIMIDPYGRFYQNTKGNNRGYTYSPILLDLADKDIANYLKVDMIKYKKDVI 281
128 2566542256 2565956643 Acinetobacter parvus NIPH 1103 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter parvus N MDLVINWHITEACNYKCFYCFAKWQQKDQREILHSKQNIQQLMQEISLLPSILNTKSGCSFTGVRLNLVGGETFLYKHQILDIIKAAKKYHFKLSAITNGSLLNDELIKIIANEFSMIGFSIDSTHSESNLRIGRAIKNIPIETDKIYAHIQKLRTINPKIDIKINSVINQFNKDEDLNDFIRKLSPSKWKVFKMLPVITNDYSINDSEFYAFLERHSDLEDIISSENNDEMTHSYLMIDPLGRFFQNSSTSCGYDYSSEILISGVSSALDEIKFDVSKFIKRSKLIPNLNLNTRSSPLINEWLSRAHLT 310
129 2566736970 2565956698 Acinetobacter towneri DSM 14962 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter towneri N MPKLTKELVVNWHITEACNYKCDYCFAKWDSDSKEVLHSQIKIETLIEQIENIRHILNKSSQTVYFDQLRLNLVGGETFLYMKQLKNIINLSKKYNFRLSAITNGSLFNEIDMKFIAQNFSSLGISVDSINEYTNLAIGRTSKQNTFNPSQVLTAINKIKKYNPMIEIKINTVVNKLNASEDLSYFISQIQPNKWKIFKLLPVYSNKLDITEQEFHQFIEKHSSFKSIISSENNNDMTESYLMIDPLGRFFQNGYTSGYKYSSPLWQVSAETALKQIKFDSQKFVNRYKKIF 292
130 2569938648 2568526421 Vibrio parahaemolyticus TUMSAT_H10_S6 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWQEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIVEIS 305
131 2574423613 2574179766 Thiomonas sp. FB-Cd, DSM 25617 Bacteria Proteobacteria Betaproteobacteria Burkholderiales unclassified Thiomonas Thiomonas sp. FB-Cd N MSAASAQESSITALNFHVWQPCNMACRYCFAQFDDQVPQLRRDKQELRERALAVVEAAASAGIQKLTLVGGEPTLCPWLKDLLEAAITRGMVTMIVTNGTKVDEAWLQRHAECLNWAAVSVDSLDAGTNSRIGRRVGAGSAPDRDYYGKLFRLLNAAGIRTKVNTVVSAQNWQEDFVPFLSKARPERWKIFQALHIRGENDSAFPEFSVSIEQFQSFIERHEKLERLLTIAAEGSDDMLGSYLMVDPLGRFVTNIGGIYAYSKPIWDVGWKAAIAEAQFDSKKFVERGGIYNW 293
132 2574578667 2574179802 Sulfitobacter mediterraneus KCTC 32188 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Sulfitobacter Sulfitobacter mediterraneus N MLTIPELTINWHVLEACNFNCYFCYAKYRQKPSFQHIYKNVLLELSLLKGRVLKLKSGPVLPKSIRVNFAGGEPFLVKDLGQAIELASDLGLRPSFISNGSLITDDFISKFGKRISVAGFSIDSFSRKVNDDIGRIDNKRQQVSLERFHRIFSMFREVSPETMIKVNTVVCRENVREDLTGPLGELKPDRWKALRVIPIHGAEGRQITDSQYKKFLERHKGVAGQVVPEDNEHMHRSYLMLNPEGRFYQREGSSFMQSEPVLQDGAAVALRDVEFDAETYLSRYSQAKEGQKDV 294
133 2577747326 2576861245 Vibrio parahaemolyticus VIP4-0444 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINLCGVEKALSQIEFNPITFASRYKETNINIVEIS 305
134 2577787495 2576861258 Pseudoalteromonas haloplanktis TB25 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas Pseudoalteromonas sp. TB25 N MTNIKELVINFHMTEACNYRCGYCYGKWQDNTSATELHHSSESIQDLLLMLAEYFFSNNQIRQGLGYQSVRINFAGGEPVMIGARFISALLFAKSIGFNTSLITNEHFLSPAMLRRIAPHLDMLGLSFDTADYLIAQSIGRTDHKGEWFSPQKALTVTALYRQLNPQGKLKVNTVVNAFNFRENLNETIALLQPDKWKLLRALPVYSDQLTISQEKYDSYVQKHKEHNNVIAIEDNCDMWESYLMINPESNFYQNSSSCQGLTLSPSILDIGVSKALNHVNFNIKAFASRYPSSFPQVIKENLITLGEQ 309
135 2580440151 2579778656 Pseudoalteromonas haloplanktis AC163 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas Pseudoalteromonas sp. AC163 N MTNIKELVINFHMTEACNYRCGYCYGKWQDNTSATELHHSSESIQDLLLMLAEYFFSNNQIRQGLGYQSVRINFAGGEPVMIGARFISALLFAKSIGFNTSLITNEHFLSPAMLRRIAPHLDMLGLSFDTADYLIAQSIGRTDHKGEWFSPQKALTVTALYRQLNPQGKLKVNTVVNAFNFRENLNETIALLQPDKWKLLRALPVYSDQLTISQEKYDSYVQKHKEHNNVIAIEDNCDMWESYLMINPESNFYQNSSSCQGLTLSPSILDIGVSKALNHVNFNIKAFASRYPSSFPQVIKENLITLGEQ 309
136 2581032418 2579778800 Vibrio metoecus PPCK-2014 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio metoecus N MTTIQPSKTKELVINWHLTEVCNYGCIYCFAKWGRPNELHRFSQEVATLLDNLADYFIKGTPTLKDELGYESVRLNFAGGEPMVLGNTFITALTLAKQKGFKTSIITNGHYLVNRELALPENTLDMIGVSFDSQNLDTRRKIGRIDRKGNSFGTEELKQVLANLTQSQRGIKTKINTVVNRLNLDEDFSELIMELKPYKWKILHVMSNGNDELLISKRQFDSFVERHSRLGLPIFSESNSTMTESYLMIDPQGRFYQNSANKVGYTFSESINLCGVENALTQIEFNPRTFASRYRKADIDVVEL 304
137 2581542389 2579778918 Vibrio harveyi E385 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio harveyi N MPTKTHGVANANAANRMTSSQLNELVINWHITEACNYNCTYCFAKWGKPNELHRSLSSIEQLLDKLANYFILGNPESKRMLGYQDVRLNFAGGEPMMLGSAFSTALVMAKQKGFQTSIITNGSYLLRRRFELPVNTLDMIGISFDSQQPSVRRELGRIDRRGNSLNEDELQLALQLLSHTQKGLKTKINTVVNALNWEEDFTHLISSIAVDKWKVLQVMPTDKHELLISDDQFRRFVEKHSGKGLPISPESNNTMTESYLMIDPNGRFYQNNNGMPGYSYSERITDVGVEAALSQVNFNCNRFKSRYHVKNMSNISDEVLI 321
138 2582293224 2579779100 Vibrio parahaemolyticus VIP4-0430 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWQEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPIMFASRYKETNIDIVEIS 305
139 2582959978 2582580668 Composite genome from Trout Bog Hypolimnion pan-assembly TBhypo.metabat.3004 Bacteria Verrucomicrobia unclassified unclassified unclassified unclassified unclassified N MNTTQSILPGTINIFVNSLCNFACKHCYATSQDISAAKMAKLSEADAKAIIREIASEPLAEGLLARKITFVGGEPTLHPALPNLVAYAKELGLVTAVITNGLTLTPRYLEPMAGKLDWVGLSIDAVDNSNQQIGRTTRAGRYLDEAAYLQRIEWIQNIGAQLKINTVVSRINWQSDLSEFIVKANPVRWKILQVTPVEGQNDQFIKLLQIDRSTFDKFVARHSIVETLGVRTVAEPVETIRGSYAMISPDGRFFDSSSGRHQYSRPIMKVGLHRAFSEVSFDAAKYDGRDGNYNPFTGESQSLGERYSELNPNPTVNA 318
140 2583671671 2582580861 Pseudoalteromonas sp. TAE56 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas Pseudoalteromonas sp. TAE56 N MNNSIDELVINYHVTEVCNYSCKFCYAKWDRPSEIQANGQDAELMLEKLANYFFDDNTNQVKAVFPYKSVRINFAGGEPLILKKRFEKLIIKTKLLGFNLSLITNGHYLTDSFINNYGAIFSMIGISFDSQFLTAREDIGRIDRKGKSFGSHDLIKAITQLRNVNPSITIKVNTVVNSLNYQESFEQLIADIKPEKWKVFQVLPVLNNNLLVSDDQFSGFVKRHASLKEVMVAEDNEAMTNSYLMINPQGRFYQNSATQNGYVYGDLILDVGVKQALEVCEINWETFTSRYKKDNTVSLISHSEYQLKNNAAYTQGVLA 319
141 2584203718 2582580995 Vibrio parahaemolyticus TUMSAT_DE2_S2 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEMLISKEQFDNFVLRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIIELS 305
142 2585240392 2582581301 Janthinobacterium sp. RA13 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Janthinobacterium Janthinobacterium sp. RA13 N MSLTPTSSVRELVVNWHVTEVCNYGCRYCYAKWDDGGSTQELIHDGAAIKALVEEVGRFFKPGNSGNPLWTGMHWTSLRLNLAGGEPLLYAEKALDVIRHARRLGLETSIISNGSRLTPALMQALAPHLAILGLSLDSSEAKTNLGIGRVDRQLRTLSMPELLGMIAVGRQINPLLRLKINTVVNALNWQEDMSNLIGSLAPEKWKILRMLPKITDDLALSDAQFDTFVRRHAHLDHGVRVEDNADMTESYLMIDPYGRFFQNIPGEKGYRYSDSILDVGAARAFSQINVSATKFCSRYTGELADLKA 308
143 2587265930 2585427937 Pseudoalteromonas sp. 520P1 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas Pseudoalteromonas sp. '520P1 No. 412' N MSIQNNYVENSTSSLINKSDELVINWHITEACNYSCAYCFAKWGKPNELHRSLEAIEKLLDNLADYFIRGSSPLKQKLGYKSVRLNIAGGEPMMLGSTFSIVLMLAKQKGFKTSIITNGHYLLNSKFDLPNNVLDMVGISFDSQNYGVRCQIGRVDRKGNSLSSDDLIFALAKLSNTQKGIKTKINTVVNKLNWQEDFSSLISEINPYKWKALQVMPYGEDNLLISNEQFNNFVDKHSNAGLPIFAESNFAMTESYLMIDPKGCFYQNSSGGSGYQYSESINKVGAAKALKQISFNEAVFIARYLPIEPVVFIGEGAML 319
144 2589217693 2588253911 Chondromyces apiculatus DSM 436 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Chondromyces Chondromyces apiculatus N MSTTTPRITTPVDEAPHSDPTRDQELAPPPRPPSPPLPRSVNYHLWKPCNMRCTFCFATFDDMTHAVLPRGHLPREASLALVALLASRFEKITFAGGEPTLCPWLLDLMDEAKRRGATTMLVTNGSRLTPDYLHRLQGRLDWLTLSIDSASTETHRLLKRAVSGRPIEARQYVAMAVAARALGMRLKVNTVVTTLNAGEDMAVMLSELRPERWKILQALPVEGQNSGRIEPLLCSPAAFAAFVERHRAPLAAQGIVVVPEDHEAITGSYAMVDPAGRFFDDITGTHRYSAPILDTGLDAAWSQVGFLPDRFAARGGDYEFRG 322
145 2597063350 2596583606 Fibrobacter succinogenes elongatus HM2 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter succinogenes N MNFNKNIVINWHITEACNYHCKFCFAKWNKPTELWSDPENVEKVISNICKHFRSQGYFPIRLNIVGGEPIMFPERLWKVVEIAYKHEMEISIITNGSHLENIFPFAHLISQVGISIDSLNHLTNVNIGRECGGKTISFETLREKIERIRKVNPDIRIKINTVVNRENFNEILVDRFAQLHIDKWKIFRQMPFNGNGGISDYQFYAFLRNNYNEELMQKSAPVHQDSLEALYMTDLDYSGKKDDKTNKQVIFIEDNNAMTESYLMISPDGRFFQNGSEEYCYSRPLTEASVEEALSDIKFDSSKFEERYNSWSTQSAVYEANTFFHVNDYDYDDYEIFGELSED 343
146 2600497862 2600254970 Pseudomonas sp. 1-7 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas sp. 1-7 N MPNPTPLVINWHLTETCNYHCQYCYATWNESARPRELIHSPERTMALLSELYRFFRPGNGTNPLASRMTWGAVRLNLAGGEPLLHVGKLPAIVSQARALGFEVSLISNGSHLDHELLDRLAPQLSWLGISIDSTCPATNRAIGRVDRRRRLLDLDDLATGLASARQANPGLCLKLNTVVNRLNHSEDLGPLIRRFAPDKWKVLRMLPVVSKDLIVSDRQFAAFVARHCAFSHVLCAEDNQDMRESYLMVDPHGRFFQNSPLIAGQGYVYSHPILEVGAEVAFDQIAFEPERFSARYIPVVMGKGA 305
147 2600833866 2600255071 Vibrio ezurae NBRC 102218 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio ezurae N LRVLPVFDSIQTISNQDFDAFVARHQLVADVMSVENNDSMINSYLMLSPDGAFFQNGNDAQGYFKSRPLLSSKVEVALAETGFSAAKFAQRYELVAV 97
148 2609594859 2609459643 Janthinobacterium sp. OK676 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Janthinobacterium Janthinobacterium sp. OK676 N MDFDLPFASRSADQLVINWHITEACNYSCQYCYAKWETPDRQRELVHNPVRTRELLSRLYEFFHPDNYANPLRRHMNWGSVRLNLAGGEPLLYTRRVLEMLPIARDIGFDISLITNGSRLDSGLMASLVPYISLLGLSIDSQIAQSNKEIGRVDHRGQQLDIAKLVDTVSEGQRRHPSLKVKVNTVVNKVNQFDDMTSVIQCLRPEKWKVLRMLPIVDDRLAVSQQGFDDFVRRHAHLAAIRHVEDNQDMTESYLMVDPTGRFFQNTTGASVRGYRYSQPILEAGASVAFAGMRFAAPKFLFRYMASVGVSE 312
149 2609930410 2609459764 Marinobacter sp. ES.048 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter Marinobacter sp. es.048 N MRTNTLICSANRSATPPAKVPAVDELTINWHVTEACNYSCQYCYAKWKDYPNPRELFHDRRRTRQLLTELFRHFDPTNTNNPLREELSWKTVRLNLAGGEPSILGDRLLEIAQVAREVGFQLSIISNGSRLTRSMIKELAPHLTCLGISLDSANPTTNMKIGRALRSGQLLDLQELAGHIRLARKINPRLTIKLNTVVNLLNAGEDLSDLVGEIRPQRWKILRMLPIVDRSLAISDEEFVAFVQRHRAFQSVQCVEDNRDMCESYLMVDPFGRFFQNHPSLAGGYLYSDPILAVGAQAAFSKMAFDSASFQSRYTGELGGRQ 322
150 2611345001 2609460080 Hyalangium minutum DSM 14724 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Archangiaceae Hyalangium Hyalangium minutum N MNLEPGDAPLPLSPTSEASSDRPVEGGPLPPSVNYHLWQPCNMRCRFCFATFEDVRGQLPAGHLPREQSVQLVRLLARSFQKITFAGGEPLLCPWLPELVRAAHEEGAVTMLVTNGSRLRPEQLEQLAGHLDWAALSVDSTSEETHLKLGRAVLGRKALSLADYEAVAARLRAAGVRVKLNTVVTSLNAGEDLTPLVRRLKPERWKVLRVLPVEGQNDGKVEPLLCTDADFLSFVARHQHLEAEGVAIAAEDNEDMRGSYAMVDPAGRFFENTRGFHHYSDPLLAAGLRAAWAQVRFSMERFENRGGRYDFGGGR 315
151 2611749855 2609460164 Acidithiobacillus thiooxidans Licanantay Bacteria Proteobacteria Acidithiobacillia Acidithiobacillales Acidithiobacillaceae Acidithiobacillus Acidithiobacillus thiooxidans N MTHSLTRRGRVRPRLSELVINWHITEACNYRCRYCYAHWAGSGRELIHNIPATTRMLENLWLYFHPRNLANPLRRQMDWQGVRLNLAGGEPLLYPERVSQILLAARNIGFTTSLITNGSLLSPAVTAQIAPHLSVLGVSLDSGESPTNRLIGRQGRHGQLLIVEQLAEVIEEARRCNSSLQIKLNTVVNALNCHEDLSVLLQRLAPQRWKILRMLPVMTNELMVSDSDFQDFIARHQHLGHILCVEDNTEMVESYLMIDPLGRFFQNASGQSSYRYSCPIPEVGPEQAFAEVGVDAAKFCARYLGHLEDASV 312
152 2612132826 2609460245 Delftia tsuruhatensis 391 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Delftia Delftia tsuruhatensis N MKNLHMGEASARPRVRELVINWHITEACNFSCRYCYAKWDGTEKELIHDWERTQKLLSEIASFFAPSNLSNPLQQALSWSAVRLNLAGGEPLLYPKAVLRVLAEARSLGMHTSIITNGTRITEEFLDQLAPLVSMIGVSIDAASDATNVGIGRVDRRGSLLNNQELARLLAKARTINPGLHVKLNTVVNALNAEGDMGNTIDTFRPDRWKIFRMLPVVTGDLAVSSEVFEAFIARHARYKGVMCVEDNDVMSESYLMLDPLGRFFQNSRGQQGYSYSQPVDVVGATQAFTDWRFAVGSFASRYSQSSNGVVR 312
153 2617465221 2617270765 Marinobacter mobilis CGMCC 1.7059 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter Marinobacter mobilis N MNSNTHFVANNSGAVVSTNIAAVEELTINWHVTEACNYRCQYCYAKWTSRPNPRELFHDPVRTRSLLTELFRFFHSGNRSNPLHQQLSWNTLRLNLAGGEPSILGDRLLEIVHAAREVGFRVSIISNGSRLTPLAIEQLAPHLTSLGISLDSAAPATNRKIGRIDGKGRLLDIKELVENLQLARQINPQLAVKLNTVVNQRNVREDLCQLADQIRPDRWKILRMLPVVDHSLAVSDDEFSAFVERHRDFESVQCVEDNHDMCESYLMVDPFGRFFQNQPSLNLAYVYSEPVLSAGAERAFCELAFNTDSFQSRYTNGVVGGKQ 323
154 2617538802 2617270789 Flavobacterium omnivorum CGMCC 1.2747 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium Flavobacterium omnivorum N MKGSYVMVDPAGRFFDNTTGKHFYSEPILEVGCDAAIQQMNYDALKFDERGGNYTWERSKLKIA 64
155 2619647987 2619618818 Pseudidiomarina donghaiensis CGMCC 1.7284 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Idiomarinaceae Idiomarina Idiomarina donghaiensis N MTIRTQELVINFHMTEACNFRCAYCYAKWNDEPSNKELYGHTGAVDTLLTSLANYFFASNPIQKQLGYQRVRINFAGGEPMMLGKYFSSALAKAKALGFQTSVITNGHFLRKKMMREIAPNLDMLGISFDTADELIAQSIGRVDRHKRWLSPSQLLELCNSFRSINPLGKLKLNTVINPFNACENLSPLISQIKPDKWKLLRVLPVHDESQVISDTQYQAYINRHLPSFPNLIIEDNDDMWQSYLMINPQGQFYQNVSPTSGHIQSKPILQIGVHQALSQIPFDMRAFAKRYSEKGSS 298
156 2619760352 2619618853 Betaproteobacteria sp. genome_bin_13 Bacteria Proteobacteria Betaproteobacteria unclassified unclassified unclassified unclassified N MKHSLIRKGLVRPQLSELVINWHITEACNYNCRYCYAHWDGNARELIHDISGTRQMLENLWQFFHPENVANPLQKQIDWRGIRLNLAGGEPLLYSERLLQTLSDARNIGFTASVITNGSLLSRDFAQLIAPKLSMLGVSLDSAVSKTNRQIGRQSRQGKLLDMDALEDAIKAARLINPKLQIKLNTVINAINCDEDLSAGIRRLAPQRWKVLRMLPVVTDELNVSDEDFQRFVARHRDLGDIMCIEDNTDMVESYVMIDPLGRFFQNALGQPNYRYSPPIPKVGVAQAFAKVGIDPSKFCSRYMVPVARGLP 312
157 2620549291 2619619052 Unclassified Chloroflexi bacterium bin152 Bacteria Chloroflexi unclassified unclassified unclassified unclassified unclassified N VKIPTRIPSVNFHLWKPCNMKCGFCFATFQDIGQEVLPEGHMPREEALAVVEALAAAGFEKITFAGGEPTLCPWLPDLISRARETGLTTTIVTNGSRITGEWLDRVDGLLDWVAVSIDTLDPEKLKRLGRITRDGPMSEYEYLHIADMLKSRGIRFKLNTVVTRSNYEEDLTGFVIEANPERWKLLQVLPIKGQNDTLVDNLLITEKQFACYVARNRSVESEGIAVIAESNDKMTGSYIMVDPAGRFFDNMTGRHVYSGPINEIGVEAALKEVSIDTEKFRLRGGLYDW 289
158 2621169600 2619619266 Photobacterium phosphoreum ANT220 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium Photobacterium phosphoreum Y MKLINTENACVKELVINWHMTEVCNYSCKYCFAKWGRPNELHRSEQDIIKLLDKLADYFIKGTPTLKKDIGYESVRINFAGGEPMMLGNTFITALMLAKQRGFKTSTITNGHYLISGKLVLPKNSLDMIGISFDSQNLKTRHQIGRTDRKGNSFGSDDLKQALVMLAQSQKGIKTKINTVVNNLNVDENFAELIDELKPNKWKVLHVMPYGDDELLVSKEQFDRFVKRHSGLGLPVFTESNSAMTESYLMINPQGCFYQNKANKVGYEYSENINLCGVEKALSQIEFNPRTFASRYLKESIDIVTI 306
159 2623278845 2622736530 Roseovarius lutimaris DSM 28463 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Roseovarius Roseovarius lutimaris N MELQPQLVANWHVTEACNYRCKFCYAHWSKPKASELWRNNAACRLLISELGRFLSPDNPLWEQRFVRRPRLNIAGGEPTLWAGELSHVVDHAVAAGFDVSLITNGSRPETLRNIASRISMLGLSVDSTRCDGNLRIGRVDRKGAQIGSDDLIDLVRELRTANPTLQIKLNTVVNAVNAEEDFSALISHIAPDRWKALRMLPSYNDELTVDEAKFERFVSRHAAFRRILSVEDNPSMVQSYLMIDPHGRFFQNRLDSKGYYYSEPILDIGVERAFAQIPFSIDRFLARYQPLESAS 295
160 2632746825 2630968667 Nonlabens ulvanivorans JCM 19297 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Nonlabens Nonlabens ulvanivorans N MSNLDKSSFIPSVNFHLWEPCNMRCKFCFATFQDVKQSILPKGHLPKEEALQVVRQLAAYGFEKITFAGGEPLLCPWLPDLIKEAKQLGLTTMVVSNGSRMTEQFLIDNKNYLDWIAVSIDSLDEATNLKIGRAIVGKRTLSKDYYIDLIKRIKHYGYGLKINTVVNAYNYQEDFTDFITSSNPKRWKVLQVLPIIEQNDSKVDEFIISQNQFNDFVNRHNSVLTMIPESNNAIKGSYVMVDPAGRFFDNSKGKHHYSKPIIEVGVKEAIITMNYDWEKFVNRGGIYDWES 291
161 2642232622 2639763156 Aeromonas sobria CECT 4245 Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Aeromonas Aeromonas sobria N MSRPFWQCLSIGSLKCPVPPLTGRKTVGIHGVSYRLSQSIGTLCVSLTKESLIMSLPVQIVINWHLTEACNYRCHYCYATWNKMTCQRELIRDPERTARFLAEMYHFFRPENRANPLAGQLEWRSIRLNLAGGEPLLHAGKLPSIVTQARDLGFEVSLITNGSYLNDGLLNSLAPQLVWLGISIDSASAANNHTIGRVDCLGRQLDLNELVASLDMARQLNPDLRIKLNTVVNQLNHHEELGALIVSLAPDKWKVLRMLPVVSQHLAVNDEQFAAFVSRHNAFSQILCIEDNLDMHESYLMVDPYGRFFQNTPLLPAAGQGYTYSRPILEVGAGMAFSEMSFDHKRFCARYIQTNTDVGA 360
162 2644760915 2643221740 Chryseobacterium sp. Leaf201 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium Chryseobacterium sp. Leaf201 Y MTTPFEGRIPSVNYHLWEPCNMRCKFCFATFQDAKKILPKGHLAREQSVELVRQIGISGFEKITFAGGEPTLCPWISDLISTAKDSGMTTMIVTNGTRLDDDFLMRNQGKLDWIILSIDSIDDGINISSGRAVAGKRPLTVEFYKNLIDRIKDFGYQLKINTVVHQLNYRESLTDLIQYAQPERWKVFQVLPIKGENDEHIDEFVIGKEQFDHFIAAHRSFKDENIMVTEDNAEMKDSYVMIDPAGRFFTNKKGLQEYSRPIMETGVEKAYGQMDYNYEKFIKRGGLYQWETQPA 295
163 2645912334 2645727543 Aeromonas tecta CECT 7082 Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Aeromonas Aeromonas tecta N MSKVNQLVINYHITEKCNYDCHYCYAKWAMPNELHRNLDDMKQVLAKLADYFFSPNPIQDKLQYQSVRLNFAGGEPLLLKQRFVEALDYAIELGLKTSIITNGHLISDQFIAEHSHKLQLLGISYDTCHLEGQQQIGRLTTSGNVLSAERLQSIFQQVKSHSPATKLKINTVVNLFNVDEDFTALISTLKPNKWKVLRVLPVFDSIQAISDQQFASFVARHQALSQVMSVENNDSMTNSYLMLSPDGAFFQNRSKTHGYFKSPPLLTTPIDQSLAETGFDAIKFSQRYRVLEEE 294
164 2647434260 2645727892 Comamonas testosteroni KF712 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Comamonas Comamonas testosteroni N MHYPTPLVINWHLTEACNYRCQYCYATWNPSSCRRELIHDSEKTTALLSALYQFFQPGNPNNPLTQRMNWSSVRLNLAGGEPLLYADKVPSIVHQARGLGFEVSMISNGSQLTDELLQKLAPQLTWLGISIDSAIPAANRAIGRVDRRGQLVDLESLAVSLAKARQAHPSLQIKLNTVVNQLNHSEDLSALIDQFKPDKWKVLRMLPVVNQHLAINDEQFAAFVARHHAFSQITCAEDNQDMRESYLMVDPHGRFFQNSPLIPGQGYQYSQPILDVGTEAAFAEMRFEPTRFAARYIPIHAEVAA 305
165 2649993012 2648501459 Photobacterium swingsii CAIM 1393 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium Photobacterium swingsii N MSSENHLVVNTATAGQLNEFVINWHITEACNYNCTYCFAKWGKPNELHRSLGAIEKLLDKLANYFIHGNPEIKRILGYQSVRLNFAGGEPMMLGSAFPTALVMAKQKGFKTSIVTNGSYLLRGRFQLPPNTLDMVGISFDSQQHPVRRELGRIDRKGNSFNIDELKLAVQHLSHTQKGLKTKINTVVNALNWEEDFSPLISSLSLDKWKVLQLMPTGRTDFLISDEQFTSFVERHLGKGLPISAESNNTMTESYLMIDPNGRFYQNSKGMSDYSYSERITDVGVETALNQISFNCHRFMSRYYAENSSNICGEVLA 316
166 2651793160 2648501913 Pseudomonas nitroreducens DPB Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas nitroreducens N MLQVVTHDLAVSSEDFLAFVARHDALREVMCVEDNDDMSESYIMIDPLGRFFQNTAGLKGYHYSNTIDVIGAERAFSEWRFSTGAYAARYRDALVEGRE 99
167 2652273697 2651869653 Rubrivivax sp. AAP121 Bacteria Proteobacteria Betaproteobacteria unclassified unclassified unclassified beta proteobacterium AAP121 N VFEIPDASPEPKQLVLNWHIAEACNYSCKYCYASWDVTEGGRDLIRDHKRTTSLLTALFEFFRPENLAHPLRSRMTWSGVRLNFAGGEPLLFSRELEAAVLTSNTIGFDVSLITNGSRLTPQLMSRLAPRLSLLGLSIDSMSMETNASIGRVDRQGRQVDLEELSEMVRLGRRLNPAMRVKLNTVVNRLNQADDLTPLIRQFAPDRWKVLRMLPVRGRQLEVSDDQFDSFVARHRQLGEILCAEDNLDMTESYLMIDPQGRFFQNEPATNGRGYMYSQPILEVGVAKAFNQIAFNPQRFAARYAGLPPVEVQ 312
168 2654809173 2654587547 Achromobacter spanius CGMCC9173 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter Achromobacter spanius N VRHILPSVVSPIVINWHVTEACNFRCRYCYAKWQQLDSRELIRDPEATDALIEALYEGFAPFNTTMPPRLNFAGGEPLLYGGQVARAMAKAREVGFDVSLISNGSRLTADLAARIAPHMTMLGISIDGTTSAINERIGRLDGRGIQLDLAGMIDRIALMRSLNPAMTLKINTVVNEVNWQEDLIPLISDLAPTRWKVLRMLPVVTNELALSDEQFQAFVDRHRALDSIMCVEGNDDMVQSYIMVDPHGRFFQNRIVGAGYDYSQPISDMGALAVFDRMKWSAEKFAARYPHISIQVAA 298
169 2658339966 2657245169 Methanoculleus sp. EBM-46 Archaea Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoculleus unclassified N MPAHSVIRSVNWHLISTCNYSCRFCFARNLGEQPVSFSEGLTILSHLADAGMEKINFAGGEPLLHPRLFDYCRAARDLGMTVSITTNGSLLSQKLIGEHAACIDWIALSVDSASESTEKRLGRGYGQHVQHCIGLSDAVREAGIRLKINTTVTRLTWEEDMADFIQRTSPDRWKVLQMLHIQGENDGAMADLAVTDKQFQTFCARHADVILRGGVQPVFESSAMIEGSYFMITPGGCVKTDTGRVIRKYPLADVLQVGISGFVNEELYLGRGGVYAW 277
170 2667505054 2663763602 Pseudomonas hussainii JCM 19513 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas hussainii N MSKDNLIFPISPVKAAPVHVDALTINWHVTEACNYRCQYCYAKWTDHPCPRELFHDRDRSQQLLAELFRYFQPTNTSNPLRDALSWRTLRLNLAGGEPSILGERLLDITHAAKQVGFEVSLISNASRLTSDVIKQLAPQLTYLGVSLDSTHSGTNLAIGRLERSGQRLSLNELTANLDFARQVNPALKIKINTVVNALNAGEDLSGLITRVRPERWKVLRMLPIVDATLAVSDEAFAAFVERHSAFRSIQCVEDNSDMCESYLMVDPYGRFFQNQAAGKGSYLYSRPILPSGAAEAFSEMRFNPAGFRSRYTTAPGEAS 319
171 2667963948 2667527390 Fabibacter pacificus CGMCC 1.12402 Bacteria Bacteroidetes Cytophagia Cytophagales Flammeovirgaceae Fabibacter Fabibacter pacificus N MNKLVPTIKSINFHLWEPCNMRCKFCFATFQDVKSTILPKGHLDKNSTIQLIDKFVEAGFEKVTFAGGEPTLCKWLPELIERAKDRGLTTMLVTNGSLLTEAYLRKINNKLDWLVLSIDSLNEQTNITTGRTFKSKPFSEDSYLKIIHDIKQGGIRFKINTVVTSKNHHEDLTHFLKIALPERWKVLQVLPIKGQNDKHFEDFKVSGHLFNNFVMRHKKIEEFGIAIVGETNDLMTGSYMMVDPAGRFFDNTRERYTYSDPILKVGIHTALSQVDHDYKKFIDRGGIYEWS 291
172 2668144532 2667527434 Pseudomonas oryzae KCTC 32247 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas oryzae N MHNPTPLVLNWHLTEACNYRCQYCYATWNDSACPRELIHDPERSAALLSELYRFFRPGNRANPLASRMSWSSVRLNLAGGEPLLHANKLPAIASQARALGFEVSMISNGSRLTRELLDRLAPQLTWLGISIDSASPETNRTIGRIDRRGRLLDLDDLAAGLALVRQTNPGLHLKLNTVVNQFNHAEDLSALIRRFAPEKWKVLRMLPVVNQHLTVSDEQFAAFVARHRTFANILCAEDNQDMRESYLMVDPHGRFFQNSPLIAGQGYAYSRPILEAGAEAAFAQMAFAPERFNARYSPAVAGEGA 305
173 2668847476 2667527626 Vibrio parahaemolyticus S164 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTAQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIDNLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALASLTQSQTGIKTKINTVINSLNWEEDFTNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPIYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKKTNIDIVDAS 305
174 2672407511 2671180348 Vibrio tritonius AM2 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio tritonius Y MSHVNQLVINYHITEKCNYDCHYCYAKWAKPNELHRDLHQMKAVLAKLADYFLGSNPIRAQLKYGSVRLNFAGGEPVLLKERFIEALDYAKELGFETSLITNGHLLTDDFISNHGSKFQMLGISYDAISENVQKQVGRVTRTGAILTAERLQNIFQQMRQFAPNTELKINTVVNQYNTEENLTALMEVLLPNKWKVLRVLPVFKSIAAITDEQFSAFVERHRSANSFMSVENNDSMTGSYLMISPDGSFFQNGDQFGGYIKSRSLVTTPIGIALAETGFDPVKFANRY 288
175 2674782375 2671180928 Vibrio parahaemolyticus CFSAN007447 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTAQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALASLTQSQTGIKTKINTVINSLNWEEDFSNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIVEIS 305
176 2677278474 2675903261 Anabaena sp. 4-3 Bacteria Cyanobacteria unclassified Nostocales Nostocaceae Anabaena Anabaena sp. 4-3 Y MLPISVNFHLWKPCNYHCRFCFATFRDIQGYLTLSDAKRLLFLLREAGTEKINFAGGEPTLHPYIGELVAESRRLGFVTSIVSNGARMAELLDKHAGDIDWVALSVDSASEEIQKHLGRGNGNHVLQSIDLFDKLHQYGIRVKLNTVVTRLNFQEDMSSFVRRVRPERWKIFQVLPVNGQNDGSVEDLLISPQQFQQFVEQHKTLLDEGIRVVAETNNLMKDSYVMINPQGQFYNNSTTGAYFYSSPILEVGVNIALAQVGWNVETFLNRGGIYSWK 277
177 2682061458 2681812894 Sphaerotilus natans ATCC 13338 Bacteria Proteobacteria Betaproteobacteria Burkholderiales unclassified Sphaerotilus Sphaerotilus natans N MQFRAFIDRHASLEHVISIEGNDDMVGSYIMVDPSGRFFQNRAGASGYDYSPPILEVGAGDAFARIGWSAVKFAGRYARTLSVVPA 86
178 2684092807 2681813425 Methanoculleus sp. MAB1 Archaea Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoculleus Methanoculleus sp. MAB1 N MPAHSVIRSVNWHLISTCNYSCRFCFARNLGEQPVSFSEGLTILSHLADAGMEKINFAGGEPLLHPRLFDYCRAARDLGMTVSITTNGSLLSQKLIGEHAACIDWIALSVDSASESTEKRLGRGYGQHVQHCIGLSDAVREAGIRLKINTTVTRLTWEEDMADFIQRTSPDRWKVLQMLHIQGENDGAMADLAVTDKQFQTFCARHADVILRGGVQPVFESSAMIEGSYFMITPGGCVKTDTGRVIRKYPLADVLHSGVMEYVDPVLYLGRGGVYAW 277
179 2688794699 2687453440 Aeromonas veronii TH0426 Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Aeromonas Aeromonas veronii N MSLPVQIVINWHLTEACNYRCHYCYATWHKMTYQRELIRDPERTARFLAELYHFFRPENRANPLAGQLEWRSIRLNLAGGEPLLHAGKLPSIVAQARDLGFEVSLITNGSYLNDGMLNSLAPQLVWLGISIDSASAANNHAIGRVDRLGRQLDLNELVASLNVARQLNPDLRIKLNTVVNQLNHHEELGALIVSLAPDKWKVLRMLPVVSQHLAVNDEQFASFVSRHNPFSQILCIEDNLDMHESYLMVDPYGRFFQNTPLLPAVGQGYTYSRPILEVGAGMAFSEMSFDYKRFCARYIQTNTDVGV 307
180 2693209812 2690316327 Vibrio parahaemolyticus S165 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTTQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPIYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIVEIS 305
181 2694949528 2693429874 Olleya namhaensis DSM 28881 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Olleya Olleya namhaensis Fused MKNKITLSGFAGTGKSTVGKLIEDQLKFEFISVGNYTRTFAMETYGMTINQFQKHCNNHPELDHIIDDKFKAECNSKDNIIIDYRLGFHFIGNAFNVLLKASDQNASDRISSGNRVDEVTSPQAIKLRNDAMRTRFLERYNVDFTNDNNYDLVINTDGFTAKEVSQQIIKHYQECNAVVAIPSINFHLWKACNMRCEFCFATFEDVVRDVVPKGHLPEAEALQVVENIAAAGFEKITFAGGEPLLCKWLPSLIKKAKQLGMTTMIVTNGSKLTDAFLKANTAYLDWIAVSIDSLEDENNIKIGRAITGKTPLSKAFYYDLVDTIKMYGYGLKINTVVNKVNYKDNLTEFIEYANPQRWKVLQVLPIEGQNDIKIDKFKITTAEYNYFLTTHEDVKTIVPESNDEIKGSYVMVDPAGRFFDNAEGTHNYSKPILEVGVQEALKTMNYDLEKFLDRGGVYDWSNDKNQDLRKEELTYGQ 477
182 2700499480 2698536835 Microgenomates bacterium JGI CrystG Apr02-3-G15 (contamination screened) Bacteria Candidatus Microgenomates unclassified unclassified unclassified unclassified Candidatus Microgenomates bacterium JGI CrystG Apr02-3-G15 N MKQKPPFKVCWNITIKCNLKCNFCFAPRDTKDLTLTQVKKALRKLKSFGIERITFSGGEPLLHPNIFEILDYARKLGFKVTLSTNGLLLNQKIINKIKNKVAKISISLDSLDEETLYLMRGRDYFKKLIGVLDELAKEKVPVKINTLVTKLNYEKVEEIGAFIARYSNILLWKLFQFMPKYSGKQNKAKFEIDDKEFSHLGSILKKKYSNLNILLAPNNYFYKTYFNIYSDGSITTPLKTGDLTLGNLLKDDLNKIWSKKVFNKSRHYLIP 271
183 2701140257 2700988686 Fibrobacter sp. UWH9 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter sp. UWH9 N MNIKTIVINWHITESCNYKCKYCFAKWNRVKEIWTNPDNVRKILENLKSIRLEDCLFTQKRLNIVGGEPILQQERLWQVIKMAHEMDFEISIITNGSHLEYIRPFVHLISQVGVSIDSFDHKTNVRIGRECNGKTISFQQLKEKLEELRTLNPGLNIKINTVVNEYNFNEILVDRMAELKIDKWKILRQLPFDGKEGISDFKFNTFLFNNLKEEKMPKKDPLSNFLAAFSAPQKPNNVIFVEDNDVMTESYLMIAPDGRLFQNGHKEYEYSRPLTEISIDEALEEINFDQEKFNNRYENYATEEAKYRMEEFFLMNEYEDVSFDCCCPFGDKD 333
184 2701911183 2700989248 Vibrio parahaemolyticus CFSAN007448 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEMLISKEQFDNFVLRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIIELS 305
185 2705695255 2703719122 unclassified Deltaproteobacteria bin 1 Bacteria Proteobacteria Deltaproteobacteria unclassified unclassified unclassified unclassified N MEKTNYVFNWHVTAKCNYHCHFCYSEWEKMPEIWDDPQKVAALLKNLSESRLFEKGRTRLNIAGGEPVLNMKKLAPVIENAWSQGFVLSIITNGSRLENLIPFIDKFSMVGISVDSASDENNVKIGRCTGKGEVMTFSELCKKVVALRAANPGLIIKINSVVNAFNWNENLLGQLKSVGAQKYKILRQMPFNGDKGISDDQWRHFLELNRHPELNVVTEDNEDMIHSYLMIAPDGRFFQNGATEYTYSSHSLWERPADELLSEMKFDEDKFKSRYNCPDSSDKEKNSNF 289
186 2706043000 2703719236 Fibrobacter sp. UWB7 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter sp. UWB7 N MNLNKSIVINWHVTEICNYDCKHCFAKWGRQHEIWNDVNQIEHIIKGITHHVETTNMSPKHFRLNIVGGEPIMSPDNLWNVVKTANDYSVDVSMITNGSQLEVIRPFAHMISQVGISIDSFKHETNLKIGRVCNGKTLSFQEINEKIKFVQETNPKLKIKINTVVNKYNFSERMLPSIMTLNHNKWKILRQMPFGDNKGISDFMFYSFIRNNYRESDRANESCEITIEDNNAMTESYLMISPDGRLFQNGNTSYSYSRPLTEVSFTEALSDIKFDESKFDGRYDGSFTQQASNSMEKFFKLAPESCFESMFDYL 314
187 2712662546 2711768198 Arsukibacterium ikkense GCM72 Bacteria Proteobacteria Gammaproteobacteria Chromatiales Chromatiaceae Arsukibacterium Arsukibacterium ikkense N MNTNHTDTLVINWHITEVCNYSCHYCYAAWKKPDEKRELFHDSNSTTKLLLELYNCIQFQYNTLDTSKSPTYKKVRLNFAGGEPLLLSKKLLPIMLEAKRIGFDVSIITNGSLLTEELMAQMAPLLTWFGISIDSTRLSSNHLIGRHTTHQQKLDVERLLSIIDIGKHANPYLKIKLNTVVNAINVFDDLSDFVERLSPQKWKVLQMLPIITTKNVIDEARFEKFIARHHAFQNIICAEKNDDMRNSYLMIDPHGRFFQNSPAEAGSDYVYSSPILSVGASLALQEIQFSTEKFDRRYASNNVGDSCDVL 310
188 2714077658 2713896747 Vibrio alginolyticus V2 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio diabolicus N MNKAKQLVINYHITEKCNYDCHYCYAKWAKPNELHRNLDDMKLVLNRLADYFLSPNSIQQQLGYQRVRLNFAGGEPLLLKQRFIDALDYAIELGFDTSIITNGHLITDEFITQHSHKLQMIGISYDACGLDVQQKIGRATASGKVLPPERLQSIFQQVKTVSPLTELKINTVVNQFNTEEDFNALMEAIQPNKWKVLRVLPVFDSIQTISDQQFDAFVERHQSVSHLMSVENNDSMTNSYLMLSPDGSFFQNGNGSQGYFKSRPLIYTPIETALAETGFDVAKFAQRYK 289
189 2719376594 2718217925 Alteromonas sp. Mex14 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Alteromonas Alteromonas sp. Mex14 N MKIIERKTNGDLIPKELVINWHITEACNYKCTYCFAKWGKPNELHRSLESIEKLLDELASHFIKGSSSFKEKLGYESVRLNIAGGEPMMLGSTFSIVLMLAKQKGFQTSIITNGSYLLNEKFDIPKNTLDMVGISFDSQDYYTRQRIGRVDRKGNSLSSDELKLALSKLEKTQKGIKTKINTVVNQFNWQEDFSSLISEIKPYKWKVLHVMPYGDDDLLISNGQFNSFVEKHLGRDLPVYAESNLAMTESYLMIDPKGRFYQNSSGGSGYKYSECINDVGAGKALEQINFNHAVFIARYFPVEGISIVENEGAA 314
190 2719498267 2718217953 Marinobacter salinus Hb8 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter Marinobacter salinus N MLHYNAHNPKQLVINWHLTEACNYSCRYCYAHWQRDESVKDLIRQDYQIHQLLSELRGFFDPINSRNPLAWKMAWSNTRLNIAGGEPLLFPSVVEDTVKFARRVGLRASLITNGSLLTERIARRIGSSLEVLGISIDSAQPFSNRLIGRINSQGEFLDLGQLQRAVEAIRERNPAIKIKLNTVVNRVNWQDDFSDLISLIQPDKWKVLRVLPVTDQSMTITDEEFQFFLNRHRKYGKIAVIEDNQDMVESYIMVDPQGRFFQNSPCSAGYEYSQPILGVGAEKAFSQVNFDVDKFSSRYPGNGGGVA 307
191 2719828580 2718218033 Lutibacter sp. LPB0138 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Lutibacter Lutibacter sp. LPB0138 N MKTNNFIPSINYHLWEPCNMRCKFCFATFQDVKQTILPKGHLPEKDAIEVVKKIAAAGFEKITFAGGEPLLCKWLTNLIKTAKELGMTTMIVTNGSKLTEEFLKENKPYLDWIAVSIDSLEGENNIKIGRAITGKKPLSKEFYYDLINKIHQYGYGLKINTVVNKVNYKENLSAFIKSARPKRWKVLQVLPIVGQNEGKVDTFKITNKEFDHFIASHKNNKTLVPESNAVMKGSYVMVDPAGRFFDNASGKHNYSEPILKVGINKALKTMNYELDKFLTRGGIYDWKNN 289
192 2722236530 2721755284 Gammaproteobacteria bacterium GWF2_41_13 Bacteria Proteobacteria Gammaproteobacteria unclassified unclassified unclassified Gammaproteobacteria bacterium GWF2_41_13 N MNNDRSDWQLPVLKELVVNYFVTERCNFNCAICYSKWQDMHSDILENQFKLLEALYEFLKPSTESNPCTQYFRWNTVRINFSGGEPFLVKQIDQLIHYARKLGFRTSVTTNGSLLYRDMIQKIAPDLAWIGFSVDACNVEASRQMGRADKRGYTVSLDDIKEKVDEMRAINPQIKLKINTTVSVYNLDQDFSTLINILHPDKWTVVQALPIINKTISVSDTQFSTFVDRHQCYRPIAETIDDFTESFFLVTPEGRFFSNGEALQTGYYRYSEKINQVGAKQAFSEVNFNRERFLARYQKNQPFLYL 306
193 2727845415 2724679709 Saccharicrinis carchari DSM 27040 Bacteria Bacteroidetes Bacteroidia Marinilabiliales Marinilabiliaceae Saccharicrinis Saccharicrinis carchari N MEISNPILPSVNFHLWKSCNMRCNFCFATFQDIKESILPKGHLTREESLGVVHELANVGFKKITFAGGEPTLCPWLPDLIKTAKNLGLTTMIVSNGSILNSNFLEDNKNHLDWIAISVDSLNPETNRKIGRLVNGKEPMSIDTYKSMANMIKHYGYGLKINTVVNNANKTEDMNTFIRYTKPQRWKVLQALSIQGQNDRNTGRFEVSNHEFSGFIDKHKTLDGIVNMVAESNDAMIGSYAMVDPEGRFFDDVDGKHGYSDPINKVGGLKALKQVRYNYDKFIERGGQYEWEKITTKPKHITLSGETA 307
194 2728971251 2728369061 Aliivibrio wodanis CL7 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Aliivibrio Aliivibrio wodanis N MRTTNNFVSNTTNLTTSKQLNELVINWHITETCNYNCTYCFAKWGKPNELNRSLTSIEKLLDELANYFIHGNPEIKRTLGYKDVRLNFAGGEPMVLGRPFSMALMMAKQKGFKTSIITNGSYLLKHRFELPQNTLDMIGISFDSQSYQVRKELGRMDRKGNSLGIDELKLAIEQLSQTQKGLKTKINTVVNSLNWEEDLSQLISDIEPDKWKVLQVMPSGRNELLISDEQFNSFVERHSDKGLPISSESNNTMTESYLMIDPNGRFYQNVKDISGYIYSERVTDVGVDTALNQINFNCNRFMSRYYGENSSNTFDEVQL 319
195 2729066335 2728369080 Dechloromonas denitrificans ATCC BAA-841 Bacteria Proteobacteria Betaproteobacteria Rhodocyclales Azonexaceae Dechloromonas Dechloromonas denitrificans N MAVTYHGTQSGELVINWHVTEACNYRCRYCYSKWHAEGSRKELIHSPKASAAMLAEIYRHFSPDNRLNQARLGMQWDSVRLSLAGGEPLLYSREIVGIVAQARELGFKVSLITNGSRLTQPLMTELAPQLSILGLSFDSAIASTNREIGRADRHEQILSLSDLAIVIESGRHLNPALRMKINTVVNALNFTEDMSQLIQQLAPDKWKVLRMLPTITSDLAIADHEFAEFVTRHKRLGVIMAAEDNNDMVESYIMIDPHGRFFQNSSRGTGYHYSDEILKVGAETAFREIGWQPDKFRFRYRTSVSETIA 309
196 2730169305 2728369366 Tenacibaculum sp. LPB0136 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Tenacibaculum Tenacibaculum todarodis N MNYNFIPSVNFHLWEPCNMRCKFCFATFQDVKQTILPKGHLPEVEALEVVKKIAAAGFEKITFAGGEPLLCKWLPNLIKTAKQLGMTTMLVTNGSKLTDEFLIDNKPYLDWIALSVDSLEDESNIKIGRAITGKKPLSKAYYYDLVDTIKKYGYGLKINTVVNKVNYKDDLTDFIEYANPQRWKVLQVLPIVGQNDNKIEEFKITTKEYNYFFNTHKDLKAIVPESNEEIKGSYVMVDPAGRFFDNAQGIHNYSKPILEVGIQEALKTMNYDFYKFKSRGGIYDWYNN 288
197 2731232863 2728369654 Vibrio sp. JCM 19061 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio sp. JCM 19061 Y MGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIVEIS 273
198 2735939253 2734482289 Sulfitobacter mediterraneus DSM 12244 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Sulfitobacter Sulfitobacter mediterraneus N MLTIPELTINWHVLEACNFNCYFCYAKYRQKPSFQHIYKNVLLELSLLKGRVLKLKSGPVLPKSIRVNFAGGEPFLVKDLGQAIELASDLGLRPSFISNGSLITDDFISKFGKRISVAGFSIDSFSRKVNDDIGRIDNKRQQVSLERFHRIFSMFREVSPETMIKVNTVVCRENVREDLTGPLGELKPDRWKALRVIPIHGAEGRQITDSQYKKFLERHKGVAGQVVPEDNEHMHRSYLMLNPEGRFYQREGSSFMQSEPVLQDGAAVALRDVEFDAETYLSRYSQAKEGQKDV 294
199 2740266671 2739367982 Oceanospirillales bacterium JGI 01_G13_750m (contamination screened) Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales unclassified unclassified Oceanospirillales bacterium JGI 01_G13_750m N MQTNKYMKKKQTIDYSLLAKDFSIFIDTSSLMRPQAQDLVGVSVSEIEMRKIPQLTVNWHLLEACNYNCYFCYAKYAQKSNFSNDYEKVLCELSGLTETPLTFKGQNVVTAESIRINFAGGEPFLAKDLSKAISLAYDLGLQPSFISNGSLISTEFIKKYGHMISVAGFSIDSLDQETNAVIGRQTNRSAQMTLERMKTIFSLFREYAPQTVLKINTVVCSENFDADLSPMLEELRPDRWKALQVIPIHGATDRRITDEQYKKFLARHSGLIEKTVREDNDHMHRSYLMLDPNACFYQRNGSLYLRSKPIVDVGAKSALQNVEFDVETYSTRYS 334
200 2741408272 2740891993 Candidatus Heimdallarchaeota archaeon LC_3 Archaea Candidatus Heimdallarchaeota unclassified unclassified unclassified unclassified Candidatus Heimdallarchaeota archaeon LC_3 N MNLISVNIHLTRACNYRCKFCFAHFNDEKGVLSFDDWKFIIDQLFLHGTEKITFVGGEPLLYHDIEKLLKFTHEKGITTCIVTNGSLIREKFLYDNNQNLDWIGFSIDSSNENTERLLGRKMYNSNIHAHINYILGLIPLIKQLGIRIKINTVITKLNWKESMQSLMKELNPDRWKVFQVLHIFGENDAFLKEYSVNEKEFNHFINNHKNLNPIKETNCDMRGSYIMIDNKGRFFDNTKGYLRRSRPIIEVGMKNAFKEISFSSVKMKKREGIYDWKSH 279
201 2742412079 2740892189 Marinobacter sp. EN3 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter Marinobacter sp. EN3 N MLHYSAHNPKQLVINWHLTEACNYSCRYCYAHWQRHESARDLIRQEYQIHKLLLELREFFDPINSRNPLAWKMAWSNTRLNIAGGEPLLFPSVVEETVKLASRVGLKASLITNGSLLTERMARRIGPGLEVLGISIDSADAFNNQLIGRVNSQGSFLDIRQLQSSVEAIRERNPAIKIKLNTVINRVNWRDDFSDLVTLLRPDKWKILRALPVIDQSMTVSDEQFGSFVERHQQRHRRITVVEDNPDMVESYIMVDPQGRFFQNSPCDAGYQYSQPILDVGVAKAFEQISFNADRFVARYVGEAGGAE 308
202 2742415354 2740892190 Acinetobacter sp. COS3 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter sp. COS3 N MMNTVKELVVNWHITEACNYKCDYCFAKWNRNDKDIIHSEWKIDALLRQIENIRHLLNEKSSTIFFETIRLNLVGGETFLYEKQLKKIVNLSKKYGFKLSAITNGSLFNPNNIELIAQNFSSIGVSVDSLNEQTNLSIGRASKRNIFNPSNVLTAISQIKNINPNIEIKINTVVSKLNFSEDLSTFIKQIEPTKWKIFKLLPIYSSKLEILDEEFSKFIIQHSNFKCIISAENNDDMTESYLMIDPLGRFFQNGLDQGYHYSSPLHEISAEKALQQINFDCQKFITRYSRII 292
203 2743908240 2740892545 Fibrobacteria bacterium GUT31 IN01_31 Bacteria Fibrobacteres Fibrobacteria unclassified unclassified unclassified Fibrobacteria bacterium GUT31 Y MQIVYNWHITEHCNYSCNYCFAKWNKAAEICSNKERVDKILEELSKKDIISKRIGENITRVRINFAGGEPLILDRSIFDKTVMCAKKLSFETSLITNGFLLEFHPEIFKYLDMIGISIDSFDENVCKNIGRCSGKNYLSEEKLSKLVKKIKLNNPIAKIKFNTVVSKNNYSSNIIEQLQAYKPDRIKILRQFPFKGEKGITDEQFEQFLSINGKFIEKKNVVIEDKNDITQSYLMIDPQGRFFQNGNENFYTYSQPIFEVGLEHALSQIHFNKEKFMSRYGQGGV 285
204 2751139676 2747843223 Janthinobacterium sp. 64 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Janthinobacterium Janthinobacterium sp. 64 N MSLTPTMSVRELVVNWHVTEVCNYGCRYCYAKWDDGGSTQELIHDGAAIKALVEEVGRFFKPGNSGNPLWAGMHWTSLRLNLAGGEPLLYAEKALDVIRHARRLGLETSIISNGSRLTPALMQVLAPHLAILGLSLDSSEAKTNLDIGRVDRQLRTLSRPDWVDMIALGRQINPLLRLKINTVVNALNWQEDMSNLIGTLAPEKWKILRMLPKITDDLALSDAQFDTFVRRHAHLDHCVRVEDNADMTESYLMIDPYGRFFQNIPGEKGYRYSDSILDVGAARAFSQINVSATKFCSRYTGELADLKV 308
205 2752652723 2751185612 Bacteroidales bacterium Bact_07 Bacteria Bacteroidetes Bacteroidia Bacteroidales unclassified unclassified Bacteroidales bacterium Bact_07 N MTSESVIKSVNWHITNRCNYACSFCFAQNIGKHEMSFEEGKILLKKLSDSGIEKINFAGGEPLLHPRLPDYCKEAKNLGMTVSVTTNGSHLDQNMVSQLAGSVDWIALSVDSCLDTVEAAMGRGRGEHVTNALNAAALVHEAGIHLKVNTTVTSLTWQENMHPLIRMMKPDRWKVMQMLVINGENDTSSIGLCVSSAQFREFAERHRSICLGPGVYPVFESVDDMEGSYFMITPNGQVKSDVGRKITLYELDDILEQGVDKLVDSDKYLDRGGIYDWKGLCQLDGNKEMRIT 292
206 2753090639 2751185737 Salinivibrio sp. DV Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Salinivibrio Salinivibrio sp. DV N MNKANQLVINYHITEKCNYDCHYCYAKWAKPNEIHRNIDDMRSLLFKLAQYFFSPNPIKKELKYQRVRLNFAGGEPLLLKQRFIDALDYAIELGFDTSIITNGHLITDQFIEAHSHKLQLLGISYDACDLERQQIIGRKTAAGHALSFHRLDSIFTQVKHYSPHTELKVNTVVNTFNIEEDFTTLMARIQPHKWKVLRVLPVFDSVQAITDQQFQAFVDRHRSVSHCMSVEDNDSMTNSYLMLSPDGAFFQNGNDGQGYFKSRSLLTTPVDVALAETGFDAEKFSQRYQ 289
207 2753093587 2751185738 Salinivibrio sp. BNH Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Salinivibrio Salinivibrio sp. BNH N MNKANQLVINYHITEKCNYDCHYCYAKWAKPNEIHRNIDDMRSLLFKLAQYFFSPNPIKKELQYQRVRLNFAGGEPLLLKQRFIDALDYAIELGFDTSIITNGHLITDQFIEAHSHKLQLLGISYDACDLERQQIIGRKTAAGHALSSHRLESIFTQVKHYSPHTELKVNTVVNTFNIEEDFTTLMARIQPHKWKVLRVLPVFDSVQAITDQQFQTFVERHRSVSYCMSVEDNDSMTNSYLMLSPDGAFFQNGNDGQGYFKSRSLLTTPVDVALAETGFDAEKFSQRYQ 289
208 2753363234 2751185801 Aliivibrio sp. 1S128 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Aliivibrio Aliivibrio sp. 1S128 Y MTTVQPRKAKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQEIEKLLDNLADYFIKGTPTLKETLGYESVRLNFAGGEPMMLGNTFITALALAKQKGFKTSIITNGHYLVHGKSPLPKDTLDMIGISFDSQYLKTRMKIGRIDRKGNSFGVNELTQALTKLTQSQTGILTKVNTVVNSLNWEEDFSDLITNLKPYKWKVLQVMPYGDNELLISKNQFEDFVKRHNGLGLPIYSESNSTMTESYLMINPEGCFYQNSAKHSGYKYSACINSCGVEKALSQIEFDPSTFSSRYKDKNINIVTIE 305
209 2753367132 2751185802 Aliivibrio sp. 1S165 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Aliivibrio Aliivibrio sp. 1S165 N MNQVNQLVINYHITEKCNYDCHYCYAKWAKPNEIHRNLDDMKTVLSNLAEYFLSPNPIQKQLQYQSVRLNFAGGEPLLLKQRFIDALDYAIKLGFKTSIITNGHLITDQFIVDHSHKLQLLGISYDSYSIEGQQQIGRITPTGKVLSPERLQSIFKQVKSQSPTTELKINTVVNQYNTEENFTDLIAAIQPNKWKVLRVLPVFDSIQPISNQQFNAFVDRHQSVAHFMSAENNNSMTNSYLMLSPDGAFFQNGNNEQGYFKSRSLLTTPVDIALAETGFDAAKFAQRYQ 289
210 2753371117 2751185803 Aliivibrio sp. 1S175 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Aliivibrio Aliivibrio sp. 1S175 N MNQVNQLVINYHITEKCNYDCHYCYAKWAKPNEIHRNLDDMKTVLSNLAEYFLSPNPIQKQLQYQSVRLNFAGGEPLLLKQRFIDALDYAIKLGFKTSIITNGHLITDQFIVDHSHKLQLLGISYDSYSIEGQQQIGRITPTGKVLSPERLQSIFKQVKSQSPTTELKINTVVNQYNTEENFTDLIAAIQPNKWKVLRVLPVFDSIQPISNQQFNAFVDRHQSVAHFMSAENNNSMTNSYLMLSPDGAFFQNGNNEQGYFKSRSLLTTPVDIALAETGFDAAKFAQRYQ 289
211 2753755176 2751185895 Haemophilus quentini MP1 Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus Haemophilus quentini N MIGFSIDSIKDNTNLLIGRQTNNKAMDYQLLLRNIEIIRSINPTIQIKINTVVNKHNYSESLSEFISQVKPTKWKIFKVLPIMNDALSINDQQFHYFLENHRQFENIISAENNEEMTHSYLMVDPSGRFFQKIEQQTGYQYSEPILSVGIEKAFQQIPFELVKFLHRYH 169
212 2758508848 2757320913 Diaphorobacter polyhydroxybutyrativorans SL-205 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Diaphorobacter Diaphorobacter polyhydroxybutyrativorans N MKNLHMGEASARPRVRELVINWHITEACNFSCRYCYAKWDGAEKELIHDWGRTQKLLNEIASFFAPSNLSNPLQQALSWSAVRLNLAGGEPLLYPEAVLRVLAEAHSLGMNTSIITNGTRITEDFLDQLAPLVSMIGVSIDAASDATNVGIGRVDRRGSLLNNQELARLLAKARTINPGLHVKLNTVVNALNAEGDMGNTINTFRPDRWKIFRMLPVVTGDLAVSSEVFEAFIARHARYKGVMCVEDNDVMSESYLMLDPRGRFFQNSRGQQGYSYSQPVDVVGATQAFTDWRFAVGSFASRYSHSSNGAVR 312
213 2758538137 2757320982 Winogradskyella sp. PC-19 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Winogradskyella Winogradskyella sp. PC-19 N MTTMIVTNGSHLSETFLKENTLYLDWIALSVDSLEEGDNIKIGRAILGKRALDKSYYYEIVDSIKRYGYGLKINTVVNRVNYQEDLNAFINYAKPKRWKVLQVLPILGQNDVNIDDFKISKHEYHYFLNTHKCIKTIVPESNDQIKGSYVMIDPAGRFFDNAQGTHRYSKPFLKVGVKEALEIMDYDLKKFLNRGGIYDWKNNLNQT 207
214 2758668677 2758568024 Thermococcus siculi RG-20 Archaea Euryarchaeota Thermococci Thermococcales Thermococcaceae Thermococcus Thermococcus siculi N MKVPFSISFSKAPLAVNWHMLERCNYRCSFCFAKFKEVPEICNDPEKSKLILTKLKEAGVEKINFTGGEPLLCRNLGELVKYAKELGMATSIVTNGYYLTESAGREFLKNYGKYLDWIGISLDSGREEVEKALGRGHGDHVRRVIEAVDLIRTLYPHIGIKINTVVTKLNHQEDMHWVIKRISPDRWKVFQLKIISGVNEGSKPLGVTEEEFREFIERHEDLNPIAEDNNLMTESYLMMDPYGRFYDEESQLENIRPSLLDAPFEEAISGVKFDFSKFVLRGGIYNWRRAEDEV 294
215 2766104288 2765235962 Neisseria sp. 10023 Bacteria Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae Neisseria Neisseria chenwenguii N MNNQELTINWHIAEACNYVCRYCFAKWEKSGRELLHFSDGIAAMITEIAKLPVLFNQQKGTSFDSVRLNLVGGEPLLYKAQTMQIIRAAREQGLALSMVTNGSLLDDEWCEVIARDFKGIGISIDSVSGQTNLDIGRHAKNQLMPSEQVVRRIQAIRAGNPNIGIKINTVVNQLNYRENMADFIAEVAPDKWKIFKMLPMITEDLSIDDTQFQQFLDRHQEFHHLICSENNNEMVDSYVMIDPLGRFFRNSLQVCGGYRYSQPIYQVGAERALTEMYVDTEKYRQRYITIKQRKAA 296
216 2770832229 2767802753 Cystobacter ferrugineus Cbfe23 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Archangiaceae Cystobacter Cystobacter ferrugineus N MSQPTLDVHPSPRSELERPSSPLGASGREVAPRQEMPPSVNYHLWEPCNMRCRFCFATFQDVRAEVLPDGHLPREEALRLVEVLATHFAKLTFAGGEPLLCRWLPELVRAAKARGVTTMLVTNGSRLDSKRLAQFQGSLDWVTLSIDSASPETNVKLGRAVQGRRAHTPEDYLAMGERVRAAGVRLKVNTVVTSLNALEDMTGLIRGLRPERWKLLRVLPVEGQNSGKVEPLLCSTSLFQSFVDRHRGLEAKGIILVPEDNTDMRGSYAMVDPAGRFFDNAQGGYHYSAPILSAGLRTAWSQVHFSMERFEQRGGRYDFGGAR 323
217 2558444101 2558309039 Megasphaera elsdenii T81 Bacteria Firmicutes Negativicutes Veillonellales Veillonellaceae Megasphaera Megasphaera elsdenii Y MKMKELCWLLTTHCNENCGYCSKFTHLPVITNAEYKRILEILEQYGTKHITFGGGEPFLTERFDDIVRMAKQKGIHLKVVTNGDYLLEHGEILPLLDEITLSLDSVDRQVNEKLGRGADHYSHIQQVLTYFKENRVEANININTVATRYNLDYIQAMIPFIKRAKIHAWRILRFSPLRGRAARNKAEFAISDNDFEQLRMDLKSQDVGCPYRLVDYDGMSQNYLLIAPDGNVYVPDDLKDVKVGHILKDDLKQYFC 256
218 2620552401 2619619052 Unclassified Chloroflexi bacterium bin152 Bacteria Chloroflexi unclassified unclassified unclassified unclassified unclassified N MSTAIKIPSVNFHLWRPCNMKCGFCFATFQDIDPDNLPKGHIGRDDCISVVEALGEAGFQKINFAGGEPTLCPWLSELITRASDIGLVTSIVTNGSRITPDWLQSVEGHLDWTALSIDSVNRATSLKIGRATQSGPLGEDDYLKAVDILRTNDVRVKVNTVVTRFNLEEDMTNFIIEARPERWKLLQVLPVKGQNDFSIGEYVI 204
219 2620553354 2619619052 Unclassified Chloroflexi bacterium bin152 Bacteria Chloroflexi unclassified unclassified unclassified unclassified unclassified N MSTAIKIPSVNFHLWQPCNMKCGFCFATFQDIEPDNLPKGHIGRDDCISVVDALGVAGFQKINFAGGEPTLCPWLSELITRASDIGLVTSIVTNGSRITPDWLQSVEGHLDWTALSIDSVNRATSLKIGRATQSGPLGEDDYLKAVDILRTNDVRVKVNTVVT 163
220 2671326339 2671180039 Streptomyces rubidus CGMCC 4.2026 Bacteria Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces Streptomyces rubidus N VITEVTGIQTIRMLYVQLLYRCNFACQHCFHGERLQHSDAFTLPQAITLMRLMHKEYGTEAVNFLGGEPFLHKDLPEIVRYAKQELGLHVEICTNGYRIERRLTEIAPHLDLLRISLEGNGATNDAIRKFGSYQGALSALAYARDLGVPTGATMTVNARNIDEVLPLVRTLQDYGARQLKLHHLRAVGNAAHHPELLITDQAAYGRLRDQLRTAELSIEVIVDEDLSEDGAPECTADERAVAIPRVEADPRGALTMSCKAVGKDAHAFWYDKEAGHIVHRPSDTDELALAVPDVVYARA 300
221 2722096198 2721755233 Nitrospirae bacterium GWD2_57_9 Bacteria Nitrospirae unclassified unclassified unclassified unclassified Nitrospirae bacterium GWD2_57_9 N MPLTLRIDDSPELPPGSPNAQRTRSPLRAPFTVCMWITDYCNLACKYCYAMPFSGRRISTERTLELIDEMADIGVFNLTLAGGEPFLHPDILKIILHGTKRGIRVGVLSNGIALDQEVLTVLEKHTNRKNFMLQISLDSVDPAINDRTRGQTDKVLENIERVTKTGIDLQMACVVHKLNVSSAHGMIDAFYPRVKRFHFLNIQRTERTLKHPHLLLAEEDTEYFWSHLSEHAKRFPPDLLLPSLRVQLRSKGQALGQAEFSMSETPSFDCAS 272
222 2725246328 2724679053 Photobacterium kishitanii 201212X Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium Photobacterium kishitanii N MSIQELVINFHMTETCNFRCEYCYATWDSNNSQQELHHSYSNIKELITKTANYFLNDNPIKQKLGYKTVRLNFAGGEPAMLGSRFIEAILLAKSLGLNTSLITNGHLLTNTIVSKISPQLDMLEISFDTADHLLADSIGRVDRKKNWLSPQRLKEIVSNYRQSNPCGMVKINTVVNKYNWEETLTATITRIMPDKWKILRVLPVYSDSLCVTQEQYNLIKNNMA 224
223 2518432012 2518285546 Pelobacter carbinolicus Bd1, GraBd1 Bacteria Proteobacteria Deltaproteobacteria Desulfuromonadales Desulfuromonadaceae Pelobacter Pelobacter carbinolicus N MQQQSQNKREAAIPAVNFHLWRHCNMRCRFCFARFKTERQDSKEVGREKSLAVIEEASRAGIAKITFAGGEPLLCPWLTDALKHSKAIGMTTMVVTNGSLVTDRWLGENACYVDWIALSIDSPAPATNLASGRAVGGIRPLGASEYRSLAAQVRHHDIRLKVNVTVSRFNVEEDPSSLLLEILPERLKVFQVLPISEHNDHCFADLGISIKQFSAFVRRLDPLRQFCEVVVEDNEAMTGSYVMIDPQGRFFSNIGGRYRFSLPIWQVGWATALSEIETSVARFRSRGGFYRW 292
224 2563551698 2563366541 Helicobacter bilis ATCC 51630 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Helicobacteraceae Helicobacter Helicobacter bilis N MDTITLNWHITEQCNYKCHYCFAKYTKCNMQEIHRNKENITTLLTKLYNSIGAIYDTDFLRLNIAGGEPLLSKNLGFIVESAYKLGFKISIITNASLLTKEFIESYIALFTMFGISVDSINTETNKHIGRCSKTHNNNTAYLKDTINFLKAKNKDMQIKINTVVNRYNYKENMSEFIESIKPDKWKIFQALSINADKNYCNKTQYKYFLRTHKHLKSCITDEDKDLMTNSYIMIDPYGRFYQNTKGNNRGYTYSPILLDLADKDIANYLKVDMIKYKKDVI 281
225 2587714015 2585428053 Phormidium sp. OSCR GFM Bacteria Cyanobacteria unclassified Oscillatoriales Oscillatoriaceae Phormidium unclassified Y MVDFQKKTTPLVINWHLLEPCNFGCRYCYAQWNKSQLPLVFKERHLSEKLISQIASLQKKSPYIRLSFAGGEPLLDKDISHKIGFSYNLGIKNSIITNGSLISKNLSLDSVSKLSMLGISIDSASQKTNQKIGRSLNGKACNYENVIRFLDESRDINPNLRIKVNTVVNQFNWNEDLSELIMRIKPDKWKILRVLPATPKSKKEAIYYEQYEQFRVTHNHIPFAQFEDNSDMICSYLMIDPHGRFFYNSEEGYKYTESILKIGMETALKNVNFDYGKFSIRYRGSIV 287
226 2607643251 2606217509 Pelobacter carbinolicus Bd1, GraBd1 Bacteria Proteobacteria Deltaproteobacteria Desulfuromonadales Desulfuromonadaceae Pelobacter Pelobacter carbinolicus N MQQQQAQSKKDAAIPAVNYHLWGSCNMRCRFCFARFKTERQESKEVGWQKSLAVIAEASRAGIAKITFAGGEPLLCPWLADVLKHSKAFGMTTMVVTNGSLVTDRWLGENARYIDWLALSIDSPVTATNFASGRAVGGIRPLGATEYRSLAAKIRRHNIRLKVNVTVSRFNVEEDPSSLLLEILPERLKVFQVLPIFGQNDHCFADLGISIKKFSAFVRRLDPLRNFCQVVVEDNEAMTGSYLMIDPQGRFFSNTGGRYRFSLPVWQVGWATALSEIETSVARFRSRGGFYSW 293
227 2621018896 2619619224 Psychromonas sp. SP041 (contamination screened) Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Psychromonadaceae Psychromonas Psychromonas sp. SP041 N MTINNIKANKIKELVINWHITEACNYKCNYCFAKWGKPNELHRSLSAVDKLLSNLSEYFIRSDSSLKAKLKYDEVRINIAGGEPMMLGDTFLNILRLAKKKGFKTSVITNGHYLLNNKINLPENILDMVGISFDSQNYATRQLIGRADRKGNSLGADDLKVVLMELTRTQKGIKTKINTVVNIHNWQENFTELISEIKPDKWKVLHVMPYGSDELLISDEQFNSFIEKHRNESLSIYAESNLAMTESYLMIDPKGCFYQNVSNISGYKYSEAINDVGVEVALKQVNFNQAVFSARYFPIEASLCEI 306
228 2631330386 2630968323 Nitrincola sp. A-D6 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae Nitrincola Nitrincola sp. A-D6 N MSIPTQELVINFHMTEVCNYRCTYCYAKWNDNQFRNELHLQPGQVEQLLSSLADFFLSANPFKQEFPYQTVRINFAGGEPMVLGKQFINALDTAKALGFRTSIITNGHFLTPDMLQQSSSKLDMLGISFDTADELIAQSIGRADRRGHWLNANQLVRIANTYRQLNSKGQLKINTVVNPFNWYENMSSLIAQVQPDKWKLLRVLPVHDVRQVITSEQYQAYVDRHAPHVSNLIAEDNDAMWASYLMINPQGRFYQNNGPEKGHLLSDPILKAGVEQAFSQIPFDFHAFANRYTHGVKS 298
229 2635859667 2634166480 Vibrio parahaemolyticus T9109 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWQEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIVEIS 305
230 2640547395 2639762741 Rubrivivax sp. AAP65 Bacteria Proteobacteria Betaproteobacteria unclassified unclassified unclassified beta proteobacterium AAP65 N VFEIPDASPEPKQLVLNWHIAEACNYSCKYCYASWDVTEGGRDLIRDHKRTTSLLTALFEFFRPENLAHPLRSRMTWSGVRLNFAGGEPLLFSRELEAAVLTSNTIGFDVSLITNGSRLTPQLMSRLAPRLSLLGLSIDSMSMETNASIGRVDRQGRQVDLEELSEMVRLGRRLNPAMRVKLNTVVNRLNQADDLTPLIRQFAPDRWKVLRMLPVRGRQLEVSDDQFDSFVARHRQLGEILCAEDNLDMTESYLMIDPQGRFFQNEPATNGRGYMYSQPILEVGVAKAFNQIAFNPQRFAARYAGLPPVEVQ 312
231 2648083068 2645728046 Pseudomonas aeruginosa KF702 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas aeruginosa N MPNPTPLVINWHLTETCNYHCQYCYATWNESARPRELIHSPERTMALLSELYRFFRPGNGTNPLASRMTWGAVRLNLAGGEPLLHVGKLPAIVSQARALGFEVSLISNGSHLDHELLDRLAPQLSWLGISIDSTCPATNRAIGRVDRRRRLLDLDDLATGLASARQANPGLCLKLNTVVNRLNHSEDLGPLIRRFAPDKWKVLRMLPVVSKDLIVSDRQFAAFVARHCAFSHVLCAEDNQDMRESYLMVDPHGRFFQNSPLIAGQGYVYSHPILEVGAEVAFDQIAFEPERFSARYIPVVMGKGA 305
232 2652587282 2651869727 Vibrio parahaemolyticus 49 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNINIVEIS 305
233 2659528208 2657245575 Vibrio parahaemolyticus CFSAN007439 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus N MTTAQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALASLTQSQTGIKTKINTVINSLNWEEDFSNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFSSRYKETNIDIVEIS 305
234 2660786846 2660238041 Vibrio parahaemolyticus CFSAN007437 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTTQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIVEIS 305
235 2661121363 2660238124 Vibrio parahaemolyticus S163 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIVEIS 305
236 2661449018 2660238210 Vibrio parahaemolyticus S167 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTAQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTYALASLTQSQTGIKTKINTVINSLNWEEDFSNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIVEIS 305
237 2669650778 2667527830 Vibrio parahaemolyticus ISF-29-3 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTTQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIVEIS 305
238 2674100589 2671180763 Vibrio parahaemolyticus CFSAN007440 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTAQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALASLTQSQTGIKTKINTVINSLNWEEDFSNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFSSRYKETNIDIVEIS 305
239 2684997840 2684622594 Vibrio crassostreae J5-4 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio crassostreae N MSTENHLVINTTNETTSSQLNELVINWHITEACNYNCTYCFAKWGRPNELHQSLDAIEKLLDKLANYFIHDDPEIKRILGYQDVRLNFAGGEPMMLGSSFSTALVMAKQKGFKTSIITNGSYLLLRSRFELPLNTLDMVGISFDSQQHPVRRELGRIDRKGNSLNIDELKLAIQHLSRTQKGLKTKINTVVNALNWEEDFSQLISSISLDKWKVLQVMPTGRSDLLVSDEQFSSFVERHSGKGLPISAESNNTMTESYLMVDPNGRFYQNSKGMSGRYSYSERITDVGVETALNQINFNCNRFKSRYYAGNPSNIRGEVLA 321
240 2691769858 2690315984 Vibrio parahaemolyticus S162 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTTQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFSSRYKETNIDIVEIS 305
241 2693670287 2693429558 Vibrio parahaemolyticus S160 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTAQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGINDLTHALASLTQSQTGIKTKINTVINSLNWEEDFSNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFSSRYKETNIDIVEIS 305
242 2700498760 2698536834 Microgenomates bacterium JGI CrystG Apr02-3-G15 (unscreened) Bacteria Candidatus Microgenomates unclassified unclassified unclassified unclassified Candidatus Microgenomates bacterium JGI CrystG Apr02-3-G15 N MKQKPPFKVCWNITIKCNLKCNFCFAPRDTKDLTLTQVKKALRKLKSFGIERITFSGGEPLLHPNIFEILDYARKLGFKVTLSTNGLLLNQKIINKIKNKVAKISISLDSLDEETLYLMRGRDYFKKLIGVLDELAKEKVPVKINTLVTKLNYEKVEEIGAFIARYSNILLWKLFQFMPKYSGKQNKAKFEIDDKEFSHLGSILKKKYSNLNILLAPNNYFYKTYFNIYSDGSITTPLKTGDLTLGNLLKDDLNKIWSKKVFNKSRHYLIP 271
243 2701137224 2700988685 Fibrobacter sp. UWH5 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter sp. UWH5 N MNIKTIVINWHITESCNYKCKYCFAKWNRVKEIWTNPDNVRKILENLKSIRLEDCLFTQKRLNIVGGEPILQQERLWQVIKMAHEMDFEISIITNGSHLEYIRPFVHLISQVGVSIDSFDHKTNVRIGRECNGKTISFQQLKEKLEELRTLNPGLNIKINTVVNEYNFNEILVDRMAELKIDKWKILRQLPFDGKEGISDFKFNTFLFNNLKEEKMPKKDPLSNFLAAFSAPQKPNNVIFVEDNDVMTESYLMIAPDGRLFQNGHKEYEYSHPLTEISIDEALEEINFDQEKFNNRYENYATEEAKYRMEEFFLMNEYEDVSFDCCCPFGDKD 333
244 2701611589 2700989176 Acinetobacter towneri KCTC 12419 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter towneri N MPKLTKELVVNWHITEACNYKCDYCFAKWDSDSKEVLHSQIKIETLIEQIENIRHILNKSSQTVYFDQLRLNLVGGETFLYMKQLKNIINLSKKYNFRLSAITNGSLFNEIDMKFIAQNFSSLGISVDSINEYTNLAIGRTSKQNTFNPSQVLTAINKIKKYNPMIEIKINTVVNKLNASEDLSYFISQIQPNKWKIFKLLPVYSNKLDITEQEFHQFIEKHSSFKSIISSENNNDMTESYLMIDPLGRFFQNGYTSGYKYSSPLWQVSAETALKQIKFDSQKFVNRYKKIF 292
245 2702436836 2700989395 Vibrio parahaemolyticus RM-13-3 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEILISKEQFDNFVQRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNINIVEIS 305
246 2702853828 2700989481 Helicobacter bilis ATCC 51630 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Helicobacteraceae Helicobacter Helicobacter bilis N MDTITLNWHITEQCNYKCHYCFAKYTKCNMQEIHRNKENITTLLTKLYNSIGAIYDTDFLRLNIAGGEPLLSKNLGFIVESAYKLGFKISIITNASLLTKEFIESYIALFTMFGISVDSINTETNKHIGRCSKTHNNNTAYLKDTINFLKAKNKDMQIKINTVVNRYNYKENMSEFIESIKPDKWKIFQALSINADKNYCNKTQYKYFLRTHKHLKSCITDEDKDLMTNSYIMIDPYGRFYQNTKGNNRGYTYSPILLDLADKDIANYLKVDMIKYKKDVI 281
247 2715393182 2713897062 Vibrio parahaemolyticus NCKU_TV_3HP Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEMLISKEQFDNFVLRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIIELS 305
248 2715399811 2713897063 Vibrio parahaemolyticus NCKU_TV_5HP Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTEQSRKANELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSIITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALANLTQSQTGIKTKINTVINSLNWEEDFSNLISSLKPYKWKVLQVMPYGDNEMLISKEQFDNFVLRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKPGYKYSECINSCGVEKALSQIEFNPITFASRYKETNIDIIELS 305
249 2718509529 2718217694 Fibrobacter sp. UWH8 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter sp. UWH8 N MNIKTIVINWHITESCNYKCKYCFAKWNRVKEIWTNPDNVRKILENLKSIRLEDCLFTQKRLNIVGGEPILQQERLWQVIKMAHEMDFEISIITNGSHLEYIRPFVHLISQVGVSIDSFDHKTNVRIGRECNGKTISFQQLKEKLEELRTLNPGLNIKINTVVNEYNFNEILVDRMAELKIDKWKILRQLPFDGKEGISDFKFNTFLFNNLKEEKMPKKDPLSNFLAAFSAPQKPNNVIFVEDNDVMTESYLMIAPDGRLFQNGHKEYEYSHPLTEISIDEALEEINFDQEKFNNRYENYATEEAKYRMEEFFLMNEYEDVSFDCCCPFGDKD 333
250 2724146490 2721755831 Vibrio parahaemolyticus FORC_023 378 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio parahaemolyticus Y MTTAQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIANLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGINDLTHALASLTQSQTGIKTKINTVINSLNWEEDFSNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPMYSESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFSSRYKETNIDIVEIS 305
251 2725246629 2724679053 Photobacterium kishitanii 201212X Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium Photobacterium kishitanii Y MKLINTENACVKELVINWHMTEVCNYSCKYCFAKWGRPNELHRSEQDIIKLLDKLADYFIKGTPTLKKDIGYESVRINFAGGEPMMLGNTFITALMLAKQRGFKTSTITNGHYLISGKLVLPKNSLDMIGISFDSQNLKTRHQIGRTDRKGNSFGSDDLKQALVMLAQSQKGIKTKINTVVNNLNVDENFAELIDELKPNKWKVLHVMPYGDDELLVSKEQFDRFVKRHSGLGLPVFTESNSAMTESYLMINPQGCFYQNKANKVGYEYSENINLCGVEKALSQIEFNPRTFASRYLKESIDIVTI 306
252 2725300238 2724679064 Pseudoalteromonas sp. H105 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas Pseudoalteromonas sp. H105 N MKNDTTNKPYINELVINWHITEACNYNCTYCFAKWGKPNELHRSLESIEKLLDELASHFIKGSSSFKEKLGYESVRLNIAGGEPMMLGSTFSIVLMLAKQKGFQTSIITNGSYLLNEKFDIPKNTLDMVGISFDSQDYDIRQRIGRVDRKGNSLSSDELKLALSKLEKTQKGIKTKINTVVNQYNWQEDFSSLISEINPYKWKVLHVMPYGDDDLLISNGQFNSFVDKHLGRDLPVYAESNSAMTESYLMIDPKGRFYQNSSGGSGYKYSECINDVGAGKALEQINFNHAVFIARYFPVEGISIVENEGAA 311
253 2729852792 2728369263 Fabibacter pacificus DSM 100771 Bacteria Bacteroidetes Cytophagia Cytophagales Flammeovirgaceae Fabibacter Fabibacter pacificus N MNKLVPTIKSINFHLWEPCNMRCKFCFATFQDVKSTILPKGHLDKNSTIQLIDKFVEAGFEKVTFAGGEPTLCKWLPELIERAKDRGLTTMLVTNGSLLTEAYLRKINNKLDWLVLSIDSLNEQTNITTGRTFKSKPFSEDSYLKIIHDIKQGGIRFKINTVVTSKNHHEDLTHFLKIALPERWKVLQVLPIKGQNDKHFEDFKVSGHLFNNFVMRHKKIEEFGIAIVGETNDLMTGSYMMVDPAGRFFDNTRERYTYSDPILKVGIHTALSQVDHDYKKFIDRGGIYEWS 291
254 2747864490 2747842404 Vibrio vulnificus NV1 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio Vibrio vulnificus Y MTTAQSRKTKELVINWHMTEVCNYSCKYCFAKWGRPKELHRSEQAIDNLLDKLADYFIKGTPVLKEKLGYESVRLNFAGGEPMMLGNTFVTALVLAKQKGFKTSTITNGHYLIHGKSPLPKDTLDMIGISFDSQYLSTRMKIGRNDRKGNSFGVNDLTHALARLTQSQTGIKTKINTVINSLNWEEDFTNLISSLNPYKWKVLQVMPYGDNELLISKEQFDNFVHRHSGLGLPIYFESNSTMTESYLMISPEGCFYQNTANKSGYKYSECINSCGVEKALSQIEFNPITFASRYKKTNIDIVDVS 305

Extended Data Table 2. List of pVips.

Attached as an excel file. Gene and genome accessions in the IMG database17 are indicated.

Cluster name # of genes # of non-redundant genes (identical sequences removed) # of genes used to calculate defense score Defense score (% cases next to known defense genes)
            2676290849 1394 855 735 6.10%
pVips 164 134 83 60.20%
            2709749501 77 54 25 20.00%
            2541272930 25 21 13 7.70%
            2713134820 21 17 13 7.70%
            2523876556 16 9 2 0.00%
            2709564561 5 4 2 0.00%
            2713748397 5 3 3 0.00%
            2694949528 4 4 3 100.00%
            2705785291 4 3 2 0.00%
            2509529583 2 2 2 50.00%
            2634981381 2 1 1 0.00%
            2574215492 1 1 0 0.00%
            2709307270 1 1 0 0.00%
            2722379863 1 1 0 0.00%
            2731410697 1 1 0 0.00%
            2753755176 1 1 1 0.00%

Extended Data Table 3. MoaA genes (outgroup) and eukaryotic viperin sequences used in the phylogenetic tree in Figure 2.

Protein Accession number Species
MoaA WP_011245749.1 Bacillus clausii
MoaA WP_005712890.1 Glaesserella parasuis
MoaA WP_011257906.1 Xanthomonas oryzae
MoaA WP_009990662.1 Sulfolobus solfataricus
MoaA KXZ35264.1 Vibrio alginolyticus
MoaA PNG85565.1 Pasteurella multocida
MoaA NP_005934.2 Homo sapiens
MoaA XP_005761268.1 Emiliania huxleyi CCMP1516
MoaA XP_009771542.1 Nicotiana sylvestris
MoaA XP_015343178.1 Marmota marmota marmota
Viperin XP_024064957.1 Terrapene mexicana triunguis
Viperin PKC63257.1 Rhizophagus irregularis
Viperin KIM76756.1 Piloderma croceum F 1598
Viperin PNP59997.1 Trichoderma harzianum
Viperin XP_851276.1 Canis lupus familiaris
Viperin XP_001510936.1 Ornithorhynchus anatinus
Viperin KFP16729.1 Egretta garzetta
Viperin XP_006108914.2 Myotis lucifugus
Viperin ALT07788.1 Crassostrea gigas
Viperin NP_542388.2 Homo sapiens

Extended Data Table 4. Primers used in this study.

Primer name Primer sequence
AB1 CTCCAGCTGGTACCATATGGCGGGCAGGACGC
AB2 AAAAGCGTCAGGTAGGATCCGCTAATCTTATG
AB3 TTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCG
AB4 TATGGCGGGCGTCCTGCCCGCCATATGGTACCAGCTGGAGAGC
AB53 TGGCTTCTGTTTCTATCAGCTGTCC
AB54 CATCATACACTAAATCAGTAAGTTGGCAGCA
AB55 CAACTTACTGATTTAGTGTATGATGCAAATGTAGCACCTGAAGTCAGC
AB56 ACAGCTGATAGAAACAGAAGCCAGCCCGATCTTCCCCAT
AB86 TGGTTAATTCCTCCTGTTAGCCCA
AB87 GAGCGAGGAAGCGGAAGAGC
AB88 CGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTC
AB89 GTTTTTTGGGCTAACAGGAGGAATTAACCATGTTACGCGGACCGGATGAAACAAAAG
AB119 CTTAAAAAAATTACGCCCCGCCCT
AB120 GTTATTGGTGCCCTTAAACGCCT
AB121 AGGCGTTTAAGGGCACCAATAACCAAGAGTTTGTAGAAACGCAAAAAGGCCA
AB122 GGGCGGGGCGTAATTTTTTTAAGGGAATTCGACTCTCTAGCTTGAGGC
OG628 CATGGTATATCTCCTTATTAAAGTTAAAC
OG629 TAATTAACCTAGGCTGCTGC
OG630 TGTTTAACTTTAATAAGGAGATATACCATGTCAAAAGGAGAAGAAC
OG631 GGCAGCAGCCTAGGTTAATTAATAAAGTTCGTCCATACCGTG
pIBA143_vector_F TCAGGGAGCGCTTGG
pIBA143_vector_R CATTTGTATATCTCCTTCTTAAAGTTAAACA
pIBA143_Vip6_F TTAAGAAGGAGATATACAAATGGCTTACAAAGTAAACTTAC
pIBA143_Vip6_R TGGCTCCAAGCGCTCCCTGAACCTGCATAGCGACTTG
pIBA143_Vip8_F GAAGGAGATATACAAATGCATAATCATAATAAGATTGCTAATAAAG
pIBA143_Vip8_R TGGCTCCAAGCGCTCCCTGAATTGAGTGACGCTCTTTTATAAC
pIBA143_Vip56_F GAAGGAGATATACAAATGAATATCAAAACAATTGTCATCAACTGGC
pIBA143_Vip56_R TGGCTCCAAGCGCTCCCTGAATCTTTATCTCCAAACGGGCAA
Suf_operon F ATGGACATGCATTCAGGAACCT
Suf_operon R TTAGCTAAGTGCAGCGGCTT
AB156-_hVIP_mut_F GCCGGCTTTGCTTTTCATACAGCAAAAACATC
AB157- hVIP_mut_R TTTGTAGTTAGCCTGTCTTGTAAAATGGTAG
AB158- VIP8_mut_F GCTGGATATGCTTTTGCGAAATGGGGTAAG
AB159-VIP8_mut-R GCGATAGTTGGCTGCTTCGGTAATATGCCA
AB160-VIP9_mut_F GCCCATTATGCTTATGCCAAGTGGGCAAAG
AB161-VIP9_mut_R ATCGTAATTAGCCTTTTCGGTGATGTGATAGTTG
AB162-VIP60_mut_F GCCAAATTTGCTTTTGCGACATTTTTAGATGTC
AB163- VIP60_mut TCTCATGTTGGCCGGCTGCCAAAGATGAAA

Extended Data Table 5. Phages used in this study.

Phage Host Taxonomy Accession number
SECphi27 E. coli Siphoviridae LT961732.1
Lambda_VIR E. coli Siphoviridae NC_001416.1
SECphi6 E. coli Siphoviridae GCA_902807315
P1 E. coli Myoviridae AF234172.1
SECphi18 E. coli Siphoviridae LT960609.1
T7 E. coli Podoviridae NC_001604.1
Qbeta E. coli Leviviridae NC_001890.1
MS2 E. coli Leviviridae NC_001417

Supplementary Material

Extended Data Figure 1
Extended Data Figure 2
Extended Data Figure 3
Extended Data Figure 4
Extended Data Figure 5
Extended Data Figure 6
Extended Data Figure 7
Extended Data Figure 8
Extended Data Figure 9
Extended Data Figure 10
Extended Data Table 1
Extended Data Table 2
Extended Data Table 3
Extended Data Table 4
Extended Data Table 5

Acknowledgements

We thank Morten Danielsen and Daniel Malheiro from MS-omics (Denmark) for conducting the MS experiments and for the extensive help with the data analysis. We also thank the Sorek laboratory members for comments on earlier versions of this manuscript. A.B. is the recipient of a European Molecular Biology Organization (EMBO) Long Term Fellowship (EMBO ALTF 186-2018). A.M. was supported by a fellowship from the Ariane de Rothschild Women Doctoral Program and, in part, by the Israeli Council for Higher Education via the Weizmann Data Science Research Center. G.O. was supported by the Weizmann Sustainability and Energy Research Initiative (SAERI) doctoral fellowship. R.S. was supported, in part, by the Israel Science Foundation (personal grant 1360/16), the European Research Council (grant ERC-CoG 681203), the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, the Minerva Foundation with funding from the Federal German Ministry for Education and Research, the Ben B. and Joyce E. Eisenberg Foundation, and the Knell Family Center for Microbiology.

Footnotes

Authors contribution

A.B. and R.S. led the study and A.B. performed all experiments unless otherwise indicated. A.M. and A.B performed the computational analyses that appear in Figs. 1 and 2 and Extended Data Fig 9. H.S., M.R. and N.T. designed and performed purification of pVips and in vitro enzymatic assays that appear in Fig. 3 and Extended Data Fig 6. G.M., C.A, and S.M. assisted with the plaque assays that appear in Fig. 1 and Extended Data Fig. 1. C.A. assisted in the preparation of cell lysates that appear in Fig. 3 and Extended Data Figs 3, 4 and 5. G.O and G.A assisted in the design and analysis of GFP reporting studies presented in Fig 4 and Extended Data Fig 7. R.S. supervised the study. R.S and A.B. wrote the paper together with the team.

Competing interests

R.S. is a scientific cofounder and advisor of BiomX, Pantheon Bioscience and Ecophage. A.B., A.M., and R.S. are inventors on patent application PCT/IL2020/050377 licensed to Pantheon Bioscience. H.S., M.R. and N.T. are employed by Pantheon Bioscience.

References

  • 1.Mattijssen S, Pruijn GJM. Viperin, a key player in the antiviral response. Microbes Infect. 2012;14:419–426. doi: 10.1016/j.micinf.2011.11.015. [DOI] [PubMed] [Google Scholar]
  • 2.Helbig KJ, Beard MR. The role of viperin in the innate antiviral response. J Mol Biol. 2014;426:1210–1219. doi: 10.1016/j.jmb.2013.10.019. [DOI] [PubMed] [Google Scholar]
  • 3.Gizzi AS, et al. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature. 2018;558:610–614. doi: 10.1038/s41586-018-0238-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol. 2020;18:113–119. doi: 10.1038/s41579-019-0278-2. [DOI] [PubMed] [Google Scholar]
  • 5.Ablasser A, et al. CGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498:380–384. doi: 10.1038/nature12306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science. 2013;339:786–791. doi: 10.1126/science.1232458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Cohen D, et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature. 2019;574:691–695. doi: 10.1038/s41586-019-1605-5. [DOI] [PubMed] [Google Scholar]
  • 8.Swarts DC, et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature. 2014;507:258–61. doi: 10.1038/nature12971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial Argonaute Samples the Transcriptome to Identify Foreign DNA. Mol Cell. 2013;51:594–605. doi: 10.1016/j.molcel.2013.08.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Joshua-Tor L, Hannon GJ. Ancestral roles of small RNAs: An ago-centric perspective. Cold Spring Harb Perspect Biol. 2011;3:1–11. doi: 10.1101/cshperspect.a003772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511. doi: 10.1038/nri1391. [DOI] [PubMed] [Google Scholar]
  • 12.Doron S, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018;359:eaar4120. doi: 10.1126/science.aar4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Fenwick MK, Li Y, Cresswell P, Modis Y, Ealick SE. Structural studies of viperin, an antiviral radical SAM enzyme. Proc Natl Acad Sci. 2017;114:6806–6811. doi: 10.1073/pnas.1705402114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Fenwick MK, Su D, Dong M, Lin H, Ealick SE. Structural Basis of the Substrate Selectivity of Viperin. Biochemistry. 2020;59:652–662. doi: 10.1021/acs.biochem.9b00741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Honarmand Ebrahimi K, Rowbotham JS, McCullagh J, James WS. Mechanism of diol dehydration by a promiscuous radical-SAM enzyme homologue of the antiviral enzyme viperin (RSAD2) ChemBioChem. 2020 doi: 10.1002/cbic.201900776. 10.1002/cb. [DOI] [PubMed] [Google Scholar]
  • 16.Makarova KS, Wolf YI, Snir S, Koonin EV. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol. 2011;193:6039–56. doi: 10.1128/JB.05535-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Chen IMA, et al. IMG/M v.5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D677. doi: 10.1093/nar/gky901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kambara H, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res. 2014;42:10668–10681. doi: 10.1093/nar/gku713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Thiem J, Stangier P. Preparative-Enzymatic Formation of Cytidine 5’-Monophosphosialate by Integrated Cytidine 5’-Triphosphate Regeneration. Liebigs Ann Chem. 1990:1101–1105. [Google Scholar]
  • 21.Dukhovny A, Shlomai A, Sklan EH. The antiviral protein Viperin suppresses T7 promoter dependent RNA synthesis-possible implications for its antiviral activity. Sci Rep. 2018;8 doi: 10.1038/s41598-018-26516-z. 8100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Makarova KS, et al. An updated evolutionary classification of CRISPR Cas systems. Nat Rev Microbiol. 2015;13:722–736. doi: 10.1038/nrmicro3569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Tock MR, Dryden DTF. The biology of restriction and anti-restriction. Curr Opin Microbiol. 2005;8:466–472. doi: 10.1016/j.mib.2005.06.003. [DOI] [PubMed] [Google Scholar]
  • 24.Calendar R, Abedon ST. The Bacteriophages. 2005 [Google Scholar]
  • 25.Hendrix RW, Casjens S. Bacteriophage lambda and its genetic neighborhood. The Bacteriophages. 2005:409–447. [Google Scholar]
  • 26.Tran NQ, Rezende LF, Qimron U, Richardson CC, Tabor S. Gene 1.7 of bacteriophage T7 confers sensitivity of phage growth to dideoxythymidine. Proc Natl Acad Sci U S A. 2008;105:9373–9378. doi: 10.1073/pnas.0804164105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Kronheim S, et al. A chemical defence against phage infection. Nature. 2018;564:283–286. doi: 10.1038/s41586-018-0767-x. [DOI] [PubMed] [Google Scholar]
  • 28.De Clercq E, Neyts J. Antiviral Agents Acting as DNA or RNA Chain Terminators. Antiviral Strategies. Handbook of Experimental Pharmacology. 2009 doi: 10.1007/978-3-540-79086-0_3. [DOI] [PubMed] [Google Scholar]
  • 29.Feld JJ, et al. Sofosbuvir and velpatasvir for hcv genotype 1, 2, 4, 5, and 6 infection. N Engl J Med. 2015;373:2599–2607. doi: 10.1056/NEJMoa1512610. [DOI] [PubMed] [Google Scholar]
  • 30.Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–1028. doi: 10.1038/nbt.3988. [DOI] [PubMed] [Google Scholar]
  • 31.Katoh K, Misawa K, Kuma K, Miyata T. MAFFT : a novel method for rapid multiple sequence alignment based on fast Fourier transform. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–W245. doi: 10.1093/nar/gkw290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7 doi: 10.1371/journal.pcbi.1002195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Zimmermann L, et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol. 2018;430:2237–2243. doi: 10.1016/j.jmb.2017.12.007. [DOI] [PubMed] [Google Scholar]
  • 35.Baba T, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2 doi: 10.1038/msb4100050. 2006.0008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Roche B, et al. Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochim Biophys Acta - Bioenerg. 2013;1827:923–937. doi: 10.1016/j.bbabio.2013.05.001. [DOI] [PubMed] [Google Scholar]
  • 37.Schwartw C, et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci United States Am Acad Sci. 2001;98:14895–14900. doi: 10.1073/pnas.251550898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Jiang D, et al. Identification of Three Interferon-Inducible Cellular Enzymes That Inhibit the Replication of Hepatitis C Virus. J Virol. 2008;82:1665–1678. doi: 10.1128/JVI.02113-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Fortier L-C, Moineau S. Phage Production and Maintenance of Stocks. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. 2009:203–219. doi: 10.1007/978-1-60327-164-6_19. [DOI] [PubMed] [Google Scholar]
  • 40.Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. 2009;69:76. doi: 10.1007/978-1-60327-164-6_7. [DOI] [PubMed] [Google Scholar]
  • 41.Hsiao JJ, Potter OG, Chu TW, Yin H. Improved LC/MS Methods for the Analysis of Metal-Sensitive Analytes Using Medronic Acid as a Mobile Phase Additive. Anal Chem. 2018;90:9457–9464. doi: 10.1021/acs.analchem.8b02100. [DOI] [PubMed] [Google Scholar]
  • 42.Dar D, et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science. 2016;352 doi: 10.1126/science.aad9822. aad9822-aad9822. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Extended Data Figure 1
Extended Data Figure 2
Extended Data Figure 3
Extended Data Figure 4
Extended Data Figure 5
Extended Data Figure 6
Extended Data Figure 7
Extended Data Figure 8
Extended Data Figure 9
Extended Data Figure 10
Extended Data Table 1
Extended Data Table 2
Extended Data Table 3
Extended Data Table 4
Extended Data Table 5

RESOURCES