Abstract
Isothioureas (ITUs) represent a powerful family of (chiral) Lewis base organocatalysts. Interestingly, the Brønsted basicity of these frequently used compounds has so far not systematically been investigated. Thus, we have now determined the pKaH values of the most privileged (chiral) ITUs in acetonitrile (ACN) and DMSO by using NMR. Employing Wallace’s chemical shift imaging NMR method, the herein investigated ITUs were found to be weak Brønsted bases with pKaH values in the range of 16.8–17.9 in ACN and 6.3–7.8 in DMSO.
Keywords: Brønsted bases, Isothioureas, pKa, NMR
Introduction
Isothioureas (ITUs; Scheme 1A) have found widespread use as easily available and bench-stable (chiral) Lewis basic organocatalysts[1] over the course of the last two decades. These catalysts usually act by adding to electrophilic starting materials via their nucleophilic N-group, forming highly activated chiral intermediates which can then undergo a multitude of different transformations (Scheme 1B).[1–13] The seminal report that revealed the potential of ITUs for asymmetric catalysis came from Birman’s group in 2006, who successfully utilized the commercially available drug tetramisole (TM) and its benzannulated derivative benzotetramisole (BTM) as catalysts for asymmetric acyl-transfer reactions (via in situ formation of acyl ammonium salt intermediates A).[2] Since then, a broad variety of highly efficient acyl-transfer reactions for (dynamic) kinetic resolutions and desymmetrization reactions have been reported.[3–6] Analogously, ITUs have been well-established for asymmetric silylations of alcohol derivatives.[7] Furthermore, ITUs have been very successfully utilized for: i) the generation and utilization of chiral C(1) ammonium enolates B (which can undergo asymmetric α-functionalizations and cycloadditions);[8–10] ii) the formation of reactive chiral α,β-unsaturated acyl ammonium acceptors C;[11,12] and iii) to access C(3) ammonium dienolates D which can undergo formal (4+2)-cycloadditions.[13]
Scheme 1.
(A) Commonly used privileged isothioureas (ITUs) and (B) established activation modes and intermediates in ITU-catalyzed transformations.
Interestingly, while a lot of the crucial factors that have an impact on the catalytic potential of ITUs like their tendency to undergo well-defined intramolecular 1,5-O…S chalcogen bonding interactions in intermediates A-C (nO→σ*C-S),[3b,14] as well as their nucleophilicity and Lewis basicity have been the subject of previous investigations,[15] only little is known about the Brønsted basicity of these amidine-type structures. Surprisingly, only recently[16] some experimentally determined pKa values of the conjugated acids of selected achiral ITUs based on the BTM-scaffold were reported (here potentiometric titration revealed pKaH[17] values around 8 in H2O/MeOH mixtures). To the best of our knowledge however, the pKaH of the privileged (chiral) isothioureas depicted in Scheme 1A have so far not been systematically determined. For us, this lack of data came as a surprise, especially when we recently found that, depending on the application, these catalysts may also allow for the formation and utilization of C(1) ammonium enolates without the need for an additional external base.[18] This observation made us wonder about the Brønsted basicity of these compounds in relation to other commonly used organic bases.
To gain a better understanding of the key properties of the most-commonly used (chiral) ITU derivatives (Scheme 1A), we have now focused on the experimental determination of their pKaH values in the common organic solvents DMSO and acetonitrile (ACN). Having these fundamental thermodynamic data at hand thus allows for a direct comparison of these bases with other commonly used organic Brønsted bases.[19,20]
Results and Discussion
To determine the pKaH values in a comparable and systematic manner, we chose a chemical shift imaging NMR method that has recently been developed by Wallace and co-workers.[21] This method allows for the determination of the pKaH of organic bases in a straight-forward “one-shot” manner in different organic solvents and was found to be well-applicable to our ITUs. In a nutshell,[21,22] this method works by analyzing the chemical shifts of the compound of interest in dependence of the pH. Based on the ratio between protonated species and free base at a certain pH the pKa of the conjugated acid can be determined (Figure 1). Avoiding numerous experiments at different pH values, Wallace’s method allows to carry this out in a single experiment by measuring samples of the base of interest (our ITU) with two basic reference compounds of known pKaH in an NMR tube with a pH-gradient along the length of the tube (lowest pH on the bottom, highest pH on the top).[21,22] By utilizing a gradient-equipped NMR spectrometer it is possible to record individual 1H NMR spectra of small “slices” of the sample (128 slices over a length of 2.2 cm), thus providing chemical shifts as a function of the position/location (Figure 1B). By aid of the two reference compounds it is possible to exactly assign the pH in each individual slice and once this is known one can then calculate the pKaH from the ITU-H+/ITU ratio within each slice.[21,22] To simplify analysis and interpretation of the spectra reference compounds that do not show any peak overlap with the relevant peaks of our targets were chosen.[22]
Figure 1.
(A) Region of the 1H NMR spectra of HyperBTM in its free base form and in its protonated form that can be used for the determination of the pKaH (recorded in non-deuterated DMSO with solvent suppression); (B) Chemical shift of the proton adjacent to the basic nitrogen in dependence of the position in an NMR tube with a pH gradient along the length of the tube.
Gratifyingly, this NMR methodology worked rather well for our ITUs of interest, thus allowing us to determine their pKaH values in both, acetonitrile and DMSO. By looking at the obtained values and comparing them with established organic bases[19] (Figure 2), it becomes obvious that ITUs are relatively moderate Brønsted bases only. With pKaH values in the region of 16.8–17.9 in ACN and 6.3–7.8 in DMSO their most basic members show a similar basicity as DMAP. Interestingly, although all derivates possess rather similar pKaH values spanning roughly one order of magnitude only, some note-worthy trends were observed. First of all, the ring size significantly effects the basicity, as illustrated by comparing the 5-ring-based BTM with its 6-ring homologue HBTM, which is one order of magnitude more basic in both solvents. Furthermore, it turns out that the benzannulation leads to a decrease in pKaH as shown for BTM in comparison to TM. Interestingly the relative order of basicity somewhat depends on the solvent. This is especially pronounced for the 6-ring fused derivatives HBTM, HyperBTM and DHPB (in ACN: HBTM > DHPB > HyperBTM; in DMSO: DHPB > HyperBTM > HBTM).
Figure 2.
Experimentally determined pKaH values of ITUs (and some Cinchona alkaloids) in ACN and DMSO in comparison to established organic Brønsted bases.[19]
With these pKaH values for the established ITUs at hand, we also wanted to set them in relation to Cinchona alkaloids (i. e. the privileged derivatives quinine, quinidine, cinchonine, and cinchonidine). Those naturally occurring tertiary amines are frequently used in asymmetric (organo)-catalysis[23] and their pKaH values in H2O or aqueous solvent mixtures are known.[19,24] Surprisingly however, we could not find a systematic study on their pKaH values in ACN or DMSO. We thus determined them by NMR as well and found these Cinchona alkaloids being at least one order of magnitude more basic than our ITUs (Figure 2 gives the value for quinine and quinidine but we also determined them for cinchonidine and cinchonine which both have identical pKaH values (18.4 in ACN; 8.2 in DMSO)).[22]
Conclusions
Isothioureas (ITUs) emerged as powerful (asymmetric) Lewis base organocatalysts over the course of the last two decades. Surprisingly to us, the Brønsted basicity of these easily accessible amidine-type compounds has so far not systematically been investigated.[16] We thus now determined the pKaH values of some of the most commonly used (chiral) ITUs in acetonitrile and DMSO by using Wallace’s NMR methodology.[21]
Utilizing this straightforward approach, the herein investigated ITUs were found to be weak bases with pKaH values in the range of 16.8–17.9 in ACN and 6.3–7.8 in DMSO. Furthermore, we also determined the pKaH values for privileged Cinchona alkaloid derivatives, which are around one order of magnitude more basic than the investigated ITUs.
Supplementary Material
Acknowledgements
Financial support by the Austrian Science Funds (FWF) through project No. P36004 is gratefully acknowledged.
Footnotes
Conflict of Interests
The authors declare no conflict of interest.
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
References
- [1].a) Selected Reviews for Isochalcogenourea catalysis. Taylor JE, Bull SD, Williams JMJ. Chem Soc Rev. 2012;41:2109–2121. doi: 10.1039/c2cs15288f. [DOI] [PubMed] [Google Scholar]; b) Morrill LC, Smith AD. Chem Soc Rev. 2014;43:6214–6226. doi: 10.1039/c4cs00042k. [DOI] [PubMed] [Google Scholar]; c) Birman VB. Aldrichim Acta. 2016;49:23. [Google Scholar]; d) Merad J, Pons J-M, Chuzel O, Bressy C. Eur J Org Chem. 2016:5589–5610. [Google Scholar]; e) Biswas A, Mondal H, Maji MS. J Heterocycl Chem. 2020;57:3818–3844. [Google Scholar]; f) McLaughlin C, Smith AD. Chem Eur J. 2021;27:1533–1555. doi: 10.1002/chem.202002059. [DOI] [PMC free article] [PubMed] [Google Scholar]; g) Nimmo AJ, Young CM, Smith AD. In: Asymmetric Organocatalysis: New Strategies, Catalysts, and Opportunities. Albrecht Ł, Albrecht A, Dell’Amico L, editors. Vol. 5. Wiley-VCH; Weinheim: 2023. p. 151. [Google Scholar]
- [2].Birman VB, Li X. Org Lett. 2006;8:1351–1354. doi: 10.1021/ol060065s. [DOI] [PubMed] [Google Scholar]
- [3].a) Two early examples of the acyl transfer capability of achiral isothiourea DHPB. Kobayashi M, Okamoto S. Tetrahedron Lett. 2006;47:4347–4350. [Google Scholar]; b) Birman VB, Li X, Han Z. Org Lett. 2007;9:37–40. doi: 10.1021/ol0623419. [DOI] [PubMed] [Google Scholar]
- [4].a) Selected examples for kinetic resolution of alcohols. Birman VB, Li X. Org Lett. 2008;10:1115–1118. doi: 10.1021/ol703119n. [DOI] [PubMed] [Google Scholar]; b) Zhang Y, Birman VB. Adv Synth Catal. 2009;351:2525–2529. doi: 10.1002/adsc.200900383. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Belmessieri D, Joanesse C, Woods PA, MacGregor C, Jones C, Campbell CD, Johnston CP, Duguet N, Concellón C, Bragg RA, Smith AD. Org Biomol Chem. 2011;9:559–570. doi: 10.1039/c0ob00515k. [DOI] [PubMed] [Google Scholar]; d) Musolino SF, Ojo OS, Westwood NJ, Taylor JE, Smith AD. Chem Eur J. 2016;22:18916–18922. doi: 10.1002/chem.201604788. [DOI] [PMC free article] [PubMed] [Google Scholar]; e) Weinzierl D, Waser M. Beilstein J Org Chem. 2021;17:800–804. doi: 10.3762/bjoc.17.68. [DOI] [PMC free article] [PubMed] [Google Scholar]; f) Desrues T, Liu X, Pons J, Monnier V, Amalian J, Charles L, Quintard A, Bressy C. Org Lett. 2021;23:4332–4336. doi: 10.1021/acs.orglett.1c01261. [DOI] [PubMed] [Google Scholar]; g) Westwood MT, Farah AO, Wise HB, Sinfield M, Robichon C, Cordes DB, Cheong PH-Y, Smith AD. Angew Chem Int Ed. 2024;63:e202407983. doi: 10.1002/anie.202407983. [DOI] [PubMed] [Google Scholar]
- [5].a) For various selected asymmetric acyl-transfer reactions utilizing ITUs. Birman VB, Jiang H, Li X, Guo L, Uffman EW. J Am Chem Soc. 2006;128:6536–6537. doi: 10.1021/ja061560m. [DOI] [PubMed] [Google Scholar]; b) Yang X, Lu G, Birman VB. Org Lett. 2010;12:892–895. doi: 10.1021/ol902969j. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Bumbu VD, Birman VB. J Am Chem Soc. 2011;133:13902–13905. doi: 10.1021/ja2058633. [DOI] [PubMed] [Google Scholar]; d) Liu P, Yang X, Birman VB, Houk KN. Org Lett. 2012;14:3288–3291. doi: 10.1021/ol301243f. [DOI] [PubMed] [Google Scholar]; e) Bumbu VD, Yang X, Birman VB. Org Lett. 2013;15:2790–2793. doi: 10.1021/ol401122g. [DOI] [PubMed] [Google Scholar]; f) Peng Q, Guo D, Zhang B, Liu L, Wang J. Chem Commun. 2020;56:12427–12430. doi: 10.1039/d0cc05379a. [DOI] [PubMed] [Google Scholar]; g) Zhu H, Manchado A, Farah AO, McKay AP, Cordes DB, Cheong PH-Y, Kasten K, Smith AD. Angew Chem Int Ed. 2024;63:e202402908. doi: 10.1002/anie.202402908. [DOI] [PubMed] [Google Scholar]; h) Agrawal SK, Majhi Pk, Goodfellow AS, Tak RK, Cordes DB, McKay AP, Kasten K, Bühl M, Smith AD. Angew Chem Int Ed. 2024;63:e202402909. doi: 10.1002/anie.202402909. [DOI] [PubMed] [Google Scholar]
- [6].a) Selected examples for the kinetic resolution of carboxylic acid derivatives using ITUs. Shiina I, Nakata K, Onda Y. Eur J Org Chem. 2008;2008:5887–5890. [Google Scholar]; b) Yang X, Birman VB. Adv Synth Catal. 2009;351:2301–2304. doi: 10.1002/adsc.200900451. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Shiina I, Nakata K, Ono K, Onda Y, Itagaki M. J Am Chem Soc. 2010;132:11629–11641. doi: 10.1021/ja103490h. [DOI] [PubMed] [Google Scholar]; d) Yang X, Birman VB. Angew Chem Int Ed. 2011;50:5553–5555. doi: 10.1002/anie.201007860. [DOI] [PubMed] [Google Scholar]; e) Yang X, Birman VB. Chem Eur J. 2011;17:11296–11304. doi: 10.1002/chem.201101028. [DOI] [PubMed] [Google Scholar]; f) Zhang H, Xie M, Qu G, Chang J. Org Lett. 2019;21:120–123. doi: 10.1021/acs.orglett.8b03555. [DOI] [PubMed] [Google Scholar]
- [7].a) For selected illustrative examples. Sheppard CI, Taylor JL, Wiskur SL. Org Lett. 2011;13:3794–3797. doi: 10.1021/ol2012617. [DOI] [PubMed] [Google Scholar]; b) Clark RW, Deaton TM, Zhang Y, Moore MI, Wiskur SL. Org Lett. 2013;15:6132–6135. doi: 10.1021/ol402982w. [DOI] [PubMed] [Google Scholar]; c) Wang L, Akhani RK, Wiskur SL. Org Lett. 2015;17:2408–2411. doi: 10.1021/acs.orglett.5b00919. [DOI] [PubMed] [Google Scholar]; d) Redden BK, Clarke RW, Gong Z, Rahman M, Peryshkov DV, Wiskur SL. Org Biomol Chem. 2021;19:10181–10188. doi: 10.1039/d1ob01732b. [DOI] [PubMed] [Google Scholar]; e) Hu T, Zhang Y, Wang W, Li Q, Huang L, Gao J, Kuang Y, Zhao C, Zhou S, Gao L, Su Z, et al. J Am Chem Soc. 2024;146:23092–23102. doi: 10.1021/jacs.4c04390. [DOI] [PubMed] [Google Scholar]
- [8].a) Selected recent examples. Yuan Y, Abd El Sater M, Mellah M, Jaber N, David ORP, Schulz E. Org Chem Front. 2021;8:4693–4699. [Google Scholar]; b) Abdelhamid Y, Kasten K, Dunne J, Hartley WC, Young CM, Cordes DB, Slawin AMZ, Ng S, Smith AD. Org Lett. 2022;24:5444–5449. doi: 10.1021/acs.orglett.2c02170. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Wang Y, Young CM, Liu H, Hartley WC, Wienhold M, Cordes DB, Slawin AMZ, Smith AD. Angew Chem Int Ed. 2022;61:e20220880. doi: 10.1002/anie.202208800. [DOI] [PMC free article] [PubMed] [Google Scholar]; d) Yuan S, Zheng WH. J Org Chem. 2022;87:713–720. doi: 10.1021/acs.joc.1c02710. [DOI] [PubMed] [Google Scholar]; e) Nimmo AJ, Bitai J, Young CM, McLaughlin C, Slawin AMZ, Cordes DB, Smith AD. Chem Sci. 2023;14:7537–7544. doi: 10.1039/d3sc02101g. [DOI] [PMC free article] [PubMed] [Google Scholar]; f) Bouchet D, Van Elslande E, Masson G. Org Lett. 2023;25:5395–5399. doi: 10.1021/acs.orglett.3c02011. [DOI] [PubMed] [Google Scholar]
- [9].a) Early applications of ITU−C1 ammonium enolates in combination with transition metal catalysis. Schwarz KJ, Amos JL, Klein JC, Do DT, Snaddon TN. J Am Chem Soc. 2016;138:5214–5217. doi: 10.1021/jacs.6b01694. [DOI] [PubMed] [Google Scholar]; b) Jiang X, Beiger JJ, Hartwig JF. J Am Chem Soc. 2017;139:87–90. doi: 10.1021/jacs.6b11692. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Song J, Zhang Z, Gong L. Angew Chem Int Ed. 2017;56:5212–5216. doi: 10.1002/anie.201700105. [DOI] [PubMed] [Google Scholar]; d) Schwarz KJ, Yang C, Fyfe JWB, Snaddon TN. Angew Chem Int Ed. 2018;57:12102–12105. doi: 10.1002/anie.201806742. [DOI] [PMC free article] [PubMed] [Google Scholar]; e) Pearson CM, Fyfe JWB, Snaddon TN. Angew Chem Int Ed. 2019;58:10521–10527. doi: 10.1002/anie.201905426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].a) Recent contributions by our group. Stockhammer L, Craik R, Monkowius U, Cordes DB, Smith AD, Waser M. ChemistryEurope. 2023;1:e202300015. doi: 10.1002/ceur.202300015. [DOI] [PMC free article] [PubMed] [Google Scholar]; b) Zebrowski P, Monkowius U, Waser M. Eur J Org Chem. 2023;26:e202300982. doi: 10.1002/ejoc.202300982. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Stockhammer L, Radetzky M, Khatoon SS, Bechmann M, Waser M. Eur J Org Chem. 2023;26:e202300704. doi: 10.1002/ejoc.202300704. [DOI] [PMC free article] [PubMed] [Google Scholar]; d) Weinzierl D, Piringer M, Zebrowski P, Stockhammer L, Waser M. Org Lett. 2023;25:3126–3130. doi: 10.1021/acs.orglett.3c00986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].a) For two reviews on the use of α,β-unsaturated acyl ammonium species in organocatalysis. Vellalath S, Romo D. Angew Chem Int Ed. 2016;55:13934–13943. doi: 10.1002/anie.201602217. [DOI] [PMC free article] [PubMed] [Google Scholar]; b) Bitai J, Westwood MT, Smith AD. Org Biomol Chem. 2021;19:2366–2384. doi: 10.1039/d0ob02208j. [DOI] [PubMed] [Google Scholar]
- [12].a) Selected examples. Abbasov ME, Hudson BM, Tantillo DJ, Romo D. Chem Sci. 2017;8:1511–1524. doi: 10.1039/c6sc04273b. [DOI] [PMC free article] [PubMed] [Google Scholar]; b) Abbasov ME, Hudson BM, Kong W, Tantillo DJ, Romo D. Org Biomol Chem. 2017;15:3179–3183. doi: 10.1039/c6ob02738e. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Fukata Y, Yao K, Miyaji R, Asano K, Matsubara S. J Org Chem. 2017;82:12655–12668. doi: 10.1021/acs.joc.7b02451. [DOI] [PubMed] [Google Scholar]; d) Matviistuk A, Greenhalgh MD, Taylor JE, Nguyen XB, Cordes DB, Slawin AMZ, Lupton DW, Smith AD. Org Lett. 2020;22:335–339. doi: 10.1021/acs.orglett.9b04404. [DOI] [PubMed] [Google Scholar]; e) Shu C, Liu H, Slawin AMZ, Carpenter-Warren C, Smith AD. Chem Sci. 2020;11:241–247. doi: 10.1039/c9sc04303a. [DOI] [PMC free article] [PubMed] [Google Scholar]; f) Liu H, Slawin AMZ, Smith AD. Org Lett. 2020;22:1301–1305. doi: 10.1021/acs.orglett.9b04615. [DOI] [PubMed] [Google Scholar]; g) Bitai J, Nimmo AJ, Slawin AMZ, Smith AD. Angew Chem Int Ed. 2022;61:e202202621. doi: 10.1002/anie.202202621. [DOI] [PMC free article] [PubMed] [Google Scholar]; h) Kim B, Lee S, Lee SY. Adv Synth Catal. 2023;365:3887–3896. [Google Scholar]
- [13].a) Vogl LS, Mayr P, Robiette R, Waser M. Angew Chem Int Ed. 2024;63:e202315345. doi: 10.1002/anie.202315345. [DOI] [PMC free article] [PubMed] [Google Scholar]; b) Piringer M, Hofer M, Vogl LS, Mayer P, Waser M. Adv Synth Catal. 2024;366:2115. doi: 10.1002/adsc.202400038. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Waser M. Chem Lett. 2024;53:upae168 [Google Scholar]; d) Scheucher A, Gross C, Piringer M, Novacek J, Ofial AR, Waser M. Org Biomol Chem. 2025;23:827–834. doi: 10.1039/d4ob01855a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Young CM, Elmi A, Pascoe DJ, Morris RK, McLaughlin C, Woods AM, Frost AB, de la Houpliere A, Ling KB, Smith TK, Slawin AMZ, et al. Angew Chem Int Ed. 2020;59:3705–3710. doi: 10.1002/anie.201914421. [DOI] [PubMed] [Google Scholar]
- [15].Maji B, Joanesse C, Nigst TA, Smith AD, Mayr H. J Org Chem. 2011;76:5104–5112. doi: 10.1021/jo200803x. [DOI] [PubMed] [Google Scholar]
- [16].Harrison CJ, Dickerson SD, Gong Z, McGowan AS, Vista J, Wiskur SL. Eur J Org Chem. 2024;27:e202400641 [Google Scholar]
- [17].The term pKaH is used to make clear that this refers to the pKa of the protonated base. Kütt A, Selberg S, Kaljurand I, Tshepelevitsh S, Heering A, Darnell A, Kaupmees K, Piirsalu M, Leito I. Tetrahedron Lett. 2018;59:3738–3748. [Google Scholar]
- [18].Stockhammer L, Weinzierl D, Bögl T, Waser M. Org Lett. 2021;23:6143–6147. doi: 10.1021/acs.orglett.1c02256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].a) For two very detailed collections of pKa values of organic compounds. iBonD 2.0. http://ibond.nankai.edu.cn .; b) ans Reich’s Collection. Bordwell pKa Table. https://organicchemistrydata.org/hansreich/resources/pka/#pka_general .
- [20].Tshepelevitsh S, Kütt A, Lokov M, Kaljurand I, Saame J, Heering A, Plieger PG, Vianello R, Leito I. Eur J Org Chem. 2019;2019:6735–6748. [Google Scholar]
- [21].a) Wallace M, Adams DJ, Iggo JA. Anal Chem. 2018;90:4160–4166. doi: 10.1021/acs.analchem.8b00181. [DOI] [PubMed] [Google Scholar]; b) Schenck G, Baj K, Iggo JA, Wallace M. Anal Chem. 2022;94:8115–8119. doi: 10.1021/acs.analchem.2c00200. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Wallace M, Abiama N, Chipembere M. Anal Chem. 2023;95:15629–15635. doi: 10.1021/acs.analchem.3c02771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Details can be found in the online supporting information
- [23].Song CE, editor. Cinchona Alkaloids in Synthesis & Catalysis. Wiley-VCH; Weinheim: 2009. [Google Scholar]
- [24].a) For selected studies. Breman AC, van der Heijden G, van Maarseveen JH, Ingemann S, Hiemstra H. Chem Eur J. 2016;22:14247–14256. doi: 10.1002/chem.201601917. [DOI] [PubMed] [Google Scholar]; b) Meloun M, Syrovy T, Vrana A. Anal Chim Acta. 2005;533:97–110. doi: 10.1016/j.aca.2006.07.043. [DOI] [PubMed] [Google Scholar]
- [25].a) Hwang TL, Shaka AJ. J Magn Reson, Series A. 1995;112:275–279. [Google Scholar]; b) Coetzee JF, Padmanabhan GR. J Am Chem Soc. 1965;87:5005–5010. [Google Scholar]; c) Kaljurand I, Kütt A, Sooväli L, Rodima T, Mäemets V, Leito I, Koppel IA. J Org Chem. 2005;70:1019–1028. doi: 10.1021/jo048252w. [DOI] [PubMed] [Google Scholar]; d) Searles S, Tamres M, Block F, Quarterman LA. J Am Chem Soc. 1956;78:4917–4920. [Google Scholar]; e) Beltrame P, Gelli G, Loi A. Gaz Chim Acta. 1980;110:491–494. [Google Scholar]; f) Leesment A, Selberg S, Tammiste M, Vu AH, Nguyen TH, Taylor-King L, Leito I. Anal Chem. 2022;94:4059–4064. doi: 10.1021/acs.analchem.1c05510. [DOI] [PubMed] [Google Scholar]; g) Kolthoff IM, Chantooni MK. J Chem Eng Data. 1999;44:124–129. [Google Scholar]; h) Kolthoff IM, Chantooni MK, Jr, Bhowmik S. J Am Chem Soc. 1968;90:23–28. [Google Scholar]; i) Crampton RM, Robotham IA. J Chem Res (S) 1997:22–23. [Google Scholar]; j) Carabias-Martínez R, Rodríguez-Gonzalo E, Domínguez-Alvarez J, Miranda-Cruz E. Anal Chim Acta. 2007;584:410–418. doi: 10.1016/j.aca.2006.11.036. [DOI] [PubMed] [Google Scholar]; k) Arnett EM, Maroldo SG, Schilling SL, Harrelson JA. J Am Chem Soc. 1984;106:6759–6767. [Google Scholar]; l) Maran F, Celadon D, Severin MG, Vianello E. J Am Chem Soc. 1991;113:9320–9329. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.



