Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Oct 9;76(Pt 11):1737–1740. doi: 10.1107/S2056989020013304

Crystal structure of 2,6-bis­(3-hy­droxy-3-methyl­but-1-yn-1-yl)pyridine monohydrate

Take-aki Koizumi a,*, Toshikazu Takata a
PMCID: PMC7643226  PMID: 33209344

In the crystal, the hydrogen bonds between the pyridine mol­ecule and the water mol­ecule, viz. Ohy­droxy—H⋯Owater, Ohy­droxy—H⋯Ohy­droxy, Owater—H⋯Ohy­droxy, and Owater—H⋯Npyridine, result in the formation of a ribbon structure running along [01Inline graphic].

Keywords: crystal structure, pyridine, hydrogen bonding, π–π stacking

Abstract

In the title pyridine derivative, C15H17NO2·H2O, the two OH groups are oriented in directions opposite to each other with respect to the plane of the pyridine ring. In the crystal, hydrogen bonds between the pyridine mol­ecule and the water mol­ecule, viz. Ohy­droxy—H⋯Owater, Ohy­droxy—H⋯Ohy­droxy, Owater—H⋯Ohy­droxy and Owater—H···Npyridine, result in the formation of a ribbon-like structure running along [011].

Chemical context  

Pyridine derivatives with propargyl alcohol groups as substituents in the 2,6-positions are inter­esting compounds that have been used as synthons of many reactive compounds (Furusho et al., 2004) and polymers (Miyagawa et al., 2010, 2011), as starting materials of helical polymers (Inouye et al., 2004; Waki et al., 2006; Abe, Machiguchi et al., 2008; Abe, Murayama et al., 2008), and as ligands for transition-metal complexes (Hung et al., 2009). Since such compounds have rigid structures containing one pyridine nitro­gen and two alcoholic OH groups, they can be used to construct a higher order structure by coordination with metals and/or hydrogen-bond formation at multiple points. The crystal structures of 2,6-bis­(3-methyl­butyn-3-ol)pyridine, 1, and its complex with tri­phenyl­phosphine oxide (1-OPPh3) were reported by Holmes et al. (2002). In the crystal of 1, the mol­ecules form inter­molecular hydrogen bonds with the pyridine ring and the two OH groups; the O—H⋯O hydrogen bonds from a 21 helical chain along the b-axis direction. The chains are linked by inter­molecular N⋯H—O hydrogen bonds, forming a layer structure, and then form a stacking structure via C—H⋯O inter­actions between the layers. In contrast, in the case of 1-OPPh3, each of the two OH groups forms a hydrogen bond with the O atom of OPPh3 without forming a network structure. Hence, it is expected that the crystal packing of 1 strongly depends on the presence or absence of hydrogen bonding. However, to our knowledge, the present examples have only been structurally analysed with 2,6-bis­(propargyl alcohol)-substituted pyridines. In this paper, we report the crystal structure of 2,6-bis­(3-methyl­butyn-3-ol)pyridine monohydrate, 1·H2O.graphic file with name e-76-01737-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is depicted in Fig. 1. The bond lengths of two C≡C triple bonds (C6≡C7 and C11≡C12) are 1.199 (2) and 1.191 (2) Å, respectively, consistent with the triple-bond character. The Cipso—C≡C (C1—C6≡C7 and C5—C11≡C12) and C≡C–C(OH) (C6≡C7—C8 and C11≡C12—C13) bond angles are 176.0 (2), 176.4 (2), 174.6 (2) and 178.5 (2)°, respectively. C6≡C7—C8 is slightly distorted from a linear structure compared to the other bonds. The two OH groups are oriented in directions opposite to each other with respect to the plane of the pyridine ring, and the pyridine ring makes dihedral angles of 50.50 (17) and 57.58 (15)°, respectively, with the C7/C8/O1 and C12/C13/O2 planes.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. A dashed line indicates the O—H⋯O hydrogen bond.

Supra­molecular features  

Fig. 2 depicts the packing of 1·H2O along the c axis. The water mol­ecules present as the crystallization solvent form inter­molecular O—H⋯O and O—H⋯N inter­actions with the hydroxyl groups and the N atoms of the pyridine unit of mol­ecule 1 (Table 1), resulting in a ribbon-like structure along [011] (Fig. 3). The pyridine ring forms π–π stacking inter­actions with that in a neighboring ribbon in an anti-parallel mode, resulting in a π–π network along the c axis (Fig. 4). The centroid–centroid distance between the pyridine rings [CgCg iv; symmetry code: (iv) −x + Inline graphic, −y + 1, z + Inline graphic] is 3.5538 (11) Å. In the crystal of non-solvated 1 (space group P21/c; Holmes et al., 2002), such π–π stacking inter­actions between the pyridine rings are not found.

Figure 2.

Figure 2

Packing diagram of the title compound, viewed down the c axis.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.86 (3) 1.90 (3) 2.7640 (15) 175 (3)
O2—H2⋯O3 0.89 (3) 1.82 (2) 2.7052 (17) 170 (3)
O3—H3A⋯N1ii 0.86 (3) 2.02 (3) 2.8790 (18) 179 (3)
O3—H3B⋯O1iii 0.83 (3) 2.01 (3) 2.8361 (19) 173 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

Partial packing diagram of the title compound, showing the O—H⋯O and O—H⋯N hydrogen bonds (dashed lines) between 1 and water mol­ecules.

Figure 4.

Figure 4

Partial packing diagram of the title compound, showing the chain formation along the c axis by π–π inter­actions (dashed lines). [Symmetry codes: (b) −x + Inline graphic, −y + 1, z + Inline graphic; (c) −x + Inline graphic, −y + 1, z − Inline graphic.]

Database survey  

The Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) has 138 entries for structures containing 2,6-diethynyl­pyridine scaffolds, and for 2,6-bis­(1-propyn-3-ol) derivatives gave two hits. The non-solvated compound 2,6-bis­(3-methyl­butyn-3-ol)pyridine (refcode LUMYEX) and its complex with O=PPh3 (LUMYIB) have been reported (Holmes et al., 2002). The benzene derivative containing two propargyl alcohol units at the 1,3-positions gives 34 hits; however, there is no report of a simple benzene derivative having a structure similar to that of 1.

Synthesis and crystallization  

2,6-Bis(3-methyl­butyn-3-ol)pyridine was prepared by using a modified Potts method (Potts et al., 1993). 2,6-Di­bromo­pyridine (9.1 g, 38 mmol) was reacted with 2-methyl-3-butyn-2-ol (13 g, 151 mmol) using CuI (225 mg, 1.3 mmol)/PdCl2(PPh3)2 (840 mg, 1.3 mmol) as a catalyst in a THF (50 mL)–NEt3 (150 mL) solvent for 19 h at room temperature. The resulting dark-brown solution was quenched with an aqueous NH4Cl solution and the obtained solid was elimin­ated by celite filtration. The solution was extracted by AcOEt, and the organic phase was dried over MgSO4. After filtering off the desiccant, the filtrate was concentrated and subjected to silica-gel chromatography (eluent: AcOEt:hexane 3:2). Single crystals suitable for X-ray diffraction studies were obtained from an ethyl acetate solution via slow evaporation in air.

Refinement  

Crystal data, data collection and refinement details are summarized in Table 2. Water H atoms and alcohol H atoms were located in a difference-Fourier map, and were refined freely. All of the C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.98 Å), and were refined using a riding model, with U iso(H) = 1.2U eq (aromatic-C) or 1.5U eq (methyl-C).

Table 2. Experimental details.

Crystal data
Chemical formula C15H17NO2·H2O
M r 261.31
Crystal system, space group Orthorhombic, F d d2
Temperature (K) 113
a, b, c (Å) 31.9834 (14), 27.7358 (13), 6.6610 (4)
V3) 5908.9 (5)
Z 16
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.34 × 0.1 × 0.1
 
Data collection
Diffractometer Rigaku XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.817, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4676, 2071, 2045
R int 0.015
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.082, 1.04
No. of reflections 2071
No. of parameters 192
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.20
Absolute structure Flack x determined using 495 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.02 (11)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), Olex2.solve (Bourhis et al., 2015), Olex2.refine (Bourhis et al., 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020013304/is5553sup1.cif

e-76-01737-sup1.cif (158.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013304/is5553Isup2.hkl

e-76-01737-Isup2.hkl (167.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020013304/is5553Isup3.cml

CCDC references: 2035321, 2035321

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CREST program (JST, JPMJCR1522) for financial support.

supplementary crystallographic information

Crystal data

C15H17NO2·H2O Dx = 1.175 Mg m3
Mr = 261.31 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Fdd2 Cell parameters from 4276 reflections
a = 31.9834 (14) Å θ = 4.2–74.9°
b = 27.7358 (13) Å µ = 0.66 mm1
c = 6.6610 (4) Å T = 113 K
V = 5908.9 (5) Å3 Plate, white
Z = 16 0.34 × 0.1 × 0.1 mm
F(000) = 2240

Data collection

Rigaku XtaLAB Synergy R, DW system, HyPix diffractometer 2071 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source 2045 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.015
Detector resolution: 10.0000 pixels mm-1 θmax = 75.0°, θmin = 4.2°
ω scans h = −40→25
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) k = −22→34
Tmin = 0.817, Tmax = 1.000 l = −8→5
4676 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0555P)2 + 3.7832P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.18 e Å3
2071 reflections Δρmin = −0.19 e Å3
192 parameters Absolute structure: Flack x determined using 495 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.02 (11)
Primary atom site location: iterative

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.35948 (3) 0.32551 (4) 0.6275 (2) 0.0246 (3)
O2 0.34219 (3) 0.65799 (4) 0.3581 (2) 0.0216 (3)
O3 0.38487 (4) 0.74210 (5) 0.3415 (3) 0.0329 (4)
N1 0.27513 (4) 0.49371 (5) 0.5965 (3) 0.0166 (3)
H1 0.3733 (8) 0.3523 (9) 0.623 (5) 0.041 (7)*
H2 0.3550 (7) 0.6863 (9) 0.339 (5) 0.037 (6)*
H2A 0.195964 0.419764 0.615414 0.022*
H3 0.158347 0.492523 0.628127 0.023*
H3A 0.4117 (8) 0.7423 (8) 0.345 (5) 0.033 (6)*
H3B 0.3782 (8) 0.7679 (10) 0.288 (5) 0.042 (7)*
H4 0.194772 0.565882 0.611513 0.022*
H9A 0.313194 0.255773 0.504956 0.037*
H9B 0.271146 0.285849 0.469227 0.037*
H9C 0.290932 0.282373 0.689425 0.037*
H10A 0.353762 0.360767 0.264577 0.041*
H10B 0.310243 0.336577 0.202018 0.041*
H10C 0.350205 0.303410 0.244822 0.041*
H14A 0.303649 0.733924 0.513951 0.036*
H14B 0.271251 0.704803 0.651137 0.036*
H14C 0.269906 0.699027 0.412177 0.036*
H15A 0.369017 0.641198 0.719381 0.043*
H15B 0.333112 0.668096 0.843702 0.043*
H15C 0.364036 0.698483 0.703467 0.043*
C1 0.25351 (4) 0.45203 (5) 0.6000 (3) 0.0160 (3)
C2 0.21008 (5) 0.44989 (5) 0.6118 (3) 0.0182 (3)
C3 0.18798 (5) 0.49280 (6) 0.6182 (3) 0.0193 (4)
C4 0.20942 (4) 0.53608 (5) 0.6100 (3) 0.0183 (3)
C5 0.25298 (4) 0.53508 (5) 0.5995 (3) 0.0159 (3)
C6 0.27810 (5) 0.40863 (6) 0.5837 (3) 0.0186 (4)
C7 0.29850 (5) 0.37292 (5) 0.5576 (3) 0.0190 (4)
C8 0.32310 (5) 0.32951 (6) 0.5046 (3) 0.0179 (4)
C9 0.29729 (5) 0.28434 (6) 0.5457 (3) 0.0244 (4)
C10 0.33542 (6) 0.33286 (6) 0.2844 (3) 0.0275 (4)
C11 0.27666 (4) 0.57928 (5) 0.5862 (3) 0.0170 (3)
C12 0.29570 (4) 0.61579 (6) 0.5643 (3) 0.0178 (3)
C13 0.31907 (5) 0.66164 (5) 0.5422 (3) 0.0181 (4)
C14 0.28820 (5) 0.70362 (6) 0.5287 (3) 0.0238 (4)
C15 0.34897 (6) 0.66791 (7) 0.7178 (4) 0.0290 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0193 (5) 0.0161 (5) 0.0383 (9) −0.0015 (4) −0.0082 (6) 0.0042 (6)
O2 0.0195 (5) 0.0166 (5) 0.0287 (7) −0.0014 (4) 0.0053 (6) 0.0013 (6)
O3 0.0154 (5) 0.0246 (6) 0.0586 (11) −0.0014 (4) 0.0000 (7) 0.0166 (7)
N1 0.0161 (5) 0.0165 (6) 0.0173 (8) 0.0000 (4) −0.0002 (6) 0.0005 (6)
C1 0.0187 (7) 0.0157 (7) 0.0138 (8) 0.0000 (5) −0.0010 (7) 0.0008 (7)
C2 0.0186 (6) 0.0176 (7) 0.0182 (9) −0.0035 (5) −0.0006 (7) 0.0009 (7)
C3 0.0144 (6) 0.0230 (8) 0.0205 (9) −0.0004 (6) −0.0009 (7) 0.0010 (8)
C4 0.0175 (7) 0.0180 (7) 0.0195 (9) 0.0022 (5) 0.0000 (7) 0.0000 (7)
C5 0.0183 (7) 0.0157 (7) 0.0136 (9) −0.0003 (5) 0.0001 (7) 0.0007 (7)
C6 0.0185 (7) 0.0174 (7) 0.0200 (9) −0.0027 (5) −0.0010 (7) 0.0019 (7)
C7 0.0178 (6) 0.0168 (7) 0.0225 (9) −0.0029 (5) 0.0009 (7) 0.0029 (8)
C8 0.0163 (6) 0.0143 (7) 0.0232 (10) 0.0003 (5) −0.0017 (7) 0.0024 (7)
C9 0.0228 (7) 0.0164 (7) 0.0339 (11) −0.0046 (6) −0.0014 (8) 0.0015 (8)
C10 0.0299 (8) 0.0245 (8) 0.0280 (11) 0.0067 (7) 0.0065 (8) 0.0042 (8)
C11 0.0174 (7) 0.0175 (7) 0.0161 (8) 0.0017 (5) −0.0005 (7) −0.0004 (7)
C12 0.0173 (6) 0.0172 (7) 0.0190 (9) 0.0025 (6) −0.0001 (6) −0.0009 (7)
C13 0.0179 (7) 0.0135 (7) 0.0229 (10) 0.0004 (5) 0.0002 (7) 0.0001 (7)
C14 0.0230 (7) 0.0161 (7) 0.0322 (11) 0.0031 (6) 0.0025 (8) 0.0023 (8)
C15 0.0340 (9) 0.0203 (8) 0.0327 (11) −0.0043 (7) −0.0129 (8) 0.0014 (8)

Geometric parameters (Å, º)

O2—C13 1.436 (2) C4—C3 1.384 (2)
O2—H2 0.89 (3) C13—C14 1.529 (2)
O1—C8 1.427 (2) C13—C15 1.521 (3)
O1—H1 0.86 (3) C2—H2A 0.9500
O3—H3A 0.86 (3) C2—C3 1.385 (2)
O3—H3B 0.83 (3) C3—H3 0.9500
N1—C1 1.3473 (19) C9—H9A 0.9800
N1—C5 1.3488 (19) C9—H9B 0.9800
C1—C6 1.442 (2) C9—H9C 0.9800
C1—C2 1.393 (2) C10—H10A 0.9800
C8—C7 1.481 (2) C10—H10B 0.9800
C8—C9 1.525 (2) C10—H10C 0.9800
C8—C10 1.522 (3) C14—H14A 0.9800
C5—C4 1.3952 (19) C14—H14B 0.9800
C5—C11 1.444 (2) C14—H14C 0.9800
C12—C11 1.191 (2) C15—H15A 0.9800
C12—C13 1.482 (2) C15—H15B 0.9800
C7—C6 1.199 (2) C15—H15C 0.9800
C4—H4 0.9500
C13—O2—H2 107 (2) C3—C2—C1 118.31 (13)
C8—O1—H1 109.4 (19) C3—C2—H2A 120.8
H3A—O3—H3B 105 (2) C4—C3—C2 119.44 (13)
C1—N1—C5 117.40 (12) C4—C3—H3 120.3
N1—C1—C6 115.80 (12) C2—C3—H3 120.3
N1—C1—C2 123.32 (13) C8—C9—H9A 109.5
C2—C1—C6 120.85 (13) C8—C9—H9B 109.5
O1—C8—C7 111.09 (14) C8—C9—H9C 109.5
O1—C8—C9 105.94 (14) H9A—C9—H9B 109.5
O1—C8—C10 110.27 (13) H9A—C9—H9C 109.5
C7—C8—C9 109.73 (13) H9B—C9—H9C 109.5
C7—C8—C10 108.51 (15) C8—C10—H10A 109.5
C10—C8—C9 111.32 (16) C8—C10—H10B 109.5
N1—C5—C4 122.83 (14) C8—C10—H10C 109.5
N1—C5—C11 116.47 (12) H10A—C10—H10B 109.5
C4—C5—C11 120.68 (14) H10A—C10—H10C 109.5
C11—C12—C13 178.5 (2) H10B—C10—H10C 109.5
C6—C7—C8 174.6 (2) C13—C14—H14A 109.5
C5—C4—H4 120.7 C13—C14—H14B 109.5
C3—C4—C5 118.66 (14) C13—C14—H14C 109.5
C3—C4—H4 120.7 H14A—C14—H14B 109.5
C12—C11—C5 176.4 (2) H14A—C14—H14C 109.5
C7—C6—C1 176.0 (2) H14B—C14—H14C 109.5
O2—C13—C12 106.48 (13) C13—C15—H15A 109.5
O2—C13—C14 109.61 (14) C13—C15—H15B 109.5
O2—C13—C15 109.95 (14) C13—C15—H15C 109.5
C12—C13—C14 109.48 (12) H15A—C15—H15B 109.5
C12—C13—C15 109.82 (15) H15A—C15—H15C 109.5
C15—C13—C14 111.38 (14) H15B—C15—H15C 109.5
C1—C2—H2A 120.8
N1—C1—C2—C3 0.7 (3) C5—N1—C1—C6 176.16 (16)
N1—C5—C4—C3 0.1 (3) C5—N1—C1—C2 −1.8 (3)
C1—N1—C5—C4 1.3 (3) C5—C4—C3—C2 −1.3 (3)
C1—N1—C5—C11 −177.20 (15) C11—C5—C4—C3 178.62 (17)
C1—C2—C3—C4 0.9 (3) C6—C1—C2—C3 −177.14 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.86 (3) 1.90 (3) 2.7640 (15) 175 (3)
O2—H2···O3 0.89 (3) 1.82 (2) 2.7052 (17) 170 (3)
O3—H3A···N1ii 0.86 (3) 2.02 (3) 2.8790 (18) 179 (3)
O3—H3B···O1iii 0.83 (3) 2.01 (3) 2.8361 (19) 173 (3)

Symmetry codes: (i) −x+3/4, y−1/4, z+1/4; (ii) −x+3/4, y+1/4, z−1/4; (iii) x, y+1/2, z−1/2.

References

  1. Abe, H., Machiguchi, H., Matsumoto, S. & Inouye, M. (2008). J. Org. Chem. 73, 4650–4661. [DOI] [PubMed]
  2. Abe, H., Murayama, D., Kayamori, F. & Inouye, M. (2008). Macromolecules, 41, 6903–6909.
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Furusho, Y., Matsuyama, T., Takata, T., Moriuchi, T. & Hirao, T. (2004). Tetrahedron Lett. 45, 9593–9597.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Holmes, B. T., Padgett, C. W., Krawiec, M. & Pennington, W. T. (2002). Cryst. Growth Des. 2, 619–624.
  8. Hung, W.-C., Wang, L.-Y., Lai, C.-C., Liu, Y.-H., Peng, S.-M. & Chiu, S.-H. (2009). Tetrahedron Lett. 50, 267–270.
  9. Inouye, M., Waki, M. & Abe, H. (2004). J. Am. Chem. Soc. 126, 2022–2027. [DOI] [PubMed]
  10. Miyagawa, N., Kawasaki, A., Watanabe, M., Ogawa, M., Koyama, Y. & Takata, T. (2011). Kobunshi Ronbunshu, 68, 702–709.
  11. Miyagawa, N., Watanabe, M., Matsuyama, T., Koyama, Y., Moriuchi, T., Hirao, T., Furusho, Y. & Takata, T. (2010). Chem. Commun. 46, 1920–1922. [DOI] [PubMed]
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Potts, K. T., Horwitz, C. P., Fessak, A., Keshavarz-K, M., Nash, K. E. & Toscano, P. J. (1993). J. Am. Chem. Soc. 115, 10444–10445.
  14. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  15. Waki, M., Abe, H. & Inouye, M. (2006). Chem. Eur. J. 12, 7839–7847. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020013304/is5553sup1.cif

e-76-01737-sup1.cif (158.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013304/is5553Isup2.hkl

e-76-01737-Isup2.hkl (167.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020013304/is5553Isup3.cml

CCDC references: 2035321, 2035321

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES