In the crystal, the hydrogen bonds between the pyridine molecule and the water molecule, viz. Ohydroxy—H⋯Owater, Ohydroxy—H⋯Ohydroxy, Owater—H⋯Ohydroxy, and Owater—H⋯Npyridine, result in the formation of a ribbon structure running along [01
].
Keywords: crystal structure, pyridine, hydrogen bonding, π–π stacking
Abstract
In the title pyridine derivative, C15H17NO2·H2O, the two OH groups are oriented in directions opposite to each other with respect to the plane of the pyridine ring. In the crystal, hydrogen bonds between the pyridine molecule and the water molecule, viz. Ohydroxy—H⋯Owater, Ohydroxy—H⋯Ohydroxy, Owater—H⋯Ohydroxy and Owater—H···Npyridine, result in the formation of a ribbon-like structure running along [011].
Chemical context
Pyridine derivatives with propargyl alcohol groups as substituents in the 2,6-positions are interesting compounds that have been used as synthons of many reactive compounds (Furusho et al., 2004 ▸) and polymers (Miyagawa et al., 2010 ▸, 2011 ▸), as starting materials of helical polymers (Inouye et al., 2004 ▸; Waki et al., 2006 ▸; Abe, Machiguchi et al., 2008 ▸; Abe, Murayama et al., 2008 ▸), and as ligands for transition-metal complexes (Hung et al., 2009 ▸). Since such compounds have rigid structures containing one pyridine nitrogen and two alcoholic OH groups, they can be used to construct a higher order structure by coordination with metals and/or hydrogen-bond formation at multiple points. The crystal structures of 2,6-bis(3-methylbutyn-3-ol)pyridine, 1, and its complex with triphenylphosphine oxide (1-OPPh3) were reported by Holmes et al. (2002 ▸). In the crystal of 1, the molecules form intermolecular hydrogen bonds with the pyridine ring and the two OH groups; the O—H⋯O hydrogen bonds from a 21 helical chain along the b-axis direction. The chains are linked by intermolecular N⋯H—O hydrogen bonds, forming a layer structure, and then form a stacking structure via C—H⋯O interactions between the layers. In contrast, in the case of 1-OPPh3, each of the two OH groups forms a hydrogen bond with the O atom of OPPh3 without forming a network structure. Hence, it is expected that the crystal packing of 1 strongly depends on the presence or absence of hydrogen bonding. However, to our knowledge, the present examples have only been structurally analysed with 2,6-bis(propargyl alcohol)-substituted pyridines. In this paper, we report the crystal structure of 2,6-bis(3-methylbutyn-3-ol)pyridine monohydrate, 1·H2O.
Structural commentary
The molecular structure of the title compound is depicted in Fig. 1 ▸. The bond lengths of two C≡C triple bonds (C6≡C7 and C11≡C12) are 1.199 (2) and 1.191 (2) Å, respectively, consistent with the triple-bond character. The Cipso—C≡C (C1—C6≡C7 and C5—C11≡C12) and C≡C–C(OH) (C6≡C7—C8 and C11≡C12—C13) bond angles are 176.0 (2), 176.4 (2), 174.6 (2) and 178.5 (2)°, respectively. C6≡C7—C8 is slightly distorted from a linear structure compared to the other bonds. The two OH groups are oriented in directions opposite to each other with respect to the plane of the pyridine ring, and the pyridine ring makes dihedral angles of 50.50 (17) and 57.58 (15)°, respectively, with the C7/C8/O1 and C12/C13/O2 planes.
Figure 1.
The molecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. A dashed line indicates the O—H⋯O hydrogen bond.
Supramolecular features
Fig. 2 ▸ depicts the packing of 1·H2O along the c axis. The water molecules present as the crystallization solvent form intermolecular O—H⋯O and O—H⋯N interactions with the hydroxyl groups and the N atoms of the pyridine unit of molecule 1 (Table 1 ▸), resulting in a ribbon-like structure along [011] (Fig. 3 ▸). The pyridine ring forms π–π stacking interactions with that in a neighboring ribbon in an anti-parallel mode, resulting in a π–π network along the c axis (Fig. 4 ▸). The centroid–centroid distance between the pyridine rings [Cg⋯Cg
iv; symmetry code: (iv) −x +
, −y + 1, z +
] is 3.5538 (11) Å. In the crystal of non-solvated 1 (space group P21/c; Holmes et al., 2002 ▸), such π–π stacking interactions between the pyridine rings are not found.
Figure 2.
Packing diagram of the title compound, viewed down the c axis.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯O2i | 0.86 (3) | 1.90 (3) | 2.7640 (15) | 175 (3) |
| O2—H2⋯O3 | 0.89 (3) | 1.82 (2) | 2.7052 (17) | 170 (3) |
| O3—H3A⋯N1ii | 0.86 (3) | 2.02 (3) | 2.8790 (18) | 179 (3) |
| O3—H3B⋯O1iii | 0.83 (3) | 2.01 (3) | 2.8361 (19) | 173 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 3.
Partial packing diagram of the title compound, showing the O—H⋯O and O—H⋯N hydrogen bonds (dashed lines) between 1 and water molecules.
Figure 4.
Partial packing diagram of the title compound, showing the chain formation along the c axis by π–π interactions (dashed lines). [Symmetry codes: (b) −x +
, −y + 1, z +
; (c) −x +
, −y + 1, z −
.]
Database survey
The Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016 ▸) has 138 entries for structures containing 2,6-diethynylpyridine scaffolds, and for 2,6-bis(1-propyn-3-ol) derivatives gave two hits. The non-solvated compound 2,6-bis(3-methylbutyn-3-ol)pyridine (refcode LUMYEX) and its complex with O=PPh3 (LUMYIB) have been reported (Holmes et al., 2002 ▸). The benzene derivative containing two propargyl alcohol units at the 1,3-positions gives 34 hits; however, there is no report of a simple benzene derivative having a structure similar to that of 1.
Synthesis and crystallization
2,6-Bis(3-methylbutyn-3-ol)pyridine was prepared by using a modified Potts method (Potts et al., 1993 ▸). 2,6-Dibromopyridine (9.1 g, 38 mmol) was reacted with 2-methyl-3-butyn-2-ol (13 g, 151 mmol) using CuI (225 mg, 1.3 mmol)/PdCl2(PPh3)2 (840 mg, 1.3 mmol) as a catalyst in a THF (50 mL)–NEt3 (150 mL) solvent for 19 h at room temperature. The resulting dark-brown solution was quenched with an aqueous NH4Cl solution and the obtained solid was eliminated by celite filtration. The solution was extracted by AcOEt, and the organic phase was dried over MgSO4. After filtering off the desiccant, the filtrate was concentrated and subjected to silica-gel chromatography (eluent: AcOEt:hexane 3:2). Single crystals suitable for X-ray diffraction studies were obtained from an ethyl acetate solution via slow evaporation in air.
Refinement
Crystal data, data collection and refinement details are summarized in Table 2 ▸. Water H atoms and alcohol H atoms were located in a difference-Fourier map, and were refined freely. All of the C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.98 Å), and were refined using a riding model, with U iso(H) = 1.2U eq (aromatic-C) or 1.5U eq (methyl-C).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C15H17NO2·H2O |
| M r | 261.31 |
| Crystal system, space group | Orthorhombic, F d d2 |
| Temperature (K) | 113 |
| a, b, c (Å) | 31.9834 (14), 27.7358 (13), 6.6610 (4) |
| V (Å3) | 5908.9 (5) |
| Z | 16 |
| Radiation type | Cu Kα |
| μ (mm−1) | 0.66 |
| Crystal size (mm) | 0.34 × 0.1 × 0.1 |
| Data collection | |
| Diffractometer | Rigaku XtaLAB Synergy R, DW system, HyPix |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2019 ▸) |
| T min, T max | 0.817, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 4676, 2071, 2045 |
| R int | 0.015 |
| (sin θ/λ)max (Å−1) | 0.626 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.029, 0.082, 1.04 |
| No. of reflections | 2071 |
| No. of parameters | 192 |
| No. of restraints | 1 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.18, −0.20 |
| Absolute structure | Flack x determined using 495 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | 0.02 (11) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020013304/is5553sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013304/is5553Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020013304/is5553Isup3.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the CREST program (JST, JPMJCR1522) for financial support.
supplementary crystallographic information
Crystal data
| C15H17NO2·H2O | Dx = 1.175 Mg m−3 |
| Mr = 261.31 | Cu Kα radiation, λ = 1.54184 Å |
| Orthorhombic, Fdd2 | Cell parameters from 4276 reflections |
| a = 31.9834 (14) Å | θ = 4.2–74.9° |
| b = 27.7358 (13) Å | µ = 0.66 mm−1 |
| c = 6.6610 (4) Å | T = 113 K |
| V = 5908.9 (5) Å3 | Plate, white |
| Z = 16 | 0.34 × 0.1 × 0.1 mm |
| F(000) = 2240 |
Data collection
| Rigaku XtaLAB Synergy R, DW system, HyPix diffractometer | 2071 independent reflections |
| Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source | 2045 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.015 |
| Detector resolution: 10.0000 pixels mm-1 | θmax = 75.0°, θmin = 4.2° |
| ω scans | h = −40→25 |
| Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | k = −22→34 |
| Tmin = 0.817, Tmax = 1.000 | l = −8→5 |
| 4676 measured reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0555P)2 + 3.7832P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.082 | (Δ/σ)max < 0.001 |
| S = 1.04 | Δρmax = 0.18 e Å−3 |
| 2071 reflections | Δρmin = −0.19 e Å−3 |
| 192 parameters | Absolute structure: Flack x determined using 495 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 1 restraint | Absolute structure parameter: 0.02 (11) |
| Primary atom site location: iterative |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.35948 (3) | 0.32551 (4) | 0.6275 (2) | 0.0246 (3) | |
| O2 | 0.34219 (3) | 0.65799 (4) | 0.3581 (2) | 0.0216 (3) | |
| O3 | 0.38487 (4) | 0.74210 (5) | 0.3415 (3) | 0.0329 (4) | |
| N1 | 0.27513 (4) | 0.49371 (5) | 0.5965 (3) | 0.0166 (3) | |
| H1 | 0.3733 (8) | 0.3523 (9) | 0.623 (5) | 0.041 (7)* | |
| H2 | 0.3550 (7) | 0.6863 (9) | 0.339 (5) | 0.037 (6)* | |
| H2A | 0.195964 | 0.419764 | 0.615414 | 0.022* | |
| H3 | 0.158347 | 0.492523 | 0.628127 | 0.023* | |
| H3A | 0.4117 (8) | 0.7423 (8) | 0.345 (5) | 0.033 (6)* | |
| H3B | 0.3782 (8) | 0.7679 (10) | 0.288 (5) | 0.042 (7)* | |
| H4 | 0.194772 | 0.565882 | 0.611513 | 0.022* | |
| H9A | 0.313194 | 0.255773 | 0.504956 | 0.037* | |
| H9B | 0.271146 | 0.285849 | 0.469227 | 0.037* | |
| H9C | 0.290932 | 0.282373 | 0.689425 | 0.037* | |
| H10A | 0.353762 | 0.360767 | 0.264577 | 0.041* | |
| H10B | 0.310243 | 0.336577 | 0.202018 | 0.041* | |
| H10C | 0.350205 | 0.303410 | 0.244822 | 0.041* | |
| H14A | 0.303649 | 0.733924 | 0.513951 | 0.036* | |
| H14B | 0.271251 | 0.704803 | 0.651137 | 0.036* | |
| H14C | 0.269906 | 0.699027 | 0.412177 | 0.036* | |
| H15A | 0.369017 | 0.641198 | 0.719381 | 0.043* | |
| H15B | 0.333112 | 0.668096 | 0.843702 | 0.043* | |
| H15C | 0.364036 | 0.698483 | 0.703467 | 0.043* | |
| C1 | 0.25351 (4) | 0.45203 (5) | 0.6000 (3) | 0.0160 (3) | |
| C2 | 0.21008 (5) | 0.44989 (5) | 0.6118 (3) | 0.0182 (3) | |
| C3 | 0.18798 (5) | 0.49280 (6) | 0.6182 (3) | 0.0193 (4) | |
| C4 | 0.20942 (4) | 0.53608 (5) | 0.6100 (3) | 0.0183 (3) | |
| C5 | 0.25298 (4) | 0.53508 (5) | 0.5995 (3) | 0.0159 (3) | |
| C6 | 0.27810 (5) | 0.40863 (6) | 0.5837 (3) | 0.0186 (4) | |
| C7 | 0.29850 (5) | 0.37292 (5) | 0.5576 (3) | 0.0190 (4) | |
| C8 | 0.32310 (5) | 0.32951 (6) | 0.5046 (3) | 0.0179 (4) | |
| C9 | 0.29729 (5) | 0.28434 (6) | 0.5457 (3) | 0.0244 (4) | |
| C10 | 0.33542 (6) | 0.33286 (6) | 0.2844 (3) | 0.0275 (4) | |
| C11 | 0.27666 (4) | 0.57928 (5) | 0.5862 (3) | 0.0170 (3) | |
| C12 | 0.29570 (4) | 0.61579 (6) | 0.5643 (3) | 0.0178 (3) | |
| C13 | 0.31907 (5) | 0.66164 (5) | 0.5422 (3) | 0.0181 (4) | |
| C14 | 0.28820 (5) | 0.70362 (6) | 0.5287 (3) | 0.0238 (4) | |
| C15 | 0.34897 (6) | 0.66791 (7) | 0.7178 (4) | 0.0290 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0193 (5) | 0.0161 (5) | 0.0383 (9) | −0.0015 (4) | −0.0082 (6) | 0.0042 (6) |
| O2 | 0.0195 (5) | 0.0166 (5) | 0.0287 (7) | −0.0014 (4) | 0.0053 (6) | 0.0013 (6) |
| O3 | 0.0154 (5) | 0.0246 (6) | 0.0586 (11) | −0.0014 (4) | 0.0000 (7) | 0.0166 (7) |
| N1 | 0.0161 (5) | 0.0165 (6) | 0.0173 (8) | 0.0000 (4) | −0.0002 (6) | 0.0005 (6) |
| C1 | 0.0187 (7) | 0.0157 (7) | 0.0138 (8) | 0.0000 (5) | −0.0010 (7) | 0.0008 (7) |
| C2 | 0.0186 (6) | 0.0176 (7) | 0.0182 (9) | −0.0035 (5) | −0.0006 (7) | 0.0009 (7) |
| C3 | 0.0144 (6) | 0.0230 (8) | 0.0205 (9) | −0.0004 (6) | −0.0009 (7) | 0.0010 (8) |
| C4 | 0.0175 (7) | 0.0180 (7) | 0.0195 (9) | 0.0022 (5) | 0.0000 (7) | 0.0000 (7) |
| C5 | 0.0183 (7) | 0.0157 (7) | 0.0136 (9) | −0.0003 (5) | 0.0001 (7) | 0.0007 (7) |
| C6 | 0.0185 (7) | 0.0174 (7) | 0.0200 (9) | −0.0027 (5) | −0.0010 (7) | 0.0019 (7) |
| C7 | 0.0178 (6) | 0.0168 (7) | 0.0225 (9) | −0.0029 (5) | 0.0009 (7) | 0.0029 (8) |
| C8 | 0.0163 (6) | 0.0143 (7) | 0.0232 (10) | 0.0003 (5) | −0.0017 (7) | 0.0024 (7) |
| C9 | 0.0228 (7) | 0.0164 (7) | 0.0339 (11) | −0.0046 (6) | −0.0014 (8) | 0.0015 (8) |
| C10 | 0.0299 (8) | 0.0245 (8) | 0.0280 (11) | 0.0067 (7) | 0.0065 (8) | 0.0042 (8) |
| C11 | 0.0174 (7) | 0.0175 (7) | 0.0161 (8) | 0.0017 (5) | −0.0005 (7) | −0.0004 (7) |
| C12 | 0.0173 (6) | 0.0172 (7) | 0.0190 (9) | 0.0025 (6) | −0.0001 (6) | −0.0009 (7) |
| C13 | 0.0179 (7) | 0.0135 (7) | 0.0229 (10) | 0.0004 (5) | 0.0002 (7) | 0.0001 (7) |
| C14 | 0.0230 (7) | 0.0161 (7) | 0.0322 (11) | 0.0031 (6) | 0.0025 (8) | 0.0023 (8) |
| C15 | 0.0340 (9) | 0.0203 (8) | 0.0327 (11) | −0.0043 (7) | −0.0129 (8) | 0.0014 (8) |
Geometric parameters (Å, º)
| O2—C13 | 1.436 (2) | C4—C3 | 1.384 (2) |
| O2—H2 | 0.89 (3) | C13—C14 | 1.529 (2) |
| O1—C8 | 1.427 (2) | C13—C15 | 1.521 (3) |
| O1—H1 | 0.86 (3) | C2—H2A | 0.9500 |
| O3—H3A | 0.86 (3) | C2—C3 | 1.385 (2) |
| O3—H3B | 0.83 (3) | C3—H3 | 0.9500 |
| N1—C1 | 1.3473 (19) | C9—H9A | 0.9800 |
| N1—C5 | 1.3488 (19) | C9—H9B | 0.9800 |
| C1—C6 | 1.442 (2) | C9—H9C | 0.9800 |
| C1—C2 | 1.393 (2) | C10—H10A | 0.9800 |
| C8—C7 | 1.481 (2) | C10—H10B | 0.9800 |
| C8—C9 | 1.525 (2) | C10—H10C | 0.9800 |
| C8—C10 | 1.522 (3) | C14—H14A | 0.9800 |
| C5—C4 | 1.3952 (19) | C14—H14B | 0.9800 |
| C5—C11 | 1.444 (2) | C14—H14C | 0.9800 |
| C12—C11 | 1.191 (2) | C15—H15A | 0.9800 |
| C12—C13 | 1.482 (2) | C15—H15B | 0.9800 |
| C7—C6 | 1.199 (2) | C15—H15C | 0.9800 |
| C4—H4 | 0.9500 | ||
| C13—O2—H2 | 107 (2) | C3—C2—C1 | 118.31 (13) |
| C8—O1—H1 | 109.4 (19) | C3—C2—H2A | 120.8 |
| H3A—O3—H3B | 105 (2) | C4—C3—C2 | 119.44 (13) |
| C1—N1—C5 | 117.40 (12) | C4—C3—H3 | 120.3 |
| N1—C1—C6 | 115.80 (12) | C2—C3—H3 | 120.3 |
| N1—C1—C2 | 123.32 (13) | C8—C9—H9A | 109.5 |
| C2—C1—C6 | 120.85 (13) | C8—C9—H9B | 109.5 |
| O1—C8—C7 | 111.09 (14) | C8—C9—H9C | 109.5 |
| O1—C8—C9 | 105.94 (14) | H9A—C9—H9B | 109.5 |
| O1—C8—C10 | 110.27 (13) | H9A—C9—H9C | 109.5 |
| C7—C8—C9 | 109.73 (13) | H9B—C9—H9C | 109.5 |
| C7—C8—C10 | 108.51 (15) | C8—C10—H10A | 109.5 |
| C10—C8—C9 | 111.32 (16) | C8—C10—H10B | 109.5 |
| N1—C5—C4 | 122.83 (14) | C8—C10—H10C | 109.5 |
| N1—C5—C11 | 116.47 (12) | H10A—C10—H10B | 109.5 |
| C4—C5—C11 | 120.68 (14) | H10A—C10—H10C | 109.5 |
| C11—C12—C13 | 178.5 (2) | H10B—C10—H10C | 109.5 |
| C6—C7—C8 | 174.6 (2) | C13—C14—H14A | 109.5 |
| C5—C4—H4 | 120.7 | C13—C14—H14B | 109.5 |
| C3—C4—C5 | 118.66 (14) | C13—C14—H14C | 109.5 |
| C3—C4—H4 | 120.7 | H14A—C14—H14B | 109.5 |
| C12—C11—C5 | 176.4 (2) | H14A—C14—H14C | 109.5 |
| C7—C6—C1 | 176.0 (2) | H14B—C14—H14C | 109.5 |
| O2—C13—C12 | 106.48 (13) | C13—C15—H15A | 109.5 |
| O2—C13—C14 | 109.61 (14) | C13—C15—H15B | 109.5 |
| O2—C13—C15 | 109.95 (14) | C13—C15—H15C | 109.5 |
| C12—C13—C14 | 109.48 (12) | H15A—C15—H15B | 109.5 |
| C12—C13—C15 | 109.82 (15) | H15A—C15—H15C | 109.5 |
| C15—C13—C14 | 111.38 (14) | H15B—C15—H15C | 109.5 |
| C1—C2—H2A | 120.8 | ||
| N1—C1—C2—C3 | 0.7 (3) | C5—N1—C1—C6 | 176.16 (16) |
| N1—C5—C4—C3 | 0.1 (3) | C5—N1—C1—C2 | −1.8 (3) |
| C1—N1—C5—C4 | 1.3 (3) | C5—C4—C3—C2 | −1.3 (3) |
| C1—N1—C5—C11 | −177.20 (15) | C11—C5—C4—C3 | 178.62 (17) |
| C1—C2—C3—C4 | 0.9 (3) | C6—C1—C2—C3 | −177.14 (17) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···O2i | 0.86 (3) | 1.90 (3) | 2.7640 (15) | 175 (3) |
| O2—H2···O3 | 0.89 (3) | 1.82 (2) | 2.7052 (17) | 170 (3) |
| O3—H3A···N1ii | 0.86 (3) | 2.02 (3) | 2.8790 (18) | 179 (3) |
| O3—H3B···O1iii | 0.83 (3) | 2.01 (3) | 2.8361 (19) | 173 (3) |
Symmetry codes: (i) −x+3/4, y−1/4, z+1/4; (ii) −x+3/4, y+1/4, z−1/4; (iii) x, y+1/2, z−1/2.
References
- Abe, H., Machiguchi, H., Matsumoto, S. & Inouye, M. (2008). J. Org. Chem. 73, 4650–4661. [DOI] [PubMed]
- Abe, H., Murayama, D., Kayamori, F. & Inouye, M. (2008). Macromolecules, 41, 6903–6909.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Furusho, Y., Matsuyama, T., Takata, T., Moriuchi, T. & Hirao, T. (2004). Tetrahedron Lett. 45, 9593–9597.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Holmes, B. T., Padgett, C. W., Krawiec, M. & Pennington, W. T. (2002). Cryst. Growth Des. 2, 619–624.
- Hung, W.-C., Wang, L.-Y., Lai, C.-C., Liu, Y.-H., Peng, S.-M. & Chiu, S.-H. (2009). Tetrahedron Lett. 50, 267–270.
- Inouye, M., Waki, M. & Abe, H. (2004). J. Am. Chem. Soc. 126, 2022–2027. [DOI] [PubMed]
- Miyagawa, N., Kawasaki, A., Watanabe, M., Ogawa, M., Koyama, Y. & Takata, T. (2011). Kobunshi Ronbunshu, 68, 702–709.
- Miyagawa, N., Watanabe, M., Matsuyama, T., Koyama, Y., Moriuchi, T., Hirao, T., Furusho, Y. & Takata, T. (2010). Chem. Commun. 46, 1920–1922. [DOI] [PubMed]
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Potts, K. T., Horwitz, C. P., Fessak, A., Keshavarz-K, M., Nash, K. E. & Toscano, P. J. (1993). J. Am. Chem. Soc. 115, 10444–10445.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Waki, M., Abe, H. & Inouye, M. (2006). Chem. Eur. J. 12, 7839–7847. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020013304/is5553sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013304/is5553Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020013304/is5553Isup3.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report




