Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Oct 9;76(Pt 11):1725–1727. doi: 10.1107/S2056989020012955

Crystal structure of (N^C) cyclo­metalated AuIII diazide at 100 K

Volodymyr Levchenko a, Sigurd Øien-Ødegaard a, David Wragg a, Mats Tilset a,*
PMCID: PMC7643232  PMID: 33209341

The title compound, an (N^C)-cyclo­metalated gold(III) diazide, namely, di­azido­[5-eth­oxy­carbonyl-2-(5-eth­oxy­carbonyl­pyridin-2-yl)phenyl-κ2 C 1,N]gold(III), [Au(C17H16NO4)(N3)2] or Au(ppyEt)(N3)2, was synthesized by reacting Au(ppyEt)Cl2 with NaN3 in water for 24 h. The complex features a gold center with a square-planar environment.

Keywords: crystal structure, azide, gold(III), cyclo­metallated, trans influence

Abstract

The title compound, an (N^C)-cyclo­metalated gold(III) diazide, namely, di­azido­[5-eth­oxy­carbonyl-2-(5-eth­oxy­carbonyl­pyridin-2-yl)phenyl-κ2 C 1,N]gold(III), [Au(C17H16NO4)(N3)2] or Au(ppyEt)(N3)2, was synthesized by reacting Au(ppyEt)Cl2 with NaN3 in water for 24 h. The complex has been structurally characterized and features a gold center with a square-planar environment. The Au—N(azide) bond lengths are significantly different depending on the influence of the atom trans to the azide group [Au—N(trans to C) of 2.067 (2) Å versus Au—N(trans to N) of 2.042 (2) Å]. The azide groups are twisted in-and-out of plane by 56.2 (2)°.

Chemical context  

Among gold azide complexes, AuI have dominated over AuIII azides (Del Castillo et al., 2011; Powers et al., 2015; Partyka et al., 2007). Until now, only three examples of AuIII azide complexes have been reported (Fig. 1). The reported compounds feature the N-heterocyclic carbene complex and pyridine coordinated Au–triazide groups (Schuh et al., 2016; Peng et al., 2019) as well as cationic cyclo­metalated monoazide (Roth et al., 2016). To the best of our knowledge, a cyclo­metalated phenyl pyridine AuIII azide complex has not been reported before.graphic file with name e-76-01725-scheme1.jpg

Figure 1.

Figure 1

AuIII–azide complexes reported in the literature

Structural commentary  

The mol­ecular structure of Au(ppyEt)(N3)2 (2) is shown in Fig. 2. The complex forms monoclinic crystals belonging to the space group P21/c and crystallizes with one mol­ecule in the asymmetric unit. The solid-state structure of 2 displays a square-planar coordination geometry, as expected for the d 8 electron configuration of the AuIII center. The Au—N bond length trans to the pyridine N atom [2.042 (2) Å] is shorter than the one trans to the C atom [2.067 (2) Å], indicating the stronger trans influence of the phenyl carbon atom. N—N bond distances in the azide ligands are in line with reported literature values (Dori et al., 1973) with shorter terminal N—N bond lengths compared to the inter­nal ones (1.150 vs 1.200 Å, on average). The N—N—N angles [174.7 (3) and 173.8 (3)°] deviate only slightly from the expected linear arrangement and the Au—N—N angles of 118.7 (2)° and 119.2 (2)° for the azide groups trans to N and C, respectively, indicate the expected bent coordination of these ligands. The azide groups are twisted by 56.2 (2)° with respect to each other, and point in-and-out of the plane with distances of 1.092 (2) Å for the terminal N atom trans to C and 0.975 (2) Å for the terminal N atom trans to the pyridine N atom (Fig. 3). The pyridine and benzene rings are essentially coplanar, the angle formed by their mean planes being 3.64 (10)°.

Figure 2.

Figure 2

Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

Mutual orientation of the azide groups with respect to the metalacycle plane.

Supra­molecular features  

The title crystal structure features infinite stacking chains along the [100] direction. The neighboring mol­ecules within the stack are related by inversion. The mean plane of the core of the complex mol­ecule including the Au atom, both aromatic rings and two N atoms of azide groups attached to the Au atom form an angle with the a-axis direction of 69.53 (2)°. The distances between these planes of neighboring mol­ecules within the stack are 3.331 (1) and 3.314 (1) Å (Fig. 4).

Figure 4.

Figure 4

Crystal packing of the title compound viewed along the a axis.

Database survey  

A search was performed in the Cambridge Structural Database (CSD version 5.41; Groom et al., 2016) with the following constraints: an AuIII complex featuring a phenyl­pyridine backbone and two additional non-cyclic ligands bonding to Au through N or C. Fourteen structures were found to match this motif. The features of the title structure resemble those observed in the structures found in this database survey, e.g. an observable trans effect (distance Au—L trans to N is always shorter than that trans to C), Au—C bond lengths are shorter than the Au—N ones and angles around the AuIII center are close to 90°.

Synthesis and crystallization  

The reaction scheme for the synthesis of the title compound is provided in Fig. 5. The gold complex Au(ppyEt)Cl2 (1) was prepared according to previously published procedure (Levchenko et al., 2020). Complex 1 (70 mg, 0.124 mmol, 1 equiv.) was stirred with sodium azide (64.5 mg, 1 mmol, 8 equiv.) in water for 24 h at room temperature. The solids were recovered by filtration, washed with large excess of water and dried in air giving 50 mg (70%) of 2 as a white solid. Needle-like crystals were obtained by slow diffusion of cyclo­hexane into a solution of the product in CH2Cl2 containing few drops of acetone. 1H NMR (600 MHz, DMSO-d 6): δH 9.28 (s, 1H), 8.82 (d, J = 8.4 Hz, 1H), 8.61 (d, J = 8.4 Hz, 1H), 8.24 (d, J = 8.2 Hz, 1H), 8.07–8.02 (m, 2H), 4.45 (dd, J = 12.5, 5.4 Hz, 2H), 4.38 (q, J = 7.0 Hz, 2H), 1.37 (dt, J = 13.8, 7.2 Hz, 6H). 13C NMR (151 MHz, DMSO-d 6): δC 165.1, 164.5, 162.3, 148.9, 147.0, 146.3, 143.8, 132.5, 129.6, 128.2, 127.4, 127.1, 122.8, 62.3, 61.5, 14.1, 14.0. MS (ESI, CH3OH): m/z = 591.091 ([M − N3 + OCH3 + Na]+, 100), 602.082 ([M + Na]+, 9). HRMS (CH3OH): calculated for C18H19AuN4O5Na+ [M − N3 + OCH3 + Na]+ 591.0913, found 591.0914 (Δ 0.00 ppm). Calculated for C17H16AuN7O4Na+ [M + Na]+ 602.0822, found 602.0821 (Δ 0.10 ppm).

Figure 5.

Figure 5

Synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. OLEX2 was used as user inter­face (Dolomanov et al., 2009). All hydrogen atoms were placed in calculated positions with C—H = 0.95-0.99 Å and refined as riding with fixed isotropic displacement parameters [U iso(H) = 1.2-1.5U eq(C)].

Table 1. Experimental details.

Crystal data
Chemical formula [Au(C17H16NO4)(N3)2]
M r 579.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.0788 (5), 24.6279 (16), 10.5840 (7)
β (°) 91.059 (1)
V3) 1844.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.02
Crystal size (mm) 0.2 × 0.03 × 0.01
 
Data collection
Diffractometer Bruker D8 Photon 100 area detector
Absorption correction Multi-scan (SADABS; Bruker, 2018)
T min, T max 0.554, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 37671, 5655, 4677
R int 0.023
(sin θ/λ)max−1) 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.018, 0.036, 1.09
No. of reflections 5655
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.92, −1.10

Computer programs: APEX3 (Bruker, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012955/yk2139sup1.cif

e-76-01725-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012955/yk2139Isup2.hkl

e-76-01725-Isup2.hkl (449.9KB, hkl)

CCDC reference: 2033308

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Au(C17H16NO4)(N3)2] F(000) = 1112
Mr = 579.33 Dx = 2.086 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.0788 (5) Å Cell parameters from 9519 reflections
b = 24.6279 (16) Å θ = 2.5–30.6°
c = 10.5840 (7) Å µ = 8.02 mm1
β = 91.059 (1)° T = 100 K
V = 1844.9 (2) Å3 Needle, colorless
Z = 4 0.2 × 0.03 × 0.01 mm

Data collection

Bruker D8 Photon 100 area detector diffractometer 5655 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 4677 reflections with I > 2σ(I)
Mirror optics monochromator Rint = 0.023
Detector resolution: 10.42 pixels mm-1 θmax = 30.6°, θmin = 2.5°
ω and φ shutterless scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2018) k = −35→35
Tmin = 0.554, Tmax = 0.746 l = −14→15
37671 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.036 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0071P)2 + 3.5107P] where P = (Fo2 + 2Fc2)/3
5655 reflections (Δ/σ)max = 0.001
264 parameters Δρmax = 0.92 e Å3
0 restraints Δρmin = −1.09 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au1 0.75297 (2) −0.00058 (2) 0.64453 (2) 0.01001 (2)
O1 0.4872 (2) 0.22687 (7) 0.35894 (15) 0.0181 (3)
O4 1.0437 (3) −0.20014 (8) 0.49251 (17) 0.0272 (4)
O3 0.9998 (2) −0.20622 (7) 0.28226 (15) 0.0170 (3)
O2 0.4569 (3) 0.20965 (8) 0.56671 (17) 0.0271 (4)
N6 0.7546 (3) 0.04933 (9) 0.88472 (19) 0.0213 (4)
N1 0.8122 (3) −0.04540 (8) 0.48884 (17) 0.0141 (4)
N5 0.6697 (3) 0.05028 (8) 0.78531 (18) 0.0180 (4)
N4 0.7094 (4) −0.07941 (11) 0.9575 (2) 0.0327 (5)
N2 0.8539 (3) −0.06048 (8) 0.76482 (18) 0.0173 (4)
N7 0.8264 (4) 0.05242 (11) 0.9828 (2) 0.0346 (6)
N3 0.7753 (3) −0.06848 (9) 0.86238 (19) 0.0211 (4)
C1 0.6763 (3) 0.05386 (8) 0.50946 (19) 0.0097 (4)
C2 0.6095 (3) 0.10502 (9) 0.5321 (2) 0.0144 (4)
H2 0.591225 0.116874 0.616458 0.017*
C6 0.7021 (3) 0.03570 (9) 0.3866 (2) 0.0119 (4)
C7 0.7724 (3) −0.01977 (9) 0.3753 (2) 0.0120 (4)
C10 0.9087 (3) −0.12530 (9) 0.3809 (2) 0.0135 (4)
C12 0.4984 (3) 0.19541 (9) 0.4620 (2) 0.0164 (4)
C9 0.8673 (3) −0.10048 (9) 0.2653 (2) 0.0156 (4)
H9 0.885418 −0.119718 0.188635 0.019*
C8 0.7995 (3) −0.04760 (9) 0.2623 (2) 0.0152 (4)
H8 0.771619 −0.030465 0.183738 0.018*
C5 0.6615 (3) 0.07016 (9) 0.2849 (2) 0.0159 (4)
H5 0.679171 0.058026 0.200723 0.019*
C17 0.9570 (4) −0.30317 (11) 0.3331 (3) 0.0324 (6)
H17A 0.835596 −0.301253 0.287316 0.049*
H17B 0.936999 −0.297241 0.423392 0.049*
H17C 1.013575 −0.339051 0.320534 0.049*
C4 0.5950 (3) 0.12224 (9) 0.3074 (2) 0.0161 (4)
H4 0.567987 0.145929 0.238554 0.019*
C3 0.5680 (3) 0.13978 (9) 0.4310 (2) 0.0139 (4)
C16 1.0875 (3) −0.26013 (9) 0.2839 (2) 0.0194 (5)
H16A 1.203416 −0.259024 0.337608 0.023*
H16B 1.124940 −0.269813 0.197057 0.023*
C15 0.9899 (3) −0.18128 (9) 0.3932 (2) 0.0156 (4)
C13 0.4230 (4) 0.28268 (10) 0.3779 (2) 0.0220 (5)
H13A 0.324410 0.283170 0.443070 0.026*
H13B 0.366153 0.296654 0.298177 0.026*
C11 0.8795 (3) −0.09698 (9) 0.4924 (2) 0.0140 (4)
H11 0.906730 −0.113793 0.571430 0.017*
C14 0.5832 (4) 0.31882 (11) 0.4186 (3) 0.0338 (7)
H14A 0.678520 0.319531 0.352664 0.051*
H14B 0.640129 0.304889 0.497250 0.051*
H14C 0.535687 0.355673 0.432548 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.01148 (3) 0.01142 (4) 0.00713 (3) −0.00123 (3) 0.00055 (2) −0.00031 (3)
O1 0.0228 (8) 0.0159 (8) 0.0156 (8) 0.0037 (6) 0.0019 (6) 0.0042 (6)
O4 0.0454 (12) 0.0202 (9) 0.0159 (8) 0.0049 (8) −0.0039 (8) −0.0024 (7)
O3 0.0211 (8) 0.0162 (8) 0.0137 (8) 0.0017 (6) 0.0006 (6) −0.0042 (6)
O2 0.0426 (11) 0.0221 (9) 0.0171 (9) 0.0038 (8) 0.0093 (8) 0.0025 (7)
N6 0.0256 (11) 0.0225 (10) 0.0158 (9) 0.0013 (8) 0.0036 (8) −0.0022 (8)
N1 0.0139 (8) 0.0166 (9) 0.0119 (8) −0.0039 (7) 0.0014 (7) −0.0030 (7)
N5 0.0201 (9) 0.0203 (9) 0.0138 (9) 0.0059 (8) 0.0011 (7) −0.0039 (7)
N4 0.0417 (14) 0.0388 (14) 0.0178 (11) −0.0078 (11) 0.0049 (10) 0.0061 (10)
N2 0.0197 (9) 0.0166 (9) 0.0155 (9) 0.0067 (7) −0.0008 (7) 0.0008 (7)
N7 0.0392 (14) 0.0469 (15) 0.0175 (11) 0.0068 (12) −0.0050 (10) −0.0075 (10)
N3 0.0256 (10) 0.0210 (10) 0.0165 (10) −0.0017 (8) −0.0041 (8) −0.0010 (8)
C1 0.0081 (8) 0.0102 (9) 0.0109 (9) −0.0026 (7) 0.0006 (7) 0.0032 (7)
C2 0.0130 (9) 0.0158 (10) 0.0144 (10) −0.0032 (8) 0.0007 (8) 0.0028 (8)
C6 0.0105 (9) 0.0132 (9) 0.0121 (9) −0.0032 (7) 0.0002 (7) 0.0004 (7)
C7 0.0104 (9) 0.0162 (9) 0.0095 (9) −0.0039 (7) 0.0004 (7) −0.0005 (7)
C10 0.0131 (9) 0.0138 (9) 0.0136 (10) −0.0046 (8) 0.0018 (7) −0.0024 (8)
C12 0.0154 (10) 0.0174 (10) 0.0165 (10) −0.0025 (8) 0.0022 (8) 0.0043 (8)
C9 0.0188 (10) 0.0164 (10) 0.0117 (9) −0.0050 (8) 0.0019 (8) −0.0048 (8)
C8 0.0176 (10) 0.0179 (10) 0.0100 (9) −0.0046 (8) 0.0009 (8) −0.0013 (8)
C5 0.0195 (10) 0.0173 (10) 0.0109 (9) −0.0030 (8) 0.0002 (8) 0.0014 (8)
C17 0.0302 (14) 0.0163 (12) 0.0509 (18) −0.0024 (10) 0.0096 (13) −0.0062 (12)
C4 0.0165 (10) 0.0173 (10) 0.0146 (10) −0.0035 (8) 0.0000 (8) 0.0044 (8)
C3 0.0119 (9) 0.0141 (9) 0.0157 (10) −0.0026 (8) 0.0002 (7) 0.0021 (8)
C16 0.0200 (11) 0.0173 (11) 0.0209 (11) 0.0029 (9) 0.0033 (9) −0.0052 (9)
C15 0.0175 (10) 0.0143 (10) 0.0150 (10) −0.0036 (8) 0.0014 (8) −0.0033 (8)
C13 0.0255 (12) 0.0182 (11) 0.0224 (12) 0.0100 (9) 0.0046 (10) 0.0049 (9)
C11 0.0127 (9) 0.0159 (10) 0.0135 (10) −0.0039 (8) 0.0018 (7) −0.0019 (8)
C14 0.0397 (16) 0.0146 (11) 0.0473 (18) 0.0045 (11) 0.0031 (14) 0.0010 (11)

Geometric parameters (Å, º)

Au1—C1 2.027 (2) C10—C9 1.394 (3)
Au1—N1 2.0335 (18) C10—C15 1.498 (3)
Au1—N5 2.0418 (19) C12—C3 1.494 (3)
Au1—N2 2.0674 (19) C9—C8 1.388 (3)
O1—C12 1.339 (3) C9—H9 0.9500
O1—C13 1.463 (3) C8—H8 0.9500
O4—C15 1.204 (3) C5—C4 1.388 (3)
O3—C15 1.328 (3) C5—H5 0.9500
O3—C16 1.466 (3) C17—C16 1.505 (4)
O2—C12 1.205 (3) C17—H17A 0.9800
N6—N7 1.150 (3) C17—H17B 0.9800
N6—N5 1.202 (3) C17—H17C 0.9800
N1—C11 1.357 (3) C4—C3 1.395 (3)
N1—C7 1.382 (3) C4—H4 0.9500
N4—N3 1.150 (3) C16—H16A 0.9900
N2—N3 1.198 (3) C16—H16B 0.9900
C1—C2 1.369 (3) C13—C14 1.499 (4)
C1—C6 1.390 (3) C13—H13A 0.9900
C2—C3 1.397 (3) C13—H13B 0.9900
C2—H2 0.9500 C11—H11 0.9500
C6—C5 1.397 (3) C14—H14A 0.9800
C6—C7 1.459 (3) C14—H14B 0.9800
C7—C8 1.395 (3) C14—H14C 0.9800
C10—C11 1.390 (3)
C1—Au1—N1 81.03 (8) C4—C5—C6 119.7 (2)
C1—Au1—N5 91.82 (8) C4—C5—H5 120.2
N1—Au1—N5 172.30 (8) C6—C5—H5 120.2
C1—Au1—N2 172.51 (8) C16—C17—H17A 109.5
N1—Au1—N2 92.15 (8) C16—C17—H17B 109.5
N5—Au1—N2 95.13 (8) H17A—C17—H17B 109.5
C12—O1—C13 116.48 (18) C16—C17—H17C 109.5
C15—O3—C16 115.97 (18) H17A—C17—H17C 109.5
N7—N6—N5 173.8 (3) H17B—C17—H17C 109.5
C11—N1—C7 121.18 (19) C5—C4—C3 120.0 (2)
C11—N1—Au1 124.28 (15) C5—C4—H4 120.0
C7—N1—Au1 114.51 (15) C3—C4—H4 120.0
N6—N5—Au1 118.70 (16) C4—C3—C2 119.9 (2)
N3—N2—Au1 119.17 (16) C4—C3—C12 122.8 (2)
N4—N3—N2 174.7 (3) C2—C3—C12 117.3 (2)
C2—C1—C6 120.80 (19) O3—C16—C17 112.3 (2)
C2—C1—Au1 125.05 (16) O3—C16—H16A 109.1
C6—C1—Au1 114.12 (15) C17—C16—H16A 109.1
C1—C2—C3 119.9 (2) O3—C16—H16B 109.1
C1—C2—H2 120.1 C17—C16—H16B 109.1
C3—C2—H2 120.1 H16A—C16—H16B 107.9
C1—C6—C5 119.8 (2) O4—C15—O3 124.9 (2)
C1—C6—C7 115.39 (19) O4—C15—C10 123.1 (2)
C5—C6—C7 124.8 (2) O3—C15—C10 112.00 (19)
N1—C7—C8 119.5 (2) O1—C13—C14 111.2 (2)
N1—C7—C6 114.87 (18) O1—C13—H13A 109.4
C8—C7—C6 125.7 (2) C14—C13—H13A 109.4
C11—C10—C9 119.5 (2) O1—C13—H13B 109.4
C11—C10—C15 116.8 (2) C14—C13—H13B 109.4
C9—C10—C15 123.7 (2) H13A—C13—H13B 108.0
O2—C12—O1 124.7 (2) N1—C11—C10 120.3 (2)
O2—C12—C3 123.8 (2) N1—C11—H11 119.9
O1—C12—C3 111.5 (2) C10—C11—H11 119.9
C8—C9—C10 119.9 (2) C13—C14—H14A 109.5
C8—C9—H9 120.1 C13—C14—H14B 109.5
C10—C9—H9 120.1 H14A—C14—H14B 109.5
C9—C8—C7 119.7 (2) C13—C14—H14C 109.5
C9—C8—H8 120.2 H14A—C14—H14C 109.5
C7—C8—H8 120.2 H14B—C14—H14C 109.5
C6—C1—C2—C3 −0.6 (3) C7—C6—C5—C4 180.0 (2)
Au1—C1—C2—C3 177.50 (15) C6—C5—C4—C3 −0.4 (3)
C2—C1—C6—C5 0.7 (3) C5—C4—C3—C2 0.5 (3)
Au1—C1—C6—C5 −177.58 (16) C5—C4—C3—C12 179.5 (2)
C2—C1—C6—C7 −179.42 (19) C1—C2—C3—C4 0.0 (3)
Au1—C1—C6—C7 2.3 (2) C1—C2—C3—C12 −179.05 (19)
C11—N1—C7—C8 0.9 (3) O2—C12—C3—C4 172.6 (2)
Au1—N1—C7—C8 −177.14 (16) O1—C12—C3—C4 −7.0 (3)
C11—N1—C7—C6 −179.65 (18) O2—C12—C3—C2 −8.4 (3)
Au1—N1—C7—C6 2.4 (2) O1—C12—C3—C2 171.98 (19)
C1—C6—C7—N1 −3.1 (3) C15—O3—C16—C17 76.9 (3)
C5—C6—C7—N1 176.8 (2) C16—O3—C15—O4 −1.5 (3)
C1—C6—C7—C8 176.4 (2) C16—O3—C15—C10 176.64 (18)
C5—C6—C7—C8 −3.8 (3) C11—C10—C15—O4 −6.3 (3)
C13—O1—C12—O2 1.2 (3) C9—C10—C15—O4 171.9 (2)
C13—O1—C12—C3 −179.18 (19) C11—C10—C15—O3 175.56 (19)
C11—C10—C9—C8 0.8 (3) C9—C10—C15—O3 −6.3 (3)
C15—C10—C9—C8 −177.4 (2) C12—O1—C13—C14 84.2 (3)
C10—C9—C8—C7 −0.3 (3) C7—N1—C11—C10 −0.4 (3)
N1—C7—C8—C9 −0.5 (3) Au1—N1—C11—C10 177.39 (15)
C6—C7—C8—C9 −179.9 (2) C9—C10—C11—N1 −0.4 (3)
C1—C6—C5—C4 −0.2 (3) C15—C10—C11—N1 177.85 (19)

Funding Statement

This work was funded by Norges Forskningsråd grant 250795.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bruker (2018). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Del Castillo, T. J., Sarkar, S., Abboud, K. A. & Veige, A. S. (2011). Dalton Trans. 40, 8140–8144. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Dori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247–254.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Levchenko, V. A., Siah, H.-S. M., Øien-Ødegaard, S., Kaur, G., Fiksdahl, A. & Tilset, M. (2020). Mol. Catal. 492, 111009–111018.
  8. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  9. Partyka, D. V., Updegraff, J. B., Zeller, M., Hunter, A. D. & Gray, T. G. (2007). Organometallics, 26, 183–186.
  10. Peng, K., Friedrich, A. & Schatzschneider, U. (2019). Chem. Commun. 55, 8142–8145. [DOI] [PubMed]
  11. Powers, A. R., Ghiviriga, I., Abboud, K. A. & Veige, A. S. (2015). Dalton Trans. 44, 14747–14752. [DOI] [PubMed]
  12. Roth, T., Wadepohl, H. & Gade, L. H. (2016). Eur. J. Inorg. Chem. pp. 1184–1191.
  13. Schuh, E., Werner, S., Otte, D., Monkowius, U. & Mohr, F. (2016). Organometallics, 35, 3448–3451.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020012955/yk2139sup1.cif

e-76-01725-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020012955/yk2139Isup2.hkl

e-76-01725-Isup2.hkl (449.9KB, hkl)

CCDC reference: 2033308

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES