In the title complex, the CuII is in a tetragonal–pyramidal environment. The crystal structure features O—H⋯Cl and C—H⋯Cl interactions.
Keywords: crystal structure, hydrogen bonding, α-picoline, coordination chemistry
Abstract
In the title complex, [CuCl2(C6H7N)2(CH3OH)], the copper atom is five-coordinated by two nitrogen atoms of 2-methylpyridine ligands, two chloro ligands and an oxygen atom of the methanol molecule, being in a tetragonal–pyramidal environment with N and Cl atoms forming the basal plane. In the crystal, complex molecules related by the twofold rotation axis are joined into dimeric units by pairs of O—H⋯Cl hydrogen bonds. These dimeric units are assembled through C—H⋯Cl interactions into layers parallel to (001).
Chemical context
Both organic (from simple molecules to peptides and proteins) and inorganic complexes have been known for more than a century and are central to modern chemistry because of their fascinating, aesthetic architectures and multiple applications (Gan et al., 2011 ▸; Gellman, 1998 ▸; Thorat et al., 2013 ▸; Vijayadas et al., 2013 ▸; Ziach et al., 2018 ▸). Recently, coordination compounds have been reported that find applications in fields such as catalysis, gas storage, separation technology and molecular sensing (Mueller et al., 2006 ▸; Wan et al., 2006 ▸; Férey et al., 2003 ▸; James, 2003 ▸; Eddaoudi et al., 2002 ▸; Ruben et al., 2005 ▸, Kitagawa et al., 2004 ▸). There are many reports of coordination complexes where solvent molecules are located in the voids of the crystal structure. However, reports describing the replacement of coordinated solvent molecules with other molecules are relatively scarce. As part of ongoing work in our laboratory, employing pyridine ligands in the preparation of various coordination networks (PrakashaReddy & Pedireddi, 2007 ▸), we have extended our work to the synthesis of other coordination networks. A literature survey revealed that coordination complex aquadichlorobis(2-methylpyridine)copper(II) had been reported (Marsh et al., 1982 ▸). Our interest was to see whether we could replace the coordinated water molecule in the complex with other solvent molecules such as methanol or ethanol via single-crystal-to-single-crystal transition (SCSCT) to investigate the structural changes. Although we could not succeed in SCSCT of the complex, we were successful in synthesizing the methanol-coordinated copper complex incorporating 2-methylpyridine as reported herein.
Structural commentary
The title complex crystallizes in the monoclinic space group C2/c with one complex molecule per asymmetric unit. Two nitrogen atoms of 2-methylpyridine and two chloride ligands, which are trans to each other, form a rectangle around the copper atom, and its coordination is accomplished by the methanol oxygen atom, thus giving a tetragonal pyramid with the oxygen atom in the apical position (Fig. 1 ▸). The copper atom deviates by 0.161 (1) Å from the basal plane, and the angles around the copper atom are close to 90 and 180°. A plausible reason why the formation of a dimeric unit, as observed in [Cu(2-pic)2Cl2] (Marsh et al., 1982 ▸), was precluded might be the presence of the coordinated methanol molecule on one side of the coordination rectangle and the methyl groups on the other side. The methylpyridine rings form angles of 83.96 (8) and 85.70 (8)° with respect to the basal plane of the coordination polyhedron, thereby plausibly blocking the sixth coordination position at the copper atom. The Cu—O bond distance of 2.353 (2) Å is relatively short for an apical atom in typical copper(II) tetragonal–pyramidal structure, whereas the Cu—N bond lengths [Cu1—N1= 2.031 (2) Å, Cu1—N2 = 2.017 (2) Å] agree well with those reported for related structures (Wang et al., 2006 ▸; Gong et al., 2009 ▸; Hu & Zhang, 2010 ▸; Li, 2011 ▸; Sun et al., 2013 ▸; Sanram et al., 2016 ▸).
Figure 1.
The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
Supramolecular features and Hirshfeld surface analysis
Complex molecules related by the twofold rotation axis are connected by pairs of O—H⋯Cl interactions (Table 1 ▸) involving the apical methanol ligand of one complex and a chloride ligand of the other, thus forming dimers (Fig. 2 ▸). The O⋯Cl and H⋯Cl distances and associated O—H⋯Cl angle lie within the ranges observed for other O—H⋯Cl interactions reported in the literature (Veal et al., 1972 ▸; Taylor, 2016 ▸; Ristić et al., 2020 ▸; Estes et al., 1976 ▸). These dimers are further connected through C—H⋯Cl interactions, generating layers parallel to (001) (Fig. 3 ▸, Table 1 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
O1—H1⋯Cl2i | 0.75 (3) | 2.37 (3) | 3.1033 (16) | 169 (3) |
C7—H7⋯O1 | 0.93 | 2.46 | 3.148 (3) | 130 |
C8—H8⋯O1 | 0.93 | 2.34 | 3.036 (3) | 131 |
C11—H11⋯Cl2ii | 0.93 | 2.83 | 3.624 (2) | 143 |
Symmetry codes: (i) ; (ii)
.
Figure 2.
The O—H⋯Cl interactions between two molecules in the crystal of the title compound. The molecules are related by the symmetry operation −x + 1, y, −z + .
Figure 3.
A general view of the crystal packing of the title compound along the b-axis direction with intermolecular contacts shown as dashed lines.
A Hirshfeld surface analysis was performed and two-dimensional fingerprint plots were prepared using Crystal Explorer17 (Turner et al., 2017 ▸) to further investigate the intermolecular interactions in the title structure. The Hirshfeld surface mapped over d norm with corresponding colours representing intermolecular interactions is shown in Fig. 4 ▸. The red spots on the surface correspond to the O—H⋯Cl, C—H⋯Cl and C—H⋯O interactions (Table 1 ▸). The two-dimensional fingerprint plots (McKinnon et al., 2007 ▸) are shown in Fig. 5 ▸. Weak van der Waals H⋯H contacts make the largest contribution (53.1%) to the Hirshfeld surface. The two-dimensional fingerprint plot shows two spikes that correspond to H⋯Cl/Cl⋯H (25.2%) interactions, which highlight the hydrogen bonds between adjacent molecules. The C⋯H/H⋯C (15.5%) interactions also appear as two spikes. These interactions play a crucial role in the overall cohesion of the crystal packing.
Figure 4.
Hirshfeld surface mapped over d norm highlighting the regions of O—H⋯Cl and C—H⋯Cl intermolecular contacts.
Figure 5.
The full two-dimensional fingerprint plot for the title compound and those delineated into H⋯H (53.1%), Cl⋯H/H⋯Cl (25.2%) and C⋯H/H⋯C (15.5%) contacts.
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of August 2019; Groom et al., 2016 ▸) revealed three closely related complexes: dichlorobis(2-methylpyridine)copper(II) (refcode CMPYCU01; Marsh et al., 1982 ▸), aquadichlorobis(2-methylpyridine)copper(II) (BIJWUM; Marsh et al., 1982 ▸) and bis(isothiocyanato)methanolbis(2-methylpyridine)copper(II) (ABOSIW; Handy et al., 2017 ▸). Structures CMPYCU01 and BIJWUM display dimeric arrangements of the complex molecules arising from C—H⋯Cl and O—H⋯Cl interactions, respectively, while in the copper(II) thiocyanate complex ABOSIW, the three-dimensional network is formed as a result of O—H⋯S, C—H⋯S and C—H⋯C interactions.
Synthesis and crystallization
2-Methylpyridine and anhydrous copper(II) chloride were obtained from Aldrich, and HPLC grade methanol was used for reaction. Anhydrous copper(II) chloride (0.675 g, 0.005 mol) was dissolved in 15 ml of methanol. To this solution, 2-methylpyridine (0.93 g, 0.01 mol) dissolved in 15 mL of methanol was added. The resulting mixture was stirred for ca 40 min. at room temperature and filtered to remove the greenish precipitate. The blue filtrate was then allowed to stand at room temperature for a few hours, before being filtered and left at room temperature for crystallization. A mixture of dark-blue crystals of different sizes was obtained after 24 h.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were located in a difference map. The C-bound H atoms were placed in calculated positions with C—H = 0.93-0.96 Å and refined as riding, whereas the coordinates of O-bound H atom were freely refined. All hydrogen atoms were refined with fixed isotropic displacement parameters [U iso(H) = 1.2–1.5U eq(C,O)]
Table 2. Experimental details.
Crystal data | |
Chemical formula | [CuCl2(C6H7N)2(CH4O)] |
M r | 352.73 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 120 |
a, b, c (Å) | 14.4554 (4), 8.5865 (2), 24.8055 (8) |
β (°) | 99.209 (3) |
V (Å3) | 3039.22 (16) |
Z | 8 |
Radiation type | Mo Kα |
μ (mm−1) | 1.78 |
Crystal size (mm) | 0.21 × 0.16 × 0.11 |
Data collection | |
Diffractometer | Agilent XCalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2018 ▸) |
T min, T max | 0.549, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15974, 5137, 4251 |
R int | 0.040 |
(sin θ/λ)max (Å−1) | 0.758 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.038, 0.081, 1.13 |
No. of reflections | 5137 |
No. of parameters | 178 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.54, −0.51 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020014036/yk2140sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020014036/yk2140Isup2.hkl
CCDC reference: 1997065
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The author thanks Professor G. C. Diaz de Delgado for her help and discussions on the crystallographic aspect of this work.
supplementary crystallographic information
Crystal data
[CuCl2(C6H7N)2(CH4O)] | F(000) = 1448 |
Mr = 352.73 | Dx = 1.542 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.4554 (4) Å | Cell parameters from 4621 reflections |
b = 8.5865 (2) Å | θ = 3.1–32.0° |
c = 24.8055 (8) Å | µ = 1.78 mm−1 |
β = 99.209 (3)° | T = 120 K |
V = 3039.22 (16) Å3 | Block, blue |
Z = 8 | 0.21 × 0.16 × 0.11 mm |
Data collection
Agilent XCalibur diffractometer | 4251 reflections with I > 2σ(I) |
Detector resolution: 16.1511 pixels mm-1 | Rint = 0.040 |
ω scans | θmax = 32.6°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −20→21 |
Tmin = 0.549, Tmax = 1.000 | k = −12→11 |
15974 measured reflections | l = −37→37 |
5137 independent reflections |
Refinement
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0199P)2 + 4.4488P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.001 |
5137 reflections | Δρmax = 0.54 e Å−3 |
178 parameters | Δρmin = −0.51 e Å−3 |
0 restraints |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.50986 (2) | 0.75598 (3) | 0.37062 (2) | 0.01272 (6) | |
Cl1 | 0.41953 (3) | 0.66088 (6) | 0.43059 (2) | 0.01703 (10) | |
Cl2 | 0.61677 (3) | 0.86629 (5) | 0.32152 (2) | 0.01706 (10) | |
O1 | 0.40656 (10) | 0.69534 (18) | 0.29006 (6) | 0.0192 (3) | |
H1 | 0.408 (2) | 0.738 (3) | 0.2640 (12) | 0.029* | |
N2 | 0.45788 (11) | 0.97058 (19) | 0.38001 (7) | 0.0145 (3) | |
N1 | 0.57721 (11) | 0.54847 (19) | 0.37032 (7) | 0.0149 (3) | |
C1 | 0.49779 (13) | 1.0690 (2) | 0.41912 (8) | 0.0141 (3) | |
C2 | 0.45939 (14) | 1.2154 (2) | 0.42581 (8) | 0.0168 (4) | |
H2 | 0.488544 | 1.282802 | 0.452631 | 0.020* | |
C3 | 0.64638 (14) | 0.5067 (2) | 0.41102 (9) | 0.0175 (4) | |
C4 | 0.58446 (14) | 1.0157 (2) | 0.45567 (8) | 0.0188 (4) | |
H4A | 0.571444 | 0.921107 | 0.473669 | 0.028* | |
H4B | 0.604355 | 1.094501 | 0.482496 | 0.028* | |
H4C | 0.633209 | 0.997353 | 0.434317 | 0.028* | |
C5 | 0.66783 (15) | 0.2646 (2) | 0.36638 (9) | 0.0220 (4) | |
H5 | 0.698699 | 0.170012 | 0.364995 | 0.026* | |
C6 | 0.69292 (14) | 0.3650 (2) | 0.40943 (9) | 0.0216 (4) | |
H6 | 0.740983 | 0.338329 | 0.437494 | 0.026* | |
C7 | 0.37914 (14) | 1.0160 (2) | 0.34693 (9) | 0.0201 (4) | |
H7 | 0.351990 | 0.948582 | 0.319564 | 0.024* | |
C8 | 0.55316 (15) | 0.4492 (2) | 0.32849 (8) | 0.0190 (4) | |
H8 | 0.505512 | 0.477838 | 0.300461 | 0.023* | |
C9 | 0.37781 (15) | 1.2600 (2) | 0.39241 (9) | 0.0192 (4) | |
H9 | 0.350701 | 1.356328 | 0.396982 | 0.023* | |
C10 | 0.59622 (16) | 0.3063 (2) | 0.32532 (9) | 0.0220 (4) | |
H10 | 0.577215 | 0.239722 | 0.296070 | 0.026* | |
C11 | 0.33724 (15) | 1.1589 (3) | 0.35209 (9) | 0.0223 (4) | |
H11 | 0.282686 | 1.186387 | 0.328834 | 0.027* | |
C12 | 0.32370 (15) | 0.6023 (3) | 0.28385 (9) | 0.0231 (4) | |
H12A | 0.326320 | 0.525448 | 0.256034 | 0.035* | |
H12B | 0.269827 | 0.667541 | 0.273541 | 0.035* | |
H12C | 0.319211 | 0.551434 | 0.317792 | 0.035* | |
C13 | 0.67215 (16) | 0.6175 (3) | 0.45740 (10) | 0.0271 (5) | |
H13A | 0.691508 | 0.714806 | 0.443729 | 0.041* | |
H13B | 0.722622 | 0.574607 | 0.482943 | 0.041* | |
H13C | 0.618872 | 0.634370 | 0.475334 | 0.041* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01378 (11) | 0.01059 (11) | 0.01375 (11) | 0.00289 (8) | 0.00206 (8) | −0.00104 (8) |
Cl1 | 0.0200 (2) | 0.0157 (2) | 0.0161 (2) | 0.00216 (17) | 0.00497 (17) | 0.00003 (17) |
Cl2 | 0.0182 (2) | 0.0149 (2) | 0.0192 (2) | −0.00028 (16) | 0.00627 (17) | −0.00322 (17) |
O1 | 0.0226 (7) | 0.0190 (7) | 0.0152 (7) | −0.0020 (6) | 0.0008 (6) | 0.0024 (6) |
N2 | 0.0145 (7) | 0.0122 (7) | 0.0175 (8) | 0.0024 (6) | 0.0047 (6) | 0.0004 (6) |
N1 | 0.0152 (7) | 0.0133 (7) | 0.0168 (8) | 0.0020 (6) | 0.0045 (6) | −0.0011 (6) |
C1 | 0.0168 (8) | 0.0135 (8) | 0.0128 (8) | 0.0014 (7) | 0.0049 (7) | 0.0018 (7) |
C2 | 0.0226 (9) | 0.0128 (9) | 0.0165 (9) | 0.0015 (7) | 0.0075 (8) | −0.0011 (7) |
C3 | 0.0157 (9) | 0.0155 (9) | 0.0217 (10) | 0.0024 (7) | 0.0041 (7) | 0.0004 (8) |
C4 | 0.0216 (9) | 0.0175 (9) | 0.0164 (9) | 0.0042 (8) | 0.0005 (8) | −0.0029 (8) |
C5 | 0.0252 (10) | 0.0135 (9) | 0.0304 (11) | 0.0057 (8) | 0.0138 (9) | 0.0027 (8) |
C6 | 0.0186 (9) | 0.0196 (10) | 0.0264 (11) | 0.0077 (8) | 0.0030 (8) | 0.0034 (8) |
C7 | 0.0178 (9) | 0.0175 (9) | 0.0237 (10) | 0.0031 (7) | −0.0009 (8) | −0.0033 (8) |
C8 | 0.0235 (10) | 0.0190 (10) | 0.0154 (9) | 0.0031 (8) | 0.0055 (8) | −0.0020 (8) |
C9 | 0.0233 (10) | 0.0138 (9) | 0.0225 (10) | 0.0058 (7) | 0.0094 (8) | 0.0022 (8) |
C10 | 0.0293 (11) | 0.0163 (9) | 0.0222 (10) | 0.0021 (8) | 0.0101 (9) | −0.0044 (8) |
C11 | 0.0198 (9) | 0.0205 (10) | 0.0252 (11) | 0.0076 (8) | −0.0007 (8) | −0.0007 (8) |
C12 | 0.0202 (10) | 0.0289 (11) | 0.0202 (10) | 0.0001 (8) | 0.0033 (8) | −0.0023 (9) |
C13 | 0.0236 (10) | 0.0235 (11) | 0.0303 (12) | 0.0082 (9) | −0.0081 (9) | −0.0069 (9) |
Geometric parameters (Å, º)
Cu1—Cl1 | 2.2818 (5) | C4—H4C | 0.9600 |
Cu1—Cl2 | 2.3175 (5) | C5—H5 | 0.9300 |
Cu1—O1 | 2.3534 (15) | C5—C6 | 1.375 (3) |
Cu1—N2 | 2.0174 (16) | C5—C10 | 1.378 (3) |
Cu1—N1 | 2.0310 (16) | C6—H6 | 0.9300 |
O1—H1 | 0.75 (3) | C7—H7 | 0.9300 |
O1—C12 | 1.427 (3) | C7—C11 | 1.383 (3) |
N2—C1 | 1.345 (2) | C8—H8 | 0.9300 |
N2—C7 | 1.350 (3) | C8—C10 | 1.384 (3) |
N1—C3 | 1.351 (3) | C9—H9 | 0.9300 |
N1—C8 | 1.345 (3) | C9—C11 | 1.382 (3) |
C1—C2 | 1.395 (3) | C10—H10 | 0.9300 |
C1—C4 | 1.496 (3) | C11—H11 | 0.9300 |
C2—H2 | 0.9300 | C12—H12A | 0.9600 |
C2—C9 | 1.382 (3) | C12—H12B | 0.9600 |
C3—C6 | 1.394 (3) | C12—H12C | 0.9600 |
C3—C13 | 1.494 (3) | C13—H13A | 0.9600 |
C4—H4A | 0.9600 | C13—H13B | 0.9600 |
C4—H4B | 0.9600 | C13—H13C | 0.9600 |
Cl1—Cu1—Cl2 | 171.17 (2) | C6—C5—H5 | 120.5 |
Cl1—Cu1—O1 | 97.06 (4) | C6—C5—C10 | 118.99 (19) |
Cl2—Cu1—O1 | 91.73 (4) | C10—C5—H5 | 120.5 |
N2—Cu1—Cl1 | 89.37 (5) | C3—C6—H6 | 120.0 |
N2—Cu1—Cl2 | 88.82 (5) | C5—C6—C3 | 120.0 (2) |
N2—Cu1—O1 | 95.90 (6) | C5—C6—H6 | 120.0 |
N2—Cu1—N1 | 171.61 (7) | N2—C7—H7 | 118.7 |
N1—Cu1—Cl1 | 90.74 (5) | N2—C7—C11 | 122.6 (2) |
N1—Cu1—Cl2 | 89.79 (5) | C11—C7—H7 | 118.7 |
N1—Cu1—O1 | 92.42 (6) | N1—C8—H8 | 118.6 |
Cu1—O1—H1 | 121 (2) | N1—C8—C10 | 122.9 (2) |
C12—O1—Cu1 | 128.53 (13) | C10—C8—H8 | 118.6 |
C12—O1—H1 | 109 (2) | C2—C9—H9 | 120.6 |
C1—N2—Cu1 | 122.19 (13) | C2—C9—C11 | 118.84 (19) |
C1—N2—C7 | 118.63 (17) | C11—C9—H9 | 120.6 |
C7—N2—Cu1 | 119.16 (14) | C5—C10—C8 | 118.7 (2) |
C3—N1—Cu1 | 121.89 (13) | C5—C10—H10 | 120.7 |
C8—N1—Cu1 | 119.60 (13) | C8—C10—H10 | 120.7 |
C8—N1—C3 | 118.50 (17) | C7—C11—H11 | 120.6 |
N2—C1—C2 | 121.29 (18) | C9—C11—C7 | 118.87 (19) |
N2—C1—C4 | 117.75 (17) | C9—C11—H11 | 120.6 |
C2—C1—C4 | 120.96 (18) | O1—C12—H12A | 109.5 |
C1—C2—H2 | 120.1 | O1—C12—H12B | 109.5 |
C9—C2—C1 | 119.71 (19) | O1—C12—H12C | 109.5 |
C9—C2—H2 | 120.1 | H12A—C12—H12B | 109.5 |
N1—C3—C6 | 120.91 (19) | H12A—C12—H12C | 109.5 |
N1—C3—C13 | 118.02 (17) | H12B—C12—H12C | 109.5 |
C6—C3—C13 | 121.06 (19) | C3—C13—H13A | 109.5 |
C1—C4—H4A | 109.5 | C3—C13—H13B | 109.5 |
C1—C4—H4B | 109.5 | C3—C13—H13C | 109.5 |
C1—C4—H4C | 109.5 | H13A—C13—H13B | 109.5 |
H4A—C4—H4B | 109.5 | H13A—C13—H13C | 109.5 |
H4A—C4—H4C | 109.5 | H13B—C13—H13C | 109.5 |
H4B—C4—H4C | 109.5 | ||
Cu1—N2—C1—C2 | −178.36 (14) | C1—C2—C9—C11 | −1.5 (3) |
Cu1—N2—C1—C4 | 1.1 (2) | C2—C9—C11—C7 | 0.6 (3) |
Cu1—N2—C7—C11 | 177.53 (17) | C3—N1—C8—C10 | −0.1 (3) |
Cu1—N1—C3—C6 | −178.70 (15) | C4—C1—C2—C9 | −178.23 (18) |
Cu1—N1—C3—C13 | 0.6 (3) | C6—C5—C10—C8 | 1.1 (3) |
Cu1—N1—C8—C10 | 179.63 (16) | C7—N2—C1—C2 | 0.0 (3) |
N2—C1—C2—C9 | 1.2 (3) | C7—N2—C1—C4 | 179.42 (18) |
N2—C7—C11—C9 | 0.5 (3) | C8—N1—C3—C6 | 1.0 (3) |
N1—C3—C6—C5 | −0.9 (3) | C8—N1—C3—C13 | −179.70 (19) |
N1—C8—C10—C5 | −1.0 (3) | C10—C5—C6—C3 | −0.2 (3) |
C1—N2—C7—C11 | −0.9 (3) | C13—C3—C6—C5 | 179.8 (2) |
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl2i | 0.75 (3) | 2.37 (3) | 3.1033 (16) | 169 (3) |
C7—H7···O1 | 0.93 | 2.46 | 3.148 (3) | 130 |
C8—H8···O1 | 0.93 | 2.34 | 3.036 (3) | 131 |
C11—H11···Cl2ii | 0.93 | 2.83 | 3.624 (2) | 143 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x−1/2, y+1/2, z.
Funding Statement
This work was funded by Indrashil University grant .
References
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472. [DOI] [PubMed]
- Estes, E. D. & Hodgson, D. J. (1976). Inorg. Chem. 15, 348–352.
- Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T. & Percheron-Guégan, A. (2003). Chem. Commun. pp. 2976–2977. [DOI] [PubMed]
- Gan, Q., Ferrand, Y., Bao, C., Kauffmann, B., Grélard, A., Jiang, H. & Huc, I. (2011). Science, 331, 1172–1175. [DOI] [PubMed]
- Gellman, S. H. (1998). Acc. Chem. Res. 31, 173–180.
- Gong, Y.-N., Liu, C.-B., Huang, D.-H. & Xiong, Z.-Q. (2009). Z. Kristallogr. New Cryst. Struct. 224, 421–422.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Handy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64–75.
- Hu, M. & Zhang, Q. (2010). Z. Kristallogr. New Cryst. Struct. 225, 155–156.
- James, S. L. (2003). Chem. Soc. Rev. 32, 276–288.
- Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [DOI] [PubMed]
- Li, N.-Y. (2011). Acta Cryst. E67, m1397. [DOI] [PMC free article] [PubMed]
- Marsh, W. E., Hatfield, W. E. & Hodgson, D. J. (1982). Inorg. Chem. 21, 2679–2684.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastré, J. (2006). J. Mater. Chem. 16, 626–636.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- PrakashaReddy, J. & Pedireddi, V. R. (2007). Eur. J. Inorg. Chem. pp. 1150–1158.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Ristić, P., Blagojević, V., Janjić, G., Rodić, M., Vulić, P., Donnard, M., Gulea, M., Chylewska, A., Makowski, M., Todorović, T. & Filipović, N. (2020). Cryst. Growth Des. 20, 3018–3033.
- Ruben, M., Ziener, U., Lehn, J. M., Ksenofontov, V., Gütlich, P. & Vaughan, G. B. M. (2005). Chem. Eur. J. 11, 94–100. [DOI] [PubMed]
- Sanram, S., Boonmak, J. & Youngme, S. (2016). Polyhedron, 119, 151–159.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Sun, C.-Y., Li, W.-J. & Che, P. (2013). Z. Anorg. Allg. Chem. 639, 129–133.
- Taylor, R. (2016). Cryst. Growth Des. 16, 4165–4168.
- Thorat, V. H., Ingole, T. S., Vijayadas, K. N., Nair, R. V., Kale, S. S., Ramesh, V. V. E., Davis, H. C., Prabhakaran, P., Gonnade, R. G., Gawade, R. L., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Eur. J. Org. Chem. 2013, 3529–3542.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Veal, J. T. & Hodgson, D. J. (1972). Inorg. Chem. 11, 597–600.
- Vijayadas, K. N., Nair, R. V., Gawade, R. L., Kotmale, A. S., Prabhakaran, P., Gonnade, R. G., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Org. Biomol. Chem. 11, 8348–8356. [DOI] [PubMed]
- Wan, Y., Yang, H. & Zhao, D. (2006). Acc. Chem. Res. 39, 423–432. [DOI] [PubMed]
- Wang, X.-L., Qin, C. & &Wang, E.-B. (2006). Cryst. Growth Des. 6, 439–443.
- Ziach, K., Chollet, C., Parissi, V., Prabhakaran, P., Marchivie, M., Corvaglia, V., Bose, P. P., Laxmi-Reddy, K., Godde, F., Schmitter, J.-M., Chaignepain, S., Pourquier, P. & Huc, I. (2018). Nat. Chem. 10, 511–518. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020014036/yk2140sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020014036/yk2140Isup2.hkl
CCDC reference: 1997065
Additional supporting information: crystallographic information; 3D view; checkCIF report