Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Oct 9;76(Pt 11):1741–1747. doi: 10.1107/S2056989020013341

Nickel(II) carbonyl, ammonia, and aceto­nitrile complexes supported by a pyridine dipyrrolide pincer ligand

H V Rasika Dias a,*, Abhijit Pramanik a
PMCID: PMC7643235  PMID: 33209345

The synthesis, isolation and crystal structures of nickel(II) carbonyl, aceto­nitrile and ammonia complexes supported by a dianionic, pyridine dipyrrolide pincer ligand [pyrr2py]2−, namely, carbonyl[2,2′-(pyridine-2,6-di­yl)bis­(3,5-di-p-tolyl­pyrrolido-κN)]­nickel(II), [Ni(C41H33N3)(CO)], ammine[2,2′-(pyridine-2,6-di­yl)bis­(3,5-di-p-tolyl­pyrrolido-κN)]nickel(II), [Ni(C41H33N3)(NH3)], and (aceto­nitrile-κN)[2,2′-(pyridine-2,6-di­yl)bis­(3,5-di-p-tolyl­pyrrolido-κN)]nickel(II), [Ni(C41H33N3)(CH3CN)], as well as the free ligand 2,6-bis­(3,5-di-p-tolyl­pyrrol-2-yl)pyridine, C41H35N3 or [pyrr2py]H2 are reported.

Keywords: crystal structure, nickel, pincer ligand, N-donors, carbon monoxide

Abstract

The synthesis, isolation and crystal structures of nickel(II) carbonyl, aceto­nitrile and ammonia complexes supported by a dianionic, pyridine dipyrrolide pincer ligand [pyrr2py]2−, namely, carbonyl[2,2′-(pyridine-2,6-di­yl)bis­(3,5-di-p-tolyl­pyrrolido-κN)]­nickel(II), [Ni(C41H33N3)(CO)], ammine[2,2′-(pyridine-2,6-di­yl)bis­(3,5-di-p-tolyl­pyrrolido-κN)]nickel(II), [Ni(C41H33N3)(NH3)], and (aceto­nitrile-κN)[2,2′-(pyridine-2,6-di­yl)bis­(3,5-di-p-tolyl­pyrrolido-κN)]nickel(II), [Ni(C41H33N3)(CH3CN)], as well as the free ligand 2,6-bis­(3,5-di-p-tolyl­pyrrol-2-yl)pyridine, C41H35N3 or [pyrr2py]H2 are reported. The nickel complexes are four-coordinate and adopt a square-planar geometry. The CO stretch of the nickel-bound carbon monoxide ligand of [pyrr2py]Ni(CO) has been observed at 2101 cm−1. The ammonia and aceto­nitrile complexes, [pyrr2py]Ni(NH3) and [pyrr2py]Ni(NCMe) feature all-nitro­gen coordination spheres around nickel consisting of different N-donor ligand types.

Chemical context  

Pincer ligands were first introduced by Moulton and Shaw in 1976 (Moulton & Shaw, 1976). They are utilized widely as auxiliary ligands to produce transition-metal complexes useful in a range of applications including catalysis (Alig et al., 2019; Peris & Crabtree, 2004, 2018; Piccirilli et al., 2020; Albrecht & van Koten, 2001). There are several pincer-ligand varieties in the literature ranging from those featuring both symmetric and non-symmetric flanking arms, P-, N-, O-, S- and C- donor sites, as well as neutral, mono, di- and trianionic systems. Monoanionic, carbon-centered (e.g., from phen­yl) ligands with P- or N-donors at the flanking arms are more common among pincers (Peris & Crabtree, 2018). These tridentate ligands are particularly inter­esting for their ability to preferentially occupy the meridional coordination sites on a metal ion.

We have been working on tridentate, nitro­gen-based ligands such as tris­(pyrazol­yl)borates with a preference for facial coordination for several years (Dias & Lovely, 2008; Dias et al., 1995, 1996; Dias & Lu, 1995). This paper describes results from our efforts to expand the ligand repertoire to include tridentate ligands with a preference for meridional geometry (Adiraju et al., 2020) at transition-metal ions in our laboratory. In particular, we describe the synthesis and use of a pyridine dipyrrolide pincer ligand bearing tolyl substituents, (Pramanik et al., 2014; Pramanik, 2015) and its chemistry with nickel(II) featuring CO, NH3 and NCMe mol­ecules (Fig. 1). The pyridine dipyrrolide is a particularly attractive ligand framework, as several examples of pyridine dipyrrolide pincers with different substituents on the ligand backbone (e.g., Me, t-Bu, Ph, Mes) are known and have already been successfully used with both early and late transition-metal ions such as Ti (Zhang et al., 2016), Zr (Zhang et al., 2016, 2020), Cr (Gowda et al., 2018), Mo (Gowda et al., 2018), Fe (Sorsche et al., 2020; Hakey et al., 2019), Co (Grant et al., 2016), Pt (Komine et al., 2014), Pd (Yadav et al., 2018) and Zn (Komine et al., 2014) to form well-defined metal complexes.graphic file with name e-76-01741-scheme1.jpg

Figure 1.

Figure 1

The dianionic, pyridine dipyrrolide pincer ligand [pyrr2Py]2− and the nickel(II) complexes.

Structural commentary  

The free ligand [pyrr2Py]H2 is monomeric and crystallizes with both pyrrole nitro­gen atoms facing the center of the coord­ination pit, well situated for metal-ion coordination (Fig. 2). This is different from the structure observed with the t-butyl substituted pincer analog (VIWSOL; Komine et al., 2014) in which one pyrrole N-H bond is directed outward to form a hydrogen bond with a lattice aceto­nitrile mol­ecule. The pyrrole and pyridine moieties are essentially coplanar. The nickel(II) carbonyl complex [pyrr2Py]Ni(CO) was synthesized from the in situ-generated potassium salt K2[pyrr2Py] and Ni(OTf)2 in the presence of carbon monoxide. The important CO stretch of this mol­ecule is observed at 2101 cm−1, which is only slightly lower than that of free CO (2143 cm−1), indicating relatively weak Ni→CO π-backbonding. The nickel(I) tris­(pyrazol­yl)borate complex [HB(3-Ph,5-MePz)3]Ni(CO) for comparison displays its CO stretch at 2003 cm−1 (Abubekerov et al., 2016). The X-ray crystal structure shows that the pincer complex [pyrr2Py]Ni(CO) is a monomeric, square-planar complex (Fig. 3). The carbonyl moiety sits above the ligand plane, as is evident from the N1—Ni—C22 angle of 160.41 (13)°. The Ni—C22 distance of 1.809 (3) Å is significantly longer than the corresponding distance of 1.766 (4) Å in [HB(3-Ph,5-MePz)3]Ni(CO), which is a tetra­hedral nickel complex (ENUROW; Abubekerov et al., 2016). The Ni—N(pyrr) (pyrr = pyrrolide) distances of 1.8667 (18) and 1.8666 (18) Å are not significantly different from the Ni—N(pyridine) separation of 1.853 (3) Å.

Figure 2.

Figure 2

Mol­ecular structure of [pyrr2Py]H2 with displacement ellipsoids drawn at the 50% probability level.

Figure 3.

Figure 3

Mol­ecular structure of [pyrr2Py]Ni(CO) with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 1 + x, Inline graphic − y, z.

Compounds [pyrr2Py]Ni(NH3) and [pyrr2Py]Ni(NCMe) are also four-coordinate nickel(II) complexes with square-planar metal sites (Figs. 4 and 5, respectively). They have all nitro­gen coordination spheres at nickel, but with an inter­esting variety of donor sites ranging from sp to sp 3-hybridized nitro­gen atoms, as well as neutral and formally anionic N-centers. Both the NH3 and NCMe ligands bend out of the [pyrr2Py] ligand plane as evident from the N2—Ni—N4 angles of 162.16 (5) and 168.09 (10)°, respectively, for the two complexes. The Ni—N1 and Ni—N3 bond distances of [pyrr2Py]Ni(NH3) are 1.8858 (10) and 1.8876 (10) Å, respectively. These values are marginally smaller than the corresponding distances of [pyrr2Py]Ni(NCMe) [1.896 (2) and 1.906 (2) Å]. The Ni—N2 distances (to the pyridine moieties) at 1.8490 (10) and 1.846 (2) Å are similar in the two adducts, but they are both much shorter than the Ni—N(pyrr) distances noted above. The Ni—N bond distance to the NH3 and NCMe ligands in [pyrr2Py]Ni(NH3) and [pyrr2Py]Ni(NCMe) are 1.9291 (11) and 1.861 (2) Å, respectively. These are bonds to sp 3 and sp-hybridized nitro­gen sites, respectively, and therefore the longer distance for the former is not unusual. Four-coordinate nickel–ammonia complexes are rare and there is one example in the CSD (PEWROZ; Tapper et al., 1993), and that has an Ni—N(H3) distance of 1.912 Å.

Figure 4.

Figure 4

Mol­ecular structure of [pyrr2Py]Ni(NH3) with displacement ellipsoids drawn at the 50% probability level.

Figure 5.

Figure 5

Mol­ecular structure of [pyrr2Py]Ni(NCMe) with displacement ellipsoids drawn at the 50% probability level. A disordered hexane mol­ecule has been omitted for clarity.

Supra­molecular features  

Important inter­mol­ecular contacts and a packing diagram of [pyrr2Py]H2 are shown in Fig. 6 and Fig. S1 in the supporting information. Neighboring mol­ecules of [pyrr2Py]H2 show π–π contacts between pyrrole and pyridine groups (the closest separation is 3.21 Å) as well as C(arene)—H⋯arene contacts. The complex [pyrr2Py]Ni(CO) does not show extensive inter­molecular inter­actions apart from NiCO⋯H—C(arene) contacts between the carbonyl moieties and hydrogen atoms of neighboring arene as illustrated in Fig. 7 and Fig. S2. In the structure of [pyrr2Py]Ni(NH3), the arene groups inter­act with neighboring mol­ecules via the ammonia hydrogen atoms (see Fig. 8 and Fig. S3). In [pyrr2Py]Ni(NCMe), the hexane mol­ecules in the lattice occupy regions surrounded by tolyl substituents. The major inter­molecular inter­actions are between arenes and the hydrogen atoms of the aceto­nitrile moieties. The resulting packing diagram is shown in Fig. 9 and Fig. S4.

Figure 6.

Figure 6

The crystal packing of [pyrr2Py]H2.

Figure 7.

Figure 7

The crystal packing of [pyrr2Py]Ni(CO).

Figure 8.

Figure 8

The crystal packing of [pyrr2Py]Ni(NH3). Hydrogen atoms except those on ammonia have been omitted for clarity.

Figure 9.

Figure 9

The crystal packing of [pyrr2Py]Ni(NCMe). Hydrogen atoms have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database for related pyridine dipyrrolide complexes involving transition-metal ions revealed 38 hits involving ligands with different alkyl or aryl substituents (CSD Version 5.41, Update 2, May 2020; Groom et al., 2016). No nickel pyridine dipyrrolide complexes have been reported thus far. Perhaps the most closely related compounds are the four-coordinate platinum (VIWSIF; Komine et al., 2014), palladium (XIKKIO, XIKKOU; Yadav et al., 2018) and zinc (VIWSIF; Komine et al., 2014) complexes featuring all-nitro­gen coordination spheres at the metal. In addition, there are ten hits for related free ligands. Most of them, however, are different solvates of the same ligand system.

Synthesis and crystallization  

All experiments were done under a purified nitro­gen atmosphere with standard Schlenk techniques. Solvents were purchased from commercial sources and purified using an Innovative Technology SPS-400 PureSolv solvent-drying system or distilled over conventional drying agents and degassed by the freeze–pump–thaw method three times prior to use. All other chemicals needed were obtained from commercial vendors. Glassware was oven dried at 150°C overnight. The NMR spectra were recorded at 25°C on JEOL Eclipse 500 and 300 spectrometers (1H: 500.16 MHz or 300.53 MHz). Proton chemical shifts are reported in ppm versus Me4Si. Infrared spectra were taken on a JASCO FT–IR 410 spectrometer.

Synthesis of 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine, [pyrr2Py]H2:

1,3-Bis(4-tol­yl)-2-propen-1-one (chalcone) was prepared following a literature procedure (Yang et al., 2005) from tolu­aldehyde and 4-methyl­aceto­phenone. Then the chalcone (1.75 g, 7.4 mmol) was reacted with 2,6-pyridine­dicarbaldehyde (0.50 g, 3.7 mmol), 3-benzyl-5-(-hy­droxy­eth­yl)-4-methyl­thia­zolium chloride (0.20 g, 0.74 mmol) and sodium t-butoxide (0.57 g, 0.74 mmol) in ethanol at reflux for 24 h to form a brown suspension. Water was added and the mixture was extracted with chloro­form. The chloro­form was removed to obtain 2,6-bis­(2,4-ditolyl-1,4-dioxobut­yl)pyridine. This was purified further by rinsing with hexane to get an orange solid. The inter­mediate ketone was reacted with NH4OAc (2.8 g, 37 mmol) in ethanol at reflux for 24 h. Water was added and the yellow solid was filtered and washed with water. Then the crude product was suspended in 10 mL of ethanol and refluxed at 373 K for 7 h to obtain 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine, [pyrr2Py]H2 as a yellow solid (yield 64%). 1H NMR (CDCl3, 500.16 MHz, 298 K): δ 2.38 (s, 12H, CH3) 6.57 (m, 2H), 7.02 (d, J = 8.05, 2H), 7.17–7.22 (m, 9H), 7.38 (d, 4H), 7.47 (d, J = 8 Hz, 4H), 9.56 (2H, NH).

Synthesis of [pyrr2Py]Ni(NCCH3):

A solid sample of the ligand 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine ([pyrr2Py]H2; 0.10 g, 0.175 mmol) and KH (0.021 g, 0.525 mmol) were placed in a 50 mL Schlenk flask. THF (ca 10 mL) was added to the mixture at room temperature and then refluxed for 1.5 h. It was allowed to cool down to room temperature and filtered through a Celite pad, which was then washed with 5 mL of THF. The filtrate was collected and added to Ni(OTf)2 (0.062 g, 0.175 mmol) in 10 mL of THF and stirred overnight at room temperature. The volatile materials were removed under reduced pressure and the residue was extracted into ether and filtered. Ether was removed under vacuum and 10 mL of aceto­nitrile were added. After 1 h, it was filtered, and the filtrate was concentrated to 4 mL. Finally, hexane was layered above the aceto­nitrile and allowed to diffuse slowly into aceto­nitrile solution at room temperature, producing brown crystals of [pyrr2Py]Ni(CH3CN) (yield 34%). 1H NMR (CDCl3, 500.16 MHz, 298 K): δ 0.738 (s, 3H, CH3) 2.32 (s, 6H, CH 3), 2.37 (s, 6H, CH3) 6.06 (s, 2H), 6.60 (d, J = 8 Hz, 2H), 7.04 (t, J = 8 Hz, 1H), 7.15 (m, 8H), 7.36 (d, J = 8 Hz, 4H), 7.62 (d, J = 8.05 Hz, 4H).

Synthesis of [pyrr2Py]Ni(CO):

A solid sample of the ligand 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine ([pyrr2Py]H2) (0.10 g, 0.175 mmol) and KH (0.021 g, 0.525 mmol) were placed in a 50 mL Schlenk flask. THF (ca 10 mL) was added to the mixture at room temperature and then refluxed for 1.5 h. It was allowed to cool down to room temperature and filtered through a Celite pad, which was then washed with 5 mL of THF. The filtrate was added to Ni(OTf)2 (0.062 g, 0.175 mmol) in 10 mL of THF and stirred overnight at room temperature. Then THF was removed and the residue was extracted into ether. Then anhydrous carbon monoxide gas was passed through the ether solution for 20 minutes at 273 K. After stirring for 1 h, the solution was filtered, and the volume of the solution was decreased to 4 mL. Red crystals of [pyrr2Py]Ni(CO) were observed after keeping the solution in a 253 K freezer for 3 d (yield 24%). 1H NMR (CDCl3, 500.16 MHz, 298 K): δ 2.37 (s, 6H, CH 3), 2.38 (s, 6H, CH3) 6.21 (s, 2H), 6.77 (d, J = 7.45 Hz, 2H), 7.02 (t, J = 8 Hz, 1H), 7.21 (m, 8H), 7.38 (d, J = 7.5 Hz, 4H), 7.47 (d, J = 8.05 Hz, 4H). 13C{1H} NMR (CDCl3, 125.77 MHz, 298 K, selected): δ 174.4 (CO). IR (crystals, ATR, selected band) cm−1: 2101 (CO).

Synthesis of [pyrr2Py]Ni(NH3):

A solid sample of the ligand 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine ([pyrr2Py]H2) (0.10 g, 0.175 mmol) and KH (0.021 g, 0.525 mmol) were placed in a 50 mL Schlenk flask. THF (ca 10 mL) was added to the mixture at room temperature and then refluxed for 1.5 h. It was allowed to cool down to room temperature and filtered through a Celite pad, which was then washed with 5 mL of THF. The filtrate was added to Ni(OTf)2 (0.062 g, 0.175 mmol) in 10 mL of THF and stirred overnight at room temperature. Then THF was removed and the residue was extracted into ether. Then anhydrous ammonia gas was passed through the ether solution for 20 minutes at 273 K. After stirring for 1 h, the solution was filtered, and the volume of the solution was decreased to 4 mL. Red crystals of [pyrr2Py]Ni(NH3) were formed after keeping the solution in a 253 K freezer for 3 d (yield 54%). 1H NMR (CDCl3, 500.16 MHz, 298 K): δ 0.49 (s, 3H, NH3) 2.35 (s, 6H, CH 3), 2.38 (s, 6H, CH3) 6.08 (s, 2H), 6.63 (d, J = 8 Hz, 2H), 7.05 (t, J = 8.05 Hz, 1H), 7.19 (m, 8H), 7.36 (d, J = 8.05, 4H), 7.62 (d, J = 7.45 Hz, 4H). IR (crystals, ATR, selected bands) cm−1: 3310, 3360 (NH).

Refinement  

Crystal data, data collection and structure refinement details for [pyrr2Py]H2, [pyrr2Py]Ni(CO), [pyrr2Py]Ni(NH3) and [pyrr2Py]Ni(NCMe)·hexane are summarized in Table 1. Non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms, except for the N—H hydrogen atoms, were placed in calculated positions using riding models, and refined riding on their parent atoms with C—H = 0.95 Å and U iso(H) = 1.2U eq(C) for aromatic hydrogen atoms, C—H = 0.99 Å and U iso(H) = 1.2U eq(C) for methyl­ene hydrogen atoms (of hexa­ne), and C—H = 0.98 Å with U iso(H) = 1.5U eq(C) for methyl hydrogen atoms. The N—H hydrogen atoms of [pyrr2Py]H2 and [pyrr2Py]Ni(NH3) were obtained from a difference-Fourier map and refined freely. The nickel carbonyl complex [pyrr2Py]Ni(CO) is located on a plane of symmetry containing the Ni–CO moiety but perpendicular to the [pyrr2Py] ligand plane, and consequently only a half is contained in the asymmetric unit. The complex [pyrr2Py]Ni(NCCH3) crystallizes with a mol­ecule of hexane, which was disordered over two sites [with refined occupancy rates of 77.9 (5)% and 22.1 (5)%]. C—C bond distances were restrained to a target value of 1.53 (2) Å (DFIX restraint of SHELXL), 1,3 C⋯C distances were restrained to be similar to each other (SADI restraint of SHELXL, esd = 0.04 Å), and U ij components of ADPs were restrained to be similar for atoms closer to each other than two Å (SIMU restraint of SHELXL, esd = 0.02 Å2 for terminal atoms and 0.01 Å2 for all others).

Table 1. Experimental details.

  [pyrr2PyH2] [pyrr2Py]Ni(CO) [pyrr2Py]Ni(NH3) [pyrr2Py]Ni(NCMe)
Crystal data
Chemical formula C41H35N3 [Ni(C41H33N3)(CO)] [Ni(C41H33N3)(NH3)] [Ni(C41H33N3)(C2H3N)]
M r 569.72 654.42 643.45 753.64
Crystal system, space group Monoclinic, P21/c Monoclinic, P121/m1 Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 100 100 100 100
a, b, c (Å) 14.8940 (15), 35.155 (4), 5.9513 (6) 6.6482 (4), 27.1709 (18), 9.1322 (6) 15.9773 (6), 14.9441 (5), 14.3238 (5) 11.2735 (16), 14.1802 (19), 14.688 (2)
α, β, γ (°) 90, 100.987 (2), 90 90, 101.0700 (12), 90 90, 107.8140 (8), 90 67.162 (2), 68.881 (2), 80.665 (2)
V3) 3059.0 (5) 1618.92 (18) 3256.1 (2) 2018.0 (5)
Z 4 2 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.07 0.64 0.63 0.52
Crystal size (mm) 0.28 × 0.18 × 0.12 0.36 × 0.27 × 0.05 0.46 × 0.41 × 0.14 0.20 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker D8 Quest with a Photon 100 CMOS detector Bruker D8 Quest with a Photon 100 CMOS detector Bruker D8 Quest with a Photon 100 CMOS detector Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.341, 0.431 0.859, 1.000 0.858, 0.967 0.686, 0.899
No. of measured, independent and observed [I > 2σ(I)] reflections 31843, 7596, 5005 18888, 4080, 3280 48278, 9931, 8502 21869, 9994, 7327
R int 0.076 0.057 0.026 0.058
(sin θ/λ)max−1) 0.669 0.667 0.714 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.076, 0.182, 1.06 0.050, 0.119, 1.07 0.036, 0.098, 1.05 0.068, 0.193, 1.00
No. of reflections 7596 4080 9931 9994
No. of parameters 409 222 431 551
No. of restraints 0 0 0 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.25 0.67, −0.33 0.51, −0.26 1.75, −0.93

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015b ), SHELXL (Sheldrick, 2015a ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) pyrr2PyH2, pyrr2PyNiCO, pyrr2PyNiNH3, pyrr2PyNiCNMe. DOI: 10.1107/S2056989020013341/zl2799sup1.cif

e-76-01741-sup1.cif (5.1MB, cif)

Structure factors: contains datablock(s) pyrr2PyH2. DOI: 10.1107/S2056989020013341/zl2799pyrr2PyH2sup2.hkl

Structure factors: contains datablock(s) pyrr2PyNiCO. DOI: 10.1107/S2056989020013341/zl2799pyrr2PyNiCOsup3.hkl

Structure factors: contains datablock(s) pyrr2PyNiNH3. DOI: 10.1107/S2056989020013341/zl2799pyrr2PyNiNH3sup4.hkl

Structure factors: contains datablock(s) pyrr2PyNiCNMe. DOI: 10.1107/S2056989020013341/zl2799pyrr2PyNiCNMesup5.hkl

CCDC references: 2035500, 2035499, 2035498, 2035497

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Muhammed Yousufuddin for the collection of data for some of the mol­ecules presented in the manuscript.

supplementary crystallographic information

2,6-Bis[3,5-bis(4-methylphenyl)pyrrol-2-yl]pyridine (pyrr2PyH2). Crystal data

C41H35N3 F(000) = 1208
Mr = 569.72 Dx = 1.237 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.8940 (15) Å Cell parameters from 6014 reflections
b = 35.155 (4) Å θ = 3.0–28.0°
c = 5.9513 (6) Å µ = 0.07 mm1
β = 100.987 (2)° T = 100 K
V = 3059.0 (5) Å3 Plates, yellow
Z = 4 0.28 × 0.18 × 0.12 mm

2,6-Bis[3,5-bis(4-methylphenyl)pyrrol-2-yl]pyridine (pyrr2PyH2). Data collection

Bruker D8 Quest with a Photon 100 CMOS detector diffractometer 7596 independent reflections
Radiation source: sealed tube 5005 reflections with I > 2σ(I)
Curved-graphite monochromator Rint = 0.076
Detector resolution: 8 pixels mm-1 θmax = 28.4°, θmin = 2.9°
φ and ω scans h = −19→19
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −46→46
Tmin = 0.341, Tmax = 0.431 l = −7→7
31843 measured reflections

2,6-Bis[3,5-bis(4-methylphenyl)pyrrol-2-yl]pyridine (pyrr2PyH2). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: mixed
wR(F2) = 0.182 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0644P)2 + 2.7619P] where P = (Fo2 + 2Fc2)/3
7596 reflections (Δ/σ)max < 0.001
409 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.25 e Å3

2,6-Bis[3,5-bis(4-methylphenyl)pyrrol-2-yl]pyridine (pyrr2PyH2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2,6-Bis[3,5-bis(4-methylphenyl)pyrrol-2-yl]pyridine (pyrr2PyH2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.31778 (13) 0.41078 (6) 0.3752 (4) 0.0269 (5)
H1 0.3085 (17) 0.3918 (8) 0.284 (5) 0.023 (7)*
N2 0.15143 (12) 0.38454 (5) 0.2069 (3) 0.0220 (4)
N3 0.15725 (13) 0.34057 (6) −0.1524 (3) 0.0218 (4)
H3 0.201 (2) 0.3567 (8) −0.090 (5) 0.035 (8)*
C1 0.39793 (16) 0.42861 (7) 0.4672 (4) 0.0284 (6)
C2 0.37801 (16) 0.45430 (8) 0.6255 (5) 0.0309 (6)
H2 0.420528 0.470845 0.716611 0.037*
C3 0.28267 (16) 0.45185 (7) 0.6295 (4) 0.0268 (5)
C4 0.24695 (15) 0.42390 (7) 0.4728 (4) 0.0239 (5)
C5 0.48235 (16) 0.41980 (7) 0.3826 (5) 0.0298 (6)
C6 0.47946 (18) 0.40299 (9) 0.1714 (5) 0.0411 (7)
H6 0.421944 0.397431 0.077399 0.049*
C7 0.55943 (19) 0.39409 (9) 0.0944 (6) 0.0422 (7)
H7 0.555510 0.382415 −0.051101 0.051*
C8 0.64462 (17) 0.40191 (8) 0.2254 (5) 0.0339 (6)
C9 0.64744 (19) 0.41900 (10) 0.4340 (6) 0.0486 (8)
H9 0.705182 0.424893 0.525887 0.058*
C10 0.56826 (18) 0.42799 (9) 0.5151 (6) 0.0456 (8)
H10 0.572601 0.439699 0.660598 0.055*
C11 0.73140 (18) 0.39198 (9) 0.1421 (6) 0.0419 (7)
H11A 0.778705 0.410843 0.199197 0.063*
H11B 0.719407 0.391943 −0.025612 0.063*
H11C 0.752380 0.366705 0.198732 0.063*
C12 0.23419 (16) 0.47692 (7) 0.7652 (4) 0.0257 (5)
C13 0.27181 (17) 0.48578 (7) 0.9915 (4) 0.0304 (6)
H13 0.329417 0.475331 1.059455 0.036*
C14 0.22680 (19) 0.50962 (8) 1.1203 (5) 0.0327 (6)
H14 0.253710 0.514926 1.274969 0.039*
C15 0.14287 (18) 0.52581 (7) 1.0254 (5) 0.0299 (6)
C16 0.10546 (17) 0.51734 (7) 0.7991 (5) 0.0286 (6)
H16 0.048060 0.528006 0.731306 0.034*
C17 0.15026 (16) 0.49357 (7) 0.6694 (5) 0.0265 (5)
H17 0.123589 0.488589 0.514138 0.032*
C18 0.0944 (2) 0.55256 (8) 1.1610 (5) 0.0396 (7)
H18A 0.106102 0.578898 1.120927 0.059*
H18B 0.117200 0.548580 1.324950 0.059*
H18C 0.028499 0.547566 1.125210 0.059*
C19 0.15686 (15) 0.40612 (7) 0.3944 (4) 0.0226 (5)
C20 0.08401 (16) 0.40989 (7) 0.5100 (4) 0.0247 (5)
H20 0.090314 0.424150 0.647765 0.030*
C21 0.00241 (16) 0.39217 (7) 0.4173 (4) 0.0250 (5)
H21 −0.048992 0.394936 0.489085 0.030*
C22 −0.00481 (16) 0.37054 (7) 0.2219 (4) 0.0245 (5)
H22 −0.061207 0.358902 0.155506 0.029*
C23 0.07227 (15) 0.36606 (6) 0.1232 (4) 0.0205 (5)
C24 0.07687 (15) 0.34119 (7) −0.0706 (4) 0.0215 (5)
C25 0.01808 (15) 0.31582 (7) −0.2046 (4) 0.0217 (5)
C26 0.06570 (15) 0.30020 (7) −0.3677 (4) 0.0235 (5)
H26 0.042322 0.281964 −0.481713 0.028*
C27 0.15233 (15) 0.31619 (7) −0.3319 (4) 0.0219 (5)
C28 −0.07829 (15) 0.30748 (7) −0.1857 (4) 0.0220 (5)
C29 −0.09980 (16) 0.28944 (7) 0.0044 (4) 0.0258 (5)
H29 −0.051897 0.280648 0.121771 0.031*
C30 −0.18999 (17) 0.28401 (7) 0.0264 (4) 0.0279 (5)
H30 −0.202766 0.271797 0.159191 0.033*
C31 −0.26155 (16) 0.29607 (7) −0.1417 (5) 0.0279 (6)
C32 −0.24067 (16) 0.31310 (7) −0.3364 (5) 0.0300 (6)
H32 −0.288788 0.321051 −0.455786 0.036*
C33 −0.15012 (16) 0.31866 (7) −0.3587 (4) 0.0264 (5)
H33 −0.137268 0.330214 −0.493386 0.032*
C34 −0.35951 (18) 0.29081 (9) −0.1141 (6) 0.0425 (7)
H34A −0.376282 0.311221 −0.017785 0.064*
H34B −0.365963 0.266169 −0.041886 0.064*
H34C −0.399856 0.291641 −0.264779 0.064*
C35 0.23013 (15) 0.31055 (7) −0.4467 (4) 0.0224 (5)
C36 0.21959 (17) 0.29117 (7) −0.6546 (4) 0.0258 (5)
H36 0.161229 0.281478 −0.722971 0.031*
C37 0.29340 (17) 0.28587 (7) −0.7625 (4) 0.0274 (5)
H37 0.284801 0.272442 −0.903541 0.033*
C38 0.38005 (16) 0.29991 (7) −0.6680 (4) 0.0287 (6)
C39 0.39012 (16) 0.31946 (8) −0.4625 (5) 0.0321 (6)
H39 0.448292 0.329511 −0.395562 0.039*
C40 0.31675 (16) 0.32462 (8) −0.3528 (5) 0.0295 (6)
H40 0.325632 0.337963 −0.211463 0.035*
C41 0.46052 (19) 0.29329 (9) −0.7846 (5) 0.0396 (7)
H41A 0.505142 0.313831 −0.744108 0.059*
H41B 0.439234 0.292851 −0.950850 0.059*
H41C 0.489307 0.268885 −0.734267 0.059*

2,6-Bis[3,5-bis(4-methylphenyl)pyrrol-2-yl]pyridine (pyrr2PyH2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0196 (10) 0.0316 (12) 0.0297 (12) 0.0012 (8) 0.0049 (8) −0.0087 (10)
N2 0.0167 (9) 0.0257 (10) 0.0240 (11) 0.0030 (8) 0.0051 (8) 0.0003 (8)
N3 0.0155 (9) 0.0277 (11) 0.0224 (10) 0.0006 (8) 0.0041 (8) −0.0005 (8)
C1 0.0197 (12) 0.0332 (14) 0.0315 (14) 0.0017 (10) 0.0025 (10) −0.0049 (11)
C2 0.0203 (12) 0.0380 (14) 0.0322 (14) 0.0016 (10) −0.0007 (10) −0.0084 (12)
C3 0.0214 (11) 0.0311 (13) 0.0270 (13) 0.0054 (10) 0.0023 (10) −0.0012 (11)
C4 0.0199 (11) 0.0271 (12) 0.0254 (13) 0.0047 (9) 0.0061 (9) 0.0001 (10)
C5 0.0203 (12) 0.0307 (14) 0.0385 (15) 0.0021 (10) 0.0062 (11) −0.0067 (12)
C6 0.0221 (13) 0.0505 (18) 0.0509 (19) −0.0024 (12) 0.0074 (12) −0.0149 (15)
C7 0.0290 (14) 0.0495 (18) 0.0504 (19) −0.0028 (12) 0.0130 (13) −0.0179 (15)
C8 0.0218 (12) 0.0321 (14) 0.0497 (18) 0.0006 (10) 0.0117 (12) −0.0001 (13)
C9 0.0199 (13) 0.060 (2) 0.063 (2) −0.0009 (13) 0.0015 (13) −0.0137 (17)
C10 0.0257 (14) 0.060 (2) 0.0500 (19) −0.0005 (13) 0.0037 (13) −0.0205 (16)
C11 0.0251 (14) 0.0444 (17) 0.060 (2) −0.0001 (12) 0.0179 (13) 0.0017 (15)
C12 0.0230 (12) 0.0261 (13) 0.0282 (13) 0.0019 (9) 0.0056 (10) −0.0037 (10)
C13 0.0276 (13) 0.0338 (14) 0.0286 (14) 0.0050 (10) 0.0023 (11) −0.0023 (11)
C14 0.0402 (15) 0.0322 (14) 0.0260 (14) 0.0027 (11) 0.0071 (11) −0.0039 (11)
C15 0.0355 (14) 0.0259 (13) 0.0317 (14) 0.0020 (10) 0.0147 (11) 0.0011 (11)
C16 0.0247 (12) 0.0254 (13) 0.0367 (15) 0.0031 (10) 0.0087 (11) 0.0009 (11)
C17 0.0225 (12) 0.0258 (13) 0.0309 (14) −0.0005 (9) 0.0042 (10) −0.0027 (10)
C18 0.0478 (17) 0.0346 (15) 0.0415 (17) 0.0094 (13) 0.0212 (14) −0.0009 (13)
C19 0.0213 (11) 0.0215 (12) 0.0253 (13) 0.0028 (9) 0.0052 (9) 0.0015 (10)
C20 0.0257 (12) 0.0241 (12) 0.0263 (13) 0.0033 (9) 0.0098 (10) −0.0005 (10)
C21 0.0226 (12) 0.0227 (12) 0.0333 (14) 0.0036 (9) 0.0141 (10) 0.0010 (10)
C22 0.0201 (11) 0.0255 (12) 0.0294 (13) 0.0007 (9) 0.0084 (10) 0.0020 (10)
C23 0.0184 (11) 0.0225 (11) 0.0213 (12) 0.0020 (9) 0.0054 (9) 0.0039 (9)
C24 0.0171 (10) 0.0271 (12) 0.0212 (12) 0.0026 (9) 0.0061 (9) 0.0018 (10)
C25 0.0185 (11) 0.0248 (12) 0.0216 (12) 0.0003 (9) 0.0032 (9) 0.0028 (10)
C26 0.0203 (11) 0.0276 (13) 0.0222 (12) 0.0000 (9) 0.0027 (9) 0.0013 (10)
C27 0.0176 (11) 0.0266 (12) 0.0211 (12) 0.0023 (9) 0.0029 (9) 0.0024 (10)
C28 0.0191 (11) 0.0225 (12) 0.0248 (12) −0.0005 (9) 0.0053 (9) −0.0024 (9)
C29 0.0228 (12) 0.0309 (13) 0.0234 (13) −0.0007 (10) 0.0037 (10) 0.0013 (10)
C30 0.0306 (13) 0.0297 (13) 0.0259 (13) −0.0060 (10) 0.0120 (11) −0.0011 (10)
C31 0.0202 (12) 0.0278 (13) 0.0381 (15) −0.0033 (9) 0.0114 (10) −0.0069 (11)
C32 0.0201 (12) 0.0331 (14) 0.0360 (15) 0.0014 (10) 0.0034 (10) 0.0022 (11)
C33 0.0202 (11) 0.0322 (13) 0.0276 (13) −0.0003 (10) 0.0071 (10) 0.0039 (11)
C34 0.0243 (14) 0.0534 (18) 0.0538 (19) −0.0074 (12) 0.0179 (13) −0.0046 (15)
C35 0.0195 (11) 0.0249 (12) 0.0231 (12) 0.0058 (9) 0.0048 (9) 0.0038 (10)
C36 0.0242 (12) 0.0270 (13) 0.0258 (13) 0.0018 (9) 0.0035 (10) 0.0027 (10)
C37 0.0302 (13) 0.0299 (13) 0.0234 (13) 0.0052 (10) 0.0082 (10) −0.0003 (10)
C38 0.0221 (12) 0.0351 (14) 0.0311 (14) 0.0080 (10) 0.0110 (10) 0.0046 (11)
C39 0.0160 (11) 0.0453 (16) 0.0359 (15) 0.0023 (10) 0.0071 (10) −0.0037 (12)
C40 0.0222 (12) 0.0386 (15) 0.0282 (14) 0.0013 (10) 0.0058 (10) −0.0058 (11)
C41 0.0289 (14) 0.0569 (19) 0.0368 (16) 0.0090 (13) 0.0158 (12) 0.0023 (14)

2,6-Bis[3,5-bis(4-methylphenyl)pyrrol-2-yl]pyridine (pyrr2PyH2). Geometric parameters (Å, º)

N1—H1 0.86 (3) C19—C20 1.398 (3)
N1—C1 1.367 (3) C20—H20 0.9500
N1—C4 1.377 (3) C20—C21 1.384 (3)
N2—C19 1.339 (3) C21—H21 0.9500
N2—C23 1.355 (3) C21—C22 1.377 (3)
N3—H3 0.89 (3) C22—H22 0.9500
N3—C24 1.376 (3) C22—C23 1.394 (3)
N3—C27 1.360 (3) C23—C24 1.460 (3)
C1—C2 1.378 (4) C24—C25 1.390 (3)
C1—C5 1.474 (3) C25—C26 1.417 (3)
C2—H2 0.9500 C25—C28 1.490 (3)
C2—C3 1.427 (3) C26—H26 0.9500
C3—C4 1.389 (3) C26—C27 1.386 (3)
C3—C12 1.474 (3) C27—C35 1.466 (3)
C4—C19 1.473 (3) C28—C29 1.387 (3)
C5—C6 1.382 (4) C28—C33 1.393 (3)
C5—C10 1.399 (4) C29—H29 0.9500
C6—H6 0.9500 C29—C30 1.387 (3)
C6—C7 1.391 (4) C30—H30 0.9500
C7—H7 0.9500 C30—C31 1.382 (4)
C7—C8 1.384 (4) C31—C32 1.391 (4)
C8—C9 1.372 (4) C31—C34 1.510 (3)
C8—C11 1.511 (4) C32—H32 0.9500
C9—H9 0.9500 C32—C33 1.394 (3)
C9—C10 1.393 (4) C33—H33 0.9500
C10—H10 0.9500 C34—H34A 0.9800
C11—H11A 0.9800 C34—H34B 0.9800
C11—H11B 0.9800 C34—H34C 0.9800
C11—H11C 0.9800 C35—C36 1.395 (3)
C12—C13 1.392 (4) C35—C40 1.395 (3)
C12—C17 1.400 (3) C36—H36 0.9500
C13—H13 0.9500 C36—C37 1.388 (3)
C13—C14 1.391 (4) C37—H37 0.9500
C14—H14 0.9500 C37—C38 1.396 (4)
C14—C15 1.391 (4) C38—C39 1.386 (4)
C15—C16 1.388 (4) C38—C41 1.513 (3)
C15—C18 1.510 (4) C39—H39 0.9500
C16—H16 0.9500 C39—C40 1.388 (3)
C16—C17 1.391 (3) C40—H40 0.9500
C17—H17 0.9500 C41—H41A 0.9800
C18—H18A 0.9800 C41—H41B 0.9800
C18—H18B 0.9800 C41—H41C 0.9800
C18—H18C 0.9800
C1—N1—H1 129.5 (17) C21—C20—C19 117.8 (2)
C1—N1—C4 111.0 (2) C21—C20—H20 121.1
C4—N1—H1 119.0 (17) C20—C21—H21 119.8
C19—N2—C23 119.21 (19) C22—C21—C20 120.5 (2)
C24—N3—H3 117.5 (18) C22—C21—H21 119.8
C27—N3—H3 130.8 (18) C21—C22—H22 120.7
C27—N3—C24 111.56 (19) C21—C22—C23 118.7 (2)
N1—C1—C2 106.8 (2) C23—C22—H22 120.7
N1—C1—C5 120.2 (2) N2—C23—C22 121.3 (2)
C2—C1—C5 132.9 (2) N2—C23—C24 114.15 (19)
C1—C2—H2 125.8 C22—C23—C24 124.5 (2)
C1—C2—C3 108.5 (2) N3—C24—C23 117.7 (2)
C3—C2—H2 125.8 N3—C24—C25 106.4 (2)
C2—C3—C12 124.5 (2) C25—C24—C23 135.9 (2)
C4—C3—C2 106.6 (2) C24—C25—C26 107.4 (2)
C4—C3—C12 128.7 (2) C24—C25—C28 126.4 (2)
N1—C4—C3 107.1 (2) C26—C25—C28 126.2 (2)
N1—C4—C19 116.7 (2) C25—C26—H26 126.0
C3—C4—C19 136.2 (2) C27—C26—C25 108.1 (2)
C6—C5—C1 121.3 (2) C27—C26—H26 126.0
C6—C5—C10 117.9 (2) N3—C27—C26 106.6 (2)
C10—C5—C1 120.8 (2) N3—C27—C35 121.5 (2)
C5—C6—H6 119.5 C26—C27—C35 131.9 (2)
C5—C6—C7 121.0 (3) C29—C28—C25 121.8 (2)
C7—C6—H6 119.5 C29—C28—C33 117.9 (2)
C6—C7—H7 119.3 C33—C28—C25 120.2 (2)
C8—C7—C6 121.3 (3) C28—C29—H29 119.4
C8—C7—H7 119.3 C28—C29—C30 121.2 (2)
C7—C8—C11 121.3 (3) C30—C29—H29 119.4
C9—C8—C7 117.6 (2) C29—C30—H30 119.5
C9—C8—C11 121.2 (3) C31—C30—C29 121.1 (2)
C8—C9—H9 119.0 C31—C30—H30 119.5
C8—C9—C10 122.0 (3) C30—C31—C32 118.1 (2)
C10—C9—H9 119.0 C30—C31—C34 120.8 (2)
C5—C10—H10 119.9 C32—C31—C34 121.1 (2)
C9—C10—C5 120.1 (3) C31—C32—H32 119.5
C9—C10—H10 119.9 C31—C32—C33 120.9 (2)
C8—C11—H11A 109.5 C33—C32—H32 119.5
C8—C11—H11B 109.5 C28—C33—C32 120.7 (2)
C8—C11—H11C 109.5 C28—C33—H33 119.6
H11A—C11—H11B 109.5 C32—C33—H33 119.6
H11A—C11—H11C 109.5 C31—C34—H34A 109.5
H11B—C11—H11C 109.5 C31—C34—H34B 109.5
C13—C12—C3 121.0 (2) C31—C34—H34C 109.5
C13—C12—C17 117.7 (2) H34A—C34—H34B 109.5
C17—C12—C3 121.3 (2) H34A—C34—H34C 109.5
C12—C13—H13 119.3 H34B—C34—H34C 109.5
C14—C13—C12 121.4 (2) C36—C35—C27 120.9 (2)
C14—C13—H13 119.3 C36—C35—C40 117.9 (2)
C13—C14—H14 119.6 C40—C35—C27 121.2 (2)
C13—C14—C15 120.9 (3) C35—C36—H36 119.6
C15—C14—H14 119.6 C37—C36—C35 120.7 (2)
C14—C15—C18 121.4 (3) C37—C36—H36 119.6
C16—C15—C14 118.0 (2) C36—C37—H37 119.4
C16—C15—C18 120.5 (2) C36—C37—C38 121.3 (2)
C15—C16—H16 119.3 C38—C37—H37 119.4
C15—C16—C17 121.4 (2) C37—C38—C41 120.9 (2)
C17—C16—H16 119.3 C39—C38—C37 117.9 (2)
C12—C17—H17 119.6 C39—C38—C41 121.3 (2)
C16—C17—C12 120.7 (2) C38—C39—H39 119.4
C16—C17—H17 119.6 C38—C39—C40 121.2 (2)
C15—C18—H18A 109.5 C40—C39—H39 119.4
C15—C18—H18B 109.5 C35—C40—H40 119.5
C15—C18—H18C 109.5 C39—C40—C35 121.1 (2)
H18A—C18—H18B 109.5 C39—C40—H40 119.5
H18A—C18—H18C 109.5 C38—C41—H41A 109.5
H18B—C18—H18C 109.5 C38—C41—H41B 109.5
N2—C19—C4 114.3 (2) C38—C41—H41C 109.5
N2—C19—C20 122.3 (2) H41A—C41—H41B 109.5
C20—C19—C4 123.3 (2) H41A—C41—H41C 109.5
C19—C20—H20 121.1 H41B—C41—H41C 109.5
N1—C1—C2—C3 0.1 (3) C15—C16—C17—C12 1.0 (4)
N1—C1—C5—C6 19.5 (4) C17—C12—C13—C14 1.5 (4)
N1—C1—C5—C10 −160.0 (3) C18—C15—C16—C17 178.2 (2)
N1—C4—C19—N2 −12.1 (3) C19—N2—C23—C22 3.1 (3)
N1—C4—C19—C20 165.2 (2) C19—N2—C23—C24 −175.5 (2)
N2—C19—C20—C21 −3.7 (4) C19—C20—C21—C22 2.2 (4)
N2—C23—C24—N3 −3.0 (3) C20—C21—C22—C23 1.7 (4)
N2—C23—C24—C25 176.4 (3) C21—C22—C23—N2 −4.5 (3)
N3—C24—C25—C26 0.0 (3) C21—C22—C23—C24 174.0 (2)
N3—C24—C25—C28 −178.2 (2) C22—C23—C24—N3 178.4 (2)
N3—C27—C35—C36 −168.1 (2) C22—C23—C24—C25 −2.2 (4)
N3—C27—C35—C40 11.4 (4) C23—N2—C19—C4 178.4 (2)
C1—N1—C4—C3 1.4 (3) C23—N2—C19—C20 1.0 (3)
C1—N1—C4—C19 −178.1 (2) C23—C24—C25—C26 −179.5 (3)
C1—C2—C3—C4 0.8 (3) C23—C24—C25—C28 2.3 (4)
C1—C2—C3—C12 −175.3 (2) C24—N3—C27—C26 −0.3 (3)
C1—C5—C6—C7 −178.8 (3) C24—N3—C27—C35 −179.6 (2)
C1—C5—C10—C9 179.1 (3) C24—C25—C26—C27 −0.1 (3)
C2—C1—C5—C6 −156.7 (3) C24—C25—C28—C29 −66.8 (3)
C2—C1—C5—C10 23.7 (5) C24—C25—C28—C33 111.5 (3)
C2—C3—C4—N1 −1.3 (3) C25—C26—C27—N3 0.3 (3)
C2—C3—C4—C19 178.1 (3) C25—C26—C27—C35 179.5 (2)
C2—C3—C12—C13 −44.1 (4) C25—C28—C29—C30 175.9 (2)
C2—C3—C12—C17 133.9 (3) C25—C28—C33—C32 −176.0 (2)
C3—C4—C19—N2 168.6 (3) C26—C25—C28—C29 115.4 (3)
C3—C4—C19—C20 −14.1 (4) C26—C25—C28—C33 −66.3 (3)
C3—C12—C13—C14 179.6 (2) C26—C27—C35—C36 12.8 (4)
C3—C12—C17—C16 −179.7 (2) C26—C27—C35—C40 −167.8 (3)
C4—N1—C1—C2 −1.0 (3) C27—N3—C24—C23 179.8 (2)
C4—N1—C1—C5 −178.1 (2) C27—N3—C24—C25 0.2 (3)
C4—C3—C12—C13 140.8 (3) C27—C35—C36—C37 −180.0 (2)
C4—C3—C12—C17 −41.2 (4) C27—C35—C40—C39 −179.6 (2)
C4—C19—C20—C21 179.2 (2) C28—C25—C26—C27 178.0 (2)
C5—C1—C2—C3 176.7 (3) C28—C29—C30—C31 0.6 (4)
C5—C6—C7—C8 −0.4 (5) C29—C28—C33—C32 2.4 (4)
C6—C5—C10—C9 −0.4 (5) C29—C30—C31—C32 1.4 (4)
C6—C7—C8—C9 −0.4 (5) C29—C30—C31—C34 −178.6 (2)
C6—C7—C8—C11 179.6 (3) C30—C31—C32—C33 −1.5 (4)
C7—C8—C9—C10 0.7 (5) C31—C32—C33—C28 −0.4 (4)
C8—C9—C10—C5 −0.3 (5) C33—C28—C29—C30 −2.5 (4)
C10—C5—C6—C7 0.8 (5) C34—C31—C32—C33 178.5 (2)
C11—C8—C9—C10 −179.2 (3) C35—C36—C37—C38 −0.4 (4)
C12—C3—C4—N1 174.5 (2) C36—C35—C40—C39 −0.1 (4)
C12—C3—C4—C19 −6.1 (5) C36—C37—C38—C39 −0.2 (4)
C12—C13—C14—C15 −0.8 (4) C36—C37—C38—C41 178.7 (2)
C13—C12—C17—C16 −1.6 (4) C37—C38—C39—C40 0.6 (4)
C13—C14—C15—C16 0.2 (4) C38—C39—C40—C35 −0.5 (4)
C13—C14—C15—C18 −178.3 (3) C40—C35—C36—C37 0.6 (4)
C14—C15—C16—C17 −0.3 (4) C41—C38—C39—C40 −178.3 (3)

Carbonyl{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCO) . Crystal data

[Ni(C41H33N3)(CO)] F(000) = 684
Mr = 654.42 Dx = 1.342 Mg m3
Monoclinic, P121/m1 Mo Kα radiation, λ = 0.71073 Å
a = 6.6482 (4) Å Cell parameters from 5886 reflections
b = 27.1709 (18) Å θ = 3.0–30.5°
c = 9.1322 (6) Å µ = 0.64 mm1
β = 101.0700 (12)° T = 100 K
V = 1618.92 (18) Å3 Plates, yellow
Z = 2 0.36 × 0.27 × 0.05 mm

Carbonyl{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCO) . Data collection

Bruker D8 Quest with a Photon 100 CMOS detector diffractometer 4080 independent reflections
Radiation source: sealed tube 3280 reflections with I > 2σ(I)
Curved-graphite monochromator Rint = 0.057
Detector resolution: 8 pixels mm-1 θmax = 28.3°, θmin = 3.0°
φ and ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −36→36
Tmin = 0.859, Tmax = 1.000 l = −12→12
18888 measured reflections

Carbonyl{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCO) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.9514P] where P = (Fo2 + 2Fc2)/3
4080 reflections (Δ/σ)max < 0.001
222 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.33 e Å3

Carbonyl{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCO) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Carbonyl{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCO) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni −0.04446 (6) 0.750000 0.86705 (4) 0.01505 (12)
O −0.2636 (4) 0.750000 0.5582 (3) 0.0313 (6)
N1 0.1861 (4) 0.750000 1.0178 (3) 0.0161 (5)
N2 −0.0255 (3) 0.81813 (7) 0.89233 (19) 0.0169 (4)
C1 0.5450 (5) 0.750000 1.2176 (4) 0.0242 (7)
H1 0.670105 0.750000 1.288274 0.029*
C2 0.4567 (4) 0.79465 (9) 1.1677 (3) 0.0218 (5)
H2 0.519973 0.824808 1.203580 0.026*
C3 0.2721 (3) 0.79438 (8) 1.0632 (2) 0.0170 (4)
C4 0.1516 (3) 0.83425 (8) 0.9875 (2) 0.0183 (5)
C5 0.1610 (3) 0.88577 (8) 0.9845 (2) 0.0185 (5)
C6 −0.0168 (3) 0.90088 (8) 0.8840 (2) 0.0205 (5)
H6 −0.055029 0.933942 0.858799 0.025*
C7 −0.1264 (3) 0.85917 (8) 0.8283 (2) 0.0179 (4)
C8 0.3181 (3) 0.91905 (8) 1.0691 (2) 0.0185 (4)
C9 0.5277 (4) 0.91026 (9) 1.0823 (3) 0.0221 (5)
H9 0.572595 0.882978 1.031925 0.027*
C10 0.6717 (4) 0.94084 (9) 1.1680 (3) 0.0229 (5)
H10 0.813288 0.933585 1.176897 0.028*
C11 0.6134 (4) 0.98169 (9) 1.2407 (3) 0.0221 (5)
C12 0.4036 (4) 0.99210 (9) 1.2217 (3) 0.0233 (5)
H12 0.359528 1.020579 1.267031 0.028*
C13 0.2591 (4) 0.96129 (8) 1.1373 (3) 0.0218 (5)
H13 0.117622 0.969085 1.125842 0.026*
C14 0.7677 (4) 1.01476 (10) 1.3376 (3) 0.0294 (6)
H14A 0.906304 1.002061 1.340151 0.044*
H14B 0.739580 1.015472 1.439028 0.044*
H14C 0.757029 1.048148 1.296201 0.044*
C15 −0.3239 (3) 0.85618 (8) 0.7220 (2) 0.0174 (4)
C16 −0.3557 (4) 0.88339 (8) 0.5890 (3) 0.0210 (5)
H16 −0.250400 0.904361 0.568115 0.025*
C17 −0.5400 (4) 0.87994 (9) 0.4874 (3) 0.0242 (5)
H17 −0.558525 0.898537 0.397741 0.029*
C18 −0.6980 (4) 0.84969 (10) 0.5148 (3) 0.0246 (5)
C19 −0.6676 (4) 0.82337 (9) 0.6479 (3) 0.0243 (5)
H19 −0.773984 0.802848 0.669221 0.029*
C20 −0.4837 (4) 0.82661 (9) 0.7504 (3) 0.0218 (5)
H20 −0.466766 0.808452 0.840810 0.026*
C21 −0.8980 (4) 0.84547 (13) 0.4040 (3) 0.0388 (7)
H21A −0.898746 0.814872 0.347097 0.058*
H21B −0.912385 0.873591 0.335568 0.058*
H21C −1.012360 0.845229 0.457559 0.058*
C22 −0.2023 (5) 0.750000 0.6821 (4) 0.0204 (7)

Carbonyl{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCO) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0181 (2) 0.0143 (2) 0.01106 (19) 0.000 −0.00126 (14) 0.000
O 0.0447 (16) 0.0315 (14) 0.0148 (12) 0.000 −0.0018 (11) 0.000
N1 0.0188 (13) 0.0167 (13) 0.0115 (12) 0.000 −0.0003 (10) 0.000
N2 0.0214 (10) 0.0150 (9) 0.0133 (9) 0.0003 (7) 0.0003 (7) −0.0019 (7)
C1 0.0263 (17) 0.0288 (18) 0.0135 (15) 0.000 −0.0058 (13) 0.000
C2 0.0247 (12) 0.0216 (12) 0.0166 (11) −0.0031 (9) −0.0024 (9) −0.0031 (9)
C3 0.0239 (11) 0.0160 (10) 0.0106 (9) 0.0006 (8) 0.0020 (8) −0.0007 (8)
C4 0.0195 (11) 0.0190 (11) 0.0156 (10) −0.0015 (9) 0.0012 (8) −0.0008 (8)
C5 0.0216 (11) 0.0168 (11) 0.0169 (10) −0.0008 (9) 0.0032 (9) −0.0010 (8)
C6 0.0242 (12) 0.0150 (10) 0.0208 (11) 0.0002 (9) 0.0004 (9) 0.0004 (9)
C7 0.0203 (11) 0.0179 (11) 0.0145 (10) 0.0019 (9) 0.0009 (8) 0.0008 (8)
C8 0.0235 (11) 0.0158 (10) 0.0153 (10) −0.0033 (9) 0.0012 (8) 0.0011 (8)
C9 0.0252 (12) 0.0207 (11) 0.0212 (11) −0.0025 (9) 0.0066 (9) −0.0023 (9)
C10 0.0181 (11) 0.0267 (12) 0.0245 (12) −0.0038 (9) 0.0053 (9) 0.0000 (10)
C11 0.0236 (12) 0.0207 (11) 0.0209 (11) −0.0062 (9) 0.0019 (9) 0.0033 (9)
C12 0.0263 (12) 0.0151 (11) 0.0273 (12) −0.0009 (9) 0.0022 (10) −0.0027 (9)
C13 0.0196 (11) 0.0164 (11) 0.0278 (12) −0.0008 (9) 0.0001 (9) 0.0005 (9)
C14 0.0248 (13) 0.0307 (14) 0.0307 (13) −0.0071 (10) 0.0009 (10) −0.0061 (11)
C15 0.0198 (11) 0.0157 (10) 0.0157 (10) 0.0025 (8) 0.0007 (8) −0.0027 (8)
C16 0.0256 (12) 0.0166 (11) 0.0207 (11) 0.0024 (9) 0.0039 (9) 0.0004 (9)
C17 0.0288 (13) 0.0256 (12) 0.0171 (11) 0.0091 (10) 0.0022 (9) 0.0021 (9)
C18 0.0214 (12) 0.0330 (14) 0.0185 (11) 0.0066 (10) 0.0017 (9) −0.0026 (10)
C19 0.0213 (12) 0.0306 (13) 0.0215 (12) −0.0017 (10) 0.0051 (9) −0.0017 (10)
C20 0.0233 (12) 0.0236 (12) 0.0183 (11) 0.0022 (9) 0.0037 (9) 0.0012 (9)
C21 0.0231 (13) 0.067 (2) 0.0243 (13) 0.0050 (13) 0.0001 (10) 0.0025 (14)
C22 0.0260 (17) 0.0165 (15) 0.0185 (16) 0.000 0.0039 (13) 0.000

Carbonyl{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCO) . Geometric parameters (Å, º)

Ni—N1 1.853 (3) C10—H10 0.9500
Ni—N2i 1.8667 (18) C10—C11 1.386 (3)
Ni—N2 1.8666 (18) C11—C12 1.401 (3)
Ni—C22 1.809 (3) C11—C14 1.515 (3)
O—C22 1.126 (4) C12—H12 0.9500
N1—C3i 1.364 (2) C12—C13 1.391 (3)
N1—C3 1.364 (2) C13—H13 0.9500
N2—C4 1.393 (3) C14—H14A 0.9800
N2—C7 1.373 (3) C14—H14B 0.9800
C1—H1 0.9500 C14—H14C 0.9800
C1—C2 1.386 (3) C15—C16 1.402 (3)
C1—C2i 1.386 (3) C15—C20 1.395 (3)
C2—H2 0.9500 C16—H16 0.9500
C2—C3 1.403 (3) C16—C17 1.391 (3)
C3—C4 1.442 (3) C17—H17 0.9500
C4—C5 1.402 (3) C17—C18 1.394 (4)
C5—C6 1.411 (3) C18—C19 1.391 (3)
C5—C8 1.482 (3) C18—C21 1.512 (3)
C6—H6 0.9500 C19—H19 0.9500
C6—C7 1.390 (3) C19—C20 1.392 (3)
C7—C15 1.478 (3) C20—H20 0.9500
C8—C9 1.396 (3) C21—H21A 0.9800
C8—C13 1.398 (3) C21—H21B 0.9800
C9—H9 0.9500 C21—H21C 0.9800
C9—C10 1.390 (3)
N1—Ni—N2 83.20 (6) C11—C10—H10 119.2
N1—Ni—N2i 83.20 (6) C10—C11—C12 117.7 (2)
N2—Ni—N2i 165.18 (11) C10—C11—C14 122.3 (2)
C22—Ni—N1 160.41 (13) C12—C11—C14 119.9 (2)
C22—Ni—N2 97.39 (5) C11—C12—H12 119.6
C22—Ni—N2i 97.40 (6) C13—C12—C11 120.8 (2)
C3i—N1—Ni 117.66 (13) C13—C12—H12 119.6
C3—N1—Ni 117.66 (13) C8—C13—H13 119.4
C3i—N1—C3 124.2 (3) C12—C13—C8 121.2 (2)
C4—N2—Ni 114.70 (15) C12—C13—H13 119.4
C7—N2—Ni 137.48 (15) C11—C14—H14A 109.5
C7—N2—C4 107.19 (18) C11—C14—H14B 109.5
C2—C1—H1 118.9 C11—C14—H14C 109.5
C2i—C1—H1 118.9 H14A—C14—H14B 109.5
C2i—C1—C2 122.2 (3) H14A—C14—H14C 109.5
C1—C2—H2 120.7 H14B—C14—H14C 109.5
C1—C2—C3 118.6 (2) C16—C15—C7 120.5 (2)
C3—C2—H2 120.7 C20—C15—C7 121.4 (2)
N1—C3—C2 118.2 (2) C20—C15—C16 118.1 (2)
N1—C3—C4 110.88 (19) C15—C16—H16 119.7
C2—C3—C4 130.9 (2) C17—C16—C15 120.6 (2)
N2—C4—C3 112.82 (19) C17—C16—H16 119.7
N2—C4—C5 109.72 (19) C16—C17—H17 119.4
C5—C4—C3 137.4 (2) C16—C17—C18 121.2 (2)
C4—C5—C6 105.6 (2) C18—C17—H17 119.4
C4—C5—C8 129.0 (2) C17—C18—C21 121.4 (2)
C6—C5—C8 125.5 (2) C19—C18—C17 118.1 (2)
C5—C6—H6 125.8 C19—C18—C21 120.5 (2)
C7—C6—C5 108.4 (2) C18—C19—H19 119.4
C7—C6—H6 125.8 C18—C19—C20 121.1 (2)
N2—C7—C6 109.10 (19) C20—C19—H19 119.4
N2—C7—C15 122.3 (2) C15—C20—H20 119.6
C6—C7—C15 128.5 (2) C19—C20—C15 120.9 (2)
C9—C8—C5 122.2 (2) C19—C20—H20 119.6
C9—C8—C13 117.6 (2) C18—C21—H21A 109.5
C13—C8—C5 120.2 (2) C18—C21—H21B 109.5
C8—C9—H9 119.5 C18—C21—H21C 109.5
C10—C9—C8 121.0 (2) H21A—C21—H21B 109.5
C10—C9—H9 119.5 H21A—C21—H21C 109.5
C9—C10—H10 119.2 H21B—C21—H21C 109.5
C11—C10—C9 121.5 (2) O—C22—Ni 166.1 (3)
Ni—N1—C3—C2 −174.47 (18) C4—C5—C8—C9 45.6 (4)
Ni—N1—C3—C4 4.0 (3) C4—C5—C8—C13 −135.3 (3)
Ni—N2—C4—C3 −7.8 (2) C5—C6—C7—N2 1.1 (3)
Ni—N2—C4—C5 173.14 (15) C5—C6—C7—C15 178.8 (2)
Ni—N2—C7—C6 −170.94 (18) C5—C8—C9—C10 −177.0 (2)
Ni—N2—C7—C15 11.1 (4) C5—C8—C13—C12 177.7 (2)
N1—Ni—N2—C4 7.95 (17) C6—C5—C8—C9 −135.8 (2)
N1—Ni—N2—C7 177.3 (2) C6—C5—C8—C13 43.2 (3)
N1—Ni—C22—O 0.000 (5) C6—C7—C15—C16 48.5 (3)
N1—C3—C4—N2 2.5 (3) C6—C7—C15—C20 −131.3 (3)
N1—C3—C4—C5 −178.9 (3) C7—N2—C4—C3 179.68 (18)
N2i—Ni—N1—C3i 6.7 (2) C7—N2—C4—C5 0.7 (3)
N2i—Ni—N1—C3 179.2 (2) C7—C15—C16—C17 178.8 (2)
N2—Ni—N1—C3 −6.7 (2) C7—C15—C20—C19 −178.7 (2)
N2—Ni—N1—C3i −179.2 (2) C8—C5—C6—C7 −179.5 (2)
N2i—Ni—N2—C4 31.5 (6) C8—C9—C10—C11 −1.4 (4)
N2i—Ni—N2—C7 −159.1 (3) C9—C8—C13—C12 −3.2 (3)
N2—Ni—C22—O 90.49 (6) C9—C10—C11—C12 −1.8 (4)
N2i—Ni—C22—O −90.49 (6) C9—C10—C11—C14 178.5 (2)
N2—C4—C5—C6 0.0 (3) C10—C11—C12—C13 2.4 (4)
N2—C4—C5—C8 178.8 (2) C11—C12—C13—C8 0.1 (4)
N2—C7—C15—C16 −134.0 (2) C13—C8—C9—C10 3.9 (3)
N2—C7—C15—C20 46.2 (3) C14—C11—C12—C13 −177.8 (2)
C1—C2—C3—N1 1.2 (4) C15—C16—C17—C18 0.3 (4)
C1—C2—C3—C4 −176.9 (3) C16—C15—C20—C19 1.5 (3)
C2i—C1—C2—C3 −0.1 (5) C16—C17—C18—C19 0.8 (4)
C2—C3—C4—N2 −179.3 (2) C16—C17—C18—C21 −179.4 (2)
C2—C3—C4—C5 −0.6 (5) C17—C18—C19—C20 −0.8 (4)
C3i—N1—C3—C2 −2.6 (4) C18—C19—C20—C15 −0.4 (4)
C3i—N1—C3—C4 175.9 (2) C20—C15—C16—C17 −1.4 (3)
C3—C4—C5—C6 −178.7 (3) C21—C18—C19—C20 179.5 (2)
C3—C4—C5—C8 0.1 (5) C22—Ni—N1—C3i −86.2 (2)
C4—N2—C7—C6 −1.1 (3) C22—Ni—N1—C3 86.2 (2)
C4—N2—C7—C15 −179.0 (2) C22—Ni—N2—C4 −152.32 (18)
C4—C5—C6—C7 −0.7 (3) C22—Ni—N2—C7 17.0 (3)

Symmetry code: (i) x, −y+3/2, z.

Ammine{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiNH3) . Crystal data

[Ni(C41H33N3)(NH3)] F(000) = 1352
Mr = 643.45 Dx = 1.313 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.9773 (6) Å Cell parameters from 9841 reflections
b = 14.9441 (5) Å θ = 3.0–39.4°
c = 14.3238 (5) Å µ = 0.63 mm1
β = 107.8140 (8)° T = 100 K
V = 3256.1 (2) Å3 Plates, red
Z = 4 0.46 × 0.41 × 0.14 mm

Ammine{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiNH3) . Data collection

Bruker D8 Quest with a Photon 100 CMOS detector diffractometer 8502 reflections with I > 2σ(I)
Curved-graphite monochromator Rint = 0.026
φ and ω scans θmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −22→22
Tmin = 0.858, Tmax = 0.967 k = −21→21
48278 measured reflections l = −20→20
9931 independent reflections

Ammine{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiNH3) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: mixed
wR(F2) = 0.098 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0562P)2 + 1.1192P] where P = (Fo2 + 2Fc2)/3
9931 reflections (Δ/σ)max = 0.002
431 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.25 e Å3

Ammine{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiNH3) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ammine{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiNH3) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 0.10799 (2) 0.41253 (2) 0.93990 (2) 0.01428 (5)
N1 0.21118 (7) 0.43570 (7) 0.90627 (7) 0.01684 (19)
N2 0.05856 (7) 0.39854 (7) 0.80601 (7) 0.01515 (19)
N3 −0.00188 (7) 0.36827 (7) 0.94266 (7) 0.01631 (19)
N4 0.14688 (8) 0.46458 (8) 1.06929 (8) 0.0179 (2)
H4A 0.1037 (17) 0.4707 (17) 1.0960 (18) 0.060 (7)*
H4B 0.1871 (18) 0.4399 (19) 1.1142 (19) 0.063 (7)*
H4C 0.1692 (16) 0.5156 (18) 1.0630 (17) 0.056 (7)*
C1 0.29896 (8) 0.45061 (9) 0.94997 (9) 0.0190 (2)
C2 0.33888 (8) 0.47073 (10) 0.87809 (10) 0.0227 (3)
H2 0.399240 0.484362 0.889319 0.027*
C3 0.27366 (8) 0.46719 (9) 0.78618 (9) 0.0188 (2)
C4 0.19592 (8) 0.44495 (9) 0.80609 (9) 0.0171 (2)
C5 0.10722 (8) 0.42434 (8) 0.74805 (9) 0.0162 (2)
C6 0.06831 (9) 0.42720 (9) 0.64636 (9) 0.0185 (2)
H6 0.101605 0.443252 0.604162 0.022*
C7 −0.02032 (9) 0.40596 (9) 0.60869 (9) 0.0200 (2)
H7 −0.047903 0.408038 0.539816 0.024*
C8 −0.06959 (8) 0.38168 (9) 0.66984 (9) 0.0190 (2)
H8 −0.130417 0.368353 0.643358 0.023*
C9 −0.02792 (8) 0.37728 (8) 0.77075 (9) 0.0159 (2)
C10 −0.06230 (8) 0.35450 (8) 0.85048 (9) 0.0162 (2)
C11 −0.14162 (8) 0.32195 (8) 0.86028 (9) 0.0170 (2)
C12 −0.12798 (8) 0.31616 (9) 0.96247 (9) 0.0186 (2)
H12 −0.169888 0.296952 0.993071 0.022*
C13 −0.04184 (8) 0.34373 (8) 1.01047 (9) 0.0172 (2)
C14 0.34369 (8) 0.43631 (9) 1.05496 (9) 0.0196 (2)
C15 0.32402 (9) 0.36205 (10) 1.10428 (10) 0.0225 (3)
H15 0.278667 0.322055 1.070416 0.027*
C16 0.37015 (10) 0.34625 (10) 1.20222 (10) 0.0264 (3)
H16 0.354631 0.296548 1.234851 0.032*
C17 0.43869 (9) 0.40205 (11) 1.25325 (10) 0.0273 (3)
C18 0.45818 (9) 0.47588 (11) 1.20459 (11) 0.0274 (3)
H18 0.504218 0.515165 1.238430 0.033*
C19 0.41132 (9) 0.49320 (10) 1.10702 (10) 0.0233 (3)
H19 0.425507 0.544340 1.075466 0.028*
C20 0.49213 (12) 0.38050 (14) 1.35736 (12) 0.0393 (4)
H20A 0.458982 0.339379 1.386063 0.059*
H20B 0.504500 0.435775 1.395978 0.059*
H20C 0.547612 0.352361 1.357653 0.059*
C21 0.28514 (8) 0.48099 (9) 0.68838 (9) 0.0186 (2)
C22 0.32480 (11) 0.41602 (10) 0.64649 (11) 0.0266 (3)
H22 0.346065 0.362588 0.681707 0.032*
C23 0.33372 (12) 0.42831 (11) 0.55354 (11) 0.0308 (3)
H23 0.360985 0.383006 0.526433 0.037*
C24 0.30348 (10) 0.50564 (10) 0.49969 (10) 0.0245 (3)
C25 0.26657 (10) 0.57145 (10) 0.54301 (10) 0.0235 (3)
H25 0.247296 0.625774 0.508725 0.028*
C26 0.25718 (9) 0.55955 (10) 0.63571 (10) 0.0231 (3)
H26 0.231342 0.605643 0.663410 0.028*
C27 0.31087 (14) 0.51780 (13) 0.39833 (12) 0.0414 (4)
H27A 0.362859 0.485913 0.393138 0.062*
H27B 0.316402 0.581651 0.385761 0.062*
H27C 0.258167 0.493772 0.350014 0.062*
C28 0.00284 (8) 0.34193 (8) 1.11671 (9) 0.0179 (2)
C29 −0.03979 (9) 0.37551 (9) 1.18122 (10) 0.0215 (2)
H29 −0.096129 0.402330 1.155903 0.026*
C30 −0.00052 (11) 0.37002 (9) 1.28201 (10) 0.0257 (3)
H30 −0.031062 0.391957 1.324719 0.031*
C31 0.08258 (10) 0.33305 (9) 1.32141 (10) 0.0254 (3)
C32 0.12548 (10) 0.29963 (9) 1.25727 (10) 0.0238 (3)
H32 0.182468 0.274300 1.282871 0.029*
C33 0.08576 (9) 0.30297 (9) 1.15627 (9) 0.0202 (2)
H33 0.115269 0.278520 1.113748 0.024*
C34 0.12424 (13) 0.32882 (12) 1.43072 (11) 0.0371 (4)
H34A 0.148744 0.387517 1.454991 0.056*
H34B 0.171345 0.284084 1.446531 0.056*
H34C 0.079770 0.312095 1.461879 0.056*
C35 −0.22326 (8) 0.29502 (8) 0.78474 (9) 0.0181 (2)
C36 −0.22213 (8) 0.24553 (9) 0.70235 (10) 0.0205 (2)
H36 −0.167373 0.230297 0.693374 0.025*
C37 −0.29980 (9) 0.21818 (10) 0.63324 (10) 0.0235 (3)
H37 −0.297210 0.184450 0.577976 0.028*
C38 −0.38148 (9) 0.23948 (10) 0.64380 (11) 0.0250 (3)
C39 −0.38268 (9) 0.28783 (10) 0.72610 (11) 0.0263 (3)
H39 −0.437551 0.302475 0.735130 0.032*
C40 −0.30516 (9) 0.31540 (10) 0.79584 (10) 0.0232 (3)
H40 −0.307994 0.348378 0.851496 0.028*
C41 −0.46521 (10) 0.20943 (12) 0.56827 (12) 0.0343 (3)
H41A −0.480968 0.149536 0.585162 0.051*
H41B −0.456395 0.207820 0.503525 0.051*
H41C −0.512642 0.251416 0.567071 0.051*

Ammine{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiNH3) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.01402 (8) 0.01717 (8) 0.01271 (8) −0.00050 (5) 0.00565 (6) 0.00038 (5)
N1 0.0149 (5) 0.0218 (5) 0.0145 (4) −0.0004 (4) 0.0055 (4) 0.0009 (4)
N2 0.0152 (4) 0.0168 (5) 0.0146 (4) 0.0003 (4) 0.0063 (4) 0.0006 (3)
N3 0.0164 (5) 0.0190 (5) 0.0145 (4) −0.0014 (4) 0.0062 (4) 0.0005 (4)
N4 0.0192 (5) 0.0189 (5) 0.0165 (5) −0.0006 (4) 0.0070 (4) −0.0003 (4)
C1 0.0156 (5) 0.0250 (6) 0.0168 (5) −0.0010 (4) 0.0055 (4) 0.0006 (5)
C2 0.0157 (5) 0.0339 (7) 0.0198 (6) −0.0026 (5) 0.0074 (5) 0.0014 (5)
C3 0.0178 (5) 0.0237 (6) 0.0167 (5) −0.0007 (4) 0.0079 (4) 0.0011 (4)
C4 0.0168 (5) 0.0205 (6) 0.0151 (5) −0.0002 (4) 0.0064 (4) 0.0011 (4)
C5 0.0169 (5) 0.0171 (5) 0.0161 (5) 0.0006 (4) 0.0071 (4) 0.0001 (4)
C6 0.0214 (6) 0.0206 (6) 0.0151 (5) −0.0011 (4) 0.0080 (4) −0.0001 (4)
C7 0.0216 (6) 0.0235 (6) 0.0144 (5) −0.0015 (5) 0.0049 (5) −0.0003 (4)
C8 0.0172 (5) 0.0227 (6) 0.0166 (5) −0.0015 (4) 0.0045 (4) −0.0003 (4)
C9 0.0161 (5) 0.0158 (5) 0.0167 (5) 0.0002 (4) 0.0065 (4) −0.0004 (4)
C10 0.0161 (5) 0.0179 (5) 0.0154 (5) −0.0003 (4) 0.0061 (4) −0.0003 (4)
C11 0.0165 (5) 0.0162 (5) 0.0195 (5) −0.0009 (4) 0.0072 (4) −0.0010 (4)
C12 0.0196 (6) 0.0191 (6) 0.0198 (5) −0.0020 (4) 0.0099 (5) 0.0007 (4)
C13 0.0202 (5) 0.0169 (5) 0.0168 (5) −0.0004 (4) 0.0089 (4) 0.0006 (4)
C14 0.0145 (5) 0.0274 (6) 0.0175 (5) 0.0028 (5) 0.0057 (4) 0.0004 (5)
C15 0.0199 (6) 0.0261 (7) 0.0210 (6) 0.0009 (5) 0.0056 (5) 0.0010 (5)
C16 0.0259 (7) 0.0308 (7) 0.0224 (6) 0.0046 (5) 0.0074 (5) 0.0052 (5)
C17 0.0211 (6) 0.0423 (9) 0.0177 (6) 0.0060 (6) 0.0047 (5) −0.0007 (5)
C18 0.0181 (6) 0.0398 (8) 0.0230 (6) −0.0020 (5) 0.0044 (5) −0.0058 (6)
C19 0.0179 (6) 0.0303 (7) 0.0222 (6) −0.0013 (5) 0.0071 (5) −0.0014 (5)
C20 0.0319 (8) 0.0580 (11) 0.0229 (7) 0.0069 (8) 0.0007 (6) 0.0023 (7)
C21 0.0162 (5) 0.0238 (6) 0.0173 (5) −0.0025 (4) 0.0075 (4) 0.0002 (4)
C22 0.0366 (8) 0.0233 (7) 0.0228 (6) 0.0056 (5) 0.0137 (6) 0.0039 (5)
C23 0.0443 (9) 0.0289 (7) 0.0246 (7) 0.0100 (6) 0.0186 (6) 0.0018 (5)
C24 0.0297 (7) 0.0277 (7) 0.0194 (6) 0.0019 (5) 0.0122 (5) 0.0017 (5)
C25 0.0269 (7) 0.0246 (6) 0.0199 (6) 0.0028 (5) 0.0082 (5) 0.0038 (5)
C26 0.0253 (6) 0.0255 (6) 0.0211 (6) 0.0049 (5) 0.0107 (5) 0.0012 (5)
C27 0.0639 (12) 0.0437 (10) 0.0251 (7) 0.0160 (9) 0.0263 (8) 0.0079 (7)
C28 0.0229 (6) 0.0163 (5) 0.0165 (5) −0.0031 (4) 0.0089 (5) 0.0011 (4)
C29 0.0277 (6) 0.0182 (6) 0.0220 (6) −0.0020 (5) 0.0126 (5) 0.0005 (5)
C30 0.0409 (8) 0.0204 (6) 0.0208 (6) −0.0034 (5) 0.0169 (6) −0.0027 (5)
C31 0.0396 (8) 0.0198 (6) 0.0168 (6) −0.0074 (5) 0.0085 (5) 0.0002 (5)
C32 0.0269 (6) 0.0232 (6) 0.0193 (6) −0.0029 (5) 0.0042 (5) 0.0026 (5)
C33 0.0246 (6) 0.0194 (6) 0.0182 (5) −0.0022 (5) 0.0091 (5) 0.0015 (4)
C34 0.0552 (10) 0.0357 (8) 0.0172 (6) −0.0063 (7) 0.0062 (7) 0.0004 (6)
C35 0.0162 (5) 0.0183 (6) 0.0210 (6) −0.0011 (4) 0.0074 (4) 0.0016 (4)
C36 0.0172 (5) 0.0216 (6) 0.0239 (6) −0.0020 (4) 0.0080 (5) −0.0016 (5)
C37 0.0227 (6) 0.0250 (6) 0.0228 (6) −0.0056 (5) 0.0070 (5) −0.0015 (5)
C38 0.0183 (6) 0.0282 (7) 0.0270 (6) −0.0067 (5) 0.0049 (5) 0.0054 (5)
C39 0.0160 (6) 0.0327 (7) 0.0319 (7) −0.0012 (5) 0.0099 (5) 0.0030 (6)
C40 0.0192 (6) 0.0274 (7) 0.0264 (6) −0.0011 (5) 0.0120 (5) −0.0003 (5)
C41 0.0215 (7) 0.0433 (9) 0.0332 (8) −0.0101 (6) 0.0011 (6) 0.0045 (7)

Ammine{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiNH3) . Geometric parameters (Å, º)

Ni—N1 1.8858 (10) C20—H20A 0.9800
Ni—N2 1.8490 (10) C20—H20B 0.9800
Ni—N3 1.8876 (10) C20—H20C 0.9800
Ni—N4 1.9291 (11) C21—C22 1.3917 (19)
N1—C1 1.3679 (16) C21—C26 1.3932 (19)
N1—C4 1.3871 (15) C22—H22 0.9500
N2—C5 1.3554 (15) C22—C23 1.394 (2)
N2—C9 1.3558 (16) C23—H23 0.9500
N3—C10 1.3920 (15) C23—C24 1.391 (2)
N3—C13 1.3655 (15) C24—C25 1.3871 (19)
N4—H4A 0.89 (3) C24—C27 1.5033 (19)
N4—H4B 0.84 (3) C25—H25 0.9500
N4—H4C 0.86 (3) C25—C26 1.3925 (18)
C1—C2 1.3996 (17) C26—H26 0.9500
C1—C14 1.4699 (17) C27—H27A 0.9800
C2—H2 0.9500 C27—H27B 0.9800
C2—C3 1.4080 (18) C27—H27C 0.9800
C3—C4 1.3968 (17) C28—C29 1.3981 (17)
C3—C21 1.4818 (17) C28—C33 1.3986 (19)
C4—C5 1.4400 (17) C29—H29 0.9500
C5—C6 1.3986 (17) C29—C30 1.3894 (19)
C6—H6 0.9500 C30—H30 0.9500
C6—C7 1.3891 (18) C30—C31 1.389 (2)
C7—H7 0.9500 C31—C32 1.396 (2)
C7—C8 1.3930 (18) C31—C34 1.5036 (19)
C8—H8 0.9500 C32—H32 0.9500
C8—C9 1.3957 (17) C32—C33 1.3915 (18)
C9—C10 1.4511 (16) C33—H33 0.9500
C10—C11 1.4040 (16) C34—H34A 0.9800
C11—C12 1.4151 (17) C34—H34B 0.9800
C11—C35 1.4733 (17) C34—H34C 0.9800
C12—H12 0.9500 C35—C36 1.3976 (18)
C12—C13 1.3992 (17) C35—C40 1.3993 (17)
C13—C28 1.4702 (17) C36—H36 0.9500
C14—C15 1.4020 (19) C36—C37 1.3912 (18)
C14—C19 1.3976 (19) C37—H37 0.9500
C15—H15 0.9500 C37—C38 1.396 (2)
C15—C16 1.3907 (19) C38—C39 1.388 (2)
C16—H16 0.9500 C38—C41 1.509 (2)
C16—C17 1.393 (2) C39—H39 0.9500
C17—C18 1.390 (2) C39—C40 1.3945 (19)
C17—C20 1.509 (2) C40—H40 0.9500
C18—H18 0.9500 C41—H41A 0.9800
C18—C19 1.3929 (19) C41—H41B 0.9800
C19—H19 0.9500 C41—H41C 0.9800
N1—Ni—N3 163.95 (5) C17—C20—H20A 109.5
N1—Ni—N4 96.98 (5) C17—C20—H20B 109.5
N2—Ni—N1 83.41 (4) C17—C20—H20C 109.5
N2—Ni—N3 82.95 (4) H20A—C20—H20B 109.5
N2—Ni—N4 162.16 (5) H20A—C20—H20C 109.5
N3—Ni—N4 98.59 (5) H20B—C20—H20C 109.5
C1—N1—Ni 140.10 (9) C22—C21—C3 120.99 (12)
C1—N1—C4 106.75 (10) C22—C21—C26 117.86 (12)
C4—N1—Ni 113.07 (8) C26—C21—C3 121.15 (12)
C5—N2—Ni 117.40 (8) C21—C22—H22 119.6
C5—N2—C9 123.28 (11) C21—C22—C23 120.86 (13)
C9—N2—Ni 118.43 (8) C23—C22—H22 119.6
C10—N3—Ni 114.29 (8) C22—C23—H23 119.4
C13—N3—Ni 138.51 (9) C24—C23—C22 121.30 (13)
C13—N3—C10 107.19 (10) C24—C23—H23 119.4
Ni—N4—H4A 113.0 (16) C23—C24—C27 121.29 (13)
Ni—N4—H4B 120.3 (18) C25—C24—C23 117.64 (12)
Ni—N4—H4C 106.2 (16) C25—C24—C27 121.07 (13)
H4A—N4—H4B 103 (2) C24—C25—H25 119.3
H4A—N4—H4C 111 (2) C24—C25—C26 121.37 (13)
H4B—N4—H4C 103 (2) C26—C25—H25 119.3
N1—C1—C2 109.43 (11) C21—C26—H26 119.5
N1—C1—C14 123.64 (11) C25—C26—C21 120.91 (13)
C2—C1—C14 126.55 (11) C25—C26—H26 119.5
C1—C2—H2 126.1 C24—C27—H27A 109.5
C1—C2—C3 107.83 (11) C24—C27—H27B 109.5
C3—C2—H2 126.1 C24—C27—H27C 109.5
C2—C3—C21 127.47 (11) H27A—C27—H27B 109.5
C4—C3—C2 105.55 (11) H27A—C27—H27C 109.5
C4—C3—C21 126.95 (11) H27B—C27—H27C 109.5
N1—C4—C3 110.43 (11) C29—C28—C13 119.81 (12)
N1—C4—C5 113.98 (10) C29—C28—C33 118.31 (12)
C3—C4—C5 135.45 (11) C33—C28—C13 121.79 (11)
N2—C5—C4 110.79 (11) C28—C29—H29 119.7
N2—C5—C6 119.41 (11) C30—C29—C28 120.60 (13)
C6—C5—C4 129.80 (11) C30—C29—H29 119.7
C5—C6—H6 120.9 C29—C30—H30 119.4
C7—C6—C5 118.23 (11) C31—C30—C29 121.17 (13)
C7—C6—H6 120.9 C31—C30—H30 119.4
C6—C7—H7 119.3 C30—C31—C32 118.41 (12)
C6—C7—C8 121.36 (12) C30—C31—C34 120.24 (14)
C8—C7—H7 119.3 C32—C31—C34 121.35 (15)
C7—C8—H8 120.6 C31—C32—H32 119.6
C7—C8—C9 118.76 (12) C33—C32—C31 120.78 (13)
C9—C8—H8 120.6 C33—C32—H32 119.6
N2—C9—C8 118.92 (11) C28—C33—H33 119.7
N2—C9—C10 110.48 (10) C32—C33—C28 120.69 (12)
C8—C9—C10 130.58 (11) C32—C33—H33 119.7
N3—C10—C9 113.09 (10) C31—C34—H34A 109.5
N3—C10—C11 109.98 (10) C31—C34—H34B 109.5
C11—C10—C9 136.93 (11) C31—C34—H34C 109.5
C10—C11—C12 105.46 (11) H34A—C34—H34B 109.5
C10—C11—C35 130.14 (11) H34A—C34—H34C 109.5
C12—C11—C35 124.37 (11) H34B—C34—H34C 109.5
C11—C12—H12 126.1 C36—C35—C11 121.84 (11)
C13—C12—C11 107.90 (11) C36—C35—C40 117.73 (12)
C13—C12—H12 126.1 C40—C35—C11 120.38 (12)
N3—C13—C12 109.47 (11) C35—C36—H36 119.4
N3—C13—C28 123.82 (11) C37—C36—C35 121.14 (12)
C12—C13—C28 126.61 (11) C37—C36—H36 119.4
C15—C14—C1 121.12 (12) C36—C37—H37 119.5
C19—C14—C1 120.80 (12) C36—C37—C38 121.07 (13)
C19—C14—C15 117.94 (12) C38—C37—H37 119.5
C14—C15—H15 119.6 C37—C38—C41 120.51 (14)
C16—C15—C14 120.76 (13) C39—C38—C37 117.85 (13)
C16—C15—H15 119.6 C39—C38—C41 121.63 (14)
C15—C16—H16 119.4 C38—C39—H39 119.3
C15—C16—C17 121.11 (14) C38—C39—C40 121.48 (13)
C17—C16—H16 119.4 C40—C39—H39 119.3
C16—C17—C20 120.48 (15) C35—C40—H40 119.6
C18—C17—C16 118.22 (13) C39—C40—C35 120.72 (13)
C18—C17—C20 121.26 (15) C39—C40—H40 119.6
C17—C18—H18 119.5 C38—C41—H41A 109.5
C17—C18—C19 121.09 (14) C38—C41—H41B 109.5
C19—C18—H18 119.5 C38—C41—H41C 109.5
C14—C19—H19 119.6 H41A—C41—H41B 109.5
C18—C19—C14 120.85 (14) H41A—C41—H41C 109.5
C18—C19—H19 119.6 H41B—C41—H41C 109.5
Ni—N1—C1—C2 −175.37 (11) C5—N2—C9—C10 −178.59 (11)
Ni—N1—C1—C14 11.3 (2) C5—C6—C7—C8 −0.50 (19)
Ni—N1—C4—C3 176.50 (9) C6—C7—C8—C9 −1.2 (2)
Ni—N1—C4—C5 −7.17 (14) C7—C8—C9—N2 1.34 (18)
Ni—N2—C5—C4 9.41 (13) C7—C8—C9—C10 179.84 (13)
Ni—N2—C5—C6 −170.85 (9) C8—C9—C10—N3 −172.66 (13)
Ni—N2—C9—C8 169.03 (9) C8—C9—C10—C11 7.1 (3)
Ni—N2—C9—C10 −9.75 (14) C9—N2—C5—C4 178.36 (11)
Ni—N3—C10—C9 −0.02 (13) C9—N2—C5—C6 −1.90 (18)
Ni—N3—C10—C11 −179.83 (8) C9—C10—C11—C12 −179.68 (14)
Ni—N3—C13—C12 179.52 (10) C9—C10—C11—C35 2.3 (2)
Ni—N3—C13—C28 −4.1 (2) C10—N3—C13—C12 −1.25 (14)
N1—Ni—N2—C5 −10.93 (9) C10—N3—C13—C28 175.14 (11)
N1—Ni—N2—C9 179.57 (10) C10—C11—C12—C13 −0.82 (14)
N1—Ni—N3—C10 −36.0 (2) C10—C11—C35—C36 41.5 (2)
N1—Ni—N3—C13 143.17 (16) C10—C11—C35—C40 −141.21 (14)
N1—C1—C2—C3 −0.70 (16) C11—C12—C13—N3 1.30 (15)
N1—C1—C14—C15 40.6 (2) C11—C12—C13—C28 −174.95 (12)
N1—C1—C14—C19 −143.73 (13) C11—C35—C36—C37 177.93 (12)
N1—C4—C5—N2 −1.13 (15) C11—C35—C40—C39 −178.08 (13)
N1—C4—C5—C6 179.17 (12) C12—C11—C35—C36 −136.15 (14)
N2—Ni—N1—C1 −174.10 (15) C12—C11—C35—C40 41.12 (19)
N2—Ni—N1—C4 9.65 (9) C12—C13—C28—C29 −47.47 (19)
N2—Ni—N3—C10 −4.08 (9) C12—C13—C28—C33 129.04 (14)
N2—Ni—N3—C13 175.12 (14) C13—N3—C10—C9 −179.46 (10)
N2—C5—C6—C7 2.00 (18) C13—N3—C10—C11 0.73 (14)
N2—C9—C10—N3 5.93 (15) C13—C28—C29—C30 176.54 (12)
N2—C9—C10—C11 −174.33 (14) C13—C28—C33—C32 −177.98 (12)
N3—Ni—N1—C1 −142.19 (16) C14—C1—C2—C3 172.34 (13)
N3—Ni—N1—C4 41.6 (2) C14—C15—C16—C17 −1.9 (2)
N3—Ni—N2—C5 177.54 (10) C15—C14—C19—C18 0.7 (2)
N3—Ni—N2—C9 8.03 (9) C15—C16—C17—C18 2.0 (2)
N3—C10—C11—C12 0.07 (14) C15—C16—C17—C20 −175.81 (14)
N3—C10—C11—C35 −177.94 (12) C16—C17—C18—C19 −0.8 (2)
N3—C13—C28—C29 136.78 (13) C17—C18—C19—C14 −0.5 (2)
N3—C13—C28—C33 −46.72 (18) C19—C14—C15—C16 0.5 (2)
N4—Ni—N1—C1 23.86 (15) C20—C17—C18—C19 176.98 (14)
N4—Ni—N1—C4 −152.39 (9) C21—C3—C4—N1 178.67 (12)
N4—Ni—N2—C5 81.38 (18) C21—C3—C4—C5 3.5 (3)
N4—Ni—N2—C9 −88.12 (18) C21—C22—C23—C24 0.0 (3)
N4—Ni—N3—C10 157.98 (9) C22—C21—C26—C25 1.7 (2)
N4—Ni—N3—C13 −22.82 (14) C22—C23—C24—C25 2.0 (2)
C1—N1—C4—C3 −0.98 (15) C22—C23—C24—C27 −178.30 (17)
C1—N1—C4—C5 175.35 (11) C23—C24—C25—C26 −2.2 (2)
C1—C2—C3—C4 0.08 (16) C24—C25—C26—C21 0.4 (2)
C1—C2—C3—C21 −178.02 (13) C26—C21—C22—C23 −1.9 (2)
C1—C14—C15—C16 176.31 (13) C27—C24—C25—C26 178.10 (16)
C1—C14—C19—C18 −175.15 (13) C28—C29—C30—C31 1.4 (2)
C2—C1—C14—C15 −131.52 (15) C29—C28—C33—C32 −1.42 (19)
C2—C1—C14—C19 44.2 (2) C29—C30—C31—C32 −1.3 (2)
C2—C3—C4—N1 0.55 (15) C29—C30—C31—C34 179.26 (13)
C2—C3—C4—C5 −174.66 (15) C30—C31—C32—C33 −0.3 (2)
C2—C3—C21—C22 73.9 (2) C31—C32—C33—C28 1.6 (2)
C2—C3—C21—C26 −105.63 (17) C33—C28—C29—C30 −0.08 (19)
C3—C4—C5—N2 173.97 (14) C34—C31—C32—C33 179.22 (13)
C3—C4—C5—C6 −5.7 (3) C35—C11—C12—C13 177.34 (12)
C3—C21—C22—C23 178.53 (14) C35—C36—C37—C38 0.2 (2)
C3—C21—C26—C25 −178.73 (13) C36—C35—C40—C39 −0.7 (2)
C4—N1—C1—C2 1.02 (15) C36—C37—C38—C39 −0.8 (2)
C4—N1—C1—C14 −172.26 (12) C36—C37—C38—C41 179.97 (14)
C4—C3—C21—C22 −103.77 (17) C37—C38—C39—C40 0.7 (2)
C4—C3—C21—C26 76.66 (19) C38—C39—C40—C35 0.1 (2)
C4—C5—C6—C7 −178.31 (13) C40—C35—C36—C37 0.6 (2)
C5—N2—C9—C8 0.19 (18) C41—C38—C39—C40 179.91 (14)

(Acetonitrile-κN){2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCNMe) . Crystal data

[Ni(C41H33N3)(C2H3N)] Z = 2
Mr = 753.64 F(000) = 800
Triclinic, P1 Dx = 1.240 Mg m3
a = 11.2735 (16) Å Mo Kα radiation, λ = 0.71073 Å
b = 14.1802 (19) Å Cell parameters from 8799 reflections
c = 14.688 (2) Å θ = 2.5–32.8°
α = 67.162 (2)° µ = 0.52 mm1
β = 68.881 (2)° T = 100 K
γ = 80.665 (2)° Prism, colourless
V = 2018.0 (5) Å3 0.20 × 0.12 × 0.09 mm

(Acetonitrile-κN){2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCNMe) . Data collection

Bruker APEXII CCD diffractometer 7327 reflections with I > 2σ(I)
Curved-graphite monochromator Rint = 0.058
φ and ω scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −15→15
Tmin = 0.686, Tmax = 0.899 k = −18→18
21869 measured reflections l = −19→19
9994 independent reflections

(Acetonitrile-κN){2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCNMe) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1214P)2] where P = (Fo2 + 2Fc2)/3
9994 reflections (Δ/σ)max = 0.002
551 parameters Δρmax = 1.75 e Å3
178 restraints Δρmin = −0.93 e Å3

(Acetonitrile-κN){2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCNMe) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(Acetonitrile-κN){2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCNMe) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni 0.71466 (3) 1.00913 (3) 0.03328 (2) 0.02033 (13)
N1 0.7942 (2) 1.03447 (17) −0.11157 (17) 0.0212 (5)
N2 0.6207 (2) 0.91916 (17) 0.02538 (17) 0.0210 (5)
N3 0.6076 (2) 0.96688 (17) 0.17567 (17) 0.0224 (5)
N4 0.8317 (2) 1.07621 (18) 0.04797 (16) 0.0229 (5)
C1 0.9005 (2) 1.0819 (2) −0.19073 (19) 0.0223 (5)
C2 0.9285 (3) 1.0467 (2) −0.2735 (2) 0.0247 (6)
H2 0.998662 1.066023 −0.336441 0.030*
C3 0.8342 (3) 0.9777 (2) −0.2468 (2) 0.0226 (5)
C4 0.7529 (3) 0.9711 (2) −0.1464 (2) 0.0222 (5)
C5 0.9676 (3) 1.1629 (2) −0.19148 (19) 0.0226 (5)
C6 0.9035 (3) 1.2478 (2) −0.1678 (2) 0.0276 (6)
H6 0.813506 1.253780 −0.150189 0.033*
C7 0.9693 (3) 1.3232 (2) −0.1696 (2) 0.0333 (7)
H7 0.923784 1.379786 −0.152441 0.040*
C8 1.1014 (3) 1.3173 (2) −0.1963 (2) 0.0343 (7)
C9 1.1657 (3) 1.2342 (2) −0.2225 (2) 0.0311 (7)
H9 1.255844 1.229402 −0.242326 0.037*
C10 1.0997 (3) 1.1583 (2) −0.2200 (2) 0.0266 (6)
H10 1.145525 1.102123 −0.238019 0.032*
C11 1.1735 (4) 1.3984 (3) −0.1962 (3) 0.0535 (10)
H11A 1.217241 1.441655 −0.268374 0.080*
H11B 1.236159 1.365374 −0.160591 0.080*
H11C 1.113791 1.440597 −0.159493 0.080*
C12 0.8259 (3) 0.9241 (2) −0.31327 (19) 0.0241 (6)
C13 0.9345 (3) 0.8812 (2) −0.3679 (2) 0.0290 (6)
H13 1.014827 0.888036 −0.364089 0.035*
C14 0.9268 (3) 0.8288 (2) −0.4276 (2) 0.0332 (7)
H14 1.002180 0.800355 −0.464251 0.040*
C15 0.8110 (3) 0.8167 (2) −0.4353 (2) 0.0298 (6)
C16 0.7029 (3) 0.8629 (2) −0.3836 (2) 0.0296 (6)
H16 0.622987 0.857461 −0.389079 0.036*
C17 0.7102 (3) 0.9167 (2) −0.3242 (2) 0.0273 (6)
H17 0.635718 0.948668 −0.290877 0.033*
C18 0.8019 (4) 0.7559 (3) −0.4967 (3) 0.0419 (8)
H18A 0.783106 0.684718 −0.450295 0.063*
H18B 0.882819 0.758244 −0.552870 0.063*
H18C 0.733704 0.785281 −0.527028 0.063*
C19 0.6536 (3) 0.9030 (2) −0.0665 (2) 0.0229 (6)
C20 0.5975 (3) 0.8240 (2) −0.0690 (2) 0.0272 (6)
H20 0.618319 0.811856 −0.132312 0.033*
C21 0.5111 (3) 0.7634 (2) 0.0217 (2) 0.0296 (6)
H21 0.471606 0.710148 0.019940 0.035*
C22 0.4807 (3) 0.7788 (2) 0.1153 (2) 0.0278 (6)
H22 0.421338 0.736637 0.177326 0.033*
C23 0.5394 (2) 0.8577 (2) 0.1162 (2) 0.0220 (5)
C24 0.5332 (3) 0.8847 (2) 0.2030 (2) 0.0222 (5)
C25 0.4838 (3) 0.8383 (2) 0.3115 (2) 0.0231 (6)
C26 0.5283 (3) 0.8943 (2) 0.3523 (2) 0.0244 (6)
H26 0.511937 0.880844 0.424332 0.029*
C27 0.6013 (3) 0.9739 (2) 0.2682 (2) 0.0223 (5)
C28 0.3986 (3) 0.7499 (2) 0.3716 (2) 0.0224 (5)
C29 0.2832 (3) 0.7518 (2) 0.3561 (2) 0.0275 (6)
H29 0.258054 0.811361 0.307600 0.033*
C30 0.2044 (3) 0.6683 (2) 0.4102 (2) 0.0280 (6)
H30 0.126830 0.671260 0.397359 0.034*
C31 0.2374 (3) 0.5802 (2) 0.4830 (2) 0.0290 (6)
C32 0.3523 (3) 0.5792 (2) 0.4990 (2) 0.0331 (7)
H32 0.376789 0.520100 0.548445 0.040*
C33 0.4316 (3) 0.6622 (2) 0.4446 (2) 0.0290 (6)
H33 0.509344 0.659241 0.457219 0.035*
C34 0.1504 (3) 0.4896 (3) 0.5423 (3) 0.0412 (8)
H34A 0.198295 0.428387 0.572026 0.062*
H34B 0.116748 0.478387 0.494491 0.062*
H34C 0.079749 0.503573 0.598715 0.062*
C35 0.6484 (3) 1.0604 (2) 0.2766 (2) 0.0263 (6)
C36 0.6888 (3) 1.0435 (3) 0.3615 (2) 0.0336 (7)
H36 0.689473 0.976019 0.410764 0.040*
C37 0.7279 (3) 1.1237 (3) 0.3746 (3) 0.0408 (8)
H37 0.752837 1.110883 0.433680 0.049*
C38 0.7310 (3) 1.2221 (3) 0.3028 (3) 0.0434 (9)
C39 0.6875 (3) 1.2401 (3) 0.2198 (3) 0.0410 (8)
H39 0.686475 1.307769 0.171157 0.049*
C40 0.6455 (3) 1.1603 (2) 0.2071 (2) 0.0306 (6)
H40 0.614683 1.174097 0.150804 0.037*
C41 0.7823 (4) 1.3079 (4) 0.3137 (4) 0.0701 (14)
H41A 0.772811 1.291198 0.387242 0.105*
H41B 0.734805 1.371589 0.289428 0.105*
H41C 0.872489 1.316474 0.271541 0.105*
C42 0.9054 (3) 1.1128 (2) 0.0596 (2) 0.0229 (6)
C43 0.9938 (3) 1.1640 (2) 0.0752 (2) 0.0301 (6)
H43A 0.962221 1.233843 0.069903 0.045*
H43B 1.077168 1.166375 0.021547 0.045*
H43C 1.001893 1.126315 0.144527 0.045*
C1A 0.5344 (10) 0.5285 (8) −0.2757 (10) 0.090 (3) 0.779 (5)
H1AA 0.557765 0.492990 −0.325469 0.136* 0.779 (5)
H1AB 0.524481 0.602094 −0.312423 0.136* 0.779 (5)
H1AC 0.453946 0.502305 −0.220821 0.136* 0.779 (5)
C1B 0.6389 (7) 0.5100 (5) −0.2266 (5) 0.0786 (19) 0.779 (5)
H1BA 0.648783 0.435829 −0.188773 0.094* 0.779 (5)
H1BB 0.720963 0.534607 −0.281865 0.094* 0.779 (5)
C1C 0.6032 (7) 0.5668 (6) −0.1514 (6) 0.0899 (19) 0.779 (5)
H1CA 0.594961 0.640780 −0.190716 0.108* 0.779 (5)
H1CB 0.518935 0.543845 −0.098965 0.108* 0.779 (5)
C1D 0.6971 (6) 0.5521 (5) −0.0944 (5) 0.0818 (18) 0.779 (5)
H1DA 0.715769 0.477924 −0.064400 0.098* 0.779 (5)
H1DB 0.656402 0.576885 −0.035486 0.098* 0.779 (5)
C1E 0.8225 (6) 0.6066 (5) −0.1616 (5) 0.0698 (17) 0.779 (5)
H1EA 0.806894 0.679286 −0.200932 0.084* 0.779 (5)
H1EB 0.874385 0.573326 −0.211928 0.084* 0.779 (5)
C1F 0.8895 (11) 0.5976 (8) −0.0849 (8) 0.114 (3) 0.779 (5)
H1FA 0.976978 0.620915 −0.123713 0.170* 0.779 (5)
H1FB 0.890856 0.526034 −0.038434 0.170* 0.779 (5)
H1FC 0.843881 0.640080 −0.043258 0.170* 0.779 (5)
C1G 0.519 (4) 0.501 (2) −0.269 (3) 0.063 (5) 0.221 (5)
H1GA 0.508682 0.549644 −0.335107 0.095* 0.221 (5)
H1GB 0.438516 0.466834 −0.223634 0.095* 0.221 (5)
H1GC 0.585205 0.449655 −0.284042 0.095* 0.221 (5)
C1H 0.5578 (19) 0.558 (2) −0.215 (2) 0.084 (4) 0.221 (5)
H1HA 0.504530 0.534871 −0.140764 0.100* 0.221 (5)
H1HB 0.539431 0.632029 −0.246983 0.100* 0.221 (5)
C1I 0.6978 (19) 0.543 (2) −0.222 (2) 0.085 (4) 0.221 (5)
H1IA 0.715850 0.469931 −0.187097 0.102* 0.221 (5)
H1IB 0.751851 0.563699 −0.296523 0.102* 0.221 (5)
C1J 0.732 (2) 0.6058 (17) −0.172 (2) 0.090 (4) 0.221 (5)
H1JA 0.651340 0.636442 −0.137639 0.108* 0.221 (5)
H1JB 0.783165 0.663231 −0.229621 0.108* 0.221 (5)
C1K 0.802 (3) 0.5613 (16) −0.092 (2) 0.094 (4) 0.221 (5)
H1KA 0.856979 0.501915 −0.103297 0.113* 0.221 (5)
H1KB 0.741166 0.538388 −0.020175 0.113* 0.221 (5)
C1L 0.884 (4) 0.647 (2) −0.108 (3) 0.078 (5) 0.221 (5)
H1LA 0.941234 0.670951 −0.180777 0.116* 0.221 (5)
H1LB 0.934141 0.620361 −0.060830 0.116* 0.221 (5)
H1LC 0.828534 0.703624 −0.093759 0.116* 0.221 (5)

(Acetonitrile-κN){2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCNMe) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0217 (2) 0.0251 (2) 0.01235 (18) −0.00525 (13) −0.00082 (13) −0.00728 (14)
N1 0.0227 (11) 0.0236 (11) 0.0153 (10) −0.0031 (9) −0.0035 (9) −0.0066 (9)
N2 0.0209 (11) 0.0276 (12) 0.0133 (10) −0.0047 (9) −0.0018 (8) −0.0079 (9)
N3 0.0225 (11) 0.0271 (12) 0.0163 (10) −0.0034 (9) −0.0016 (9) −0.0095 (9)
N4 0.0243 (11) 0.0282 (12) 0.0111 (10) −0.0064 (9) 0.0010 (8) −0.0058 (9)
C1 0.0210 (13) 0.0272 (14) 0.0125 (11) −0.0021 (11) −0.0009 (10) −0.0043 (10)
C2 0.0250 (13) 0.0289 (14) 0.0151 (12) −0.0008 (11) −0.0017 (10) −0.0070 (11)
C3 0.0247 (13) 0.0273 (14) 0.0135 (12) 0.0010 (11) −0.0042 (10) −0.0075 (10)
C4 0.0250 (13) 0.0261 (14) 0.0148 (12) −0.0011 (11) −0.0054 (10) −0.0075 (10)
C5 0.0245 (13) 0.0260 (13) 0.0115 (11) −0.0038 (11) −0.0018 (10) −0.0030 (10)
C6 0.0301 (15) 0.0299 (15) 0.0190 (13) −0.0029 (12) −0.0058 (11) −0.0060 (11)
C7 0.0455 (18) 0.0264 (15) 0.0245 (15) −0.0033 (13) −0.0066 (13) −0.0090 (12)
C8 0.0450 (18) 0.0346 (16) 0.0188 (14) −0.0156 (14) −0.0057 (13) −0.0036 (12)
C9 0.0283 (15) 0.0400 (17) 0.0195 (13) −0.0083 (13) −0.0047 (11) −0.0050 (12)
C10 0.0281 (14) 0.0294 (15) 0.0156 (12) −0.0033 (11) −0.0024 (11) −0.0047 (11)
C11 0.065 (3) 0.053 (2) 0.045 (2) −0.028 (2) −0.0103 (19) −0.0168 (18)
C12 0.0298 (14) 0.0270 (14) 0.0106 (11) −0.0032 (11) −0.0002 (10) −0.0066 (10)
C13 0.0274 (14) 0.0364 (16) 0.0198 (13) −0.0018 (12) −0.0016 (11) −0.0119 (12)
C14 0.0363 (17) 0.0378 (17) 0.0204 (14) 0.0005 (13) 0.0010 (12) −0.0153 (13)
C15 0.0395 (17) 0.0325 (15) 0.0142 (12) −0.0067 (13) −0.0008 (11) −0.0100 (11)
C16 0.0325 (15) 0.0398 (16) 0.0179 (13) −0.0049 (13) −0.0063 (11) −0.0120 (12)
C17 0.0304 (15) 0.0353 (15) 0.0142 (12) 0.0002 (12) −0.0030 (11) −0.0111 (11)
C18 0.055 (2) 0.0460 (19) 0.0255 (16) −0.0127 (16) −0.0008 (15) −0.0210 (15)
C19 0.0243 (13) 0.0290 (14) 0.0132 (12) 0.0002 (11) −0.0030 (10) −0.0085 (10)
C20 0.0299 (15) 0.0353 (15) 0.0169 (13) −0.0067 (12) −0.0039 (11) −0.0110 (12)
C21 0.0316 (15) 0.0347 (16) 0.0232 (14) −0.0116 (12) −0.0042 (12) −0.0114 (12)
C22 0.0270 (14) 0.0328 (15) 0.0189 (13) −0.0110 (12) 0.0000 (11) −0.0073 (12)
C23 0.0208 (13) 0.0268 (13) 0.0137 (12) −0.0027 (10) −0.0004 (10) −0.0065 (10)
C24 0.0217 (13) 0.0260 (13) 0.0165 (12) −0.0038 (10) −0.0019 (10) −0.0079 (10)
C25 0.0204 (13) 0.0289 (14) 0.0165 (12) −0.0021 (11) −0.0014 (10) −0.0081 (11)
C26 0.0238 (13) 0.0330 (15) 0.0148 (12) −0.0027 (11) −0.0016 (10) −0.0105 (11)
C27 0.0222 (13) 0.0282 (14) 0.0146 (12) −0.0020 (11) −0.0024 (10) −0.0085 (10)
C28 0.0241 (13) 0.0243 (13) 0.0144 (12) −0.0039 (11) 0.0001 (10) −0.0069 (10)
C29 0.0290 (14) 0.0274 (14) 0.0186 (13) −0.0016 (11) −0.0043 (11) −0.0033 (11)
C30 0.0250 (14) 0.0346 (15) 0.0223 (14) −0.0048 (12) −0.0035 (11) −0.0104 (12)
C31 0.0340 (16) 0.0301 (15) 0.0202 (13) −0.0075 (12) −0.0019 (12) −0.0101 (12)
C32 0.0402 (17) 0.0275 (15) 0.0252 (15) −0.0031 (13) −0.0100 (13) −0.0024 (12)
C33 0.0275 (14) 0.0333 (15) 0.0241 (14) −0.0036 (12) −0.0077 (12) −0.0074 (12)
C34 0.045 (2) 0.0354 (17) 0.0371 (18) −0.0169 (15) −0.0078 (15) −0.0053 (14)
C35 0.0221 (13) 0.0374 (16) 0.0189 (13) −0.0037 (12) 0.0020 (10) −0.0164 (12)
C36 0.0269 (15) 0.054 (2) 0.0222 (14) −0.0069 (14) 0.0008 (11) −0.0220 (14)
C37 0.0291 (16) 0.066 (2) 0.0367 (18) −0.0086 (15) −0.0001 (13) −0.0357 (18)
C38 0.0357 (18) 0.055 (2) 0.047 (2) −0.0112 (15) 0.0054 (15) −0.0389 (18)
C39 0.0355 (17) 0.0375 (18) 0.046 (2) −0.0045 (14) 0.0027 (15) −0.0235 (16)
C40 0.0254 (14) 0.0332 (16) 0.0290 (15) −0.0041 (12) 0.0008 (12) −0.0145 (13)
C41 0.064 (3) 0.081 (3) 0.084 (3) −0.019 (2) 0.000 (2) −0.064 (3)
C42 0.0268 (14) 0.0238 (13) 0.0143 (12) −0.0032 (11) −0.0034 (10) −0.0049 (10)
C43 0.0299 (15) 0.0332 (16) 0.0292 (15) −0.0073 (12) −0.0112 (12) −0.0095 (13)
C1A 0.094 (6) 0.093 (6) 0.098 (5) −0.016 (5) −0.010 (5) −0.061 (5)
C1B 0.092 (4) 0.070 (4) 0.068 (3) −0.007 (3) −0.014 (3) −0.027 (3)
C1C 0.104 (4) 0.080 (4) 0.082 (4) −0.008 (3) −0.023 (3) −0.030 (3)
C1D 0.087 (4) 0.070 (3) 0.082 (4) −0.006 (3) −0.020 (3) −0.027 (3)
C1E 0.078 (4) 0.059 (3) 0.063 (3) −0.012 (3) −0.010 (3) −0.020 (3)
C1F 0.121 (6) 0.121 (7) 0.107 (7) −0.036 (7) −0.012 (6) −0.060 (6)
C1G 0.084 (10) 0.062 (10) 0.076 (9) −0.002 (9) −0.048 (8) −0.038 (8)
C1H 0.098 (6) 0.085 (6) 0.076 (6) −0.003 (6) −0.026 (6) −0.038 (5)
C1I 0.095 (5) 0.080 (5) 0.077 (5) −0.008 (5) −0.023 (5) −0.028 (5)
C1J 0.094 (5) 0.081 (5) 0.079 (5) −0.006 (5) −0.017 (5) −0.020 (5)
C1K 0.097 (6) 0.084 (6) 0.087 (6) −0.008 (6) −0.017 (6) −0.025 (6)
C1L 0.097 (10) 0.072 (11) 0.078 (10) −0.033 (10) −0.028 (9) −0.031 (9)

(Acetonitrile-κN){2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCNMe) . Geometric parameters (Å, º)

Ni—N1 1.896 (2) C30—C31 1.394 (4)
Ni—N2 1.846 (2) C31—C32 1.394 (4)
Ni—N3 1.906 (2) C31—C34 1.515 (4)
Ni—N4 1.861 (2) C32—H32 0.9500
N1—C1 1.375 (3) C32—C33 1.386 (4)
N1—C4 1.397 (3) C33—H33 0.9500
N2—C19 1.365 (3) C34—H34A 0.9800
N2—C23 1.362 (3) C34—H34B 0.9800
N3—C24 1.390 (3) C34—H34C 0.9800
N3—C27 1.376 (3) C35—C36 1.401 (4)
N4—C42 1.140 (3) C35—C40 1.391 (4)
C1—C2 1.404 (4) C36—H36 0.9500
C1—C5 1.469 (4) C36—C37 1.385 (4)
C2—H2 0.9500 C37—H37 0.9500
C2—C3 1.407 (4) C37—C38 1.381 (5)
C3—C4 1.403 (4) C38—C39 1.393 (5)
C3—C12 1.485 (4) C38—C41 1.512 (5)
C4—C19 1.445 (4) C39—H39 0.9500
C5—C6 1.398 (4) C39—C40 1.393 (4)
C5—C10 1.392 (4) C40—H40 0.9500
C6—H6 0.9500 C41—H41A 0.9800
C6—C7 1.384 (4) C41—H41B 0.9800
C7—H7 0.9500 C41—H41C 0.9800
C7—C8 1.394 (5) C42—C43 1.449 (4)
C8—C9 1.391 (5) C43—H43A 0.9800
C8—C11 1.512 (4) C43—H43B 0.9800
C9—H9 0.9500 C43—H43C 0.9800
C9—C10 1.386 (4) C1A—H1AA 0.9800
C10—H10 0.9500 C1A—H1AB 0.9800
C11—H11A 0.9800 C1A—H1AC 0.9800
C11—H11B 0.9800 C1A—C1B 1.532 (6)
C11—H11C 0.9800 C1B—H1BA 0.9900
C12—C13 1.394 (4) C1B—H1BB 0.9900
C12—C17 1.395 (4) C1B—C1C 1.515 (5)
C13—H13 0.9500 C1C—H1CA 0.9900
C13—C14 1.382 (4) C1C—H1CB 0.9900
C14—H14 0.9500 C1C—C1D 1.515 (5)
C14—C15 1.393 (4) C1D—H1DA 0.9900
C15—C16 1.397 (4) C1D—H1DB 0.9900
C15—C18 1.506 (4) C1D—C1E 1.525 (5)
C16—H16 0.9500 C1E—H1EA 0.9900
C16—C17 1.393 (4) C1E—H1EB 0.9900
C17—H17 0.9500 C1E—C1F 1.526 (5)
C18—H18A 0.9800 C1F—H1FA 0.9800
C18—H18B 0.9800 C1F—H1FB 0.9800
C18—H18C 0.9800 C1F—H1FC 0.9800
C19—C20 1.391 (4) C1G—H1GA 0.9800
C20—H20 0.9500 C1G—H1GB 0.9800
C20—C21 1.382 (4) C1G—H1GC 0.9800
C21—H21 0.9500 C1G—C1H 1.529 (6)
C21—C22 1.387 (4) C1H—H1HA 0.9900
C22—H22 0.9500 C1H—H1HB 0.9900
C22—C23 1.395 (4) C1H—C1I 1.530 (6)
C23—C24 1.443 (4) C1I—H1IA 0.9900
C24—C25 1.396 (4) C1I—H1IB 0.9900
C25—C26 1.399 (4) C1I—C1J 1.519 (6)
C25—C28 1.481 (4) C1J—H1JA 0.9900
C26—H26 0.9500 C1J—H1JB 0.9900
C26—C27 1.401 (4) C1J—C1K 1.526 (6)
C27—C35 1.476 (4) C1K—H1KA 0.9900
C28—C29 1.393 (4) C1K—H1KB 0.9900
C28—C33 1.392 (4) C1K—C1L 1.533 (6)
C29—H29 0.9500 C1L—H1LA 0.9800
C29—C30 1.387 (4) C1L—H1LB 0.9800
C30—H30 0.9500 C1L—H1LC 0.9800
N1—Ni—N3 166.68 (9) C31—C32—H32 119.2
N2—Ni—N1 83.38 (9) C33—C32—C31 121.6 (3)
N2—Ni—N3 83.52 (9) C33—C32—H32 119.2
N2—Ni—N4 168.06 (10) C28—C33—H33 119.7
N4—Ni—N1 96.77 (9) C32—C33—C28 120.6 (3)
N4—Ni—N3 96.54 (10) C32—C33—H33 119.7
C1—N1—Ni 138.26 (19) C31—C34—H34A 109.5
C1—N1—C4 106.5 (2) C31—C34—H34B 109.5
C4—N1—Ni 113.43 (17) C31—C34—H34C 109.5
C19—N2—Ni 118.35 (18) H34A—C34—H34B 109.5
C23—N2—Ni 117.87 (18) H34A—C34—H34C 109.5
C23—N2—C19 122.5 (2) H34B—C34—H34C 109.5
C24—N3—Ni 112.48 (17) C36—C35—C27 119.3 (3)
C27—N3—Ni 138.85 (19) C40—C35—C27 122.2 (3)
C27—N3—C24 106.1 (2) C40—C35—C36 118.3 (3)
C42—N4—Ni 176.7 (2) C35—C36—H36 119.6
N1—C1—C2 109.5 (2) C37—C36—C35 120.9 (3)
N1—C1—C5 124.8 (2) C37—C36—H36 119.6
C2—C1—C5 125.5 (2) C36—C37—H37 119.6
C1—C2—H2 126.0 C38—C37—C36 120.8 (3)
C1—C2—C3 107.9 (2) C38—C37—H37 119.6
C3—C2—H2 126.0 C37—C38—C39 118.6 (3)
C2—C3—C12 125.8 (2) C37—C38—C41 120.4 (4)
C4—C3—C2 105.8 (2) C39—C38—C41 120.9 (4)
C4—C3—C12 128.4 (3) C38—C39—H39 119.5
N1—C4—C3 110.2 (2) C38—C39—C40 121.0 (3)
N1—C4—C19 113.8 (2) C40—C39—H39 119.5
C3—C4—C19 134.9 (3) C35—C40—C39 120.3 (3)
C6—C5—C1 122.1 (2) C35—C40—H40 119.9
C10—C5—C1 119.9 (3) C39—C40—H40 119.9
C10—C5—C6 117.9 (3) C38—C41—H41A 109.5
C5—C6—H6 119.6 C38—C41—H41B 109.5
C7—C6—C5 120.8 (3) C38—C41—H41C 109.5
C7—C6—H6 119.6 H41A—C41—H41B 109.5
C6—C7—H7 119.5 H41A—C41—H41C 109.5
C6—C7—C8 121.1 (3) H41B—C41—H41C 109.5
C8—C7—H7 119.5 N4—C42—C43 176.7 (3)
C7—C8—C11 121.2 (3) C42—C43—H43A 109.5
C9—C8—C7 118.2 (3) C42—C43—H43B 109.5
C9—C8—C11 120.6 (3) C42—C43—H43C 109.5
C8—C9—H9 119.6 H43A—C43—H43B 109.5
C10—C9—C8 120.8 (3) H43A—C43—H43C 109.5
C10—C9—H9 119.6 H43B—C43—H43C 109.5
C5—C10—H10 119.4 H1AA—C1A—H1AB 109.5
C9—C10—C5 121.2 (3) H1AA—C1A—H1AC 109.5
C9—C10—H10 119.4 H1AB—C1A—H1AC 109.5
C8—C11—H11A 109.5 C1B—C1A—H1AA 109.5
C8—C11—H11B 109.5 C1B—C1A—H1AB 109.5
C8—C11—H11C 109.5 C1B—C1A—H1AC 109.5
H11A—C11—H11B 109.5 C1A—C1B—H1BA 109.9
H11A—C11—H11C 109.5 C1A—C1B—H1BB 109.9
H11B—C11—H11C 109.5 H1BA—C1B—H1BB 108.3
C13—C12—C3 120.6 (3) C1C—C1B—C1A 109.1 (7)
C13—C12—C17 118.2 (3) C1C—C1B—H1BA 109.9
C17—C12—C3 121.2 (3) C1C—C1B—H1BB 109.9
C12—C13—H13 119.6 C1B—C1C—H1CA 108.6
C14—C13—C12 120.8 (3) C1B—C1C—H1CB 108.6
C14—C13—H13 119.6 H1CA—C1C—H1CB 107.6
C13—C14—H14 119.2 C1D—C1C—C1B 114.6 (6)
C13—C14—C15 121.5 (3) C1D—C1C—H1CA 108.6
C15—C14—H14 119.2 C1D—C1C—H1CB 108.6
C14—C15—C16 117.6 (3) C1C—C1D—H1DA 108.5
C14—C15—C18 121.5 (3) C1C—C1D—H1DB 108.5
C16—C15—C18 120.9 (3) C1C—C1D—C1E 114.9 (6)
C15—C16—H16 119.4 H1DA—C1D—H1DB 107.5
C17—C16—C15 121.1 (3) C1E—C1D—H1DA 108.5
C17—C16—H16 119.4 C1E—C1D—H1DB 108.5
C12—C17—H17 119.7 C1D—C1E—H1EA 110.7
C16—C17—C12 120.6 (3) C1D—C1E—H1EB 110.7
C16—C17—H17 119.7 C1D—C1E—C1F 105.3 (6)
C15—C18—H18A 109.5 H1EA—C1E—H1EB 108.8
C15—C18—H18B 109.5 C1F—C1E—H1EA 110.7
C15—C18—H18C 109.5 C1F—C1E—H1EB 110.7
H18A—C18—H18B 109.5 C1E—C1F—H1FA 109.5
H18A—C18—H18C 109.5 C1E—C1F—H1FB 109.5
H18B—C18—H18C 109.5 C1E—C1F—H1FC 109.5
N2—C19—C4 110.6 (2) H1FA—C1F—H1FB 109.5
N2—C19—C20 119.0 (2) H1FA—C1F—H1FC 109.5
C20—C19—C4 130.2 (2) H1FB—C1F—H1FC 109.5
C19—C20—H20 120.4 H1GA—C1G—H1GB 109.5
C21—C20—C19 119.1 (3) H1GA—C1G—H1GC 109.5
C21—C20—H20 120.4 H1GB—C1G—H1GC 109.5
C20—C21—H21 119.3 C1H—C1G—H1GA 109.5
C20—C21—C22 121.4 (3) C1H—C1G—H1GB 109.5
C22—C21—H21 119.3 C1H—C1G—H1GC 109.5
C21—C22—H22 120.8 C1G—C1H—H1HA 108.6
C21—C22—C23 118.4 (2) C1G—C1H—H1HB 108.6
C23—C22—H22 120.8 C1G—C1H—C1I 114.6 (17)
N2—C23—C22 119.5 (2) H1HA—C1H—H1HB 107.6
N2—C23—C24 110.7 (2) C1I—C1H—H1HA 108.6
C22—C23—C24 129.7 (2) C1I—C1H—H1HB 108.6
N3—C24—C23 114.4 (2) C1H—C1I—H1IA 109.2
N3—C24—C25 110.6 (2) C1H—C1I—H1IB 109.2
C25—C24—C23 134.3 (3) H1IA—C1I—H1IB 107.9
C24—C25—C26 105.9 (2) C1J—C1I—C1H 112.2 (15)
C24—C25—C28 127.3 (3) C1J—C1I—H1IA 109.2
C26—C25—C28 126.8 (2) C1J—C1I—H1IB 109.2
C25—C26—H26 126.1 C1I—C1J—H1JA 106.4
C25—C26—C27 107.9 (2) C1I—C1J—H1JB 106.4
C27—C26—H26 126.1 C1I—C1J—C1K 123.6 (18)
N3—C27—C26 109.5 (2) H1JA—C1J—H1JB 106.5
N3—C27—C35 124.7 (2) C1K—C1J—H1JA 106.4
C26—C27—C35 125.3 (2) C1K—C1J—H1JB 106.4
C29—C28—C25 120.9 (2) C1J—C1K—H1KA 110.4
C33—C28—C25 121.1 (3) C1J—C1K—H1KB 110.4
C33—C28—C29 118.0 (2) C1J—C1K—C1L 106.8 (15)
C28—C29—H29 119.4 H1KA—C1K—H1KB 108.6
C30—C29—C28 121.3 (3) C1L—C1K—H1KA 110.4
C30—C29—H29 119.4 C1L—C1K—H1KB 110.4
C29—C30—H30 119.5 C1K—C1L—H1LA 109.5
C29—C30—C31 120.9 (3) C1K—C1L—H1LB 109.5
C31—C30—H30 119.5 C1K—C1L—H1LC 109.5
C30—C31—C34 120.6 (3) H1LA—C1L—H1LB 109.5
C32—C31—C30 117.6 (3) H1LA—C1L—H1LC 109.5
C32—C31—C34 121.8 (3) H1LB—C1L—H1LC 109.5
Ni—N1—C1—C2 161.2 (2) C10—C5—C6—C7 −1.9 (4)
Ni—N1—C1—C5 −23.5 (4) C11—C8—C9—C10 178.2 (3)
Ni—N1—C4—C3 −166.90 (18) C12—C3—C4—N1 −179.7 (3)
Ni—N1—C4—C19 3.1 (3) C12—C3—C4—C19 13.3 (5)
Ni—N2—C19—C4 −6.0 (3) C12—C13—C14—C15 −0.1 (5)
Ni—N2—C19—C20 169.9 (2) C13—C12—C17—C16 3.5 (4)
Ni—N2—C23—C22 −170.8 (2) C13—C14—C15—C16 2.4 (4)
Ni—N2—C23—C24 6.5 (3) C13—C14—C15—C18 −177.4 (3)
Ni—N3—C24—C23 −7.9 (3) C14—C15—C16—C17 −1.7 (4)
Ni—N3—C24—C25 163.61 (19) C15—C16—C17—C12 −1.3 (4)
Ni—N3—C27—C26 −156.8 (2) C17—C12—C13—C14 −2.8 (4)
Ni—N3—C27—C35 31.3 (5) C18—C15—C16—C17 178.1 (3)
N1—Ni—N2—C19 6.3 (2) C19—N2—C23—C22 −4.1 (4)
N1—Ni—N2—C23 173.5 (2) C19—N2—C23—C24 173.1 (2)
N1—C1—C2—C3 2.0 (3) C19—C20—C21—C22 −1.0 (5)
N1—C1—C5—C6 −48.1 (4) C20—C21—C22—C23 0.2 (5)
N1—C1—C5—C10 134.1 (3) C21—C22—C23—N2 2.3 (4)
N1—C4—C19—N2 1.7 (3) C21—C22—C23—C24 −174.3 (3)
N1—C4—C19—C20 −173.7 (3) C22—C23—C24—N3 178.1 (3)
N2—Ni—N1—C1 −167.0 (3) C22—C23—C24—C25 9.2 (5)
N2—Ni—N1—C4 −4.96 (19) C23—N2—C19—C4 −172.6 (2)
N2—C19—C20—C21 −0.7 (4) C23—N2—C19—C20 3.3 (4)
N2—C23—C24—N3 1.3 (3) C23—C24—C25—C26 169.7 (3)
N2—C23—C24—C25 −167.6 (3) C23—C24—C25—C28 −11.9 (5)
N3—Ni—N1—C1 −177.4 (4) C24—N3—C27—C26 2.5 (3)
N3—Ni—N1—C4 −15.3 (5) C24—N3—C27—C35 −169.4 (3)
N3—Ni—N2—C19 −176.1 (2) C24—C25—C26—C27 1.1 (3)
N3—Ni—N2—C23 −8.8 (2) C24—C25—C28—C29 −55.6 (4)
N3—C24—C25—C26 0.5 (3) C24—C25—C28—C33 123.9 (3)
N3—C24—C25—C28 178.9 (3) C25—C26—C27—N3 −2.2 (3)
N3—C27—C35—C36 −152.3 (3) C25—C26—C27—C35 169.6 (3)
N3—C27—C35—C40 32.6 (4) C25—C28—C29—C30 178.4 (3)
N4—Ni—N1—C1 1.0 (3) C25—C28—C33—C32 −178.8 (3)
N4—Ni—N1—C4 163.01 (19) C26—C25—C28—C29 122.5 (3)
N4—Ni—N2—C19 −85.1 (5) C26—C25—C28—C33 −58.0 (4)
N4—Ni—N2—C23 82.1 (5) C26—C27—C35—C36 37.1 (4)
C1—N1—C4—C3 0.7 (3) C26—C27—C35—C40 −138.0 (3)
C1—N1—C4—C19 170.7 (2) C27—N3—C24—C23 −173.4 (2)
C1—C2—C3—C4 −1.5 (3) C27—N3—C24—C25 −1.8 (3)
C1—C2—C3—C12 178.7 (3) C27—C35—C36—C37 −176.9 (3)
C1—C5—C6—C7 −179.7 (3) C27—C35—C40—C39 178.1 (3)
C1—C5—C10—C9 179.3 (2) C28—C25—C26—C27 −177.3 (3)
C2—C1—C5—C6 126.5 (3) C28—C29—C30—C31 0.9 (4)
C2—C1—C5—C10 −51.2 (4) C29—C28—C33—C32 0.7 (4)
C2—C3—C4—N1 0.5 (3) C29—C30—C31—C32 −0.2 (4)
C2—C3—C4—C19 −166.5 (3) C29—C30—C31—C34 179.5 (3)
C2—C3—C12—C13 43.0 (4) C30—C31—C32—C33 −0.3 (5)
C2—C3—C12—C17 −135.9 (3) C31—C32—C33—C28 0.0 (5)
C3—C4—C19—N2 168.3 (3) C33—C28—C29—C30 −1.1 (4)
C3—C4—C19—C20 −7.0 (5) C34—C31—C32—C33 −180.0 (3)
C3—C12—C13—C14 178.2 (3) C35—C36—C37—C38 −1.6 (5)
C3—C12—C17—C16 −177.5 (3) C36—C35—C40—C39 2.9 (4)
C4—N1—C1—C2 −1.7 (3) C36—C37—C38—C39 3.4 (5)
C4—N1—C1—C5 173.7 (2) C36—C37—C38—C41 −175.8 (3)
C4—C3—C12—C13 −136.8 (3) C37—C38—C39—C40 −2.0 (5)
C4—C3—C12—C17 44.3 (4) C38—C39—C40—C35 −1.1 (5)
C4—C19—C20—C21 174.3 (3) C40—C35—C36—C37 −1.6 (4)
C5—C1—C2—C3 −173.3 (3) C41—C38—C39—C40 177.1 (3)
C5—C6—C7—C8 0.8 (4) C1A—C1B—C1C—C1D 178.1 (7)
C6—C5—C10—C9 1.5 (4) C1B—C1C—C1D—C1E 72.3 (8)
C6—C7—C8—C9 0.8 (4) C1C—C1D—C1E—C1F 169.8 (7)
C6—C7—C8—C11 −178.7 (3) C1G—C1H—C1I—C1J 177 (2)
C7—C8—C9—C10 −1.3 (4) C1H—C1I—C1J—C1K 130 (3)
C8—C9—C10—C5 0.1 (4) C1I—C1J—C1K—C1L 148 (3)

Funding Statement

This work was funded by Welch Foundation grant Y-1289.

References

  1. Abubekerov, M., Eymann, L. Y. M., Gianetti, T. L. & Arnold, J. (2016). Dalton Trans. 45, 14581–14590. [DOI] [PubMed]
  2. Adiraju, V. A. K., Jin, W., Yousufuddin, M. & Dias, H. V. R. (2020). Z. Anorg. Allg. Chem. 646, 215–219.
  3. Albrecht, M. & van Koten, G. (2001). Angew. Chem. Int. Ed. 40, 3750–3781.
  4. Alig, L., Fritz, M. & Schneider, S. (2019). Chem. Rev. 119, 2681–2751. [DOI] [PubMed]
  5. Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
  6. Dias, H. V. R., Huai, L., Jin, W. & Bott, S. G. (1995). Inorg. Chem. 34, 1973–1974.
  7. Dias, H. V. R., Jin, W., Kim, H.-J. & Lu, H.-L. (1996). Inorg. Chem. 35, 2317–2328. [DOI] [PubMed]
  8. Dias, H. V. R. & Lovely, C. J. (2008). Chem. Rev. 108, 3223–3238. [DOI] [PubMed]
  9. Dias, H. V. R. & Lu, H.-L. (1995). Inorg. Chem. 34, 5380–5382.
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Gowda, A. S., Petersen, J. L. & Milsmann, C. (2018). Inorg. Chem. 57, 1919–1934. [DOI] [PubMed]
  12. Grant, L. N., Carroll, M. E., Carroll, P. J. & Mindiola, D. J. (2016). Inorg. Chem. 55, 7997–8002. [DOI] [PubMed]
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Hakey, B. M., Darmon, J. M., Zhang, Y., Petersen, J. L. & Milsmann, C. (2019). Inorg. Chem. 58, 1252–1266. [DOI] [PubMed]
  15. Komine, N., Buell, R. W., Chen, C.-H., Hui, A. K., Pink, M. & Caulton, K. G. (2014). Inorg. Chem. 53, 1361–1369. [DOI] [PubMed]
  16. Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020–1024.
  17. Peris, E. & Crabtree, R. H. (2004). Coord. Chem. Rev. 248, 2239–2246.
  18. Peris, E. & Crabtree, R. H. (2018). Chem. Soc. Rev. 47, 1959–1968. [DOI] [PubMed]
  19. Piccirilli, L., Pinheiro, D. L. J. & Nielsen, M. (2020). Catalysts 10, 773.
  20. Pramanik, A. (2015). MS thesis, The University of Texas at Arlington, Arlington, Texas, USA.
  21. Pramanik, A., Das, A., Yousufuddin, M. & Dias, H. V. R. (2014). Abstracts of Papers, 247th ACS National Meeting & Exposition, Dallas, TX, United States, March 16–20, 2014, INOR-266.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Sorsche, D., Miehlich, M., Searles, K., Gouget, G., Zolnhofer, E. M., Fortier, S., Chen, C.-H., Gau, M. R., Carroll, P. J., Murray, C. B., Caulton, K. G., Khusniyarov, M. M., Meyer, K. & Mindiola, D. J. (2020). J. Am. Chem. Soc. 142, 8147–8159. [DOI] [PubMed]
  25. Tapper, A. E., Billo, E. J. & Golen, J. A. (1993). Inorg. Chim. Acta, 210, 71–75.
  26. Yadav, S., Singh, A., Rashid, N., Ghotia, M., Roy, T. K., Ingole, P. P., Ray, S., Mobin, S. M. & Dash, C. (2018). ChemistrySelect 3, 9469–9475.
  27. Yang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278–3279. [DOI] [PubMed]
  28. Zhang, Y., Lee, T. S., Favale, J. M., Leary, D. C., Petersen, J. L., Scholes, G. D., Castellano, F. N. & Milsmann, C. (2020). Nat. Chem. 12, 345–352. [DOI] [PubMed]
  29. Zhang, Y., Petersen, J. L. & Milsmann, C. (2016). J. Am. Chem. Soc. 138, 13115–13118. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) pyrr2PyH2, pyrr2PyNiCO, pyrr2PyNiNH3, pyrr2PyNiCNMe. DOI: 10.1107/S2056989020013341/zl2799sup1.cif

e-76-01741-sup1.cif (5.1MB, cif)

Structure factors: contains datablock(s) pyrr2PyH2. DOI: 10.1107/S2056989020013341/zl2799pyrr2PyH2sup2.hkl

Structure factors: contains datablock(s) pyrr2PyNiCO. DOI: 10.1107/S2056989020013341/zl2799pyrr2PyNiCOsup3.hkl

Structure factors: contains datablock(s) pyrr2PyNiNH3. DOI: 10.1107/S2056989020013341/zl2799pyrr2PyNiNH3sup4.hkl

Structure factors: contains datablock(s) pyrr2PyNiCNMe. DOI: 10.1107/S2056989020013341/zl2799pyrr2PyNiCNMesup5.hkl

CCDC references: 2035500, 2035499, 2035498, 2035497

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES