Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Oct 6;76(Pt 11):1712–1715. doi: 10.1107/S2056989020013146

Crystal structure of bis­[μ-N-(η2-prop-2-en-1-yl)piperidine-1-carbo­thio­amide-κ2 S:S]bis­[(thio­cyanato-κN)copper(I)]

Takeshi Tanaka a,*, Yukiyasu Kashiwagi b, Masami Nakagawa a
PMCID: PMC7643236  PMID: 33209338

The crystal structure of the title compound consists of a dimeric CuI complex possessing a Cu2S2 core and contains thio­cyanate anions and allyl­thio­urea derivatives as chelating and bridging ligands. The dimeric CuI complexes are linked by N—H⋯S hydrogen bonds, forming a network extending in two dimensions parallel to (100).

Keywords: crystal structure, CuI dimer, thio­urea, N—H⋯S inter­action, C—H⋯S inter­action, η2-π-allyl coordination

Abstract

The title crystalline compound, [Cu2(NCS)2(C9H16N2)2], was obtained from the reaction of copper(I) thio­cyanate (CuSCN) with (N-prop-2-en-1-yl)piperidine-1-carbo­thio­amide as a chelating and bridging thio­urea ligand in chloro­benzene. The Cu2S2 core of the dimeric mol­ecule is situated on a crystallographic inversion centre. The copper atom is coordinated by a thio­cyanate nitro­gen atom, each sulfur atom of the two thio­urea ligands, and the C=C double bond of the ligand in a distorted tetra­hedral geometry. The dimers are linked by N—H⋯S hydrogen bonds, forming a network extending in two dimensions parallel to (100).

Chemical context  

Thio­urea and its derivatives, N-substituted thio­urea and N, N′-disubstituted thio­urea, are well-known ligands to copper ions, such as for their structural relatedness of proteins in bioinorganic chemistry and controlling redox potentials of copper ions in electrochemistry. Recently, copper–thio­urea complexes [Cu(tu)s] have been investigated as electronic materials, for precursors of copper sulfide to be applied as semiconductors (Shamraiz et al., 2017; Sarma et al., 2019; Patel et al., 2019), photocatalysts (Tran et al., 2012; Pal et al., 2015), and sensors (Liu & Xue, 2011; Sabah et al., 2016; Sagade & Sharma, 2008). Cu(tu)s have also been used as a component of the precursor ink for forming CuIn(S, Se) as photo-absorbing layers in solar cells (Uhl et al., 2016). The solubility of Cu(tu)s in non-polar solvents is a potentially important property for their application as electronic materials. In order to synthesize a hydro­phobic Cu(tu)s, we developed an allyl and a piperidinyl group bearing thio­urea, (N-prop-2-en-1-yl)piperidine-1-carbo­thio­amide, as a hydro­phobic bidentate ligand and report here the crystal structure of the title non-ionic CuI complex containing thio­cyanates as coordinating anions.graphic file with name e-76-01712-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound possessing a Cu2S2 central core is shown in Fig. 1. The dimeric mol­ecule is situated on a crystallographic inversion centre. Selected geometric parameters are shown in Table 1. The coordination about the Cu atom can be described as distorted tetra­hedral containing N6, S2, S2i, and Cg1 [Cg1 is the mid-point of C14 and C15; symmetry code: (i) −x + 1, −y + 1, −z + 1]. The four-coordinate geometry index, τ 4 = [360° - (α + β)] / 141°, evaluated from the two largest angles (α < β), which has ideal values of 1 for a tetra­hedral and 0 for a square-planar geometry (Yang et al., 2007), is equal to 0.83. The Cu⋯Cui separation in the dimer is 3.1180 (6) Å. The C14=C15 double bond is η 2-π-coordinated to Cu, the bond being elongated to 1.351 (5) Å. The N atom of the piperidine ring (N4) shows no pyramidalization, with a displacement of 0.041 (3) Å from the plane of the bonded C atoms (C7, C11 and C12). The piperidine ring adopts a chair conformation with puckering parameters: Q = 0.573 (4), θ = 176.3 (4), and φ = 153 (6) (Cremer & Pople, 1975). There is one intra­molecular inter­action, C7—H7B⋯S2, generating an S(5) ring motif (Fig. 1 and Table 2). In comparison, the crystal structure of bis­(aceto­nitrile)­bis­(η 2-N-allyl­thio­urea)dicopper(I) dinitrate [Cu2(atu)2(CH3CN)2](NO3)2, a cationic analogue of the title compound with aceto­nitrile instead of thio­cyanate and without the piperidine ring, shows a similar geometry around copper but has no crystallographic inversion centre because of the asymmetric packing of the nitrate anions [Cambridge Structural Database (CSD) refcode RENNON; Filinchuk et al., 1996].

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The hydrogen bonds are shown as green dashed lines. [Symmetry code: (i) −x + 1, −y + 1, −z + 1].

Table 1. Selected geometric parameters (Å, °).

Cu1—S2 2.2835 (8) Cu1—C15 2.095 (3)
Cu1—S2i 2.6491 (8) Cu1—Cg1 1.969
Cu1—N6 1.924 (3) N5—H5 0.856 (10)
Cu1—C14 2.068 (3) C14—C15 1.351 (5)
       
S2—Cu1—S2i 101.98 (3) C14—Cu1—C15 37.86 (13)
N6—Cu1—S2 107.15 (8) C15—Cu1—S2 130.85 (10)
N6—Cu1—S2i 97.44 (8) C15—Cu1—S2i 101.56 (10)
N6—Cu1—C14 147.71 (13) Cu1—S2—Cu1i 78.02 (3)
N6—Cu1—C15 111.75 (13) Cg1—Cu1—S2 113.57
C14—Cu1—S2 95.68 (9) Cg1—Cu1—S2i 101.31
C14—Cu1—S2i 99.83 (9) Cg1—Cu1—N6 129.88

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯S3ii 0.86 (2) 2.60 (3) 3.375 (3) 151 (3)
C7—H7B⋯S2 0.99 2.48 3.028 (3) 114

Symmetry code: (ii) Inline graphic.

Supra­molecular features  

In the crystal, the dimers are linked by N—H⋯S hydrogen bonds [N5—H5⋯S3ii; symmetry code: (ii) −x + 1, y + Inline graphic, −z + Inline graphic], forming a network extending in two dimensions parallel to (100) (Fig. 2, Fig. 3, and Table 2). There is no significant inter­action between two-dimensional networks. In contrast, the crystal structure of [Cu2(atu)2(CH3CN)2](NO3)2 exhibits a complementary C—H⋯S inter­action between discrete copper dimers forming a dimer of dimeric structures (RENNON; Filinchuk et al., 1996). The discrete copper dimer exhibits six N—H⋯O inter­actions to the surrounding six nitrate anions.

Figure 2.

Figure 2

A packing diagram of the title compound viewed along the a axis, i.e. a top view of the two-dimensional network. The N—H⋯S hydrogen bonds are shown as green dashed lines. H atoms not involved in the inter­actions were omitted for clarity.

Figure 3.

Figure 3

A packing diagram of the title compound viewed along the b axis, i.e. a side view of the two-dimensional network. The N—H⋯S hydrogen bonds are shown as green dashed lines. H atoms not involved in the inter­actions were omitted for clarity.

Database survey  

A search of the CSD (Version 5.41, update of August 2020; Groom et al., 2016) using ConQuest (Bruno et al., 2002) for compounds containing the 1-allyl­thio­urea skeleton gave 892 hits, and for those containing the thio­urea derivatives as ligands gave 945 hits of Cu complexes. The crystal structures of the ligand of the title compound, (N-prop-2-en-1-yl)piperidine-1-carbo­thio­amide, itself and its metal complexes have not been reported. A survey for a Cu complex containing the 1-allylthio­urea fragment as a κS-coordination ligand reveals 53 examples, which includes six examples of η 2-π-coordination of an allyl group to Cu. All of these six examples are CuI complexes, which comprise four coordination polymers of 4-allyl-semicarbazide as ligands (Mel’nyk et al., 2001, 2011; Olijnik et al., 2011), one coordination polymer of 1,3-di­allyl­thio­urea as ligand (BOGNUH; Vakulka et al., 2007), and one discrete centrosymmetric dimer of 1-allyl­thio­urea as ligand (RENNON; Filinchuk et al., 1996).

Synthesis and crystallization  

To a chloro­benzene solution (2.5 mL) containing copper(I) thio­cyanate (CuSCN, 122 mg, 1.0 mmol) and allyl iso­thio­cyanate (298 mg, 3.0 mmol) in a 20 mL capped screw-tube bottle was slowly added piperidine (171 mg, 2.0 mmol) at 373 K under air and the mixture was stirred for 5 minutes. After that, it was left at room temperature. The pale-white precipitate formed in the bottle, and gradually changed to a pale-white solid containing single crystals. The mixture was filtered after 5 days to give a pale-white solid containing single crystals (267 mg, 0.87 mmol, 87%). Single crystals suitable for X-ray crystallographic analysis were selected in the product. Analysis calculated for (C10H16CuN3S2)2: C, 39.26; H, 5.27; N, 13.74; S, 20.96. Found: C, 38.72; H, 4.78; N, 13.59; S, 20.28.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Atoms H14, H15A, and H15B were located in a difference-Fourier map and refined freely, considering the influence of the coordination of the ethenyl group to CuI. H11A and H11B were also located in the difference-Fourier map and refined freely, because the distance between intramolecular H11B and H5 in the neighbouring mol­ecule was abnormally short in the riding model. Other C-bound H atoms were placed in geometrically calculated positions (C—H = 0.99 Å) and refined as part of a riding model with U iso(H) = 1.2U eq(C). The N-bound H5 atom was located in the difference-Fourier map but was refined with a distance restraint of N—H = 0.86±0.01 Å, and with U iso(H) set to 1.2U eq(N).

Table 3. Experimental details.

Crystal data
Chemical formula [Cu2(NCS)2(C9H16N2S)2]
M r 611.83
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 13.9881 (5), 9.8220 (4), 9.7446 (4)
β (°) 91.391 (6)
V3) 1338.43 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.92
Crystal size (mm) 0.15 × 0.15 × 0.1
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.747, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12737, 3071, 2516
R int 0.041
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.098, 1.08
No. of reflections 3071
No. of parameters 168
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.40

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXT 2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), PLATON (Spek, 2020), Mercury (Macrae et al., 2020), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020013146/yz2001sup1.cif

e-76-01712-sup1.cif (393.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013146/yz2001Isup2.hkl

e-76-01712-Isup2.hkl (245.5KB, hkl)

CCDC reference: 2034488

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Koji Kubono (Osaka Kyoiku University) for fruitful discussions and his helpful advice. We also thank Mr. Kazuki Maeda (Osaka Research Institute of Industrial Science and Technology) for a cooperation to bring the authors together at the beginning of this study.

supplementary crystallographic information

Crystal data

[Cu2(NCS)2(C9H16N2S)2] F(000) = 632
Mr = 611.83 Dx = 1.518 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 13.9881 (5) Å Cell parameters from 9884 reflections
b = 9.8220 (4) Å θ = 5.0–55.0°
c = 9.7446 (4) Å µ = 1.92 mm1
β = 91.391 (6)° T = 173 K
V = 1338.43 (9) Å3 Block, clear colourless
Z = 2 0.15 × 0.15 × 0.1 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 3071 independent reflections
Radiation source: sealed X-ray tube 2516 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −18→17
Tmin = 0.747, Tmax = 1.000 k = −12→12
12737 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0406P)2 + 1.6287P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3071 reflections Δρmax = 0.61 e Å3
168 parameters Δρmin = −0.40 e Å3
1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.55125 (3) 0.62670 (4) 0.43953 (4) 0.03267 (13)
S2 0.42819 (5) 0.51488 (7) 0.33025 (7) 0.02780 (17)
S3 0.83263 (6) 0.47774 (11) 0.22981 (13) 0.0594 (3)
N4 0.23866 (19) 0.5307 (3) 0.3387 (3) 0.0402 (6)
N6 0.66753 (18) 0.5688 (3) 0.3556 (3) 0.0353 (6)
N5 0.31829 (18) 0.7313 (3) 0.3819 (3) 0.0376 (6)
H5 0.2655 (15) 0.774 (3) 0.369 (4) 0.045*
C14 0.4691 (2) 0.7864 (3) 0.5090 (3) 0.0346 (7)
C16 0.7358 (2) 0.5304 (3) 0.3044 (3) 0.0331 (7)
C12 0.3206 (2) 0.5985 (3) 0.3524 (3) 0.0301 (6)
C15 0.5614 (2) 0.8269 (3) 0.5125 (4) 0.0342 (7)
C13 0.4006 (2) 0.8228 (3) 0.3952 (3) 0.0367 (7)
H13A 0.377117 0.916542 0.410448 0.044*
H13B 0.435145 0.822461 0.307731 0.044*
C7 0.2322 (2) 0.3865 (3) 0.2969 (4) 0.0448 (9)
H7A 0.197211 0.334276 0.366632 0.054*
H7B 0.297289 0.347654 0.291007 0.054*
C8 0.1816 (3) 0.3743 (4) 0.1611 (4) 0.0510 (9)
H8A 0.174400 0.276834 0.137225 0.061*
H8B 0.220513 0.417941 0.089947 0.061*
C11 0.1427 (3) 0.5915 (4) 0.3497 (5) 0.0548 (11)
C10 0.0912 (3) 0.5872 (4) 0.2135 (5) 0.0608 (12)
H10A 0.126101 0.642923 0.146529 0.073*
H10B 0.026342 0.626044 0.222292 0.073*
C9 0.0836 (3) 0.4406 (4) 0.1618 (5) 0.0625 (12)
H9A 0.041038 0.388028 0.221843 0.075*
H9B 0.055244 0.439964 0.067737 0.075*
H15A 0.600 (2) 0.820 (3) 0.596 (3) 0.026 (8)*
H15B 0.591 (3) 0.872 (4) 0.437 (4) 0.048 (11)*
H14 0.439 (2) 0.754 (4) 0.592 (4) 0.048 (10)*
H11A 0.096 (3) 0.536 (4) 0.409 (4) 0.046 (10)*
H11B 0.148 (3) 0.677 (5) 0.384 (4) 0.065 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0320 (2) 0.0261 (2) 0.0401 (2) −0.00062 (15) 0.00349 (16) −0.00623 (16)
S2 0.0315 (4) 0.0221 (3) 0.0298 (4) 0.0011 (3) 0.0010 (3) −0.0023 (3)
S3 0.0348 (5) 0.0492 (6) 0.0952 (8) −0.0068 (4) 0.0218 (5) −0.0268 (5)
N4 0.0328 (13) 0.0283 (13) 0.0595 (18) −0.0020 (11) −0.0021 (13) −0.0037 (13)
N6 0.0344 (14) 0.0333 (14) 0.0383 (15) −0.0027 (11) 0.0053 (12) −0.0028 (11)
N5 0.0318 (13) 0.0241 (13) 0.0568 (17) 0.0039 (11) −0.0007 (13) −0.0033 (12)
C14 0.0492 (18) 0.0220 (14) 0.0329 (16) 0.0044 (13) 0.0047 (15) −0.0025 (12)
C16 0.0319 (15) 0.0270 (15) 0.0404 (17) −0.0057 (12) −0.0011 (14) −0.0036 (13)
C12 0.0343 (15) 0.0246 (15) 0.0313 (15) 0.0017 (12) 0.0002 (13) 0.0021 (12)
C15 0.0475 (18) 0.0212 (14) 0.0335 (16) −0.0015 (13) −0.0060 (16) −0.0024 (12)
C13 0.0436 (17) 0.0219 (14) 0.0444 (18) 0.0004 (13) −0.0016 (15) −0.0017 (13)
C7 0.0388 (17) 0.0244 (16) 0.071 (2) −0.0027 (13) −0.0087 (17) 0.0017 (16)
C8 0.045 (2) 0.0370 (19) 0.071 (3) 0.0051 (16) −0.0147 (19) −0.0061 (18)
C11 0.0334 (18) 0.041 (2) 0.091 (3) −0.0019 (16) 0.010 (2) −0.012 (2)
C10 0.0366 (18) 0.042 (2) 0.103 (4) 0.0095 (16) −0.015 (2) 0.003 (2)
C9 0.046 (2) 0.047 (2) 0.093 (3) 0.0064 (18) −0.028 (2) −0.007 (2)

Geometric parameters (Å, º)

Cu1—S2 2.2835 (8) C15—H15A 0.96 (3)
Cu1—S2i 2.6491 (8) C15—H15B 0.96 (4)
Cu1—N6 1.924 (3) C13—H13A 0.9900
Cu1—C14 2.068 (3) C13—H13B 0.9900
Cu1—C15 2.095 (3) C7—H7A 0.9900
S2—C12 1.733 (3) C7—H7B 0.9900
S3—C16 1.636 (3) C7—C8 1.490 (5)
N4—C12 1.329 (4) C8—H8A 0.9900
N4—C7 1.476 (4) C8—H8B 0.9900
N4—C11 1.476 (4) C8—C9 1.517 (5)
N6—C16 1.151 (4) C11—C10 1.494 (6)
Cu1—Cg1 1.969 C11—H11A 1.04 (4)
N5—H5 0.856 (10) C11—H11B 0.91 (5)
N5—C12 1.336 (4) C10—H10A 0.9900
N5—C13 1.464 (4) C10—H10B 0.9900
C14—C15 1.351 (5) C10—C9 1.528 (6)
C14—C13 1.492 (5) C9—H9A 0.9900
C14—H14 0.98 (4) C9—H9B 0.9900
S2—Cu1—S2i 101.98 (3) H15A—C15—H15B 115 (3)
N6—Cu1—S2 107.15 (8) N5—C13—C14 114.1 (3)
N6—Cu1—S2i 97.44 (8) N5—C13—H13A 108.7
N6—Cu1—C14 147.71 (13) N5—C13—H13B 108.7
N6—Cu1—C15 111.75 (13) C14—C13—H13A 108.7
C14—Cu1—S2 95.68 (9) C14—C13—H13B 108.7
C14—Cu1—S2i 99.83 (9) H13A—C13—H13B 107.6
C14—Cu1—C15 37.86 (13) N4—C7—H7A 109.6
C15—Cu1—S2 130.85 (10) N4—C7—H7B 109.6
C15—Cu1—S2i 101.56 (10) N4—C7—C8 110.3 (3)
Cu1—S2—Cu1i 78.02 (3) H7A—C7—H7B 108.1
C12—S2—Cu1i 102.73 (10) C8—C7—H7A 109.6
Cg1—Cu1—S2 113.57 C8—C7—H7B 109.6
Cg1—Cu1—S2i 101.31 C7—C8—H8A 109.3
Cg1—Cu1—N6 129.88 C7—C8—H8B 109.3
C12—S2—Cu1 111.18 (10) C7—C8—C9 111.8 (4)
C12—N4—C7 123.7 (3) H8A—C8—H8B 107.9
C12—N4—C11 125.0 (3) C9—C8—H8A 109.3
C7—N4—C11 111.0 (3) C9—C8—H8B 109.3
C16—N6—Cu1 177.9 (3) N4—C11—C10 110.1 (4)
C12—N5—H5 118 (3) N4—C11—H11A 114 (2)
C12—N5—C13 126.5 (3) N4—C11—H11B 109 (3)
C13—N5—H5 113 (3) C10—C11—H11A 101 (2)
Cu1—C14—H14 106 (2) C10—C11—H11B 113 (3)
C15—C14—Cu1 72.15 (19) H11A—C11—H11B 109 (3)
C15—C14—C13 123.0 (3) C11—C10—H10A 109.6
C15—C14—H14 120 (2) C11—C10—H10B 109.6
C13—C14—Cu1 106.9 (2) C11—C10—C9 110.4 (3)
C13—C14—H14 115 (2) H10A—C10—H10B 108.1
N6—C16—S3 179.1 (3) C9—C10—H10A 109.6
N4—C12—S2 119.9 (2) C9—C10—H10B 109.6
N4—C12—N5 119.1 (3) C8—C9—C10 110.5 (3)
N5—C12—S2 121.0 (2) C8—C9—H9A 109.6
Cu1—C15—H15A 104.7 (19) C8—C9—H9B 109.6
Cu1—C15—H15B 102 (2) C10—C9—H9A 109.6
C14—C15—Cu1 69.98 (18) C10—C9—H9B 109.6
C14—C15—H15A 121.1 (18) H9A—C9—H9B 108.1
C14—C15—H15B 123 (2)
Cu1—S2—C12—N4 −157.3 (2) C13—N5—C12—S2 2.0 (5)
Cu1i—S2—C12—N4 −75.4 (3) C13—N5—C12—N4 −177.4 (3)
Cu1i—S2—C12—N5 105.2 (3) C13—C14—C15—Cu1 −98.9 (3)
Cu1—S2—C12—N5 23.3 (3) C7—N4—C12—S2 −3.8 (5)
Cu1—C14—C13—N5 78.7 (3) C7—N4—C12—N5 175.6 (3)
N4—C7—C8—C9 −55.6 (4) C7—N4—C11—C10 −61.3 (4)
N4—C11—C10—C9 57.8 (5) C7—C8—C9—C10 52.8 (5)
C12—N4—C7—C8 −114.7 (4) C11—N4—C12—S2 −177.5 (3)
C12—N4—C11—C10 113.1 (4) C11—N4—C12—N5 1.9 (5)
C12—N5—C13—C14 −62.8 (4) C11—N4—C7—C8 59.7 (4)
C15—C14—C13—N5 158.0 (3) C11—C10—C9—C8 −53.6 (5)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H5···S3ii 0.86 (2) 2.60 (3) 3.375 (3) 151 (3)
C7—H7B···S2 0.99 2.48 3.028 (3) 114

Symmetry code: (ii) −x+1, y+1/2, −z+1/2.

References

  1. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Filinchuk, Ya. E., Schollmeyer, D., Olijnik, V. V., Mys’kiv, M. G. & Goreshnik, E. A. (1996). Russ. J. Coord. Chem. 22, 815–820.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  7. Liu, J. & Xue, D. (2011). J. Mater. Chem. 21, 223–228.
  8. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  9. Mel’nyk, O. P., Filinchuk, Ya. E., Schollmeyer, D. & Mys’kiv, M. G. (2001). Z. Anorg. Allg. Chem. 627, 287–293.
  10. Mel’nyk, O. P., Filinchuk, Ya. E., Schollmeyer, D. & Mys’kiv, M. G. (2011). CSD communication (CCDC deposition number 814517). CCDC, Cambridge, England.
  11. Olijnik, V. V., Goreshnik, E. A., Schollmeyer, D. & Mys’kiv, M. G. (2011). CSD communication (CCDC deposition number 816764). CCDC, Cambridge, England.
  12. Pal, M., Mathews, N. R., Sanchez-Mora, E., Pal, U., Paraguay-Delgado, F. & Mathew, X. (2015). J. Nanopart. Res. 17, 301.
  13. Patel, T. A., Balasubramanian, G. & Panda, E. (2019). J. Cryst. Growth, 505, 26–32.
  14. Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  15. Sabah, F. A., Ahmed, N. M., Hassan, Z. & Rasheed, H. S. (2016). Sens. Actuators A-Phys. 249, 68–76.
  16. Sagade, A. A. & Sharma, R. (2008). Sens. Actuators B Chem. 133, 135–143.
  17. Sarma, A., Dippel, A.-C., Gutowski, O., Etter, M., Lippmann, M., Seeck, O., Manna, G., Sanyal, M. K., Keller, T. F., Kulkarni, S., Guha, P., Satyam, P. V. & Zimmermann, M. V. (2019). RSC Adv. 9, 31900–31910. [DOI] [PMC free article] [PubMed]
  18. Shamraiz, U., Badshah, A., Hussain, R. A., Nadeem, M. A. & Saba, S. (2017). J. Saudi Chem. Soc. 21, 390–398.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  22. Tran, P. D., Nguyen, M., Pramana, S. S., Bhattacharjee, A., Chiam, S. Y., Fize, J., Field, M. J., Artero, V., Wong, L. H., Loo, J. & Barber, J. (2012). Energy Environ. Sci. 5, 8912–8916.
  23. Uhl, A. R., Katahara, J. K. & Hillhouse, H. W. (2016). Energy Environ. Sci. 9, 130–134.
  24. Vakulka, A. A., Filinchuk, Ya. E. & Mys’kiv, M. G. (2007). Russ. J. Coord. Chem. 33, 809–814.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020013146/yz2001sup1.cif

e-76-01712-sup1.cif (393.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013146/yz2001Isup2.hkl

e-76-01712-Isup2.hkl (245.5KB, hkl)

CCDC reference: 2034488

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES