Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Oct 30;76(Pt 11):1794–1798. doi: 10.1107/S205698902001419X

Synthesis, crystal structure and Hirshfeld surface analysis of bis­{2-[(pyridin-2-yl)amino]­pyridinium} tetra­cyano­nickelate(II)

Zouaoui Setifi a,b, Hela Ferjani c,*, Fatima Setifi a,*, Safa Ezzine d, Mohammed Hadi Al-Douh e
PMCID: PMC7643237  PMID: 33209354

The title structure consists of [Ni(CN)4]2– square-planar anions separated by layers of (C10H10N3)+ cations. The crystal packing features N—H⋯N hydrogen bonds, which generate [101] chains.

Keywords: crystal structure, tetra­cyano­nickelate, N-(pyridin-2-yl)pyridinium-2-amine, hydrogen bonding, Hirshfeld surface analysis, crystal structure

Abstract

In the title mol­ecular salt, (C10H10N3)2[Ni(CN)4], the dihedral angle between the pyridine rings in the cation is 1.92 (13)° and the complete anion is generated by a crystallographic centre of symmetry. An intra­molecular N—H⋯N hydrogen bond occurs in the cation, which closes an S(6) ring. In the crystal, the components are linked by N—H⋯N and weak C—H⋯N hydrogen bonds, which generate chains propagating in the [101] direction. Weak aromatic π–π stacking inter­actions are also observed. A Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contact types in the crystal packing are N⋯H/H⋯N, C⋯H/H⋯C and H⋯H with contributions of 37.2, 28.3 and 21.9%, respectively.

Chemical context  

Transition-metal coordination compounds, where CN ligands play the main structure-forming role, so-called cyano­carbanion or cyano­metallate complexes, have been the subject of inter­est for many years, in particular due to their magnetic properties (Ferlay et al., 1995; Bretosh et al., 2020; Benmansour et al., 2012; Setifi et al., 2009; Yuste et al., 2009; Addala et al., 2015), including spin-crossover behavior (Benmansour et al., 2010; Yoon et al., 2011). The square-planar tetra­cyano­nickelate(II) anion [Ni(CN)4]2– has proved to be very versatile and diverse in both coordination chemistry and magnetism.graphic file with name e-76-01794-scheme1.jpg

We have been inter­ested in using the tetra­cyano­nickelate(II) anion in combination with other chelating or bridging neutral co-ligands to explore their structural features and properties relevant to the field of mol­ecular materials exhibiting the spin-crossover phenomenon (Setifi et al., 2013, 2014; Kucheriv et al., 2016). During the course of attempts to prepare such complexes with 2,2′-di­pyridyl­amine (dpa), we isolated the title mol­ecular salt, (I), whose mol­ecular and supra­molecular structure is described herein.

Structural commentary  

The asymmetric unit of (I) contains one (C10H10N3)+ cation and one half of a [Ni(CN)4]2− anion (Fig. 1). The C—N and C—C bonds lengths in the cation vary from 1.340 (3) to 1.383 (3) Å and from 1.346 (4) to 1.402 (3) Å, respectively. The C—N—C bond angles range from 117.8 (2) to 129.7 (2)° and the N—C—C angles range from 119.0 (2) to 123.4 (2)°. The dihedral angle between the C3–C7/N4 and C8–C12/N5 rings is 1.92 (13)°. These data are comparable to those found for other compounds containing dpa as an organic template (Bowes et al., 2003; Willett, 1995). In the cation, the pyridyl nitro­gen atoms are arranged on both sides of the central N3 atom and assume a cis conformation (Fig. 1). The (C10H10N3)+ cation is monoprotonated at the pyridyl-N4 atom, which leads to the the formation of a short and presumably strong intra­molecular N4—H4A⋯N5 hydrogen bond (Table 1), which generates an S(6) ring (Fig. 2).

Figure 1.

Figure 1

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x + 1, −y, −z

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2 0.86 2.00 2.853 (3) 172
N4—H4A⋯N5 0.86 1.97 2.629 (3) 132
N4—H4A⋯N1ii 0.86 2.41 3.055 (3) 132
C5—H5⋯N1ii 0.93 2.68 3.206 (4) 117

Symmetry code: (ii) Inline graphic.

Figure 2.

Figure 2

Offset and parallel π–π-stacking inter­actions (broken lines) in the cation–cation chains.

The Ni2+ ion of the anion is located on a crystallographic inversion center and coordinates four terminal (non-bridging) cyanide ligands, exhibiting a square-planar geometry. The bond lengths and angles in the anion are in good agreement with those found in other [Ni(CN)4]2− salts (Paharová et al., 2003; Karaağaç et al., 2013).

Supra­molecular features  

Fig. 3 shows the packing of (I) in a view along the b-axis direction, in which the organic and inorganic ions form chains propagating in the [101] direction linked by N—H⋯N and C—H⋯N hydrogen bonds. The pyridinium N4 atom in the cation, as well as forming the intra­molecular hydrogen bond described above, acts as donor to the cyanate N atom in the anion, in an N4—H4A⋯N1ii [symmetry code: (ii) −x + 1, −y + 1, −z + 1) link (Table 1). The secondary amino group (N3H) forms a strong N3—H3A⋯N2 hydrogen bond with a cyano group acceptor and the H3A⋯N2 distance is 2.0 Å. Fig. 3 shows the parallel offset π-stacking contacts between pyridyl groups [centroid–centroid distance of 4.3421 (16) Å] and parallel face-centred π-stacking inter­actions between the S(6) centroids and pyridyl groups [centroid–centroid distance of 3.487 (2) Å].

Figure 3.

Figure 3

View parallel to the ac plane of the packing in (I) with hydrogen bonds shown as green dashed lines.

Hirshfeld surface analysis  

Hirshfeld surface calculations (Spackman & Jayatilaka, 2009) for (I) were performed in order to further characterize the supra­molecular association. The Hirshfeld surfaces and two-dimensional fingerprint plots (McKinnon et al., 2007) calculated using CrystalExplorer 17.5 (Turner et al., 2017) are shown in Figs. 4 and 5, respectively. The red spots on the Hirshfeld surface represent strong inter­action through N—H⋯N and C—H⋯N hydrogen bonding, whereas the blue color represents a lack of inter­action. The presence of π–π stacking inter­actions is indicated by adjacent red and blue triangles on the shape-index surface (Fig. S1a in the supporting information). Areas on the Hirshfeld surface with high curvedness (Fig. S1b) can be related to the planar packing arrangement of the cations. The most abundant inter­molecular inter­actions in the crystal packing (Fig. 5) are N⋯H/H⋯N, C⋯H/H⋯C and H⋯H with percentage contributions 37.2, 28.3 and 21.9%, respectively. The presence of weak π–π stacking inter­actions between the cationic rings are reflected in the 4.6 and 3.8% contributions from C⋯C and C⋯N/N⋯C contacts to the Hirshfeld surfaces of the cations. The analysis reveals the lowest contribution of Ni⋯N (1.7%), Ni⋯C (1.3%) and N⋯N (1.2%) contacts.

Figure 4.

Figure 4

Hirshfeld surface of (I) mapped over d norm.

Figure 5.

Figure 5

Two-dimensional fingerprint plots and relative contributions for (I) resolved into all, N⋯H, C⋯H and H⋯H contacts.

Database survey  

A search of the Cambridge Structural Database (Version 5.41, last update November, 2019; Groom et al., 2016), for the tetra­cyano­nickelate moiety revealed 532 hits. Most of them are complexes of [Ni(CN)4]2– anions with different metal–ligand coordination cations. Salts containing tetra­cyano­nickelate anions and organic cations corresponded to 38 hits.

A compound closely related to the title compound is (C10H11N3)·[CuCl4] (Willett, 1995; CSD refcode ZAMCEV), which crystallizes in the same space group of P Inline graphic. In this compound the cation is diprotonated and the pyridyl nitro­gen atoms are in a cis conformation and the pyridine rings are significantly twisted away from coplanarity. The tetra­chloro­cuprate anion takes on a squashed tetra­hedral geometry.

Synthesis and crystallization  

The title compound was synthesized solvothermally under autogenous pressure using a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.10 mmol), 2,2′-di­pyridyl­amine (17 mg, 0.10 mmol) and potassium tetra­cyano­nickelate(II) (24 mg, 0.10 mmol) in mixed solvents of water/ethanol (3:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and held at 423 K for 3 d, and then cooled to room temperature at a rate of 10 K per hour (yield 27%). Pale-yellow plates of (I) suitable for single-crystal X-ray diffraction analysis were selected.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 or N—H = 0.86 Å, and with U iso(H) = 1.2U eq(C,N).

Table 2. Experimental details.

Crystal data
Chemical formula (C10H10N3)2[Ni(CN)4]
M r 507.21
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 273
a, b, c (Å) 7.1046 (4), 9.1467 (4), 9.3833 (4)
α, β, γ (°) 100.182 (2), 98.729 (2), 97.444 (2)
V3) 585.49 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.86
Crystal size (mm) 0.35 × 0.23 × 0.19
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.914, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 16272, 3572, 2659
R int 0.052
(sin θ/λ)max−1) 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.134, 1.07
No. of reflections 3572
No. of parameters 161
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.34

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902001419X/hb7948sup1.cif

e-76-01794-sup1.cif (481.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902001419X/hb7948Isup2.hkl

e-76-01794-Isup2.hkl (284.9KB, hkl)

Figure S1 Hirshfeld surface of (C10H10N3)2[Ni(CN)4] mapped with shape index (a) and curvedness (b). DOI: 10.1107/S205698902001419X/hb7948sup3.tif

CCDC reference: 2040378

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

(C10H10N3)2[Ni(CN)4] Z = 1
Mr = 507.21 F(000) = 262
Triclinic, P1 Dx = 1.439 Mg m3
a = 7.1046 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.1467 (4) Å Cell parameters from 7173 reflections
c = 9.3833 (4) Å θ = 2.8–27.9°
α = 100.182 (2)° µ = 0.86 mm1
β = 98.729 (2)° T = 273 K
γ = 97.444 (2)° Plate, pale yellow
V = 585.49 (5) Å3 0.35 × 0.23 × 0.19 mm

Data collection

Oxford Diffraction Xcalibur Sapphire CCD detector diffractometer 2659 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.052
ω scans θmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→10
Tmin = 0.914, Tmax = 0.962 k = −13→13
16272 measured reflections l = −13→13
3572 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3025P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 1.01 e Å3
3572 reflections Δρmin = −0.34 e Å3
161 parameters Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.091 (17)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.0000 0.0000 0.04195 (19)
C1 0.6743 (4) 0.0656 (3) 0.1772 (3) 0.0508 (6)
N1 0.7800 (5) 0.1080 (3) 0.2861 (3) 0.0745 (8)
C2 0.3639 (4) 0.1552 (3) 0.0568 (2) 0.0455 (5)
N2 0.2831 (4) 0.2503 (3) 0.0942 (3) 0.0624 (6)
N4 0.1820 (3) 0.7199 (2) 0.3981 (2) 0.0445 (4)
H4A 0.1949 0.7110 0.4886 0.053*
N5 0.2473 (3) 0.5418 (2) 0.5852 (2) 0.0484 (5)
N3 0.2311 (3) 0.4715 (2) 0.3342 (2) 0.0492 (5)
H3A 0.2354 0.3997 0.2625 0.059*
C3 0.1977 (3) 0.6028 (3) 0.2949 (3) 0.0422 (5)
C8 0.2592 (3) 0.4356 (3) 0.4722 (3) 0.0443 (5)
C5 0.1462 (4) 0.8522 (3) 0.3626 (3) 0.0508 (6)
H5 0.1351 0.9313 0.4365 0.061*
C4 0.1807 (4) 0.6192 (3) 0.1479 (3) 0.0503 (6)
H4 0.1942 0.5397 0.0753 0.060*
C12 0.3276 (4) 0.2629 (3) 0.6262 (4) 0.0595 (7)
H12 0.3538 0.1690 0.6407 0.071*
C7 0.1442 (4) 0.7522 (3) 0.1118 (3) 0.0557 (6)
H7 0.1314 0.7635 0.0144 0.067*
C10 0.2763 (4) 0.5097 (3) 0.7197 (3) 0.0553 (6)
H10 0.2695 0.5836 0.7998 0.066*
C6 0.1264 (4) 0.8713 (3) 0.2224 (3) 0.0564 (7)
H6 0.1013 0.9625 0.1994 0.068*
C9 0.3006 (4) 0.2930 (3) 0.4869 (3) 0.0524 (6)
H9 0.3096 0.2214 0.4055 0.063*
C11 0.3157 (4) 0.3727 (4) 0.7447 (3) 0.0591 (7)
H11 0.3341 0.3540 0.8397 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0617 (3) 0.0339 (2) 0.0330 (2) 0.01697 (18) 0.01155 (18) 0.00464 (15)
C1 0.0751 (18) 0.0380 (12) 0.0419 (12) 0.0238 (11) 0.0105 (12) 0.0040 (9)
N1 0.100 (2) 0.0626 (15) 0.0527 (14) 0.0317 (15) −0.0091 (14) −0.0053 (12)
C2 0.0628 (15) 0.0412 (12) 0.0328 (10) 0.0168 (11) 0.0073 (10) 0.0028 (9)
N2 0.0820 (17) 0.0554 (13) 0.0494 (12) 0.0333 (12) 0.0076 (12) −0.0032 (10)
N4 0.0475 (11) 0.0447 (10) 0.0424 (10) 0.0101 (8) 0.0080 (8) 0.0096 (8)
N5 0.0520 (12) 0.0482 (11) 0.0468 (11) 0.0092 (9) 0.0106 (9) 0.0115 (9)
N3 0.0664 (14) 0.0403 (10) 0.0421 (10) 0.0166 (9) 0.0133 (10) 0.0022 (8)
C3 0.0382 (12) 0.0411 (11) 0.0485 (12) 0.0077 (9) 0.0070 (9) 0.0123 (9)
C8 0.0402 (12) 0.0451 (12) 0.0495 (13) 0.0045 (9) 0.0081 (10) 0.0160 (10)
C5 0.0544 (15) 0.0406 (12) 0.0582 (15) 0.0106 (10) 0.0111 (12) 0.0090 (11)
C4 0.0538 (15) 0.0525 (14) 0.0450 (13) 0.0137 (11) 0.0095 (11) 0.0069 (10)
C12 0.0574 (16) 0.0509 (15) 0.0743 (19) 0.0069 (12) 0.0059 (14) 0.0294 (14)
C7 0.0589 (16) 0.0636 (16) 0.0505 (14) 0.0141 (13) 0.0117 (12) 0.0228 (12)
C10 0.0572 (16) 0.0640 (16) 0.0456 (13) 0.0076 (13) 0.0120 (12) 0.0126 (12)
C6 0.0593 (16) 0.0494 (14) 0.0670 (17) 0.0147 (12) 0.0115 (13) 0.0242 (13)
C9 0.0585 (16) 0.0417 (12) 0.0576 (15) 0.0091 (11) 0.0097 (12) 0.0109 (11)
C11 0.0514 (15) 0.0747 (19) 0.0545 (15) 0.0034 (13) 0.0068 (12) 0.0291 (14)

Geometric parameters (Å, º)

Ni1—C2 1.865 (2) C8—C9 1.399 (3)
Ni1—C2i 1.865 (2) C5—C6 1.346 (4)
Ni1—C1 1.867 (3) C5—H5 0.9300
Ni1—C1i 1.867 (3) C4—C7 1.365 (4)
C1—N1 1.145 (4) C4—H4 0.9300
C2—N2 1.136 (3) C12—C9 1.373 (4)
N4—C3 1.340 (3) C12—C11 1.381 (4)
N4—C5 1.355 (3) C12—H12 0.9300
N4—H4A 0.8600 C7—C6 1.399 (4)
N5—C8 1.326 (3) C7—H7 0.9300
N5—C10 1.337 (3) C10—C11 1.371 (4)
N3—C3 1.355 (3) C10—H10 0.9300
N3—C8 1.383 (3) C6—H6 0.9300
N3—H3A 0.8600 C9—H9 0.9300
C3—C4 1.402 (3) C11—H11 0.9300
C2—Ni1—C2i 180.0 N4—C5—H5 119.4
C2—Ni1—C1 89.06 (10) C7—C4—C3 119.8 (2)
C2i—Ni1—C1 90.94 (10) C7—C4—H4 120.1
C2—Ni1—C1i 90.94 (10) C3—C4—H4 120.1
C2i—Ni1—C1i 89.06 (10) C9—C12—C11 119.7 (3)
C1—Ni1—C1i 180.0 C9—C12—H12 120.2
N1—C1—Ni1 178.8 (2) C11—C12—H12 120.2
N2—C2—Ni1 178.6 (2) C4—C7—C6 119.5 (2)
C3—N4—C5 121.3 (2) C4—C7—H7 120.3
C3—N4—H4A 119.4 C6—C7—H7 120.3
C5—N4—H4A 119.4 N5—C10—C11 122.9 (3)
C8—N5—C10 117.8 (2) N5—C10—H10 118.5
C3—N3—C8 129.7 (2) C11—C10—H10 118.5
C3—N3—H3A 115.1 C5—C6—C7 119.1 (2)
C8—N3—H3A 115.1 C5—C6—H6 120.4
N4—C3—N3 119.7 (2) C7—C6—H6 120.4
N4—C3—C4 119.0 (2) C12—C9—C8 117.4 (3)
N3—C3—C4 121.3 (2) C12—C9—H9 121.3
N5—C8—N3 117.0 (2) C8—C9—H9 121.3
N5—C8—C9 123.4 (2) C10—C11—C12 118.8 (3)
N3—C8—C9 119.6 (2) C10—C11—H11 120.6
C6—C5—N4 121.3 (2) C12—C11—H11 120.6
C6—C5—H5 119.4

Symmetry code: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N2 0.86 2.00 2.853 (3) 172
N4—H4A···N5 0.86 1.97 2.629 (3) 132
N4—H4A···N1ii 0.86 2.41 3.055 (3) 132
C5—H5···N1ii 0.93 2.68 3.206 (4) 117

Symmetry code: (ii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Algeria grant . Direction Générale de la Recherche Scientifique et du Développement Technologique Algeria grant . Université Ferhat Abbas Sétif 1 grant .

References

  1. Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.
  2. Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Polyhedron, 254, 1468–1478.
  3. Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. [DOI] [PubMed]
  4. Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117. [DOI] [PubMed]
  5. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Bretosh, K., Béreau, V., Duhayon, C., Pichon, C. & Sutter, J.-P. (2020). Inorg. Chem. Front. 7, 1503–1511.
  7. Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A. (1995). Nature, 378, 701–703.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Karaağaç, D., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). Inorg. Chim. Acta, 406, 73–80.
  10. Kucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural’skiy, I. A. (2016). Inorg. Chem. 55, 4906–4914. [DOI] [PubMed]
  11. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  12. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  13. Paharová, J., Černák, J., Boča, R. & Žák, Z. (2003). Inorg. Chim. Acta, 346, 25–31.
  14. Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271. [DOI] [PubMed]
  15. Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247.
  16. Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  20. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  22. Willett, R. D. (1995). Acta Cryst. C51, 1517–1519.
  23. Yoon, J. H., Ryu, D. W., Choi, S. Y., Kim, H. C., Koh, E. K., Tao, J. & Hong, C. S. (2011). Chem. Commun. 47, 10416–10418. [DOI] [PubMed]
  24. Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902001419X/hb7948sup1.cif

e-76-01794-sup1.cif (481.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902001419X/hb7948Isup2.hkl

e-76-01794-Isup2.hkl (284.9KB, hkl)

Figure S1 Hirshfeld surface of (C10H10N3)2[Ni(CN)4] mapped with shape index (a) and curvedness (b). DOI: 10.1107/S205698902001419X/hb7948sup3.tif

CCDC reference: 2040378

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES