Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Oct 6;76(Pt 11):1701–1707. doi: 10.1107/S2056989020013134

Crystal structures of four isomeric hydrogen-bonded co-crystals of 6-methyl­quinoline with 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid

Kazuma Gotoh a, Hiroyuki Ishida a,*
PMCID: PMC7643240  PMID: 33209336

The structures of the four isomeric hydrogen-bonded 1:1 co-crystals of 6-methyl­quinoline with 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid have been determined at 185–190 K. In each crystal, the acid and base mol­ecules are linked by a short O—H⋯N hydrogen bond.

Keywords: crystal structure, 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid, 6-methyl­quinoline, hydrogen bond, disorder, Hirshfeld surface

Abstract

The structures of the four isomeric compounds of 6-methyl­quinoline with chloro- and nitro-substituted benzoic acids, C7H4ClNO4·C10H9N, namely, 2-chloro-4-nitro­benzoic acid–6-methyl­quinoline (1/1), (I), 2-chloro-5-nitro­benzoic acid–6-methyl­quinoline (1/1), (II), 3-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (III), and 4-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (IV), have been determined at 185–190 K. In each compound, the acid and base mol­ecules are linked by a short hydrogen bond between a carboxyl O atom and an N atom of the base. The O⋯N distances are 2.5452 (12), 2.6569 (13), 2.5640 (17) and 2.514 (2) Å, respectively, for compounds (I)–(IV). In the hydrogen-bonded acid–base units of (I), (III) and (IV), the H atoms are each disordered over two positions with O site:N site occupancies of 0.65 (3):0.35 (3), 0.59 (4):0.41 (4) and 0.48 (5):0.52 (5), respectively, for (I), (III) and (IV). The H atom in the hydrogen-bonded unit of (II) is located at the O-atom site. In all of the crystals of (I)–(IV), π–π inter­actions between the quinoline ring system and the benzene ring of the acid mol­ecule are observed. In addition, a π–π inter­action between the benzene rings of adjacent acid mol­ecules and a C—H⋯O hydrogen bond are observed in the crystal of (I), and C—H⋯O hydrogen bonds and O⋯Cl contacts occur in the crystals of (III) and (IV). These inter­molecular inter­actions connect the acid and base mol­ecules, forming a layer structure parallel to the bc plane in (I), a column along the a-axis direction in (II), a layer parallel to the ab plane in (III) and a three-dimensional network in (IV). Hirshfeld surfaces for the title compounds mapped over d norm and shape index were generated to visualize the weak inter­molecular inter­actions.

Chemical context  

Properties of hydrogen bonds formed between organic acids and organic bases depend on the pK a values of the acids and bases as well as inter­molecular inter­actions in the crystals. In our ongoing study on crystal structures of the system of quinoline derivatives–chloro- and nitro-substituted benzoic acids, we have shown that three compounds of quinoline with 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid and 5-chloro-2-nitro­benzoic acid, the ΔpK a [pK a(base) − pK a(acid)] values of which are 3.08, 2.93 and 3.04, respectively, have a short double-well O—H⋯N/O⋯H—N hydrogen bond between the carb­oxy O atom and the aromatic N atom (Gotoh & Ishida, 2009). On the other hand, in 2-chloro-5-nitro­benzoic acid–quinoline (1/1) (ΔpK a = 2.68; Gotoh & Ishida, 2009), 2-chloro-4-nitro­benzoic acid–quinoline (1/1) (ΔpK a = 2.86; Gotoh & Ishida, 2011), 3-chloro-2-nitro­benzoic acid–6-nitro­quinolune (1/1) (ΔpK a = 1.42), 8-hy­droxy­quinolinium 3-chloro-2-nitro­benzoate (ΔpK a = 3.02) and 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1) (ΔpK a = 0.98) (Gotoh & Ishida, 2019a ), 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (1/1) (ΔpK a = 0.76), 5-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1) (ΔpK a = 0.94) (Gotoh & Ishida, 2019b ), such a short disordered hydrogen bond was not observed. We report here crystal structures of title four isomeric compounds, namely, 2-chloro-4-nitro­benzoic acid–6-methyl­quinoline (1/1), (I), 2-chloro-5-nitro­benzoic acid–6-methyl­quinoline (1/1), (II), 3-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (III), and 4-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (IV), in order to extend our studies of short hydrogen bonding and weak inter­molecular inter­actions in the system of quinoline derivatives–chloro- and nitro-substituted benzoic acids. The ΔpK a values are 3.16, 2.98, 3.38 and 3.23, respectively, for (I)–(IV).graphic file with name e-76-01701-scheme1.jpg

Structural commentary  

The mol­ecular structures of compounds (I)–(IV) are shown in Fig. 1. In each compound, the acid and base mol­ecules are linked by a hydrogen bond between the carb­oxy group and the N atom of the base. In (I), (III) and (IV), short hydrogen bonds are observed with N⋯O distances of 2.5452 (12), 2.5640 (17) and 2.515 (2) Å, respectively. (Tables 1, 3 and 4). In these hydrogen bonds, the H atoms are each disordered over two sites; the occupancies of the O site and the N site refined to 0.65 (3) and 0.35 (3), 0.59 (4) and 0.41 (4), and 0.48 (5) and 0.52 (5), respectively, for (I), (III) and (IV). In (II), the H atom in the hydrogen bond is located at the O site with an N⋯O distance of 2.6569 (13) Å (Table 2), being longer than those in (I), (III) and (IV). Weak C—H⋯O hydrogen bonds are each observed in the acid–base unit of (II) (C15—H15⋯O2; Table 2) and the unit of (III) (C8—H8⋯O2; Table 3).

Figure 1.

Figure 1

Mol­ecular structures of the title compounds (I)–(IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. In the hydrogen bonds between the carb­oxy group and the N atom of the base of compounds (I), (III) and (IV), the H atoms are each disordered over two positions. Dashed lines in (II) and (III) indicate the O—H⋯N and C—H⋯O hydrogen bonds.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.85 (2) 1.70 (2) 2.5452 (12) 174 (3)
N2—H2⋯O1 0.88 (3) 1.66 (3) 2.5452 (12) 176 (3)
C8—H8⋯O4i 0.95 2.59 3.2307 (13) 125

Symmetry code: (i) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.85 (3) 1.72 (3) 2.5640 (17) 174 (3)
N2—H2⋯O1 0.88 (4) 1.69 (4) 2.5640 (17) 170 (4)
C5—H5⋯.O2i 0.95 2.44 3.3245 (19) 155
C8—H8⋯.O2 0.95 2.46 3.1438 (19) 129

Symmetry code: (i) Inline graphic.

Table 4. Hydrogen-bond geometry (Å, °) for (IV) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.84 (7) 1.70 (6) 2.514 (2) 163 (7)
N2—H2⋯O1 0.87 (4) 1.67 (5) 2.514 (2) 162 (4)
C10—H10⋯O2i 0.95 2.54 3.364 (3) 145

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.89 (2) 1.78 (2) 2.6569 (13) 169 (2)
C15—H15⋯O2 0.95 2.46 3.3211 (14) 151

In the hydrogen-bonded acid–base unit of compound (I), the quinoline ring system (N2/C8–C16) and the benzene ring (C1–C6) are almost coplanar with a dihedral angle of 1.11 (4)°, while the quinoline ring system and the carb­oxy group (O1/C7/O2) of the acid are twisted to each other with a dihedral angle of 28.59 (12)°. In the acid mol­ecule, the benzene ring makes dihedral angles of 29.36 (12) and 8.24 (11)°, respectively, with the carb­oxy group and the nitro group (O3/N1/O4).

Similar to (I), the quinoline ring system (N2/C8–C16) in the hydrogen-bonded acid–base unit of (II) makes dihedral angles of 2.15 (4) and 24.51 (15)°, respectively, with the benzene ring and the carb­oxy group. The benzene ring makes dihedral angles of 22.63 (15) and 0.77 (14)°, respectively, with the carb­oxy group and the nitro group.

Compound (III) crystallizes in the non-centrosymmetric space group P212121. In the acid–base unit, the quinoline ring system and the benzene ring of the acid are slightly twisted to each other with a dihedral angle of 14.50 (5)°. The quinoline ring system and the carb­oxy group are also slightly twisted with a dihedral angle of 12.55 (18)°. The benzene ring makes dihedral angles of 3.14 (18) and 85.04 (11)°, respectively, with the carb­oxy group and the nitro group.

Compound (IV) crystallizes in the non-centrosymmetric space group Cc. In the acid–base unit, the quinoline ring system and the benzene ring of the acid are twisted to each other with a dihedral angle of 30.39 (9)°. The quinoline ring system and the carb­oxy group are also twisted with a dihedral angle of 21.7 (3)°. The benzene ring makes dihedral angles of 16.4 (3) and 74.4 (3)°, respectively, with the carb­oxy group and the nitro group.

Supra­molecular features  

In the crystal of (I), the hydrogen–bonded acid-base units are linked by a C—H⋯O hydrogen bond (C8—H8⋯O4i; symmetry code as given in Table 1), forming a zigzag chain propagating along the c-axis direction (Fig. 2). The acid–base units, which are related to each other by an inversion center, are linked together via π–π inter­actions between the quinoline ring system and the benzene ring of the acid mol­ecule, forming a centrosymmetric dimeric unit (Fig. 3); the centroid–centroid distances are 3.7217 (6) and 3.7216 (6) Å, respectively, for Cg1⋯Cg2iii and Cg1⋯Cg3iii, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively [symmetry code: (iii) −x + 1, −y + 1, −z + 1]. The dimeric units are further linked into a column structure stacked along the b-axis direction through a weak π–π inter­action between the benzene rings with Cg1⋯Cg1iv = 3.9401 (6) Å [symmetry code: (iv) −x + 1, −y + 2, −z + 1]. The mol­ecular chains are thus stacked into a layer parallel to the bc plane via these π–π inter­actions.

Figure 2.

Figure 2

A packing diagram of (I), showing the hydrogen-bonded chain structure formed via the O—H⋯N/O⋯·H—N and C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Symmetry codes: (i) x, −y + Inline graphic, z − Inline graphic; (ii) x, −y + Inline graphic, −z + Inline graphic.

Figure 3.

Figure 3

A packing diagram of (I), showing the column structure formed via the π–π inter­actions (magenta dashed lines). H atoms except for in the O—H⋯N/O⋯·H—N hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. Symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, −y + 2, −z + 1.

In the crystal of (II), the acid and base mol­ecules are alternately stacked in a column via π–π inter­actions between the acid benzene ring and the quinoline ring system, so that the hydrogen-bonded acid–base units related by an inversion center are linked into a column structure along the a-axis direction (Fig. 4). The centroid–centroid distances are 3.6438 (6), 3.5745 (6), 3.6560 (6) and 3.7375 (6) Å, respectively, for Cg1⋯Cg2i, Cg1⋯Cg2ii, Cg1⋯Cg3i and Cg1⋯Cg3ii, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively [symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1]. There are no significant inter­actions between the columns.

Figure 4.

Figure 4

A packing diagram of (II), showing the column structure formed via the π–π inter­actions (magenta dashed lines). H atoms not involved in the O—H⋯N and C—H⋯O hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1.

In the crystal of (III), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond (C5—H5⋯O2i; symmetry code as in Table 3), forming a tape structure propagating along the b-axis direction (Fig. 5). The acid and base mol­ecules are alternately stacked in a column along the a axis direction via π–π inter­actions between the acid ring and the quinoline ring system (Fig. 6), and thus the hydrogen-bonded acid–base units form a layer lying parallel to the ab plane. The centroid–centroid distances are 3.6415 (8), 3.6126 (8) and 3.6393 (8) Å, respectively, for Cg1⋯Cg2iii, Cg1⋯Cg3iii and Cg1⋯Cg3iv, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively [symmetry codes: (iii) −x + 1, y + Inline graphic, −z + Inline graphic; (iv) −x, y + Inline graphic, −z + Inline graphic]. A short O⋯Cl contact [O3⋯Cl1v = 3.0934 (14) Å; symmetry code: (v) x − Inline graphic, −y + Inline graphic, −z] is observed between the layers.

Figure 5.

Figure 5

A packing diagram of (III), showing two tape structures (top and bottom) related by an inversion symmetry to each other, formed by O—H⋯N/O⋯·H—N and C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Symmetry codes: (i) x, y + 1, z; (ii) x, y − 1, z.

Figure 6.

Figure 6

A packing diagram of (III), showing the column structure formed via the π–π inter­actions (magenta dashed lines). H atoms not involved in the O—H⋯·N/O⋯H—N and C—H⋯O hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. Symmetry codes: (iii) −x + 1, y + Inline graphic, −z + Inline graphic; (iv) −x, y + Inline graphic, −z + Inline graphic.

In the crystal of (IV), the hydrogen-bonded acid–base units are linked into a zigzag chain structure propagating along the c-axis direction (Fig. 7) via C—H⋯O hydrogen bonds (C10—H10⋯O2i; symmetry code as in Table 4). The chains are further linked into a sheet parallel to the bc plane via an O⋯Cl short contact [O4⋯Cl1ii = 3.017 (3) Å; (ii) x, −y, z + Inline graphic]. Similar to (III), the acid and base mol­ecules are alternately stacked in a column along the a-axis direction via π–π inter­actions between the acid ring and the quinoline ring system (Fig. 8), and thus the above sheets form a three-dimensional network. The centroid–centroid distances are 3.5813 (13), 3.7987 (14) and 3.7382 (14) Å, respectively, for Cg1⋯Cg2iii, Cg1⋯Cg3iii and Cg1⋯Cg3iv, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively [symmetry codes: (iii) x − Inline graphic, −y + Inline graphic, z − Inline graphic; (iv) x + Inline graphic, −y + Inline graphic, z − Inline graphic].

Figure 7.

Figure 7

A packing diagram of (IV), showing the zigzag chain structure along the c axis via O—H⋯N/O⋯·H—N and C—H⋯O hydrogen bonds. H atoms not involved in the hydrogen bonds are omitted for clarity. Symmetry code: (i) x, −y + 1, z + Inline graphic.

Figure 8.

Figure 8

A packing diagram of (IV), showing the column structure formed via the π–π inter­actions (magenta dashed lines). H atoms not involved in the O—H⋯·N/O⋯H—N hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. Symmetry codes: (iii) x − Inline graphic, −y + Inline graphic, z − Inline graphic; (iv) x + Inline graphic, −y + Inline graphic, z − 1/2: (v) x − Inline graphic, −y + Inline graphic, z + Inline graphic; (vi) x + Inline graphic, −y + Inline graphic, z + Inline graphic.

Hirshfeld surfaces for compounds (I)–(IV) mapped over d norm and shape index (Turner et al., 2017; McKinnon et al., 2004, 2007) are shown in Fig. 9. The C—H⋯O inter­actions in (I), (III) and (IV) are viewed as faint-red spots on the d norm surfaces (black arrows in Fig. 9). In addition to these inter­actions, the O⋯Cl contacts in (III) and (IV) are shown as faint-red spots (magenta arrows). The π–π inter­actions between the acid ring and the quinoline ring system in (I)–(IV) are indicated by blue and red triangles on the shape index surfaces (white circles in Fig. 9).

Figure 9.

Figure 9

Hirshfeld surfaces [front (top) and back (bottom) views] for the compounds of (I)–(IV) mapped over d norm and shape index, indicating the C—H⋯O inter­actions (black arrows), O⋯Cl contacts (magenta arrows) and π–π inter­actions (white circles).

Database survey  

A search of the Cambridge Structural Database (Version 5.41, last update May 2020; Groom et al., 2016) for organic co-crystals/salts of 6-methyl­quinoline with carb­oxy­lic acid derivatives showed two structures, namely, 6-methyl­quinoline hemikis(trans-but-2-enedioic acid) (Cambridge Structural Database refcode LASGUJ; Bekö et al., 2012), sesquikis(6-methyl­quinoline) hemikis(quinoline) trans-but-2-enedioic acid (LASHAQ; Beko et al., 2012). A search for organic co-crystals/salts of 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid gave 61, 12, 9 and 9 structures, respectively. Limiting the search for quinoline derivatives of these compounds gave 3, 2, 4 and 2 compounds, namely, for 2-chloro-4-nitro­benzoic acid: 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (NUBHEA; Gotoh & Ishida, 2019b ), 8-hy­droxy­quinolinium 2-chloro-4-nitro­benzoate (WOPDEM; Babu & Chandrasekaran, 2014), 2-chloro-4-nitro­benzoic acid–quinoline (1/1) (YAGFAP; Gotoh & Ishida, 2011), for 2-chloro-5-nitro­benzoic acid: 2-chloro-5-nitro­benzoic acid–quinoline (1/1) (AJIWIA; Gotoh & Ishida, 2009), 8-hy­droxy-2-methyl­quinolinium 2-chloro-5-nitro­benzoate dihydrate (HIHPIY; Tan, 2007), for 3-chloro-2-nitro­benzoic acid: 3-chloro-2-nitro­benzoic acid–quinoline (1/1) (AJIWOG, Gotoh & Ishida, 2009), 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1) (XOWVUD; Gotoh & Ishida, 2019a ), 3-chloro-2-nitro­benzoic acid–6-nitro­quinoline (1/1) (XOWWAK, Gotoh & Ishida, 2019a ), 8-hy­droxy­quinolin-1-ium 3-chloro-2-nitro­benzoate (XOWWEO; Gotoh & Ishida, 2019a ), and for 4-chloro-2-nitro­benzoic acid: 4-chloro-2-nitro­benzoic acid–quinoline (AJIWUM; Gotoh & Ishida, 2009), 4-hy­droxy­quinolin-1-ium 4-chloro-2-nitro­benzoate (WOVZOZ; Gotoh & Ishida, 2019c ). Of these compounds, AJIWOG and AJIWUM show disordered O—H⋯N/O⋯H—N hydrogen bonds, while WOVZOZ shows a disorder structure in the O—H⋯O hydrogen bond accompanied by a keto–enol tautomerization in the base mol­ecule.

Synthesis and crystallization  

Single crystals of the title compounds (I)–(IV) were obtained by slow evaporation from aceto­nitrile solutions of 6-methyl­quinoline with chloro-nitro­benzoic acids in a 1:1 molar ratio at room temperature [80 ml aceto­nitrile solution of 6-methyl­quinoline (0.20 g) and chloro-nitro­benzoic acid (0.28 g for each acid)].

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. All H atoms in compounds (I)–(IV) were found in difference-Fourier maps. The O-bound H atom in (II) was refined freely; the refined distance is given in Table 2. For (I), (III) and (IV), H atoms in the N⋯H⋯O hydrogen bonds were found to be disordered over two positions in difference-Fourier maps. Since the site-occupancy factors and isotropic displacement parameters are strongly collated, the positional parameters and occupancy factors were refined, with bond length restraints of N—H = 0.88 (1) Å and O—H = 0.84 (1) Å, and with U iso(H) = 1.5U eq(N or O); the refined distances are given in Tables 1, 3 and 4. Other H atoms were positioned geometrically (C—H = 0.95 Å) and treated as riding, with U iso(H) = 1.2 or 1.5U eq(C).

Table 5. Experimental details.

  (I) (II) (III) (IV)
Crystal data
Chemical formula C7H3.65ClNO4·C10H9.35N C7H4ClNO4·C10H9N C7H3.59ClNO4·C10H9.41N C7H3.48ClNO4·C10H9.52N
M r 344.74 344.74 344.75 344.75
Crystal system, space group Monoclinic, P21/c Triclinic, P Inline graphic Orthorhombic, P212121 Monoclinic, C c
Temperature (K) 185 186 190 185
a, b, c (Å) 9.5055 (2), 8.3019 (4), 19.5865 (4) 6.8693 (3), 7.6482 (4), 15.1195 (4) 7.1156 (4), 7.5854 (4), 28.8599 (14) 7.4271 (6), 14.4348 (6), 16.2208 (7)
α, β, γ (°) 90, 95.7214 (7), 90 78.218 (3), 81.1923 (18), 77.754 (3) 90, 90, 90 90, 113.203 (3), 90
V3) 1537.94 (8) 754.89 (6) 1557.70 (14) 1598.35 (16)
Z 4 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.27 0.28 0.27 0.26
Crystal size (mm) 0.40 × 0.35 × 0.35 0.45 × 0.35 × 0.30 0.30 × 0.30 × 0.17 0.28 × 0.25 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999) Numerical (NUMABS; Higashi, 1999) Numerical (NUMABS; Higashi, 1999) Numerical (NUMABS; Higashi, 1999)
T min, T max 0.887, 0.909 0.891, 0.920 0.938, 0.955 0.931, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 30539, 4487, 4065 15404, 4381, 3868 30061, 4532, 4365 16695, 4645, 4158
R int 0.025 0.023 0.017 0.015
(sin θ/λ)max−1) 0.704 0.703 0.703 0.703
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.096, 1.06 0.036, 0.108, 1.05 0.028, 0.079, 1.06 0.030, 0.081, 1.09
No. of reflections 4487 4381 4532 4645
No. of parameters 225 222 225 225
No. of restraints 2 0 2 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.22 0.48, −0.26 0.31, −0.26 0.35, −0.16
Absolute structure Flack x determined using 1821 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 1899 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.014 (8) −0.023 (9)

Computer programs: PROCESS-AUTO (Rigaku, 2006), SHELXT (Sheldrick, 2015a ), SHELXS97 (Sheldrick, 2008), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020), CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III, IV. DOI: 10.1107/S2056989020013134/hb7946sup1.cif

e-76-01701-sup1.cif (2.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013134/hb7946Isup2.hkl

e-76-01701-Isup2.hkl (357.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020013134/hb7946IIsup3.hkl

e-76-01701-IIsup3.hkl (348.9KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989020013134/hb7946IIIsup4.hkl

e-76-01701-IIIsup4.hkl (361KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989020013134/hb7946IVsup5.hkl

e-76-01701-IVsup5.hkl (370KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020013134/hb7946Isup6.cml

Supporting information file. DOI: 10.1107/S2056989020013134/hb7946IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989020013134/hb7946IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989020013134/hb7946IVsup9.cml

CCDC references: 2034476, 2034475, 2034474, 2034473

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

2-Chloro-4-nitrobenzoic acid–6-methylquinoline (1/1) (I). Crystal data

C7H3.65ClNO4·C10H9.35N F(000) = 712.00
Mr = 344.74 Dx = 1.489 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 9.5055 (2) Å Cell parameters from 26323 reflections
b = 8.3019 (4) Å θ = 3.1–30.2°
c = 19.5865 (4) Å µ = 0.27 mm1
β = 95.7214 (7)° T = 185 K
V = 1537.94 (8) Å3 Block, colorless
Z = 4 0.40 × 0.35 × 0.35 mm

2-Chloro-4-nitrobenzoic acid–6-methylquinoline (1/1) (I). Data collection

Rigaku R-AXIS RAPIDII diffractometer 4065 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.025
ω scans θmax = 30.0°, θmin = 3.2°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −13→12
Tmin = 0.887, Tmax = 0.909 k = −11→11
30539 measured reflections l = −27→26
4487 independent reflections

2-Chloro-4-nitrobenzoic acid–6-methylquinoline (1/1) (I). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: mixed
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.329P] where P = (Fo2 + 2Fc2)/3
4487 reflections (Δ/σ)max = 0.001
225 parameters Δρmax = 0.43 e Å3
2 restraints Δρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methods

2-Chloro-4-nitrobenzoic acid–6-methylquinoline (1/1) (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-Chloro-4-nitrobenzoic acid–6-methylquinoline (1/1) (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.87370 (3) 0.79426 (3) 0.44087 (2) 0.03134 (8)
O1 0.42961 (8) 0.64577 (11) 0.42646 (5) 0.03635 (19)
H1 0.401 (3) 0.576 (3) 0.3967 (11) 0.055* 0.65 (3)
O2 0.64551 (9) 0.55323 (11) 0.41332 (5) 0.0415 (2)
O3 0.85703 (9) 1.17879 (11) 0.64471 (4) 0.03715 (19)
O4 0.67137 (9) 1.12532 (11) 0.69548 (4) 0.03875 (19)
N1 0.74667 (9) 1.10600 (10) 0.64913 (4) 0.02564 (17)
N2 0.32928 (9) 0.44919 (10) 0.33444 (4) 0.02445 (16)
H2 0.364 (4) 0.521 (4) 0.3649 (17) 0.037* 0.35 (3)
C1 0.61850 (9) 0.76377 (11) 0.49454 (4) 0.02042 (16)
C2 0.75219 (9) 0.83696 (11) 0.49820 (4) 0.02126 (17)
C3 0.79336 (9) 0.95089 (11) 0.54813 (5) 0.02240 (17)
H3 0.883075 1.001906 0.549641 0.027*
C4 0.70028 (10) 0.98778 (11) 0.59541 (4) 0.02162 (17)
C5 0.56791 (10) 0.91744 (12) 0.59456 (5) 0.02394 (18)
H5 0.506368 0.944280 0.628184 0.029*
C6 0.52786 (10) 0.80690 (11) 0.54331 (5) 0.02350 (18)
H6 0.436619 0.759387 0.541313 0.028*
C7 0.56641 (10) 0.64206 (11) 0.44026 (5) 0.02361 (17)
C8 0.40800 (11) 0.39905 (13) 0.28726 (5) 0.0284 (2)
H8 0.500827 0.441308 0.287010 0.034*
C9 0.36003 (12) 0.28509 (13) 0.23709 (5) 0.0314 (2)
H9 0.418985 0.252719 0.203149 0.038*
C10 0.22700 (12) 0.22130 (12) 0.23779 (5) 0.0291 (2)
H10 0.193332 0.143923 0.204340 0.035*
C11 0.14049 (10) 0.27092 (11) 0.28827 (5) 0.02387 (18)
C12 0.00279 (11) 0.20841 (12) 0.29329 (5) 0.0285 (2)
H12 −0.034075 0.128787 0.261562 0.034*
C13 −0.07753 (11) 0.26074 (13) 0.34293 (6) 0.0294 (2)
C14 −0.02173 (11) 0.38120 (13) 0.38945 (6) 0.0299 (2)
H14 −0.078279 0.419813 0.423309 0.036*
C15 0.11154 (11) 0.44368 (12) 0.38702 (5) 0.02705 (19)
H15 0.146830 0.523118 0.419192 0.032*
C16 0.19535 (10) 0.38878 (11) 0.33634 (5) 0.02220 (17)
C17 −0.22358 (12) 0.19441 (16) 0.34909 (8) 0.0408 (3)
H17A −0.290638 0.283656 0.350772 0.061*
H17B −0.222599 0.130421 0.391184 0.061*
H17C −0.252335 0.126106 0.309332 0.061*

2-Chloro-4-nitrobenzoic acid–6-methylquinoline (1/1) (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02668 (13) 0.03764 (15) 0.03157 (13) −0.00822 (9) 0.01214 (9) −0.01037 (9)
O1 0.0247 (4) 0.0378 (4) 0.0445 (4) 0.0002 (3) −0.0067 (3) −0.0172 (3)
O2 0.0293 (4) 0.0412 (5) 0.0547 (5) −0.0052 (3) 0.0083 (3) −0.0239 (4)
O3 0.0343 (4) 0.0387 (4) 0.0387 (4) −0.0130 (3) 0.0050 (3) −0.0133 (3)
O4 0.0452 (5) 0.0433 (5) 0.0297 (4) −0.0057 (4) 0.0133 (3) −0.0115 (3)
N1 0.0282 (4) 0.0247 (4) 0.0239 (4) −0.0008 (3) 0.0022 (3) −0.0028 (3)
N2 0.0244 (4) 0.0227 (4) 0.0254 (4) −0.0023 (3) −0.0015 (3) −0.0010 (3)
C1 0.0196 (4) 0.0194 (4) 0.0219 (4) −0.0016 (3) 0.0006 (3) 0.0011 (3)
C2 0.0195 (4) 0.0228 (4) 0.0219 (4) −0.0016 (3) 0.0043 (3) −0.0005 (3)
C3 0.0197 (4) 0.0235 (4) 0.0241 (4) −0.0042 (3) 0.0024 (3) −0.0010 (3)
C4 0.0235 (4) 0.0200 (4) 0.0211 (4) −0.0012 (3) 0.0011 (3) −0.0012 (3)
C5 0.0219 (4) 0.0258 (4) 0.0247 (4) −0.0006 (3) 0.0055 (3) −0.0004 (3)
C6 0.0193 (4) 0.0246 (4) 0.0268 (4) −0.0033 (3) 0.0034 (3) 0.0000 (3)
C7 0.0247 (4) 0.0213 (4) 0.0247 (4) −0.0042 (3) 0.0019 (3) −0.0004 (3)
C8 0.0274 (4) 0.0280 (5) 0.0297 (5) −0.0020 (4) 0.0029 (4) 0.0016 (4)
C9 0.0375 (5) 0.0320 (5) 0.0256 (4) 0.0002 (4) 0.0072 (4) −0.0014 (4)
C10 0.0389 (5) 0.0267 (5) 0.0212 (4) −0.0027 (4) 0.0000 (4) −0.0031 (3)
C11 0.0276 (4) 0.0214 (4) 0.0214 (4) −0.0014 (3) −0.0038 (3) 0.0008 (3)
C12 0.0286 (5) 0.0257 (4) 0.0295 (5) −0.0047 (3) −0.0060 (4) 0.0000 (3)
C13 0.0238 (4) 0.0268 (4) 0.0366 (5) −0.0010 (4) −0.0017 (4) 0.0065 (4)
C14 0.0280 (5) 0.0274 (5) 0.0346 (5) 0.0035 (4) 0.0052 (4) 0.0015 (4)
C15 0.0292 (5) 0.0234 (4) 0.0282 (4) 0.0006 (3) 0.0011 (3) −0.0032 (3)
C16 0.0237 (4) 0.0197 (4) 0.0223 (4) −0.0004 (3) −0.0023 (3) 0.0003 (3)
C17 0.0269 (5) 0.0399 (6) 0.0553 (7) −0.0065 (4) 0.0026 (5) 0.0073 (5)

2-Chloro-4-nitrobenzoic acid–6-methylquinoline (1/1) (I). Geometric parameters (Å, º)

Cl1—C2 1.7262 (9) C8—C9 1.4069 (14)
O1—C7 1.3019 (12) C8—H8 0.9500
O1—H1 0.847 (10) C9—C10 1.3722 (16)
O2—C7 1.2111 (13) C9—H9 0.9500
O3—N1 1.2211 (12) C10—C11 1.4091 (14)
O4—N1 1.2215 (11) C10—H10 0.9500
N1—C4 1.4739 (12) C11—C12 1.4206 (14)
N2—C8 1.3134 (13) C11—C16 1.4205 (12)
N2—C16 1.3722 (12) C12—C13 1.3656 (16)
N2—H2 0.883 (10) C12—H12 0.9500
C1—C6 1.3954 (13) C13—C14 1.4196 (15)
C1—C2 1.4039 (12) C13—C17 1.5096 (15)
C1—C7 1.5137 (12) C14—C15 1.3741 (15)
C2—C3 1.3884 (12) C14—H14 0.9500
C3—C4 1.3774 (13) C15—C16 1.4090 (14)
C3—H3 0.9500 C15—H15 0.9500
C4—C5 1.3857 (13) C17—H17A 0.9800
C5—C6 1.3851 (13) C17—H17B 0.9800
C5—H5 0.9500 C17—H17C 0.9800
C6—H6 0.9500
C7—O1—H1 112.0 (19) C10—C9—C8 119.17 (10)
O3—N1—O4 123.98 (9) C10—C9—H9 120.4
O3—N1—C4 118.49 (8) C8—C9—H9 120.4
O4—N1—C4 117.53 (8) C9—C10—C11 119.80 (9)
C8—N2—C16 119.89 (8) C9—C10—H10 120.1
C8—N2—H2 119 (3) C11—C10—H10 120.1
C16—N2—H2 121 (3) C10—C11—C12 123.23 (9)
C6—C1—C2 118.13 (8) C10—C11—C16 117.72 (9)
C6—C1—C7 118.10 (8) C12—C11—C16 119.05 (9)
C2—C1—C7 123.77 (8) C13—C12—C11 121.16 (9)
C3—C2—C1 121.40 (8) C13—C12—H12 119.4
C3—C2—Cl1 115.99 (7) C11—C12—H12 119.4
C1—C2—Cl1 122.60 (7) C12—C13—C14 118.79 (9)
C4—C3—C2 118.04 (8) C12—C13—C17 121.65 (10)
C4—C3—H3 121.0 C14—C13—C17 119.56 (10)
C2—C3—H3 121.0 C15—C14—C13 122.03 (10)
C3—C4—C5 122.79 (8) C15—C14—H14 119.0
C3—C4—N1 117.48 (8) C13—C14—H14 119.0
C5—C4—N1 119.73 (8) C14—C15—C16 119.36 (9)
C6—C5—C4 118.14 (8) C14—C15—H15 120.3
C6—C5—H5 120.9 C16—C15—H15 120.3
C4—C5—H5 120.9 N2—C16—C15 119.48 (8)
C5—C6—C1 121.48 (8) N2—C16—C11 120.93 (9)
C5—C6—H6 119.3 C15—C16—C11 119.59 (9)
C1—C6—H6 119.3 C13—C17—H17A 109.5
O2—C7—O1 125.07 (9) C13—C17—H17B 109.5
O2—C7—C1 122.59 (9) H17A—C17—H17B 109.5
O1—C7—C1 112.34 (8) C13—C17—H17C 109.5
N2—C8—C9 122.47 (9) H17A—C17—H17C 109.5
N2—C8—H8 118.8 H17B—C17—H17C 109.5
C9—C8—H8 118.8
C6—C1—C2—C3 −0.91 (13) C16—N2—C8—C9 0.66 (15)
C7—C1—C2—C3 178.41 (8) N2—C8—C9—C10 −1.13 (16)
C6—C1—C2—Cl1 −179.86 (7) C8—C9—C10—C11 0.25 (16)
C7—C1—C2—Cl1 −0.55 (13) C9—C10—C11—C12 −178.73 (9)
C1—C2—C3—C4 1.56 (14) C9—C10—C11—C16 0.97 (14)
Cl1—C2—C3—C4 −179.42 (7) C10—C11—C12—C13 −179.69 (9)
C2—C3—C4—C5 −0.70 (14) C16—C11—C12—C13 0.62 (14)
C2—C3—C4—N1 178.55 (8) C11—C12—C13—C14 0.77 (15)
O3—N1—C4—C3 8.31 (13) C11—C12—C13—C17 −179.57 (9)
O4—N1—C4—C3 −171.89 (9) C12—C13—C14—C15 −1.57 (16)
O3—N1—C4—C5 −172.41 (9) C17—C13—C14—C15 178.76 (10)
O4—N1—C4—C5 7.39 (13) C13—C14—C15—C16 0.91 (15)
C3—C4—C5—C6 −0.78 (14) C8—N2—C16—C15 −179.81 (9)
N1—C4—C5—C6 179.98 (8) C8—N2—C16—C11 0.65 (14)
C4—C5—C6—C1 1.46 (14) C14—C15—C16—N2 −179.02 (9)
C2—C1—C6—C5 −0.64 (14) C14—C15—C16—C11 0.53 (14)
C7—C1—C6—C5 180.00 (8) C10—C11—C16—N2 −1.45 (13)
C6—C1—C7—O2 −151.53 (10) C12—C11—C16—N2 178.26 (9)
C2—C1—C7—O2 29.15 (15) C10—C11—C16—C15 179.01 (9)
C6—C1—C7—O1 28.79 (12) C12—C11—C16—C15 −1.28 (13)
C2—C1—C7—O1 −150.52 (9)

2-Chloro-4-nitrobenzoic acid–6-methylquinoline (1/1) (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.85 (2) 1.70 (2) 2.5452 (12) 174 (3)
N2—H2···O1 0.88 (3) 1.66 (3) 2.5452 (12) 176 (3)
C8—H8···O4i 0.95 2.59 3.2307 (13) 125

Symmetry code: (i) x, −y+3/2, z−1/2.

2-Chloro-5-nitrobenzoic acid–6-methylquinoline (1/1) (II). Crystal data

C7H4ClNO4·C10H9N Z = 2
Mr = 344.74 F(000) = 356.00
Triclinic, P1 Dx = 1.517 Mg m3
a = 6.8693 (3) Å Mo Kα radiation, λ = 0.71075 Å
b = 7.6482 (4) Å Cell parameters from 13517 reflections
c = 15.1195 (4) Å θ = 3.1–30.1°
α = 78.218 (3)° µ = 0.28 mm1
β = 81.1923 (18)° T = 186 K
γ = 77.754 (3)° Block, colorless
V = 754.89 (6) Å3 0.45 × 0.35 × 0.30 mm

2-Chloro-5-nitrobenzoic acid–6-methylquinoline (1/1) (II). Data collection

Rigaku R-AXIS RAPIDII diffractometer 3868 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.023
ω scans θmax = 30.0°, θmin = 3.1°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −9→9
Tmin = 0.891, Tmax = 0.920 k = −10→10
15404 measured reflections l = −20→21
4381 independent reflections

2-Chloro-5-nitrobenzoic acid–6-methylquinoline (1/1) (II). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: mixed
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.1585P] where P = (Fo2 + 2Fc2)/3
4381 reflections (Δ/σ)max = 0.001
222 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.26 e Å3

2-Chloro-5-nitrobenzoic acid–6-methylquinoline (1/1) (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-Chloro-5-nitrobenzoic acid–6-methylquinoline (1/1) (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.11678 (4) 0.98086 (4) 0.61864 (2) 0.03561 (10)
O1 0.21038 (15) 0.43541 (12) 0.54709 (6) 0.0366 (2)
O2 0.28610 (18) 0.71213 (14) 0.49895 (6) 0.0478 (3)
O3 0.18489 (15) 0.29378 (13) 0.96192 (6) 0.0392 (2)
O4 0.25163 (16) 0.14131 (12) 0.85221 (6) 0.0405 (2)
N1 0.20962 (14) 0.28451 (13) 0.88057 (6) 0.02681 (18)
N2 0.29763 (14) 0.34416 (12) 0.38322 (6) 0.02569 (18)
C1 0.19890 (14) 0.60827 (13) 0.65842 (7) 0.02253 (19)
C2 0.15118 (15) 0.77299 (14) 0.69035 (7) 0.02393 (19)
C3 0.12289 (16) 0.77660 (14) 0.78333 (7) 0.0264 (2)
H3 0.091426 0.890115 0.803551 0.032*
C4 0.14004 (15) 0.61713 (14) 0.84642 (7) 0.0254 (2)
H4 0.119312 0.619066 0.909822 0.030*
C5 0.18819 (14) 0.45521 (13) 0.81441 (6) 0.02191 (18)
C6 0.21638 (15) 0.44738 (13) 0.72259 (7) 0.02259 (19)
H6 0.247515 0.333038 0.703216 0.027*
C7 0.23535 (16) 0.59389 (15) 0.55899 (7) 0.0274 (2)
C8 0.34550 (16) 0.16678 (15) 0.38795 (7) 0.0279 (2)
H8 0.346849 0.091817 0.446377 0.033*
C9 0.39475 (17) 0.08253 (14) 0.31103 (8) 0.0284 (2)
H9 0.429397 −0.046122 0.317664 0.034*
C10 0.39200 (16) 0.18891 (14) 0.22624 (7) 0.0267 (2)
H10 0.424134 0.134301 0.173486 0.032*
C11 0.34115 (14) 0.38015 (13) 0.21768 (7) 0.02121 (18)
C12 0.33604 (15) 0.50006 (14) 0.13253 (7) 0.02423 (19)
H12 0.364652 0.451051 0.078062 0.029*
C13 0.29069 (15) 0.68496 (14) 0.12730 (7) 0.02410 (19)
C14 0.24533 (16) 0.75428 (14) 0.20953 (8) 0.0271 (2)
H14 0.212931 0.882237 0.206693 0.032*
C15 0.24652 (16) 0.64331 (14) 0.29307 (7) 0.0264 (2)
H15 0.214505 0.694420 0.346914 0.032*
C16 0.29544 (14) 0.45298 (13) 0.29885 (6) 0.02121 (18)
C17 0.28690 (19) 0.81553 (17) 0.03801 (8) 0.0341 (2)
H17A 0.323370 0.747133 −0.012173 0.051*
H17B 0.382979 0.895687 0.034211 0.051*
H17C 0.151890 0.888699 0.033913 0.051*
H1 0.243 (3) 0.420 (3) 0.4899 (15) 0.064 (6)*

2-Chloro-5-nitrobenzoic acid–6-methylquinoline (1/1) (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.03973 (16) 0.02267 (14) 0.03659 (16) −0.00175 (10) −0.00100 (11) 0.00595 (10)
O1 0.0568 (6) 0.0320 (4) 0.0209 (4) −0.0110 (4) 0.0014 (3) −0.0059 (3)
O2 0.0815 (8) 0.0429 (5) 0.0220 (4) −0.0271 (5) −0.0024 (4) 0.0010 (4)
O3 0.0584 (6) 0.0364 (5) 0.0194 (4) −0.0069 (4) −0.0037 (3) 0.0005 (3)
O4 0.0648 (6) 0.0216 (4) 0.0315 (4) −0.0031 (4) −0.0064 (4) −0.0010 (3)
N1 0.0315 (4) 0.0243 (4) 0.0227 (4) −0.0046 (3) −0.0038 (3) 0.0002 (3)
N2 0.0299 (4) 0.0250 (4) 0.0208 (4) −0.0049 (3) −0.0029 (3) −0.0012 (3)
C1 0.0227 (4) 0.0234 (5) 0.0203 (4) −0.0042 (3) −0.0029 (3) −0.0012 (3)
C2 0.0222 (4) 0.0215 (4) 0.0262 (5) −0.0043 (3) −0.0032 (3) 0.0007 (3)
C3 0.0291 (5) 0.0209 (4) 0.0292 (5) −0.0040 (4) −0.0023 (4) −0.0061 (4)
C4 0.0278 (5) 0.0265 (5) 0.0221 (4) −0.0054 (4) −0.0022 (3) −0.0050 (4)
C5 0.0233 (4) 0.0213 (4) 0.0202 (4) −0.0048 (3) −0.0034 (3) −0.0001 (3)
C6 0.0250 (4) 0.0213 (4) 0.0208 (4) −0.0038 (3) −0.0027 (3) −0.0028 (3)
C7 0.0303 (5) 0.0297 (5) 0.0212 (5) −0.0052 (4) −0.0042 (4) −0.0016 (4)
C8 0.0298 (5) 0.0249 (5) 0.0269 (5) −0.0066 (4) −0.0042 (4) 0.0027 (4)
C9 0.0310 (5) 0.0183 (4) 0.0347 (5) −0.0046 (4) −0.0040 (4) −0.0015 (4)
C10 0.0308 (5) 0.0201 (4) 0.0293 (5) −0.0050 (4) −0.0006 (4) −0.0065 (4)
C11 0.0217 (4) 0.0193 (4) 0.0226 (4) −0.0049 (3) −0.0014 (3) −0.0035 (3)
C12 0.0274 (5) 0.0250 (5) 0.0203 (4) −0.0060 (4) −0.0013 (3) −0.0039 (3)
C13 0.0252 (4) 0.0234 (5) 0.0230 (5) −0.0067 (4) −0.0047 (3) 0.0010 (3)
C14 0.0326 (5) 0.0188 (4) 0.0298 (5) −0.0035 (4) −0.0067 (4) −0.0033 (4)
C15 0.0335 (5) 0.0209 (5) 0.0249 (5) −0.0023 (4) −0.0043 (4) −0.0064 (4)
C16 0.0223 (4) 0.0204 (4) 0.0206 (4) −0.0042 (3) −0.0024 (3) −0.0028 (3)
C17 0.0424 (6) 0.0308 (5) 0.0268 (5) −0.0099 (5) −0.0071 (4) 0.0059 (4)

2-Chloro-5-nitrobenzoic acid–6-methylquinoline (1/1) (II). Geometric parameters (Å, º)

Cl1—C2 1.7245 (10) C8—C9 1.4055 (16)
O1—C7 1.3106 (14) C8—H8 0.9500
O1—H1 0.89 (2) C9—C10 1.3713 (15)
O2—C7 1.2104 (14) C9—H9 0.9500
O3—N1 1.2302 (12) C10—C11 1.4134 (13)
O4—N1 1.2192 (13) C10—H10 0.9500
N1—C5 1.4686 (13) C11—C16 1.4149 (13)
N2—C8 1.3161 (14) C11—C12 1.4205 (13)
N2—C16 1.3737 (12) C12—C13 1.3705 (14)
C1—C2 1.3972 (14) C12—H12 0.9500
C1—C6 1.3984 (13) C13—C14 1.4157 (15)
C1—C7 1.5084 (14) C13—C17 1.5066 (14)
C2—C3 1.3946 (15) C14—C15 1.3706 (15)
C3—C4 1.3819 (15) C14—H14 0.9500
C3—H3 0.9500 C15—C16 1.4103 (14)
C4—C5 1.3781 (14) C15—H15 0.9500
C4—H4 0.9500 C17—H17A 0.9800
C5—C6 1.3838 (14) C17—H17B 0.9800
C6—H6 0.9500 C17—H17C 0.9800
C7—O1—H1 112.6 (13) C10—C9—H9 120.5
O4—N1—O3 123.42 (10) C8—C9—H9 120.5
O4—N1—C5 118.51 (9) C9—C10—C11 119.73 (10)
O3—N1—C5 118.07 (9) C9—C10—H10 120.1
C8—N2—C16 118.47 (9) C11—C10—H10 120.1
C2—C1—C6 117.92 (9) C10—C11—C16 117.36 (9)
C2—C1—C7 123.90 (9) C10—C11—C12 123.30 (9)
C6—C1—C7 118.17 (9) C16—C11—C12 119.33 (9)
C3—C2—C1 120.97 (9) C13—C12—C11 121.38 (9)
C3—C2—Cl1 116.41 (8) C13—C12—H12 119.3
C1—C2—Cl1 122.59 (8) C11—C12—H12 119.3
C4—C3—C2 120.83 (10) C12—C13—C14 118.14 (9)
C4—C3—H3 119.6 C12—C13—C17 122.58 (10)
C2—C3—H3 119.6 C14—C13—C17 119.27 (10)
C5—C4—C3 117.86 (9) C15—C14—C13 122.32 (9)
C5—C4—H4 121.1 C15—C14—H14 118.8
C3—C4—H4 121.1 C13—C14—H14 118.8
C4—C5—C6 122.59 (9) C14—C15—C16 119.78 (9)
C4—C5—N1 118.54 (9) C14—C15—H15 120.1
C6—C5—N1 118.86 (9) C16—C15—H15 120.1
C5—C6—C1 119.81 (9) N2—C16—C15 118.88 (9)
C5—C6—H6 120.1 N2—C16—C11 122.08 (9)
C1—C6—H6 120.1 C15—C16—C11 119.03 (9)
O2—C7—O1 124.98 (10) C13—C17—H17A 109.5
O2—C7—C1 123.97 (10) C13—C17—H17B 109.5
O1—C7—C1 111.02 (9) H17A—C17—H17B 109.5
N2—C8—C9 123.38 (10) C13—C17—H17C 109.5
N2—C8—H8 118.3 H17A—C17—H17C 109.5
C9—C8—H8 118.3 H17B—C17—H17C 109.5
C10—C9—C8 118.97 (10)
C6—C1—C2—C3 0.31 (15) C16—N2—C8—C9 0.03 (16)
C7—C1—C2—C3 −178.82 (10) N2—C8—C9—C10 −0.48 (17)
C6—C1—C2—Cl1 −177.73 (7) C8—C9—C10—C11 0.35 (16)
C7—C1—C2—Cl1 3.14 (14) C9—C10—C11—C16 0.19 (15)
C1—C2—C3—C4 −0.43 (16) C9—C10—C11—C12 179.57 (10)
Cl1—C2—C3—C4 177.73 (8) C10—C11—C12—C13 −178.37 (10)
C2—C3—C4—C5 0.75 (16) C16—C11—C12—C13 0.99 (15)
C3—C4—C5—C6 −1.02 (16) C11—C12—C13—C14 −1.05 (15)
C3—C4—C5—N1 179.20 (9) C11—C12—C13—C17 179.13 (9)
O4—N1—C5—C4 179.79 (10) C12—C13—C14—C15 0.36 (16)
O3—N1—C5—C4 −0.50 (15) C17—C13—C14—C15 −179.82 (10)
O4—N1—C5—C6 −0.01 (15) C13—C14—C15—C16 0.40 (16)
O3—N1—C5—C6 179.71 (10) C8—N2—C16—C15 −179.29 (10)
C4—C5—C6—C1 0.93 (16) C8—N2—C16—C11 0.55 (15)
N1—C5—C6—C1 −179.29 (8) C14—C15—C16—N2 179.39 (9)
C2—C1—C6—C5 −0.54 (15) C14—C15—C16—C11 −0.45 (15)
C7—C1—C6—C5 178.64 (9) C10—C11—C16—N2 −0.65 (14)
C2—C1—C7—O2 23.08 (17) C12—C11—C16—N2 179.94 (9)
C6—C1—C7—O2 −156.05 (12) C10—C11—C16—C15 179.19 (9)
C2—C1—C7—O1 −158.73 (10) C12—C11—C16—C15 −0.22 (14)
C6—C1—C7—O1 22.14 (13)

2-Chloro-5-nitrobenzoic acid–6-methylquinoline (1/1) (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.89 (2) 1.78 (2) 2.6569 (13) 169 (2)
C15—H15···O2 0.95 2.46 3.3211 (14) 151

3-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (III). Crystal data

C7H3.59ClNO4·C10H9.41N Dx = 1.470 Mg m3
Mr = 344.75 Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, P212121 Cell parameters from 28109 reflections
a = 7.1156 (4) Å θ = 3.0–30.0°
b = 7.5854 (4) Å µ = 0.27 mm1
c = 28.8599 (14) Å T = 190 K
V = 1557.70 (14) Å3 Block, colorless
Z = 4 0.30 × 0.30 × 0.17 mm
F(000) = 712.00

3-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (III). Data collection

Rigaku R-AXIS RAPIDII diffractometer 4365 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.017
ω scans θmax = 30.0°, θmin = 3.0°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −10→9
Tmin = 0.938, Tmax = 0.955 k = −10→10
30061 measured reflections l = −39→40
4532 independent reflections

3-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (III). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.1455P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
4532 reflections Δρmax = 0.31 e Å3
225 parameters Δρmin = −0.26 e Å3
2 restraints Absolute structure: Flack x determined using 1821 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.014 (8)

3-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (III). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (III). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.53139 (7) 0.88067 (5) 0.01741 (2) 0.03788 (11)
O1 0.27295 (18) 0.75649 (15) 0.22566 (4) 0.0324 (2)
H1 0.236 (6) 0.671 (4) 0.2421 (12) 0.049* 0.59 (4)
O2 0.3168 (2) 0.54391 (16) 0.17307 (4) 0.0419 (3)
O3 0.2617 (2) 0.56590 (17) 0.07241 (4) 0.0410 (3)
O4 0.55968 (19) 0.53587 (15) 0.08592 (5) 0.0385 (3)
N1 0.41299 (18) 0.61877 (16) 0.08702 (4) 0.0263 (2)
N2 0.18381 (18) 0.49896 (17) 0.27884 (4) 0.0260 (2)
H2 0.203 (8) 0.585 (5) 0.2590 (16) 0.039* 0.41 (4)
C1 0.37616 (18) 0.84027 (16) 0.15112 (4) 0.0210 (2)
C2 0.42073 (19) 0.80125 (17) 0.10505 (4) 0.0216 (2)
C3 0.4747 (2) 0.93226 (17) 0.07416 (4) 0.0240 (2)
C4 0.4842 (2) 1.10660 (18) 0.08878 (5) 0.0265 (3)
H4 0.520281 1.196857 0.067766 0.032*
C5 0.4404 (2) 1.14758 (18) 0.13447 (5) 0.0272 (3)
H5 0.446936 1.266384 0.144760 0.033*
C6 0.38715 (19) 1.01549 (18) 0.16517 (5) 0.0246 (2)
H6 0.357703 1.045362 0.196302 0.030*
C7 0.3188 (2) 0.69810 (18) 0.18471 (5) 0.0245 (3)
C8 0.2211 (2) 0.3372 (2) 0.26449 (5) 0.0297 (3)
H8 0.261320 0.320660 0.233404 0.036*
C9 0.2039 (2) 0.18918 (19) 0.29319 (5) 0.0307 (3)
H9 0.229500 0.074532 0.281546 0.037*
C10 0.1493 (2) 0.21234 (19) 0.33840 (5) 0.0282 (3)
H10 0.138409 0.113530 0.358444 0.034*
C11 0.10940 (18) 0.38383 (19) 0.35510 (4) 0.0234 (2)
C12 0.0566 (2) 0.4191 (2) 0.40170 (5) 0.0269 (3)
H12 0.046576 0.324225 0.423028 0.032*
C13 0.0200 (2) 0.5876 (2) 0.41648 (5) 0.0283 (3)
C14 0.0319 (2) 0.7280 (2) 0.38397 (5) 0.0311 (3)
H14 0.003183 0.844465 0.393774 0.037*
C15 0.0841 (2) 0.69943 (19) 0.33867 (5) 0.0292 (3)
H15 0.091762 0.795472 0.317624 0.035*
C16 0.12609 (19) 0.52672 (18) 0.32360 (5) 0.0233 (2)
C17 −0.0287 (3) 0.6272 (3) 0.46621 (5) 0.0399 (4)
H17A −0.128360 0.716224 0.467272 0.060*
H17B 0.082912 0.671801 0.482279 0.060*
H17C −0.072283 0.519138 0.481428 0.060*

3-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (III). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0610 (2) 0.03165 (18) 0.02096 (15) −0.00237 (17) 0.01009 (15) 0.00035 (13)
O1 0.0498 (7) 0.0250 (5) 0.0223 (5) −0.0041 (5) 0.0099 (5) −0.0005 (4)
O2 0.0751 (9) 0.0223 (5) 0.0282 (5) −0.0037 (5) 0.0160 (6) 0.0008 (4)
O3 0.0507 (7) 0.0332 (6) 0.0390 (6) −0.0137 (5) −0.0115 (5) −0.0032 (5)
O4 0.0478 (6) 0.0249 (5) 0.0427 (6) 0.0058 (5) 0.0072 (5) −0.0060 (5)
N1 0.0391 (6) 0.0201 (5) 0.0197 (5) −0.0037 (5) 0.0015 (4) −0.0007 (4)
N2 0.0325 (6) 0.0245 (5) 0.0209 (5) −0.0020 (5) 0.0034 (4) 0.0025 (4)
C1 0.0240 (5) 0.0193 (5) 0.0199 (5) −0.0003 (4) 0.0020 (4) 0.0011 (4)
C2 0.0258 (5) 0.0173 (5) 0.0215 (5) −0.0005 (4) 0.0004 (4) −0.0006 (4)
C3 0.0298 (6) 0.0222 (5) 0.0198 (5) 0.0002 (5) 0.0032 (5) 0.0012 (4)
C4 0.0324 (6) 0.0197 (5) 0.0274 (6) −0.0006 (5) 0.0027 (5) 0.0033 (5)
C5 0.0341 (7) 0.0187 (5) 0.0289 (6) 0.0012 (5) 0.0029 (5) −0.0017 (5)
C6 0.0300 (6) 0.0210 (5) 0.0228 (6) 0.0017 (5) 0.0037 (5) −0.0021 (5)
C7 0.0302 (6) 0.0226 (6) 0.0209 (6) −0.0012 (5) 0.0038 (5) 0.0029 (5)
C8 0.0375 (7) 0.0289 (7) 0.0227 (6) −0.0030 (6) 0.0033 (5) −0.0012 (5)
C9 0.0409 (8) 0.0219 (6) 0.0292 (7) −0.0017 (6) 0.0016 (6) −0.0021 (5)
C10 0.0349 (7) 0.0229 (6) 0.0268 (6) −0.0034 (5) 0.0005 (5) 0.0030 (5)
C11 0.0247 (5) 0.0238 (5) 0.0218 (5) −0.0027 (5) −0.0009 (4) 0.0023 (5)
C12 0.0293 (6) 0.0307 (7) 0.0207 (6) −0.0033 (5) 0.0006 (5) 0.0043 (5)
C13 0.0275 (6) 0.0346 (7) 0.0228 (6) −0.0013 (5) 0.0025 (5) −0.0005 (5)
C14 0.0346 (7) 0.0273 (6) 0.0313 (7) 0.0020 (6) 0.0062 (6) −0.0014 (5)
C15 0.0356 (7) 0.0229 (6) 0.0291 (6) 0.0008 (5) 0.0051 (6) 0.0034 (5)
C16 0.0246 (5) 0.0234 (6) 0.0220 (6) −0.0013 (4) 0.0012 (5) 0.0022 (5)
C17 0.0464 (9) 0.0483 (9) 0.0251 (7) 0.0006 (8) 0.0071 (6) −0.0055 (7)

3-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (III). Geometric parameters (Å, º)

Cl1—C3 1.7316 (13) C8—C9 1.401 (2)
O1—C7 1.3035 (17) C8—H8 0.9500
O1—H1 0.847 (13) C9—C10 1.372 (2)
O2—C7 1.2170 (18) C9—H9 0.9500
O3—N1 1.2238 (18) C10—C11 1.416 (2)
O4—N1 1.2189 (18) C10—H10 0.9500
N1—C2 1.4797 (17) C11—C16 1.4197 (18)
N2—C8 1.322 (2) C11—C12 1.4217 (18)
N2—C16 1.3717 (17) C12—C13 1.372 (2)
N2—H2 0.879 (14) C12—H12 0.9500
C1—C6 1.3918 (18) C13—C14 1.421 (2)
C1—C2 1.3986 (17) C13—C17 1.507 (2)
C1—C7 1.5065 (18) C14—C15 1.376 (2)
C2—C3 1.3890 (17) C14—H14 0.9500
C3—C4 1.3899 (19) C15—C16 1.4124 (19)
C4—C5 1.3900 (19) C15—H15 0.9500
C4—H4 0.9500 C17—H17A 0.9800
C5—C6 1.3902 (19) C17—H17B 0.9800
C5—H5 0.9500 C17—H17C 0.9800
C6—H6 0.9500
C7—O1—H1 109 (3) C10—C9—C8 118.97 (14)
O4—N1—O3 125.11 (13) C10—C9—H9 120.5
O4—N1—C2 117.38 (12) C8—C9—H9 120.5
O3—N1—C2 117.42 (13) C9—C10—C11 119.86 (13)
C8—N2—C16 119.84 (12) C9—C10—H10 120.1
C8—N2—H2 117 (4) C11—C10—H10 120.1
C16—N2—H2 123 (4) C10—C11—C16 117.81 (12)
C6—C1—C2 117.80 (11) C10—C11—C12 123.23 (13)
C6—C1—C7 120.75 (11) C16—C11—C12 118.95 (13)
C2—C1—C7 121.45 (11) C13—C12—C11 121.31 (13)
C3—C2—C1 121.42 (12) C13—C12—H12 119.3
C3—C2—N1 117.00 (11) C11—C12—H12 119.3
C1—C2—N1 121.58 (11) C12—C13—C14 118.75 (13)
C2—C3—C4 119.96 (12) C12—C13—C17 121.67 (14)
C2—C3—Cl1 120.65 (10) C14—C13—C17 119.56 (15)
C4—C3—Cl1 119.39 (10) C15—C14—C13 121.68 (14)
C3—C4—C5 119.33 (12) C15—C14—H14 119.2
C3—C4—H4 120.3 C13—C14—H14 119.2
C5—C4—H4 120.3 C14—C15—C16 119.71 (13)
C4—C5—C6 120.30 (12) C14—C15—H15 120.1
C4—C5—H5 119.9 C16—C15—H15 120.1
C6—C5—H5 119.9 N2—C16—C15 119.72 (12)
C5—C6—C1 121.19 (12) N2—C16—C11 120.72 (12)
C5—C6—H6 119.4 C15—C16—C11 119.55 (12)
C1—C6—H6 119.4 C13—C17—H17A 109.5
O2—C7—O1 125.02 (13) C13—C17—H17B 109.5
O2—C7—C1 120.90 (12) H17A—C17—H17B 109.5
O1—C7—C1 114.08 (12) C13—C17—H17C 109.5
N2—C8—C9 122.77 (13) H17A—C17—H17C 109.5
N2—C8—H8 118.6 H17B—C17—H17C 109.5
C9—C8—H8 118.6
C6—C1—C2—C3 0.1 (2) C2—C1—C7—O1 −176.81 (13)
C7—C1—C2—C3 −179.62 (13) C16—N2—C8—C9 0.2 (2)
C6—C1—C2—N1 180.00 (13) N2—C8—C9—C10 −1.2 (3)
C7—C1—C2—N1 0.25 (19) C8—C9—C10—C11 0.8 (2)
O4—N1—C2—C3 83.25 (16) C9—C10—C11—C16 0.6 (2)
O3—N1—C2—C3 −93.42 (16) C9—C10—C11—C12 −178.41 (14)
O4—N1—C2—C1 −96.63 (16) C10—C11—C12—C13 179.70 (14)
O3—N1—C2—C1 86.70 (17) C16—C11—C12—C13 0.7 (2)
C1—C2—C3—C4 −0.4 (2) C11—C12—C13—C14 1.2 (2)
N1—C2—C3—C4 179.77 (13) C11—C12—C13—C17 −177.59 (14)
C1—C2—C3—Cl1 179.38 (10) C12—C13—C14—C15 −1.8 (2)
N1—C2—C3—Cl1 −0.49 (18) C17—C13—C14—C15 177.06 (15)
C2—C3—C4—C5 0.4 (2) C13—C14—C15—C16 0.4 (2)
Cl1—C3—C4—C5 −179.37 (11) C8—N2—C16—C15 −179.21 (15)
C3—C4—C5—C6 −0.2 (2) C8—N2—C16—C11 1.3 (2)
C4—C5—C6—C1 0.0 (2) C14—C15—C16—N2 −177.94 (14)
C2—C1—C6—C5 0.1 (2) C14—C15—C16—C11 1.6 (2)
C7—C1—C6—C5 179.82 (13) C10—C11—C16—N2 −1.7 (2)
C6—C1—C7—O2 −176.84 (16) C12—C11—C16—N2 177.42 (13)
C2—C1—C7—O2 2.9 (2) C10—C11—C16—C15 178.81 (14)
C6—C1—C7—O1 3.4 (2) C12—C11—C16—C15 −2.1 (2)

3-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (III). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.85 (3) 1.72 (3) 2.5640 (17) 174 (3)
N2—H2···O1 0.88 (4) 1.69 (4) 2.5640 (17) 170 (4)
C5—H5···.O2i 0.95 2.44 3.3245 (19) 155
C8—H8···.O2 0.95 2.46 3.1438 (19) 129

Symmetry code: (i) x, y+1, z.

4-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (IV). Crystal data

C7H3.48ClNO4·C10H9.52N F(000) = 712.00
Mr = 344.75 Dx = 1.433 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71075 Å
a = 7.4271 (6) Å Cell parameters from 14736 reflections
b = 14.4348 (6) Å θ = 3.1–30.2°
c = 16.2208 (7) Å µ = 0.26 mm1
β = 113.203 (3)° T = 185 K
V = 1598.35 (16) Å3 Block, colorless
Z = 4 0.28 × 0.25 × 0.20 mm

4-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (IV). Data collection

Rigaku R-AXIS RAPIDII diffractometer 4158 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.015
ω scans θmax = 30.0°, θmin = 3.1°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −10→10
Tmin = 0.931, Tmax = 0.949 k = −19→20
16695 measured reflections l = −22→22
4645 independent reflections

4-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (IV). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1089P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
4645 reflections Δρmax = 0.35 e Å3
225 parameters Δρmin = −0.16 e Å3
4 restraints Absolute structure: Flack x determined using 1899 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.023 (9)

4-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (IV). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (IV). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.60068 (7) 0.04982 (4) 0.11442 (3) 0.04410 (14)
O1 0.5629 (2) 0.26210 (10) 0.47141 (9) 0.0398 (3)
H1 0.543 (10) 0.290 (4) 0.512 (3) 0.060* 0.48 (5)
O2 0.5224 (3) 0.38723 (10) 0.38416 (11) 0.0448 (4)
O3 0.8822 (3) 0.13730 (13) 0.49214 (11) 0.0557 (5)
O4 0.6225 (5) 0.05352 (14) 0.45694 (15) 0.0794 (8)
N1 0.7212 (3) 0.11139 (11) 0.44056 (12) 0.0423 (4)
N2 0.5616 (2) 0.36395 (11) 0.59693 (10) 0.0297 (3)
H2 0.543 (8) 0.336 (3) 0.546 (2) 0.044* 0.52 (5)
C1 0.5733 (3) 0.23966 (12) 0.33064 (11) 0.0274 (3)
C2 0.6451 (3) 0.14958 (13) 0.34899 (12) 0.0292 (3)
C3 0.6568 (3) 0.09002 (13) 0.28407 (13) 0.0325 (4)
H3 0.708220 0.029174 0.298910 0.039*
C4 0.5909 (3) 0.12266 (15) 0.19705 (12) 0.0322 (4)
C5 0.5203 (3) 0.21248 (15) 0.17566 (12) 0.0339 (4)
H5 0.478690 0.234289 0.115740 0.041*
C6 0.5111 (3) 0.26997 (13) 0.24225 (12) 0.0311 (4)
H6 0.461428 0.331090 0.227361 0.037*
C7 0.5518 (3) 0.30391 (14) 0.39964 (12) 0.0306 (4)
C8 0.5951 (3) 0.45366 (13) 0.59630 (12) 0.0317 (4)
H8 0.593525 0.481201 0.542828 0.038*
C9 0.6328 (3) 0.50947 (13) 0.67162 (14) 0.0353 (4)
H9 0.653792 0.574126 0.669007 0.042*
C10 0.6390 (3) 0.46968 (13) 0.74905 (13) 0.0337 (4)
H10 0.666629 0.506454 0.801199 0.040*
C11 0.6041 (3) 0.37319 (12) 0.75145 (12) 0.0282 (3)
C12 0.6091 (3) 0.32621 (16) 0.82941 (12) 0.0350 (4)
H12 0.637854 0.360018 0.883369 0.042*
C13 0.5730 (3) 0.23282 (16) 0.82796 (15) 0.0391 (4)
C14 0.5312 (3) 0.18307 (15) 0.74760 (17) 0.0401 (4)
H14 0.506395 0.118429 0.746653 0.048*
C15 0.5253 (3) 0.22500 (13) 0.67141 (14) 0.0354 (4)
H15 0.496495 0.189993 0.618127 0.042*
C16 0.5625 (2) 0.32146 (13) 0.67232 (12) 0.0277 (3)
C17 0.5805 (4) 0.1813 (2) 0.9099 (2) 0.0549 (6)
H17A 0.456380 0.148651 0.896253 0.082*
H17B 0.601873 0.225362 0.958894 0.082*
H17C 0.688173 0.136438 0.928067 0.082*

4-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (IV). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0500 (3) 0.0567 (3) 0.0311 (2) −0.0080 (2) 0.02182 (19) −0.0170 (2)
O1 0.0611 (9) 0.0370 (7) 0.0260 (6) 0.0069 (7) 0.0223 (6) −0.0011 (5)
O2 0.0707 (11) 0.0298 (7) 0.0430 (8) −0.0030 (7) 0.0322 (8) −0.0026 (6)
O3 0.0667 (11) 0.0593 (10) 0.0284 (7) 0.0180 (9) 0.0052 (7) 0.0040 (7)
O4 0.149 (2) 0.0547 (11) 0.0454 (10) −0.0336 (13) 0.0493 (13) 0.0042 (9)
N1 0.0760 (13) 0.0273 (8) 0.0260 (7) 0.0026 (8) 0.0226 (8) 0.0006 (6)
N2 0.0320 (8) 0.0326 (7) 0.0246 (7) 0.0054 (6) 0.0113 (6) −0.0020 (6)
C1 0.0325 (8) 0.0297 (8) 0.0230 (7) −0.0069 (7) 0.0140 (6) −0.0037 (6)
C2 0.0370 (9) 0.0307 (9) 0.0214 (7) −0.0053 (7) 0.0133 (6) −0.0006 (6)
C3 0.0390 (9) 0.0319 (9) 0.0300 (8) −0.0065 (7) 0.0172 (7) −0.0048 (7)
C4 0.0333 (9) 0.0428 (10) 0.0243 (8) −0.0098 (7) 0.0154 (7) −0.0110 (7)
C5 0.0347 (9) 0.0468 (10) 0.0216 (7) −0.0056 (8) 0.0124 (7) −0.0003 (7)
C6 0.0314 (9) 0.0365 (9) 0.0261 (8) −0.0038 (7) 0.0122 (7) 0.0016 (7)
C7 0.0332 (9) 0.0344 (9) 0.0268 (8) −0.0046 (7) 0.0145 (7) −0.0047 (7)
C8 0.0341 (8) 0.0350 (9) 0.0271 (9) 0.0064 (7) 0.0133 (8) 0.0056 (7)
C9 0.0411 (10) 0.0260 (8) 0.0386 (9) 0.0021 (7) 0.0153 (8) 0.0004 (8)
C10 0.0389 (9) 0.0304 (8) 0.0304 (9) 0.0030 (7) 0.0120 (7) −0.0064 (7)
C11 0.0293 (8) 0.0309 (8) 0.0249 (7) 0.0040 (6) 0.0113 (6) −0.0001 (6)
C12 0.0363 (10) 0.0443 (10) 0.0258 (8) 0.0066 (8) 0.0137 (7) 0.0039 (8)
C13 0.0313 (9) 0.0474 (11) 0.0418 (10) 0.0093 (8) 0.0177 (8) 0.0178 (9)
C14 0.0342 (10) 0.0320 (9) 0.0546 (12) 0.0012 (8) 0.0180 (9) 0.0083 (9)
C15 0.0365 (10) 0.0286 (8) 0.0395 (10) 0.0007 (7) 0.0133 (8) −0.0044 (7)
C16 0.0269 (8) 0.0289 (8) 0.0273 (8) 0.0037 (6) 0.0108 (6) −0.0006 (7)
C17 0.0506 (13) 0.0653 (15) 0.0552 (14) 0.0110 (11) 0.0276 (11) 0.0320 (12)

4-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (IV). Geometric parameters (Å, º)

Cl1—C4 1.7273 (18) C8—C9 1.397 (3)
O1—C7 1.285 (2) C8—H8 0.9500
O1—H1 0.836 (15) C9—C10 1.365 (3)
O2—C7 1.230 (3) C9—H9 0.9500
O3—N1 1.217 (3) C10—C11 1.420 (3)
O4—N1 1.208 (3) C10—H10 0.9500
N1—C2 1.472 (2) C11—C16 1.410 (2)
N2—C8 1.319 (2) C11—C12 1.423 (3)
N2—C16 1.365 (2) C12—C13 1.373 (3)
N2—H2 0.873 (14) C12—H12 0.9500
C1—C6 1.392 (2) C13—C14 1.411 (3)
C1—C2 1.392 (3) C13—C17 1.505 (3)
C1—C7 1.510 (2) C14—C15 1.361 (3)
C2—C3 1.389 (3) C14—H14 0.9500
C3—C4 1.382 (3) C15—C16 1.418 (3)
C3—H3 0.9500 C15—H15 0.9500
C4—C5 1.390 (3) C17—H17A 0.9800
C5—C6 1.385 (3) C17—H17B 0.9800
C5—H5 0.9500 C17—H17C 0.9800
C6—H6 0.9500
C7—O1—H1 122 (5) C10—C9—C8 118.99 (17)
O4—N1—O3 125.3 (2) C10—C9—H9 120.5
O4—N1—C2 117.1 (2) C8—C9—H9 120.5
O3—N1—C2 117.46 (18) C9—C10—C11 119.82 (17)
C8—N2—C16 120.89 (15) C9—C10—H10 120.1
C8—N2—H2 113 (4) C11—C10—H10 120.1
C16—N2—H2 126 (4) C16—C11—C10 118.13 (16)
C6—C1—C2 117.21 (16) C16—C11—C12 118.45 (17)
C6—C1—C7 118.77 (16) C10—C11—C12 123.42 (17)
C2—C1—C7 123.97 (16) C13—C12—C11 121.08 (18)
C3—C2—C1 123.32 (17) C13—C12—H12 119.5
C3—C2—N1 114.79 (16) C11—C12—H12 119.5
C1—C2—N1 121.85 (16) C12—C13—C14 119.07 (18)
C4—C3—C2 117.43 (18) C12—C13—C17 122.1 (2)
C4—C3—H3 121.3 C14—C13—C17 118.9 (2)
C2—C3—H3 121.3 C15—C14—C13 121.93 (19)
C3—C4—C5 121.32 (17) C15—C14—H14 119.0
C3—C4—Cl1 118.61 (16) C13—C14—H14 119.0
C5—C4—Cl1 120.06 (14) C14—C15—C16 119.38 (19)
C6—C5—C4 119.59 (16) C14—C15—H15 120.3
C6—C5—H5 120.2 C16—C15—H15 120.3
C4—C5—H5 120.2 N2—C16—C11 119.95 (16)
C5—C6—C1 121.10 (18) N2—C16—C15 119.96 (16)
C5—C6—H6 119.4 C11—C16—C15 120.08 (17)
C1—C6—H6 119.4 C13—C17—H17A 109.5
O2—C7—O1 125.94 (17) C13—C17—H17B 109.5
O2—C7—C1 120.75 (16) H17A—C17—H17B 109.5
O1—C7—C1 113.29 (16) C13—C17—H17C 109.5
N2—C8—C9 122.19 (16) H17A—C17—H17C 109.5
N2—C8—H8 118.9 H17B—C17—H17C 109.5
C9—C8—H8 118.9
C6—C1—C2—C3 0.0 (3) C16—N2—C8—C9 0.0 (3)
C7—C1—C2—C3 177.39 (18) N2—C8—C9—C10 1.3 (3)
C6—C1—C2—N1 177.83 (18) C8—C9—C10—C11 −1.0 (3)
C7—C1—C2—N1 −4.8 (3) C9—C10—C11—C16 −0.4 (3)
O4—N1—C2—C3 −73.6 (3) C9—C10—C11—C12 179.57 (18)
O3—N1—C2—C3 102.9 (2) C16—C11—C12—C13 −0.5 (3)
O4—N1—C2—C1 108.3 (2) C10—C11—C12—C13 179.59 (19)
O3—N1—C2—C1 −75.1 (3) C11—C12—C13—C14 0.3 (3)
C1—C2—C3—C4 −0.9 (3) C11—C12—C13—C17 179.03 (19)
N1—C2—C3—C4 −178.83 (17) C12—C13—C14—C15 −0.1 (3)
C2—C3—C4—C5 1.6 (3) C17—C13—C14—C15 −178.90 (19)
C2—C3—C4—Cl1 −179.20 (14) C13—C14—C15—C16 0.1 (3)
C3—C4—C5—C6 −1.6 (3) C8—N2—C16—C11 −1.4 (3)
Cl1—C4—C5—C6 179.26 (14) C8—N2—C16—C15 179.73 (18)
C4—C5—C6—C1 0.7 (3) C10—C11—C16—N2 1.6 (3)
C2—C1—C6—C5 0.1 (3) C12—C11—C16—N2 −178.32 (16)
C7—C1—C6—C5 −177.44 (17) C10—C11—C16—C15 −179.54 (18)
C6—C1—C7—O2 −16.2 (3) C12—C11—C16—C15 0.5 (3)
C2—C1—C7—O2 166.48 (19) C14—C15—C16—N2 178.48 (17)
C6—C1—C7—O1 162.34 (17) C14—C15—C16—C11 −0.4 (3)
C2—C1—C7—O1 −15.0 (3)

4-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (IV). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.84 (7) 1.70 (6) 2.514 (2) 163 (7)
N2—H2···O1 0.87 (4) 1.67 (5) 2.514 (2) 162 (4)
C10—H10···O2i 0.95 2.54 3.364 (3) 145

Symmetry code: (i) x, −y+1, z+1/2.

References

  1. Babu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.
  2. Bekö, S. L., Schmidt, M. U. & Bond, A. D. (2012). CrystEngComm, 14, 1967–1971.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538. [DOI] [PubMed]
  5. Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2883. [DOI] [PMC free article] [PubMed]
  6. Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552–1557. [DOI] [PMC free article] [PubMed]
  7. Gotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694–1699. [DOI] [PMC free article] [PubMed]
  8. Gotoh, K. & Ishida, H. (2019c). Acta Cryst. E75, 1853–1856. [DOI] [PMC free article] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  12. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  13. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  16. Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  21. Tan, T. (2007). J. Mol. Struct. 840, 6–13.
  22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III, IV. DOI: 10.1107/S2056989020013134/hb7946sup1.cif

e-76-01701-sup1.cif (2.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013134/hb7946Isup2.hkl

e-76-01701-Isup2.hkl (357.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020013134/hb7946IIsup3.hkl

e-76-01701-IIsup3.hkl (348.9KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989020013134/hb7946IIIsup4.hkl

e-76-01701-IIIsup4.hkl (361KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989020013134/hb7946IVsup5.hkl

e-76-01701-IVsup5.hkl (370KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020013134/hb7946Isup6.cml

Supporting information file. DOI: 10.1107/S2056989020013134/hb7946IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989020013134/hb7946IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989020013134/hb7946IVsup9.cml

CCDC references: 2034476, 2034475, 2034474, 2034473

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES