Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Oct 20;76(Pt 11):1768–1770. doi: 10.1107/S2056989020013675

Crystal structure of the unusual coordination polymer catena-poly[[gold(I)-μ-1,2-bis­(di­phenyl­phosphino­thio­yl)ethane-κ2 S:S′] di­bromido­aurate(I)]1

Christina Taouss a, Marina Calvo a,, Peter G Jones a,*
PMCID: PMC7643243  PMID: 33209350

In the title compound, the gold(I) centres of the cation are coordinated by the P=S groups of the di­sulfide ligands to form a chain polymer parallel to the c axis. Both independent gold atoms lie on the same twofold axis, and the midpoint of the H2C—CH2 bond lies on an inversion centre. The anions flank the polymeric chain; they are connected to it by short aurophilic inter­actions and C—H⋯Br contacts, and to each other by Br⋯Br contacts.

Keywords: crystal structure, polymer, phosphine sulfide, gold

Abstract

In the title compound, {[Au(C26H24P2S2)][AuBr2]}n, the gold(I) centres of the cation are coordinated by the P=S groups of the di­sulfide ligands to form a chain polymer parallel to the c axis. Both independent gold atoms lie on the same twofold axis, and the midpoint of the H2C—CH2 bond lies on an inversion centre. The anions flank the polymeric chain; they are connected to it by short aurophilic inter­actions and C—H⋯Br contacts, and to each other by Br⋯Br contacts.

Chemical context  

Although phosphane sulfides are known to act as ligands towards gold(I) centres, not many complexes have been structurally characterized in which two such ligands coordinate to gold(I). A search of the Cambridge Database (2019 Version, ConQuest 2.0.5) revealed only three structures involving the cation [(Ph3P=S)2Au]+; the PO2F2 salt (LeBlank et al., 1997), the nitrate (Jones & Geissler, 2016a ) and a bis­(methyl­sulfon­yl)amide salt (Jones & Geissler, 2016b ). Cationic 1:1 complexes of gold(I) with diphosphane di­sulfides can only be achieved if the ligand geometry allows for linear coordination at the gold atom, which is not generally the case unless suitable spacers, such as ferrocene units or other metal centres, are present (Gimeno et al., 2000, and references therein; Parkanyi & Besenyei, 2017; Wang & Fackler, 1990).graphic file with name e-76-01768-scheme1.jpg

In the course of our studies of phosphane chalcogenide complexes of gold (Upmann et al., 2019, and references therein) we planned to study complexes of the diphosphane di­sulfides 1,2-bis­(di­phenyl­phosphino­thio­yl)ethane [previously known as 1,2-bis­(di­phenyl­phosphino)ethane di­sulfide; dppeS2] and bis­(di­phenyl­thio­phosphino­yl)methane [prev­iously known as bis­(di­phenyl­phosphino)methane di­sulfide; dppmS2] with gold(I) halide fragments AuBr and AuCl, with particular attention to the mononuclear complexes. This succeeded to some extent; we were able to isolate and determine the structure of dppmS2AuCl, the isotypic dppmS2AuBr and its oxidation product with bromine [(dppmS2)AuBr2]+ [AuBr4] (Jones et al., 2020a ,b ,c , respectively), but yields were poor and it was clear that scrambling reactions were a problem. With dppeS2 even less was achieved, but a few thin needles, isolated from the attempted synthesis of dppeS2AuBr, proved to be an unusual coordination polymer [(dppeS2)Au]n n+·n[AuBr2], the structure of which we report here.

Structural commentary  

The title compound is shown in Fig. 1. The cation has the stoichiometry [dppeS2Au]+, and forms a chain polymer (⋯Au—S=PCH2CH2P=S⋯)n parallel to the c axis; the anion is [AuBr2]. Both gold atoms lie on twofold axes Inline graphic, y, Inline graphic and show the linear coordination geometry expected for AuI; the midpoint of the central H2C—CH2 bond lies on the inversion centre Inline graphic, Inline graphic, Inline graphic. Bond lengths and angles may be considered normal; for a selection, see Table 1. Coordination polymers are scarce for diphosphane di­sulfide ligands (see below).

Figure 1.

Figure 1

Structure of the title complex in the crystal; the asymmetric unit is numbered. The aurophilic contact and the S—Au connections to the next gold atoms in the polymer are indicated by filled and open dashed bonds, respectively.

Table 1. Selected geometric parameters (Å, °).

Au1—S1 2.3125 (9) Br1⋯Br1i 3.7424 (8)
Au1⋯Au2 2.9622 (3) P1—S1 2.0097 (12)
Au2—Br1 2.3746 (5) C1—C1ii 1.528 (6)
       
S1—Au1—S1iii 178.43 (4) Br1—Au2⋯Au1 93.201 (11)
S1—Au1⋯Au2 90.78 (2) Au2—Br1⋯Br1i 126.21 (2)
Br1—Au2—Br1iii 173.60 (2) P1—S1—Au1 98.34 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

The gold atoms of the cation and anion are connected via a short aurophilic contact of 2.9622 (3) Å, and the anions thus flank the cation polymer (Fig. 2). Neighbouring anions are connected by short Br⋯Br contacts of 3.7424 (8) Å (operator 1 − x, 2 − y, 1 − z), and also provide links to adjacent polymers (not shown in Fig. 2). We have previously noted an example of short contacts between di­bromo­aurate(I) anions (Döring & Jones, 2013); for a further example, see Beno et al. (1990). We have also described Br⋯Br and Cl⋯Cl contacts in a series of tetra­bromido­aurate(III) and tetra­chlorido­aurate(III) salts (Döring & Jones, 2016).

Figure 2.

Figure 2

The polymeric structure of the title compound, viewed perpendicular to the (101) plane. Aurophilic contacts are shown as thick bonds and Br⋯Br contacts as thin dashed bonds. Hydrogen atoms are omitted for clarity.

Two C—H⋯Br contacts between cation and anions are sufficiently short and linear to be considered ‘weak’ hydrogen bonds (Table 2), and thus to contribute further cohesion to the structure, but are omitted from Fig. 2 for clarity.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯Br1ii 0.95 2.81 3.712 (4) 159
C26—H26⋯Br1ii 0.95 2.89 3.775 (4) 155

Symmetry code: (ii) Inline graphic.

Database survey  

A database search (CSD 2019 Version, ConQuest 2.0.5) found 11 hits for systems involving two P=S units bonded to AuI. The P=S bond lengths range from 1.985–2.039, av. 2.018 Å, and the S—Au bond lengths from 2.275–2.317, av. 2.296 Å. The only other coordination polymer found for a diphosphane di­sulfide was [(CuCN)2(dppeS2)]n (Zhou et al., 2006), a two-dimensional polymer involving four-coordinate Cu centres.

Synthesis and crystallization  

The compound arose from an attempt to synthesize dppeS2AuBr. A solution of thtAuBr (tht = tetra­hydro­thio­phene; 0.775 g, 2.12 mmol) in CH2Cl2 (50 ml) was added to dppeS2 (0.981 g, 2.12 mmol) dissolved in CH2Cl2 (50 ml). After stirring for 1 h, the solvent was removed, and the solid thus obtained was dried under vacuum and recrystallized from di­chloro­methane/n-pentane. The elemental analysis was approximately correct for the expected stoichiometry: calculated, C 42.23%, H 3.27%, S 8.67%; found, C 43.22%, H 3.87%, S 8.19%. However, attempts to obtain crystals suitable for X-ray structure analysis (by evaporation from a solution in CH2Cl2) led only to a few very thin needles of the title compound, with overall stoichiometry dppeS2(AuBr)2.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The U iso(H) values were fixed at 1.2 times the equivalent U iso value of the parent carbon atoms.

Table 3. Experimental details.

Crystal data
Chemical formula [Au(C26H24P2S2)][AuBr2]
M r 1016.26
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 21.4112 (8), 11.9708 (2), 13.7726 (4)
β (°) 128.316 (7)
V3) 2769.7 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 25.63
Crystal size (mm) 0.12 × 0.005 × 0.005
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Atlas, Nova
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
T min, T max 0.387, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27632, 2873, 2630
R int 0.037
(sin θ/λ)max−1) 0.629
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.021, 0.053, 1.06
No. of reflections 2873
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.42, −0.99

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015) and XP (Siemens, 1994).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020013675/ex2037sup1.cif

e-76-01768-sup1.cif (938.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013675/ex2037Isup2.hkl

e-76-01768-Isup2.hkl (230.1KB, hkl)

CCDC reference: 2036798

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

M. Calvo was supported by the Erasmus scheme.

supplementary crystallographic information

Crystal data

[Au(C26H24P2S2)][AuBr2] F(000) = 1880
Mr = 1016.26 Dx = 2.437 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
a = 21.4112 (8) Å Cell parameters from 17272 reflections
b = 11.9708 (2) Å θ = 4.1–75.8°
c = 13.7726 (4) Å µ = 25.63 mm1
β = 128.316 (7)° T = 100 K
V = 2769.7 (3) Å3 Needle, colourless
Z = 4 0.12 × 0.01 × 0.01 mm

Data collection

Oxford Diffraction Xcalibur, Atlas, Nova diffractometer 2873 independent reflections
Radiation source: Nova (Cu) X-ray Source 2630 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.037
Detector resolution: 10.3543 pixels mm-1 θmax = 76.0°, θmin = 4.5°
ω scans h = −26→26
Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2010) k = −14→15
Tmin = 0.387, Tmax = 1.000 l = −17→16
27632 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0283P)2 + 12.9976P] where P = (Fo2 + 2Fc2)/3
2873 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 1.42 e Å3
0 restraints Δρmin = −0.99 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au1 0.500000 0.61954 (2) 0.250000 0.01687 (7)
Au2 0.500000 0.86699 (2) 0.250000 0.01950 (7)
Br1 0.47685 (3) 0.87807 (3) 0.39751 (4) 0.03124 (11)
P1 0.60133 (5) 0.46450 (7) 0.49985 (8) 0.01384 (16)
S1 0.61453 (5) 0.61690 (7) 0.45351 (8) 0.01915 (17)
C1 0.50616 (19) 0.4520 (3) 0.4701 (3) 0.0162 (7)
H1A 0.462644 0.452353 0.379701 0.019*
H1B 0.504140 0.380043 0.503474 0.019*
C11 0.6769 (2) 0.4432 (3) 0.6634 (3) 0.0167 (7)
C12 0.7460 (2) 0.5083 (3) 0.7329 (4) 0.0214 (8)
H12 0.752518 0.568996 0.695455 0.026*
C13 0.8047 (2) 0.4839 (4) 0.8566 (4) 0.0290 (9)
H13 0.851649 0.528125 0.903677 0.035*
C14 0.7962 (2) 0.3962 (4) 0.9128 (4) 0.0267 (8)
H14 0.836922 0.380547 0.997887 0.032*
C15 0.7280 (2) 0.3310 (3) 0.8446 (3) 0.0227 (7)
H15 0.721865 0.270674 0.882930 0.027*
C16 0.6684 (2) 0.3542 (3) 0.7197 (3) 0.0198 (7)
H16 0.621780 0.309224 0.672798 0.024*
C21 0.61000 (19) 0.3529 (3) 0.4211 (3) 0.0154 (6)
C22 0.6509 (2) 0.3700 (3) 0.3737 (4) 0.0220 (7)
H22 0.670919 0.441911 0.377148 0.026*
C23 0.6622 (3) 0.2805 (4) 0.3212 (4) 0.0287 (8)
H23 0.689530 0.291899 0.287999 0.034*
C24 0.6338 (2) 0.1754 (3) 0.3171 (4) 0.0274 (8)
H24 0.641465 0.114817 0.280842 0.033*
C25 0.5943 (2) 0.1586 (3) 0.3657 (4) 0.0264 (8)
H25 0.575405 0.086098 0.363559 0.032*
C26 0.5819 (3) 0.2461 (3) 0.4176 (4) 0.0237 (8)
H26 0.554451 0.233937 0.450538 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.01921 (11) 0.01291 (10) 0.01950 (11) 0.000 0.01250 (9) 0.000
Au2 0.01812 (11) 0.01358 (10) 0.02586 (12) 0.000 0.01316 (9) 0.000
Br1 0.0371 (2) 0.0274 (2) 0.0408 (3) −0.00694 (16) 0.0299 (2) −0.00832 (17)
P1 0.0127 (4) 0.0131 (4) 0.0155 (4) −0.0004 (3) 0.0086 (3) −0.0009 (3)
S1 0.0192 (4) 0.0151 (4) 0.0211 (4) −0.0024 (3) 0.0115 (4) −0.0003 (3)
C1 0.0129 (15) 0.0177 (16) 0.0170 (16) −0.0012 (12) 0.0088 (13) −0.0015 (13)
C11 0.0153 (15) 0.0178 (16) 0.0192 (17) 0.0005 (12) 0.0117 (14) −0.0041 (13)
C12 0.0180 (17) 0.0258 (19) 0.0236 (19) −0.0060 (14) 0.0144 (16) −0.0051 (15)
C13 0.0168 (17) 0.041 (2) 0.022 (2) −0.0063 (16) 0.0087 (16) −0.0067 (17)
C14 0.0164 (17) 0.040 (2) 0.0161 (18) 0.0064 (15) 0.0063 (15) −0.0014 (16)
C15 0.0236 (18) 0.0245 (18) 0.0183 (18) 0.0060 (14) 0.0121 (15) 0.0027 (14)
C16 0.0170 (16) 0.0182 (16) 0.0197 (18) 0.0009 (13) 0.0091 (14) −0.0008 (13)
C21 0.0139 (15) 0.0147 (15) 0.0160 (16) 0.0032 (12) 0.0085 (14) 0.0022 (12)
C22 0.0235 (18) 0.0204 (17) 0.0269 (19) 0.0039 (13) 0.0181 (16) 0.0025 (14)
C23 0.033 (2) 0.032 (2) 0.035 (2) 0.0043 (17) 0.0276 (19) 0.0005 (18)
C24 0.032 (2) 0.0236 (19) 0.026 (2) 0.0078 (16) 0.0173 (17) −0.0010 (15)
C25 0.034 (2) 0.0164 (17) 0.028 (2) −0.0033 (15) 0.0186 (18) −0.0053 (15)
C26 0.028 (2) 0.0203 (19) 0.026 (2) −0.0037 (13) 0.0187 (18) −0.0027 (14)

Geometric parameters (Å, º)

Au1—S1 2.3125 (9) C13—H13 0.9500
Au1—S1i 2.3125 (9) C14—C15 1.387 (6)
Au1—Au2 2.9622 (3) C14—H14 0.9500
Au2—Br1 2.3746 (5) C15—C16 1.393 (5)
Au2—Br1i 2.3746 (5) C15—H15 0.9500
Br1—Br1ii 3.7424 (8) C16—H16 0.9500
P1—C11 1.800 (4) C21—C22 1.394 (5)
P1—C21 1.801 (4) C21—C26 1.401 (5)
P1—C1 1.819 (3) C22—C23 1.394 (5)
P1—S1 2.0097 (12) C22—H22 0.9500
C1—C1iii 1.528 (6) C23—C24 1.384 (6)
C1—H1A 0.9900 C23—H23 0.9500
C1—H1B 0.9900 C24—C25 1.381 (6)
C11—C16 1.395 (5) C24—H24 0.9500
C11—C12 1.399 (5) C25—C26 1.384 (5)
C12—C13 1.382 (6) C25—H25 0.9500
C12—H12 0.9500 C26—H26 0.9500
C13—C14 1.383 (6)
S1—Au1—S1i 178.43 (4) C14—C13—H13 119.5
S1—Au1—Au2 90.78 (2) C13—C14—C15 119.9 (4)
S1i—Au1—Au2 90.78 (2) C13—C14—H14 120.1
Br1—Au2—Br1i 173.60 (2) C15—C14—H14 120.1
Br1—Au2—Au1 93.201 (11) C14—C15—C16 119.9 (4)
Br1i—Au2—Au1 93.201 (11) C14—C15—H15 120.1
Au2—Br1—Br1ii 126.21 (2) C16—C15—H15 120.1
C11—P1—C21 107.45 (15) C15—C16—C11 120.2 (3)
C11—P1—C1 106.44 (16) C15—C16—H16 119.9
C21—P1—C1 108.84 (15) C11—C16—H16 119.9
C11—P1—S1 109.38 (12) C22—C21—C26 119.9 (3)
C21—P1—S1 113.24 (12) C22—C21—P1 120.2 (3)
C1—P1—S1 111.20 (12) C26—C21—P1 119.7 (3)
P1—S1—Au1 98.34 (4) C21—C22—C23 119.4 (4)
C1iii—C1—P1 111.1 (3) C21—C22—H22 120.3
C1iii—C1—H1A 109.4 C23—C22—H22 120.3
P1—C1—H1A 109.4 C24—C23—C22 120.5 (4)
C1iii—C1—H1B 109.4 C24—C23—H23 119.8
P1—C1—H1B 109.4 C22—C23—H23 119.8
H1A—C1—H1B 108.0 C25—C24—C23 119.8 (4)
C16—C11—C12 119.5 (3) C25—C24—H24 120.1
C16—C11—P1 118.5 (3) C23—C24—H24 120.1
C12—C11—P1 121.8 (3) C24—C25—C26 120.8 (4)
C13—C12—C11 119.6 (4) C24—C25—H25 119.6
C13—C12—H12 120.2 C26—C25—H25 119.6
C11—C12—H12 120.2 C25—C26—C21 119.5 (4)
C12—C13—C14 121.0 (4) C25—C26—H26 120.2
C12—C13—H13 119.5 C21—C26—H26 120.2
S1—Au1—Au2—Br1 −65.75 (3) C11—C12—C13—C14 −0.2 (6)
S1i—Au1—Au2—Br1 114.25 (2) C12—C13—C14—C15 0.2 (6)
S1—Au1—Au2—Br1i 114.24 (3) C13—C14—C15—C16 0.1 (6)
S1i—Au1—Au2—Br1i −65.75 (3) C14—C15—C16—C11 −0.4 (6)
Au1—Au2—Br1—Br1ii 158.03 (3) C12—C11—C16—C15 0.5 (5)
C11—P1—S1—Au1 −172.78 (12) P1—C11—C16—C15 176.2 (3)
C21—P1—S1—Au1 67.42 (12) C11—P1—C21—C22 −98.2 (3)
C1—P1—S1—Au1 −55.51 (12) C1—P1—C21—C22 146.9 (3)
Au2—Au1—S1—P1 156.28 (4) S1—P1—C21—C22 22.7 (3)
C11—P1—C1—C1iii 67.1 (4) C11—P1—C21—C26 76.0 (3)
C21—P1—C1—C1iii −177.3 (3) C1—P1—C21—C26 −38.9 (3)
S1—P1—C1—C1iii −51.9 (4) S1—P1—C21—C26 −163.1 (3)
C21—P1—C11—C16 −70.7 (3) C26—C21—C22—C23 1.1 (6)
C1—P1—C11—C16 45.7 (3) P1—C21—C22—C23 175.3 (3)
S1—P1—C11—C16 166.0 (2) C21—C22—C23—C24 −0.6 (6)
C21—P1—C11—C12 104.9 (3) C22—C23—C24—C25 −0.3 (6)
C1—P1—C11—C12 −138.7 (3) C23—C24—C25—C26 0.7 (6)
S1—P1—C11—C12 −18.4 (3) C24—C25—C26—C21 −0.2 (6)
C16—C11—C12—C13 −0.2 (5) C22—C21—C26—C25 −0.7 (6)
P1—C11—C12—C13 −175.7 (3) P1—C21—C26—C25 −174.9 (3)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C16—H16···Br1iii 0.95 2.81 3.712 (4) 159
C26—H26···Br1iii 0.95 2.89 3.775 (4) 155

Symmetry code: (iii) −x+1, −y+1, −z+1.

Footnotes

1

Phosphane chalcogenides and their metal complexes, Part VI. Part V: Upmann et al. [(2019). Z. Naturforsch. Teil B, 74, 389–404].

References

  1. Beno, M. A., Wang, H. H., Carlson, K. D., Kini, A. M., Frankenbach, G. M., Ferraro, J. R., Larson, N., McCabe, G. D., Thompson, J., Pumana, C., Vashon, M. & Williams, J. M. (1990). Mol. Cryst. Liq. Cryst. 181, 145–159.
  2. Döring, C. & Jones, P. G. (2013). Acta Cryst. C69, 709–711. [DOI] [PubMed]
  3. Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.
  4. Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (2000). J. Organomet. Chem. 596, 10–15.
  5. Jones, P. G. & Geissler, N. (2016a). CSD Communication (CCDC code 1489550). CCDC, Cambridge, England. http://doi.org/10.5517/ccdc.csd.cc1m000n.
  6. Jones, P. G. & Geissler, N. (2016b). CSD Communication (CCDC code 1489551). CCDC, Cambridge, England. http://doi.org/10.5517/ccdc.csd.cc1m001p.
  7. Jones, P. G., Taouss, C. & Calvo, M. (2020a). CSD Communication (CCDC code 2025914). CCDC, Cambridge, England. http://doi.org/10.5517/ccdc.csd.cc26042g.
  8. Jones, P. G., Taouss, C. & Calvo, M. (2020b). CSD Communication (CCDC code 2025915). CCDC, Cambridge, England. http://doi.org/10.5517/ccdc.csd.cc26043h.
  9. Jones, P. G., Taouss, C. & Calvo, M. (2020c). CSD Communication (CCDC code 2025916). CCDC, Cambridge, England. http://doi.org/10.5517/ccdc.csd.cc26044j.
  10. LeBlanc, D. J., Britten, J. F. & Lock, C. J. L. (1997). Acta Cryst. C53, 1204–1206.
  11. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  12. Parkanyi, L. & Besenyei, G. (2017). ). CSD Communication (CCDC code 1545895). CCDC, Cambridge, England. http://doi.org/10.5517/ccdc.csd.cc1nwmlr.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.
  16. Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. Teil B, 74, 389–404.
  17. Wang, S. & Fackler, J. P. Jr (1990). Organometallics, 9, 111–115.
  18. Zhou, X.-P., Li, D., Wu, T. & Zhang, X. (2006). Dalton Trans. pp. 2435–2443. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020013675/ex2037sup1.cif

e-76-01768-sup1.cif (938.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013675/ex2037Isup2.hkl

e-76-01768-Isup2.hkl (230.1KB, hkl)

CCDC reference: 2036798

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES