Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Oct 13;76(Pt 11):1748–1751. doi: 10.1107/S2056989020013596

Crystal, mol­ecular structure and Hirshheld surface analysis of 5-hy­droxy-3,6,7,8-tetra­meth­oxy­flavone

Haji Akber Aisa a, Lidiya Izotova b,*, Abdurashid Karimov c, Erkin Botirov c, Azimjon Mamadrahimov b, Bahtiyar Ibragimov b
PMCID: PMC7643244  PMID: 33209346

5-Hy­droxy-3,6,7,8-tetra­meth­oxy­flavone was isolated from a butanol extract of the herb Scutellaria nepetoides M. Pop. and its structure has been established by X-ray crystallographic analysis.

Keywords: crystal structure, flavones, Hirshfeld surface analysis, hydrogen bonding

Abstract

The title compound (systematic name: 5-hydroxy-3,6,7,8-tetramethoxy-2-phenyl-4H-chromen-4-one), C19H18O7, is a flavone that was isolated from a butanol extract of the herb Scutellaria nepetoides M. Pop. The flavone mol­ecule is almost planar, with a dihedral angle between the planes of the benzo­pyran-4-one group and the attached phenyl ring of 6.4 (4)°. The 5-hy­droxy group forms a strong intra­molecular hydrogen bond with the carbonyl group, resulting in a six-membered hydrogen-bonded ring. The crystal structure has triclinic (P Inline graphic) symmetry. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds into a two dimensional network parallel to the ab plane. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (53.9%) and H⋯O/O⋯H (20.9%) inter­actions.

Chemical context  

Flavonoids are the most numerous class of natural phenolic compounds, which are characterized by structural diversity, high and versatile activity and low toxicity. Plants of the genus Scutellaria L. are widespread in Europe, North America, East Asia and are extensively used in traditional Chinese medicine (Shang et al., 2010). Flavonoids isolated from plants of the genus Scutellaria L. exhibit anti­tumor (Yu et al., 2007), hepatoprotective (Jang et al., 2003), anti­oxidant (Sauvage et al., 2010), anti-inflammatory (Dai et al., 2013), anti­convulsant (Park et al., 2007), anti­microbial (Arituluk et al., 2019) and anti­viral activity (Leonova et al., 2020). The creation of drugs based on flavonoids is based on the establishment of the ‘chemical structure–pharmacological properties’ relationship, and the determination of the structure of a new flavonoid may become a key starting point.graphic file with name e-76-01748-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is presented in Fig. 1. The benzo­pyran moieties are practically planar, with r.m.s. deviations of 0.01 Å. The mol­ecular conformation is restricted by the relative positions of the benzo­pyran unit and the phenyl ring, the dihedral angle between them being 6.4 (4)°. Atoms C3, C6, C7 and C8 of the meth­oxy substituent have an out-of-plane conformation with the meth­oxy groups at atoms C3 and C6 pointing in the same direction [C16—O2—C3—C2 = 109.3 (2) and C17—O5—C6—C5 = 66. 7(4)°], while the meth­oxy groups at atoms C7 and C8 point in opposite direction [C18—O6—C7—C6 = −56.3 (3) and C19—O7—C8—C7 = −91.4 (3)°]. The conformation of the mol­ecule is fixed because of the intra­molecular O4—H4⋯O3 hydrogen bond [2.599 (2) Å, 147°], which closes a six-membered ring with graph-set notation S(6) (Etter, 1990).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds into a two dimensional network parallel to the ab plane. A perspective view of the crystal packing in the unit cell is depicted in Fig. 2 and numerical details of the hydrogen bonds are presented in Table 1.

Figure 2.

Figure 2

Crystal structure of the title compound in projection on the ac plane. Hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.87 2.599 (2) 147
C16—H16A⋯O3 0.96 2.51 3.079 (3) 118
C16—H16B⋯O3i 0.96 2.39 3.258 (3) 150
C18—H18B⋯O5 0.96 2.28 2.897 (4) 121
C18—H18C⋯O7ii 0.96 2.53 3.278 (4) 135
C17—H17C⋯O4 0.96 2.52 3.010 (4) 111

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystals of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017). The Hirshfeld surface mapped over d norm (Fig. 3) shows the expected bright-red spots near atoms O3, O7, H16B, which are involved in the C—H⋯O hydrogen-bonding inter­actions. Fingerprint plots (Fig. 4) reveal that H⋯H and H⋯O/O⋯H inter­actions make the greatest contributions to the surface contacts, while H⋯C/C⋯H, O⋯C/C⋯O, C⋯C and O⋯O contacts are less significant.

Figure 3.

Figure 3

The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (53.9%) and H⋯O/O⋯H (20.9%) inter­actions.

Figure 4.

Figure 4

Full two-dimensional fingerprint plots for the title compound, showing all inter­actions (a), and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) O⋯C/C⋯O, (f) C⋯C and (g) O⋯O inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

Database survey  

A search of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016) found 311 hits for the term ‘flavones’. Among these, nine are tetra­meth­oxy­flavones: 3,4′,6,7 (DAVREN; Geng et al., 2011), 6,2′3′,4′- (JEMGIN; Wallet et al., 1990a ) and 2′,4′,5,7- (KEPLEW; Wallet et al., 1990b ), 3,4′,6,7- (MENSII; Meng et al., 2006), 3′,4′,5,7- (PIQPEK; Shoja, 1997), 3,4′5,7- (PUGKEI; Aree et al., 2009), 3′,5,5′,6- (TMOFLV10; Ting et al., 1972), 3,7,4′,5′- (YASCIF; Etti et al., 2005). The compound FATZOR (Vijayalakshmi et al., 1986) is also a 3,6,7,8 tetra­methyl­flavone, but with two hy­droxy substituents at the 5,4′-positions.

Synthesis and crystallization  

Air-dried whole plants (1.1 kg) of Scutellaria nepetoides M. Pop. were extracted three times (each 3 h) with butanol (5 l) at 353 K. The butanol filtrates were collected and concentrated under reduced pressure to provide 10.2 g of butanol extract. The butanol extract (1 g) was subjected to silica gel (60–100 mesh) column (gradient of butanol:water = 0:1, 2:8, 1:1, 8:2, 1:0) as eluent, and five fractions were collected according to TLC analysis. All fractions were concentrated under reduced pressure. A crystallization procedure with different solvents at high temperature was used to obtain the pure compounds. Fraction 5 (0.23 g) was eluted with butanol (100%) at 353 K and with ethanol (95%) at 343 K. The obtained polycrystals were removed from the butanol solution by filtration. Yellow prismatic single crystals were prepared by slow evaporation of butanol solution at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3), 0.93 Å (aryl H) and O—H = 0.82 Å and with U iso(H) = 1.2U eq(C) (aryl H) and 1.5U eq(C-methyl, O).

Table 2. Experimental details.

Crystal data
Chemical formula C19H18O7
M r 358.33
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 5.0789 (4), 8.0801 (6), 20.8682 (19)
α, β, γ (°) 92.481 (7), 91.984 (7), 94.253 (6)
V3) 852.62 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.90
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Agilent Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.818, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6484, 3458, 2408
R int 0.023
(sin θ/λ)max−1) 0.630
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.174, 1.03
No. of reflections 3458
No. of parameters 240
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.18

Computer programs: CrysAlis PRO (Agilent, 2014), XP (Siemens, 1994), SHELXT2018/2 (Sheldrick, 2015a ) and SHELXL2018/3 (Sheldrick, 2015b ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020013596/zn2001sup1.cif

e-76-01748-sup1.cif (210.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013596/zn2001Isup2.hkl

e-76-01748-Isup2.hkl (275.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020013596/zn2001Isup3.cml

CCDC reference: 2036551

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are especially grateful to Jamshid Ashurov DSc for help in discussing the results.

supplementary crystallographic information

Crystal data

C19H18O7 Z = 2
Mr = 358.33 F(000) = 376
Triclinic, P1 Dx = 1.396 Mg m3
a = 5.0789 (4) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.0801 (6) Å Cell parameters from 1498 reflections
c = 20.8682 (19) Å θ = 5.5–75.0°
α = 92.481 (7)° µ = 0.90 mm1
β = 91.984 (7)° T = 293 K
γ = 94.253 (6)° Prism, yellow
V = 852.62 (12) Å3 0.03 × 0.02 × 0.01 mm

Data collection

Agilent Xcalibur, Ruby diffractometer Rint = 0.023
Radiation source: Enhance (Cu) X-ray Source θmax = 76.1°, θmin = 4.2°
/ω scans h = −6→4
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) k = −10→9
Tmin = 0.818, Tmax = 1.000 l = −25→25
6484 measured reflections 3 standard reflections every 100 reflections
3458 independent reflections intensity decay: 2.6%
2408 reflections with I > 2σ(I)

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0902P)2 + 0.0534P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3458 reflections Δρmax = 0.22 e Å3
240 parameters Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4105 (3) 0.28804 (17) 0.27044 (7) 0.0575 (4)
O2 0.3672 (3) 0.59876 (19) 0.39973 (8) 0.0659 (4)
O7 0.3450 (3) 0.10219 (19) 0.16067 (8) 0.0685 (4)
O3 0.0122 (3) 0.69625 (19) 0.30889 (9) 0.0714 (5)
O4 −0.2527 (4) 0.6406 (2) 0.20033 (9) 0.0740 (5)
H4 −0.209283 0.687910 0.235051 0.111*
O6 0.0019 (3) 0.1855 (2) 0.06667 (8) 0.0725 (5)
O5 −0.3071 (4) 0.4564 (2) 0.08488 (9) 0.0792 (5)
C9 0.2302 (4) 0.3341 (2) 0.22626 (10) 0.0532 (5)
C2 0.4615 (4) 0.3764 (2) 0.32748 (10) 0.0531 (5)
C1 0.6627 (4) 0.3000 (2) 0.36663 (10) 0.0547 (5)
C3 0.3289 (4) 0.5145 (2) 0.34102 (10) 0.0559 (5)
C10 0.0862 (4) 0.4721 (2) 0.23720 (11) 0.0549 (5)
C8 0.1951 (4) 0.2349 (3) 0.17031 (11) 0.0570 (5)
C4 0.1327 (4) 0.5696 (3) 0.29666 (11) 0.0576 (5)
C5 −0.1022 (4) 0.5106 (3) 0.19027 (12) 0.0598 (5)
C7 0.0153 (4) 0.2777 (3) 0.12324 (11) 0.0591 (5)
C11 0.7909 (5) 0.1680 (3) 0.33913 (12) 0.0621 (5)
H11 0.747162 0.131003 0.297010 0.074*
C6 −0.1322 (4) 0.4180 (3) 0.13258 (12) 0.0620 (5)
C13 1.0487 (5) 0.1457 (3) 0.43582 (13) 0.0693 (6)
H13 1.178385 0.095483 0.458888 0.083*
C12 0.9801 (5) 0.0925 (3) 0.37353 (13) 0.0690 (6)
H12 1.062501 0.004788 0.354580 0.083*
C15 0.7318 (5) 0.3509 (3) 0.42988 (11) 0.0676 (6)
H15 0.648243 0.437172 0.449493 0.081*
C14 0.9221 (5) 0.2750 (3) 0.46366 (13) 0.0735 (7)
H14 0.966483 0.310908 0.505855 0.088*
C16 0.5102 (5) 0.7581 (3) 0.39759 (14) 0.0755 (7)
H16A 0.429300 0.821692 0.365563 0.113*
H16B 0.689782 0.743522 0.387050 0.113*
H16C 0.507312 0.815778 0.438727 0.113*
C18 −0.2471 (6) 0.1157 (4) 0.04230 (15) 0.0884 (9)
H18A −0.223724 0.046870 0.004568 0.133*
H18B −0.356737 0.203034 0.031583 0.133*
H18C −0.329956 0.049683 0.074221 0.133*
C19 0.2318 (8) −0.0502 (3) 0.1815 (2) 0.1081 (11)
H19A 0.058829 −0.073200 0.161721 0.162*
H19B 0.218626 −0.043294 0.227342 0.162*
H19C 0.341133 −0.137746 0.169734 0.162*
C17 −0.2436 (9) 0.6092 (4) 0.05619 (19) 0.1199 (14)
H17A −0.331407 0.608230 0.014676 0.180*
H17B −0.056050 0.624212 0.051646 0.180*
H17C −0.300412 0.698631 0.082812 0.180*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0628 (8) 0.0517 (7) 0.0575 (8) 0.0094 (6) −0.0003 (7) −0.0097 (6)
O2 0.0782 (10) 0.0584 (8) 0.0601 (9) 0.0080 (7) 0.0036 (8) −0.0145 (7)
O7 0.0779 (10) 0.0586 (9) 0.0692 (10) 0.0145 (7) 0.0065 (8) −0.0124 (7)
O3 0.0744 (10) 0.0578 (9) 0.0823 (11) 0.0181 (7) 0.0011 (8) −0.0153 (8)
O4 0.0755 (10) 0.0626 (9) 0.0847 (12) 0.0200 (8) −0.0046 (9) −0.0056 (8)
O6 0.0745 (10) 0.0820 (11) 0.0589 (9) 0.0029 (8) 0.0009 (8) −0.0155 (8)
O5 0.0868 (11) 0.0719 (10) 0.0773 (12) 0.0038 (9) −0.0178 (9) 0.0043 (9)
C9 0.0550 (10) 0.0496 (10) 0.0547 (11) 0.0038 (8) 0.0037 (9) −0.0023 (8)
C2 0.0550 (10) 0.0492 (10) 0.0541 (11) 0.0013 (8) 0.0058 (9) −0.0070 (8)
C1 0.0545 (10) 0.0497 (10) 0.0591 (12) 0.0011 (8) 0.0036 (9) −0.0022 (9)
C3 0.0616 (11) 0.0486 (10) 0.0565 (12) 0.0016 (9) 0.0064 (9) −0.0079 (8)
C10 0.0585 (11) 0.0474 (10) 0.0583 (12) 0.0025 (8) 0.0050 (9) −0.0016 (9)
C8 0.0612 (11) 0.0510 (10) 0.0585 (12) 0.0047 (9) 0.0063 (9) −0.0053 (9)
C4 0.0595 (11) 0.0472 (10) 0.0657 (13) 0.0040 (9) 0.0096 (10) −0.0058 (9)
C5 0.0591 (11) 0.0503 (11) 0.0702 (14) 0.0062 (9) 0.0036 (10) −0.0006 (10)
C7 0.0628 (12) 0.0570 (11) 0.0560 (12) −0.0022 (9) 0.0039 (10) −0.0046 (9)
C11 0.0675 (12) 0.0539 (11) 0.0639 (13) 0.0065 (10) −0.0025 (10) −0.0081 (9)
C6 0.0617 (12) 0.0585 (12) 0.0651 (13) 0.0012 (10) −0.0036 (10) 0.0039 (10)
C13 0.0669 (13) 0.0645 (13) 0.0766 (16) 0.0085 (11) −0.0065 (12) 0.0067 (11)
C12 0.0695 (13) 0.0565 (12) 0.0816 (16) 0.0148 (10) −0.0023 (12) −0.0039 (11)
C15 0.0737 (14) 0.0685 (13) 0.0608 (13) 0.0133 (11) 0.0015 (11) −0.0085 (11)
C14 0.0782 (15) 0.0806 (16) 0.0610 (14) 0.0112 (13) −0.0066 (12) −0.0056 (12)
C16 0.0753 (15) 0.0613 (13) 0.0871 (17) 0.0041 (11) −0.0025 (13) −0.0212 (12)
C18 0.0800 (16) 0.0908 (19) 0.090 (2) −0.0031 (14) −0.0024 (14) −0.0297 (15)
C19 0.129 (3) 0.0560 (15) 0.142 (3) 0.0176 (16) 0.020 (2) 0.0052 (17)
C17 0.164 (4) 0.085 (2) 0.107 (3) −0.005 (2) −0.047 (3) 0.0312 (19)

Geometric parameters (Å, º)

O1—C9 1.360 (3) C5—C6 1.387 (3)
O1—C2 1.368 (2) C7—C6 1.414 (3)
O2—C3 1.376 (2) C11—C12 1.374 (3)
O2—C16 1.434 (3) C11—H11 0.9300
O7—C8 1.373 (3) C13—C12 1.376 (4)
O7—C19 1.413 (3) C13—C14 1.384 (4)
O3—C4 1.252 (3) C13—H13 0.9300
O4—C5 1.357 (3) C12—H12 0.9300
O4—H4 0.8200 C15—C14 1.373 (4)
O6—C7 1.365 (3) C15—H15 0.9300
O6—C18 1.415 (3) C14—H14 0.9300
O5—C6 1.372 (3) C16—H16A 0.9600
O5—C17 1.416 (4) C16—H16B 0.9600
C9—C8 1.386 (3) C16—H16C 0.9600
C9—C10 1.393 (3) C18—H18A 0.9600
C2—C3 1.370 (3) C18—H18B 0.9600
C2—C1 1.474 (3) C18—H18C 0.9600
C1—C15 1.391 (3) C19—H19A 0.9600
C1—C11 1.403 (3) C19—H19B 0.9600
C3—C4 1.444 (3) C19—H19C 0.9600
C10—C5 1.406 (3) C17—H17A 0.9600
C10—C4 1.443 (3) C17—H17B 0.9600
C8—C7 1.390 (3) C17—H17C 0.9600
C9—O1—C2 121.52 (16) C5—C6—C7 119.4 (2)
C3—O2—C16 114.26 (18) C12—C13—C14 119.1 (2)
C8—O7—C19 114.8 (2) C12—C13—H13 120.4
C5—O4—H4 109.5 C14—C13—H13 120.4
C7—O6—C18 119.0 (2) C11—C12—C13 120.5 (2)
C6—O5—C17 115.0 (2) C11—C12—H12 119.7
O1—C9—C8 116.32 (18) C13—C12—H12 119.7
O1—C9—C10 121.69 (19) C14—C15—C1 120.7 (2)
C8—C9—C10 122.0 (2) C14—C15—H15 119.7
O1—C2—C3 119.82 (19) C1—C15—H15 119.7
O1—C2—C1 110.68 (17) C15—C14—C13 120.9 (2)
C3—C2—C1 129.50 (19) C15—C14—H14 119.5
C15—C1—C11 117.9 (2) C13—C14—H14 119.5
C15—C1—C2 123.54 (19) O2—C16—H16A 109.5
C11—C1—C2 118.60 (19) O2—C16—H16B 109.5
C2—C3—O2 120.3 (2) H16A—C16—H16B 109.5
C2—C3—C4 121.67 (19) O2—C16—H16C 109.5
O2—C3—C4 117.84 (18) H16A—C16—H16C 109.5
C9—C10—C5 118.9 (2) H16B—C16—H16C 109.5
C9—C10—C4 119.0 (2) O6—C18—H18A 109.5
C5—C10—C4 122.2 (2) O6—C18—H18B 109.5
O7—C8—C9 120.3 (2) H18A—C18—H18B 109.5
O7—C8—C7 121.05 (19) O6—C18—H18C 109.5
C9—C8—C7 118.6 (2) H18A—C18—H18C 109.5
O3—C4—C10 121.9 (2) H18B—C18—H18C 109.5
O3—C4—C3 121.7 (2) O7—C19—H19A 109.5
C10—C4—C3 116.34 (18) O7—C19—H19B 109.5
O4—C5—C6 119.3 (2) H19A—C19—H19B 109.5
O4—C5—C10 120.4 (2) O7—C19—H19C 109.5
C6—C5—C10 120.2 (2) H19A—C19—H19C 109.5
O6—C7—C8 117.0 (2) H19B—C19—H19C 109.5
O6—C7—C6 122.1 (2) O5—C17—H17A 109.5
C8—C7—C6 120.8 (2) O5—C17—H17B 109.5
C12—C11—C1 120.9 (2) H17A—C17—H17B 109.5
C12—C11—H11 119.5 O5—C17—H17C 109.5
C1—C11—H11 119.5 H17A—C17—H17C 109.5
O5—C6—C5 121.6 (2) H17B—C17—H17C 109.5
O5—C6—C7 119.0 (2)
C2—O1—C9—C8 −179.93 (18) C2—C3—C4—C10 −0.5 (3)
C2—O1—C9—C10 −0.8 (3) O2—C3—C4—C10 −176.28 (18)
C9—O1—C2—C3 0.1 (3) C9—C10—C5—O4 177.6 (2)
C9—O1—C2—C1 179.66 (17) C4—C10—C5—O4 −1.6 (3)
O1—C2—C1—C15 −172.2 (2) C9—C10—C5—C6 −3.7 (3)
C3—C2—C1—C15 7.3 (4) C4—C10—C5—C6 177.1 (2)
O1—C2—C1—C11 7.3 (3) C18—O6—C7—C8 128.1 (3)
C3—C2—C1—C11 −173.2 (2) C18—O6—C7—C6 −56.3 (3)
O1—C2—C3—O2 176.21 (17) O7—C8—C7—O6 −2.2 (3)
C1—C2—C3—O2 −3.2 (3) C9—C8—C7—O6 174.70 (19)
O1—C2—C3—C4 0.6 (3) O7—C8—C7—C6 −177.85 (19)
C1—C2—C3—C4 −178.9 (2) C9—C8—C7—C6 −1.0 (3)
C16—O2—C3—C2 109.3 (2) C15—C1—C11—C12 −0.5 (3)
C16—O2—C3—C4 −74.9 (2) C2—C1—C11—C12 180.0 (2)
O1—C9—C10—C5 −178.38 (18) C17—O5—C6—C5 66.7 (4)
C8—C9—C10—C5 0.7 (3) C17—O5—C6—C7 −115.1 (3)
O1—C9—C10—C4 0.8 (3) O4—C5—C6—O5 1.2 (4)
C8—C9—C10—C4 179.88 (19) C10—C5—C6—O5 −177.50 (19)
C19—O7—C8—C9 91.8 (3) O4—C5—C6—C7 −177.0 (2)
C19—O7—C8—C7 −91.4 (3) C10—C5—C6—C7 4.4 (3)
O1—C9—C8—O7 −2.4 (3) O6—C7—C6—O5 4.3 (3)
C10—C9—C8—O7 178.53 (19) C8—C7—C6—O5 179.8 (2)
O1—C9—C8—C7 −179.25 (18) O6—C7—C6—C5 −177.5 (2)
C10—C9—C8—C7 1.7 (3) C8—C7—C6—C5 −2.0 (3)
C9—C10—C4—O3 179.0 (2) C1—C11—C12—C13 −0.3 (4)
C5—C10—C4—O3 −1.8 (3) C14—C13—C12—C11 0.8 (4)
C9—C10—C4—C3 −0.2 (3) C11—C1—C15—C14 0.8 (4)
C5—C10—C4—C3 179.03 (19) C2—C1—C15—C14 −179.7 (2)
C2—C3—C4—O3 −179.7 (2) C1—C15—C14—C13 −0.3 (4)
O2—C3—C4—O3 4.6 (3) C12—C13—C14—C15 −0.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O3 0.82 1.87 2.599 (2) 147
C16—H16A···O3 0.96 2.51 3.079 (3) 118
C16—H16B···O3i 0.96 2.39 3.258 (3) 150
C18—H18B···O5 0.96 2.28 2.897 (4) 121
C18—H18C···O7ii 0.96 2.53 3.278 (4) 135
C17—H17C···O4 0.96 2.52 3.010 (4) 111

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z.

Funding Statement

This work was funded by Chinese Academy of Sciences Center of Drag Discovery and Development Center of Central Asia grant CAM 201907.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Aree, T. & Sawasdee, P. (2009). Acta Cryst. E65, o2706. [DOI] [PMC free article] [PubMed]
  3. Arituluk, Z., Kocak, C., Renda, G., Ekizoglu, M. & Ezer, N. (2019). J Res Pharm. Pract. 23(3), 552–558.
  4. Dai, Z. J., Lu, W. F., Gao, J., Kang, H. F., Ma, Y. G., Zhang, S. Q., Diao, Y., Lin, S., Wang, X. J. & Wu, W. Y. (2013). BMC Complement. Altern. Med. 13, 240–248. [DOI] [PMC free article] [PubMed]
  5. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  6. Etti, S., Shanmugam, G., Ponnuswamy, M. N., Balakrishna, K. & Vasanth, S. (2005). Acta Cryst. E61, o846–o848.
  7. Geng, H.-W., Wang, G.-C., Li, G.-Q., Jiang, R.-W. & Li, Y.-L. (2011). Acta Cryst. E67, o2733. [DOI] [PMC free article] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Jang, S. I., Kim, H. J., Hwang, K. M., Jekal, S. J., Pae, H. O., Choi, B. M., Yun, Y. G., Kwon, T. O., Chung, H. T. & Kim, Y. C. (2003). Immunopharmacol. Immunotoxicol. 25, 585–594. [DOI] [PubMed]
  10. Leonova, G. N., Shutikova, A. L., Lubova, V. A. & Maistrovskaya, O. S. (2020). Bull. Exp. Biol. Med. 168, 665–668. [DOI] [PubMed]
  11. Meng, Z.-L., Qi, Y.-Y., Liu, R.-M., Sun, A.-L. & Wang, D.-Q. (2006). Acta Cryst. E62, o3831–o3832.
  12. Park, H. G., Yoon, S. Y., Choi, J. Y., Lee, G. S., Choi, J. H., Shin, C. Y., Son, K. H., Lee, Y. S., Kim, W. K., Ryu, J. H., Ko, K. H. & Cheong, J. H. (2007). Eur. J. Pharmacol. 574, 112–119. [DOI] [PubMed]
  13. Sauvage, S., Granger, M., Samson, E., Majumdar, A., Nigam, P. & Nahar, L. (2010). Oriental Pharmacy Experimental Medicine. 10, 304–309.
  14. Shang, X. F., He, X. R., He, X. Y., Li, M. X., Zhang, R. X., Fan, P. P., Zhang, Q. L. & Jia, Z. P. (2010). J. Ethnopharmacol. 128, 279–313. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Shoja, M. (1997). Z. Kristallogr. New Cryst. Struct. 212, 385–386.
  18. Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc.,Madison, Wisconsin, USA.
  19. Ting, H.-Y., Watson, W. H. & Domínguez, X. A. (1972). Acta Cryst. B28, 1046–1051.
  20. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://hirshfeldsuface.net
  21. Vijayalakshmi, J., Rajan, S. S., Srinivasan, R. & Ramachandran Nair, A. G. (1986). Acta Cryst. C42, 1752–1754.
  22. Wallet, J.-C., Gaydou, E., Tinant, B., Declercq, J.-P., Baldy, A. & Bonifassi, P. (1990a). Acta Cryst. C46, 1131–1133.
  23. Wallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990b). Acta Cryst. C46, 1536–1540.
  24. Yu, J., Liu, H., Lei, J., Tan, W., Hu, X. & Zou, G. (2007). Phytother. Res. 21, 817–822. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020013596/zn2001sup1.cif

e-76-01748-sup1.cif (210.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020013596/zn2001Isup2.hkl

e-76-01748-Isup2.hkl (275.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020013596/zn2001Isup3.cml

CCDC reference: 2036551

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES