Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2020 Nov 5;10:19128. doi: 10.1038/s41598-020-76129-8

Identification of early liver toxicity gene biomarkers using comparative supervised machine learning

Brandi Patrice Smith 1,2, Loretta Sue Auvil 3, Michael Welge 3,4, Colleen Bannon Bushell 3,4,5, Rohit Bhargava 6,8,9, Navin Elango 7, Kamin Johnson 7, Zeynep Madak-Erdogan 1,3,4,8,9,
PMCID: PMC7645727  PMID: 33154507

Abstract

Screening agrochemicals and pharmaceuticals for potential liver toxicity is required for regulatory approval and is an expensive and time-consuming process. The identification and utilization of early exposure gene signatures and robust predictive models in regulatory toxicity testing has the potential to reduce time and costs substantially. In this study, comparative supervised machine learning approaches were applied to the rat liver TG-GATEs dataset to develop feature selection and predictive testing. We identified ten gene biomarkers using three different feature selection methods that predicted liver necrosis with high specificity and selectivity in an independent validation dataset from the Microarray Quality Control (MAQC)-II study. Nine of the ten genes that were selected with the supervised methods are involved in metabolism and detoxification (Car3, Crat, Cyp39a1, Dcd, Lbp, Scly, Slc23a1, and Tkfc) and transcriptional regulation (Ablim3). Several of these genes are also implicated in liver carcinogenesis, including Crat, Car3 and Slc23a1. Our biomarker gene signature provides high statistical accuracy and a manageable number of genes to study as indicators to potentially accelerate toxicity testing based on their ability to induce liver necrosis and, eventually, liver cancer.

Subject terms: Computational biology and bioinformatics, Machine learning

Introduction

Pathological and biochemical data in non-human mammals are used extensively by the agrochemical and pharmaceutical sectors for assessing mammalian toxicity and effects on human health of molecular innovations. This effort is extensive; in addition to other cost and effort, required mammalian toxicity assessment packages can use ~ 6000 animals per molecule studied. Despite such careful screening, major setbacks to pharmaceutical product development pipelines still result where human toxicity is detected during late stages. When toxicity is not determined in this testing, a danger to public health arises if adverse effects on humans are only observed in the population after years of deployment. These risks can be greatly mitigated if early biomarkers of eventual toxicity can be found. Toxicogenomics, or the application of genomics methods to predict adverse effects of exogenous molecule exposure1, is gaining popularity with advances in computing and availability of curated data sets. Toxicogenomics databases have been designed and, through rigorous experiments on rat and human cell models, provide an avenue to understand the molecular basis of adverse conditions due to chemical toxicant exposures. Computational methods provide an opportunity to develop this much-desired capability2. These methods are relatively low cost to develop and test, can expedite data analysis, can reduce cost by reducing the scale of animal studies, and can reduce time to market for a safe product.

Toxicogenomics analyses are commonly categorized in the big data paradigm because of the large number of gene profiles that arise from the small number of samples, thus the need for data reduction tools. Classical statistical methods of identifying differentially expressed genes from microarray or RNA sequencing data results in lists comprising thousands of genes, which is not ideal for laboratory testing. Machine learning approaches such as feature selection and classification often use robust statistical modeling to reduce the number of features or variables used in the models36. Feature selection and classification can both be achieved by supervised methods for classification or unsupervised learning methods 5 that are primarily used for discovery.

Studies have shown that the use of supervised classification predictive models can help to find discriminative gene signatures across multiple platforms of microarray data36. Previously, several studies have used machine learning methods for prediction of biological end points79. Despite many attempts in the field, however, predictive ability remains relatively poor due to systematic noise associated with design of gene expression experiments10, high number of features in the signature, low predictive performance1114, or poor performance of identified biomarkers at validation stage15. Innovations in data analysis pipeline design and modeling are still sorely needed.

The goal of this study was to construct a suitable modeling framework based on machine learning for feature selection, feature ranking, and predictive analysis applicable to liver toxicity. The developed framework was applied to the TG-GATES data set to select and rank the gene expression features that can serve as biomarkers for liver toxicity in rats16. After determining these features, a set of predictive models were optimized. Finally, the model was applied to untrained MAQC-II data to evaluate liver toxicity predictions17,18. The targeted conclusion of our study was to determine a small set of genes that successfully predicted liver necrosis and could be used for predictive testing in animals.

Methods

Data sets

Gene expression data were obtained from TG-GATES database for male rat, in vivo experimental models utilizing Affymetrix Microarray Chip from the TG-GATES database https://dbarchive.biosciencedbc.jp/en/open-tggates/data-2.html. The in vivo models were categorized by whole organism outcomes of exposure related to cellular injury19,20. The treatments included 42 chemical compounds (Table 1, Supplementary Fig. 1A) at control, low, middle, and high dose levels and 8 time points, single dose: 3 h, 6 h, 9 h and 24 h; and repeat dose: 4 days, 8 days, 15 days and 29 days. In the single dose experiments, groups of 20 animals were administered a compound and then five animals per time point were sacrificed (3, 6, 9 or 24 h) after administration (Supplementary Fig. 1B 16). Livers were harvested after indicated time points. RNA was isolated, and gene expression patterns were analyzed using the common array platform, Affymetrix Rat 230 2.0 microarray that contained probes for 31,099 genes.

Table 1.

Compounds from TG-GATES database that result in necrosis.

Compound name Abbreviation
Acarbose ACA
Acetamidofluorene AAF
Acetaminophen APAP
Ajmaline AJM
Allopurinol APL
Allyl alcohol AA
Amiodarone AM
Aspirin ASA
Azathioprine AZP
Captopril CAP
Ciprofloxacin CPX
Clofibrate CFB
Colchicine COL
Diclofenac DFNa
Enalapril ENA
Ethanol ETN
Ethionamide ETH
Ethionine ET
Etoposide ETP
Fluphenazine FP
Furosemide FUR
Gemfibrozil GFZ
Griseofulvin GF
Indomethacin IM
Lomustine LS
Lornoxicam LNX
Mefenamic acid MEF
Meloxicam MLX
Metformin MFM
Methyldopa MDP
Naphthyl isothiocyanate ANIT
Naproxen NPX
Nitrofurantoin NFT
Nitrofurazone NFZ
Nitrosodiethylamine DEN
Pemoline PML
Ranitidine RAN
Simvastatin SST
Tannic acid TAN
Tetracycline TC
Valproic acid VPA
WY-14643 WY

Data from the Microarray Quality Control Project (MAQC II) was used for validation and assessing classification performance of the top selected features17. From the six datasets, we focused on the National Institute of Environmental Health Sciences (NIEHS) data set for validation since it pertains to toxic effect of chemicals on liver. The study was similar to TG-GATES, which used microarray gene expression data acquired from the liver of rats exposed to various hepatotoxicants. Gene expression data, collected from 418 rats exposed to one of eight compounds (1, 2-dichlorobenzene, 1, 4-dichlorobenzene, bromobenzene, monocrotaline, N-nitrosomorpholine, thioacetamide, galactosamine, and diquat dibromide), were used to build classifiers for prediction of liver necrosis. Each of the eight compounds were studied and analyzed using the common array platform (Affymetrix Rat 230 2.0 microarray), data retrieving and analysis processes. Similar to TG-GATES studies, four to six male, 12 week old F344 rats were treated with low-, mid-, and high-dose of the toxicant and sacrificed at 6, 24 and 48 h later. At necropsy, liver was harvested for RNA extraction, histopathology, and clinical chemistry assessments17.

Normalization and initial feature reduction by differential gene expression

To select best dose and earliest time point of liver toxicant exposure, EE data was used as described before2123. Briefly, EE treatment data from the common array platform, Affymetrix Rat 230 2.0 microarray, which reported expression value of 31,099 genes were obtained from TG-GATES database. Data were normalized using the robust multi-array (RMA) average expression measure (Affy (v 1.57.0) package from Bioconductor)24,25. RMA was calculated on raw microarray gene expression values under standard normalization options (https://web.mit.edu/~r/current/arch/i386_linux26/lib/R/library/affy/html/AffyBatch-class.html). After normalization, the data were centered and scaled for differentially expressed genes analysis. To identify differentially expressed genes upon EE treatment, statistical analyses were performed on normalized gene expressions from dose response and time course data using Limma (v 3.34.9) package from Bioconductor26,27. Design matrices, constructed in R, identified coefficients of interest specifically high dose treatments (denoted with a 1) and control dose treatments (denoted with − 1). Gene expression data were first fitted to a multiple linear model, based on the design matrix. The linear model was then fitted to an empirical Bayes model with the contrast matrix representing the differences between high and control doses for each molecule26,28,29. T statistics and F-statistics were computed from the model. Significant features were selected with p-value < 0.05 for further feature selection methods. Resulting differentially expressed gene list was used to perform hierarchal clustering using Cluster 3 software30. Clustered data was visualized using Treeview java (https://jtreeview.sourceforge.net/). Gene set enrichment analysis software was used to identify enriched functional gene groupings31,32. Principal component analysis was performed using StrandNGS (Version 3.1.1, Bangalore, India). Graphs for biochemical analysis (blood alkaline phosphatase levels, total biluribin, body weight, liver weight and triglyceride levels) and average gene expression values were plotted using Graphpad Prism8 software (GraphPad Software Inc., La Jolla, CA, www.graphpad.com).

To prepare data for feature selection and classification using machine learning, microarray data (Affymetrix Rat 230 2.0) for compounds that induce necrosis were obtained from TG-GATES database and MAQ CII project. To avoid batch effects, data were normalized using the robust multi-array (RMA) average expression measure (Affy (v 1.57.0) package from Bioconductor)24,25. RMA was calculated on raw microarray gene expression values under standard normalization options (https://web.mit.edu/~r/current/arch/i386_linux26/lib/R/library/affy/html/AffyBatch-class.html). After normalization, the data were centered and scaled for gene expression analysis.

Feature selection and comparative supervised machine learning

To assess the hypothesis that an early exposure gene signature is associated with liver toxicity, we applied a methodology33,34 that combines traditional statistical modeling with machine learning methods to perform predictor selection and ranking. These selected biomarkers formed the inputs for an integrative modeling process to determine the performance of significant markers for classification.

We integrated all analytical steps into a machine learning pipeline, similar to one used previously for patient classification3538, as outlined below and summarized in Supplementary Fig. 1C.

First, to determine a gene feature’s measure of importance in predicting the necrosis response we used a set of feature selection approaches (marginal screening, embedded, and wrapper) on all predictors (i.e. genes and liver phenotypes)39 and an empirical ranking score based on the feature importance measure34,40. Methods for feature selection included Mann–Whitney, t-test, DCor as marginal screening methods; Boruta, RFE with both RF and SVM as wrapper methods; and RF, Elastic Net, Lasso, Ridge Regression Cross Validation (RidgeCV) and SVM as embedded methods. For each approach, the top N features were noted and utilized in the outer cross-validation loop of the integrative modeling process. Most algorithms are part of scikit-learn, scipy, and BorutaPy packages.

Cross-validation (out-of-sampling-testing) is utilized for obtaining the rankings by assessing every feature’s predictive power on unseen data41,42 with all compounds grouped together in the same fold and with a validation set43. Models were built for each feature selection approach and each predictive modeling approach. Predictive statistics were gathered as well as receiver operator characteristic (ROC) curves for each combination to visualize the classification performance (true positive rate vs. false positive rate) of the classifiers. Predictive modeling approaches include: logistic regression, RF, and support vector machine (SVM), Lasso and ElasticNet36,4446. We built models incrementally from one feature to 100 features to understand and determine tradeoffs for identifying a cutoff for how many N features to select.

Performance evaluation

Parameter tuning and performance evaluation were performed using the MAQCII-NIEHS (GSE16716) as the validation set, utilizing the area under the cross-validated ROC curve (AUC) as a quantitative performance metric. For parameter tuning, we tested tree depth of Boruta at 4, 5, 6, and no limit. We chose to focus on the depth of 4 to avoid overfitting. We experimented with alpha values for Elastic Net and Lasso using the Scikit learn GridSearchCV, which selects the best performing parameters. In addition, we experimented with the C value for SVC. For the rest of the algorithm default parameters were used. All parameters are listed in Table 2. Cross-validation47 partitions the samples into training and testing sets and proceed by fitting the model on the training set and evaluating the AUC on the testing set. Repeatedly performing the procedure independently, we summarize AUCs of all iterations for comparison48. To compare the performances of the developed classification model using gene biomarkers and the traditional diagnostic model, we obtained the AUC measures from all models over all randomization runs, and perform a two-sample t-test to detect differences. For each feature selection and classification method combinations, we reported area under the curve (AUC), F-statistics and MCC49 (Table 3). Results are visualized using Tableau software (Seattle, WA, USA, https://www.tableau.com/).

Table 2.

Parameters used in each method.

Feature selection algorithms
Algorithm Parameters
ttest Default parameters
Mann_Whitney Default parameters
DCor Default parameters
Boruta {perc: 100, max_iter: 100, n_estimators: 15,000, max_depth: 6}
Lasso {alpha: 0.001, max_iter: 20,000}
Lasso {alpha: 0.01, max_iter: 20,000}
ElasticNet {l1_ratio: 0.5, max_iter: 20,000, alpha: 0.001}
ElasticNet {l1_ratio: 0.5, max_iter: 20,000, alpha: 0.01}
RandomForestClassifier {n_estimators: 10,000, max_depth: null}
RidgeCV default parameters
SVM(SVC) {kernel: linear, C: 1}
Recursive feature selection with random forest {n_estimators: 500, max_depth: null}
Recursive feature selection with SVM (SVC) {kernel = linear}
Class prediction algorithms
Algorithm Parameters
RandomForestClassifier {n_estimators = 1000, max_depth = 4}
SVC {C = 1, kernel = 'linear'}
LogisticRegression {max_iter = 20,000}
Lasso {max_iter = 20,000, alpha = .001}
ElasticNet {max_iter = 20,000, alpha = .001, l1_ratio = .5}

Table 3.

Performance metric statistics of each feature selection-prediction method combination.

FS_name Pred_method nfold mse roc_auc roc_auc_prob Accuracy f1_score Precision_score Recall_score Sensitivity Specificity mcc
Boruta RandomForest Validation 0.102941 0.897059 0.933391 0.897059 0.895956 0.914634 0.897059 0.794118 1 0.811503
Boruta RandomForest 0 0.090909 0.823529 0.895425 0.909091 0.903813 0.909091 0.909091 0.666667 0.980392 0.727607
Boruta RandomForest 1 0.19697 0.707843 0.866667 0.80303 0.80059 0.798576 0.80303 0.533333 0.882353 0.426119
Boruta RandomForest 2 0.092593 0.910714 0.950397 0.907407 0.910837 0.920798 0.907407 0.916667 0.904762 0.762443
Boruta RandomForest 3 0.12963 0.857143 0.934524 0.87037 0.875171 0.88604 0.87037 0.833333 0.880952 0.662994
Boruta RandomForest 4 0.148148 0.815476 0.863095 0.851852 0.855743 0.862302 0.851852 0.75 0.880952 0.598574
Boruta RandomForest 5 0.185185 0.791667 0.865079 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
Boruta RandomForest 6 0.407407 0.410714 0.605159 0.592593 0.592593 0.592593 0.592593 0.083333 0.738095 − 0.17857
Boruta RandomForest 7 0.203704 0.660714 0.855159 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
Boruta RandomForest 8 0.111111 0.839286 0.865079 0.888889 0.888889 0.888889 0.888889 0.75 0.928571 0.678571
Boruta RandomForest 9 0.092593 0.880952 0.954365 0.907407 0.908701 0.910778 0.907407 0.833333 0.928571 0.740888
Boruta SVC Validation 0.117647 0.882353 0.947232 0.882353 0.882251 0.883681 0.882353 0.852941 0.911765 0.766032
Boruta SVC 0 0.166667 0.727451 0.878431 0.833333 0.826455 0.824074 0.833333 0.533333 0.921569 0.494266
Boruta SVC 1 0.19697 0.731373 0.870588 0.80303 0.805232 0.807841 0.80303 0.6 0.862745 0.452509
Boruta SVC 2 0.092593 0.910714 0.968254 0.907407 0.910837 0.920798 0.907407 0.916667 0.904762 0.762443
Boruta SVC 3 0.185185 0.821429 0.902778 0.814815 0.826211 0.858025 0.814815 0.833333 0.809524 0.566947
Boruta SVC 4 0.111111 0.89881 0.894841 0.888889 0.894048 0.910088 0.888889 0.916667 0.880952 0.726205
Boruta SVC 5 0.203704 0.779762 0.871032 0.796296 0.807411 0.832362 0.796296 0.75 0.809524 0.500851
Boruta SVC 6 0.388889 0.452381 0.460317 0.611111 0.616546 0.622264 0.611111 0.166667 0.738095 − 0.09261
Boruta SVC 7 0.185185 0.732143 0.793651 0.814815 0.814815 0.814815 0.814815 0.583333 0.880952 0.464286
Boruta SVC 8 0.185185 0.702381 0.809524 0.814815 0.808551 0.805051 0.814815 0.5 0.904762 0.4332
Boruta SVC 9 0.148148 0.815476 0.890873 0.851852 0.855743 0.862302 0.851852 0.75 0.880952 0.598574
Boruta LogisticRegression Validation 0.161765 0.838235 0.944637 0.838235 0.835351 0.863721 0.838235 0.705882 0.970588 0.701493
Boruta LogisticRegression 0 0.166667 0.633333 0.890196 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
Boruta LogisticRegression 1 0.166667 0.703922 0.861438 0.833333 0.820561 0.821429 0.833333 0.466667 0.941176 0.476683
Boruta LogisticRegression 2 0.111111 0.75 0.97619 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
Boruta LogisticRegression 3 0.074074 0.863095 0.888889 0.925926 0.92342 0.924747 0.925926 0.75 0.97619 0.777212
Boruta LogisticRegression 4 0.166667 0.714286 0.894841 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
Boruta LogisticRegression 5 0.148148 0.815476 0.833333 0.851852 0.855743 0.862302 0.851852 0.75 0.880952 0.598574
Boruta LogisticRegression 6 0.277778 0.52381 0.470238 0.722222 0.693475 0.675785 0.722222 0.166667 0.880952 0.058938
Boruta LogisticRegression 7 0.166667 0.684524 0.751984 0.833333 0.816085 0.820669 0.833333 0.416667 0.952381 0.456772
Boruta LogisticRegression 8 0.277778 0.464286 0.728175 0.722222 0.65233 0.594771 0.722222 0 0.928571 − 0.12964
Boruta LogisticRegression 9 0.166667 0.714286 0.875 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
Boruta Lasso Validation 0.176471 0.823529 0.943772 0.823529 0.819629 0.854167 0.823529 0.676471 0.970588 0.677003
Boruta Lasso 0 0.166667 0.633333 0.870588 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
Boruta Lasso 1 0.166667 0.703922 0.867974 0.833333 0.820561 0.821429 0.833333 0.466667 0.941176 0.476683
Boruta Lasso 2 0.111111 0.75 0.96627 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
Boruta Lasso 3 0.111111 0.779762 0.896825 0.888889 0.880303 0.887681 0.888889 0.583333 0.97619 0.654802
Boruta Lasso 4 0.185185 0.642857 0.896825 0.814815 0.790123 0.796296 0.814815 0.333333 0.952381 0.377964
Boruta Lasso 5 0.148148 0.785714 0.84127 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
Boruta Lasso 6 0.240741 0.517857 0.494048 0.759259 0.698686 0.684096 0.759259 0.083333 0.952381 0.06482
Boruta Lasso 7 0.185185 0.642857 0.761905 0.814815 0.790123 0.796296 0.814815 0.333333 0.952381 0.377964
Boruta Lasso 8 0.277778 0.464286 0.769841 0.722222 0.65233 0.594771 0.722222 0 0.928571 − 0.12964
Boruta Lasso 9 0.185185 0.672619 0.878968 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
Boruta ElasticNet Validation 0.176471 0.823529 0.942042 0.823529 0.819629 0.854167 0.823529 0.676471 0.970588 0.677003
Boruta ElasticNet 0 0.166667 0.633333 0.870588 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
Boruta ElasticNet 1 0.166667 0.703922 0.869281 0.833333 0.820561 0.821429 0.833333 0.466667 0.941176 0.476683
Boruta ElasticNet 2 0.111111 0.75 0.96627 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
Boruta ElasticNet 3 0.111111 0.779762 0.890873 0.888889 0.880303 0.887681 0.888889 0.583333 0.97619 0.654802
Boruta ElasticNet 4 0.185185 0.642857 0.894841 0.814815 0.790123 0.796296 0.814815 0.333333 0.952381 0.377964
Boruta ElasticNet 5 0.148148 0.785714 0.845238 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
Boruta ElasticNet 6 0.240741 0.517857 0.496032 0.759259 0.698686 0.684096 0.759259 0.083333 0.952381 0.06482
Boruta ElasticNet 7 0.185185 0.642857 0.761905 0.814815 0.790123 0.796296 0.814815 0.333333 0.952381 0.377964
Boruta ElasticNet 8 0.277778 0.464286 0.757937 0.722222 0.65233 0.594771 0.722222 0 0.928571 − 0.12964
Boruta ElasticNet 9 0.185185 0.672619 0.880952 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
DCor RandomForest Validation 0.102941 0.897059 0.916955 0.897059 0.896499 0.905836 0.897059 0.823529 0.970588 0.802846
DCor RandomForest 0 0.106061 0.790196 0.917647 0.893939 0.885811 0.894481 0.893939 0.6 0.980392 0.678357
DCor RandomForest 1 0.212121 0.65098 0.696732 0.787879 0.775564 0.770248 0.787879 0.4 0.901961 0.33955
DCor RandomForest 2 0.148148 0.785714 0.938492 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
DCor RandomForest 3 0.203704 0.720238 0.875 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
DCor RandomForest 4 0.203704 0.720238 0.865079 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
DCor RandomForest 5 0.185185 0.791667 0.791667 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
DCor RandomForest 6 0.425926 0.39881 0.380952 0.574074 0.580027 0.5862 0.574074 0.083333 0.714286 − 0.1968
DCor RandomForest 7 0.203704 0.660714 0.857143 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
DCor RandomForest 8 0.092593 0.880952 0.886905 0.907407 0.908701 0.910778 0.907407 0.833333 0.928571 0.740888
DCor RandomForest 9 0.111111 0.809524 0.958333 0.888889 0.88513 0.884848 0.888889 0.666667 0.952381 0.662541
DCor SVC Validation 0.132353 0.867647 0.933391 0.867647 0.867618 0.867965 0.867647 0.882353 0.852941 0.735612
DCor SVC 0 0.121212 0.803922 0.881046 0.878788 0.875624 0.874654 0.878788 0.666667 0.941176 0.64049
DCor SVC 1 0.212121 0.698039 0.79085 0.787879 0.787879 0.787879 0.787879 0.533333 0.862745 0.396078
DCor SVC 2 0.166667 0.803571 0.914683 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
DCor SVC 3 0.203704 0.779762 0.859127 0.796296 0.807411 0.832362 0.796296 0.75 0.809524 0.500851
DCor SVC 4 0.203704 0.75 0.791667 0.796296 0.803841 0.816524 0.796296 0.666667 0.833333 0.464095
DCor SVC 5 0.166667 0.803571 0.753968 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
DCor SVC 6 0.481481 0.363095 0.337302 0.518519 0.540873 0.56652 0.518519 0.083333 0.642857 − 0.24929
DCor SVC 7 0.203704 0.660714 0.777778 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
DCor SVC 8 0.12963 0.857143 0.934524 0.87037 0.875171 0.88604 0.87037 0.833333 0.880952 0.662994
DCor SVC 9 0.111111 0.839286 0.962302 0.888889 0.888889 0.888889 0.888889 0.75 0.928571 0.678571
DCor LogisticRegression Validation 0.132353 0.867647 0.949827 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
DCor LogisticRegression 0 0.151515 0.690196 0.909804 0.848485 0.826446 0.849659 0.848485 0.4 0.980392 0.517711
DCor LogisticRegression 1 0.181818 0.670588 0.797386 0.818182 0.800505 0.802233 0.818182 0.4 0.941176 0.416631
DCor LogisticRegression 2 0.148148 0.755952 0.914683 0.851852 0.84684 0.844949 0.851852 0.583333 0.928571 0.547871
DCor LogisticRegression 3 0.185185 0.613095 0.85119 0.814815 0.77657 0.804444 0.814815 0.25 0.97619 0.359066
DCor LogisticRegression 4 0.203704 0.660714 0.777778 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
DCor LogisticRegression 5 0.222222 0.64881 0.78373 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
DCor LogisticRegression 6 0.351852 0.446429 0.390873 0.648148 0.629082 0.612346 0.648148 0.083333 0.809524 − 0.11952
DCor LogisticRegression 7 0.166667 0.625 0.789683 0.833333 0.791398 0.862745 0.833333 0.25 1 0.453743
DCor LogisticRegression 8 0.166667 0.684524 0.926587 0.833333 0.816085 0.820669 0.833333 0.416667 0.952381 0.456772
DCor LogisticRegression 9 0.12963 0.738095 0.94246 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
DCor Lasso Validation 0.132353 0.867647 0.948962 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
DCor Lasso 0 0.181818 0.623529 0.895425 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
DCor Lasso 1 0.19697 0.637255 0.806536 0.80303 0.779381 0.781544 0.80303 0.333333 0.941176 0.352476
DCor Lasso 2 0.166667 0.714286 0.936508 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
DCor Lasso 3 0.222222 0.529762 0.867063 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
DCor Lasso 4 0.222222 0.619048 0.777778 0.777778 0.760606 0.753623 0.777778 0.333333 0.904762 0.278639
DCor Lasso 5 0.222222 0.64881 0.787698 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
DCor Lasso 6 0.259259 0.505952 0.369048 0.740741 0.687198 0.662222 0.740741 0.083333 0.928571 0.018898
DCor Lasso 7 0.166667 0.625 0.797619 0.833333 0.791398 0.862745 0.833333 0.25 1 0.453743
DCor Lasso 8 0.12963 0.738095 0.928571 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
DCor Lasso 9 0.111111 0.75 0.930556 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
DCor ElasticNet Validation 0.132353 0.867647 0.948097 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
DCor ElasticNet 0 0.181818 0.623529 0.89281 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
DCor ElasticNet 1 0.19697 0.637255 0.803922 0.80303 0.779381 0.781544 0.80303 0.333333 0.941176 0.352476
DCor ElasticNet 2 0.166667 0.714286 0.936508 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
DCor ElasticNet 3 0.222222 0.529762 0.867063 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
DCor ElasticNet 4 0.203704 0.660714 0.779762 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
DCor ElasticNet 5 0.222222 0.64881 0.78373 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
DCor ElasticNet 6 0.277778 0.494048 0.365079 0.722222 0.675716 0.647619 0.722222 0.083333 0.904762 − 0.01708
DCor ElasticNet 7 0.166667 0.625 0.793651 0.833333 0.791398 0.862745 0.833333 0.25 1 0.453743
DCor ElasticNet 8 0.148148 0.696429 0.926587 0.851852 0.832099 0.849537 0.851852 0.416667 0.97619 0.519701
DCor ElasticNet 9 0.111111 0.75 0.938492 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
ElasticNet_alpha_.001 RandomForest Validation 0.279412 0.720588 0.75519 0.720588 0.719069 0.725464 0.720588 0.794118 0.647059 0.446026
ElasticNet_alpha_.001 RandomForest 0 0.227273 0.594118 0.620915 0.772727 0.74544 0.739812 0.772727 0.266667 0.921569 0.241698
ElasticNet_alpha_.001 RandomForest 1 0.318182 0.558824 0.670588 0.681818 0.685375 0.689205 0.681818 0.333333 0.784314 0.115045
ElasticNet_alpha_.001 RandomForest 2 0.240741 0.636905 0.734127 0.759259 0.755442 0.752173 0.759259 0.416667 0.857143 0.28264
ElasticNet_alpha_.001 RandomForest 3 0.240741 0.666667 0.765873 0.759259 0.762624 0.766521 0.759259 0.5 0.833333 0.324138
ElasticNet_alpha_.001 RandomForest 4 0.222222 0.738095 0.77381 0.777778 0.788095 0.807018 0.777778 0.666667 0.809524 0.433555
ElasticNet_alpha_.001 RandomForest 5 0.166667 0.77381 0.934524 0.833333 0.835663 0.838649 0.833333 0.666667 0.880952 0.532513
ElasticNet_alpha_.001 RandomForest 6 0.240741 0.577381 0.53373 0.759259 0.734345 0.72408 0.759259 0.25 0.904762 0.19155
ElasticNet_alpha_.001 RandomForest 7 0.111111 0.779762 0.875 0.888889 0.880303 0.887681 0.888889 0.583333 0.97619 0.654802
ElasticNet_alpha_.001 RandomForest 8 0.203704 0.630952 0.700397 0.796296 0.775215 0.772374 0.796296 0.333333 0.928571 0.324161
ElasticNet_alpha_.001 RandomForest 9 0.166667 0.744048 0.779762 0.833333 0.830691 0.828753 0.833333 0.583333 0.904762 0.503836
ElasticNet_alpha_.001 SVC Validation 0.25 0.75 0.762111 0.75 0.748641 0.755526 0.75 0.676471 0.823529 0.505496
ElasticNet_alpha_.001 SVC 0 0.287879 0.672549 0.687582 0.712121 0.728747 0.760331 0.712121 0.6 0.745098 0.306786
ElasticNet_alpha_.001 SVC 1 0.287879 0.64902 0.708497 0.712121 0.725264 0.746047 0.712121 0.533333 0.764706 0.271775
ElasticNet_alpha_.001 SVC 2 0.37037 0.613095 0.603175 0.62963 0.659071 0.726957 0.62963 0.583333 0.642857 0.191383
ElasticNet_alpha_.001 SVC 3 0.259259 0.654762 0.746032 0.740741 0.747551 0.756349 0.740741 0.5 0.809524 0.29364
ElasticNet_alpha_.001 SVC 4 0.314815 0.708333 0.775794 0.685185 0.710937 0.789465 0.685185 0.75 0.666667 0.350315
ElasticNet_alpha_.001 SVC 5 0.203704 0.839286 0.928571 0.796296 0.811852 0.870611 0.796296 0.916667 0.761905 0.578688
ElasticNet_alpha_.001 SVC 6 0.388889 0.541667 0.678571 0.611111 0.637341 0.680702 0.611111 0.416667 0.666667 0.072548
ElasticNet_alpha_.001 SVC 7 0.111111 0.89881 0.94246 0.888889 0.894048 0.910088 0.888889 0.916667 0.880952 0.726205
ElasticNet_alpha_.001 SVC 8 0.388889 0.571429 0.607143 0.611111 0.640808 0.699856 0.611111 0.5 0.642857 0.121829
ElasticNet_alpha_.001 SVC 9 0.333333 0.636905 0.777778 0.666667 0.690789 0.741176 0.666667 0.583333 0.690476 0.235727
ElasticNet_alpha_.001 LogisticRegression Validation 0.220588 0.779412 0.741349 0.779412 0.771044 0.827254 0.779412 0.588235 0.970588 0.604777
ElasticNet_alpha_.001 LogisticRegression 0 0.19697 0.590196 0.695425 0.80303 0.7556 0.793622 0.80303 0.2 0.980392 0.316827
ElasticNet_alpha_.001 LogisticRegression 1 0.257576 0.55098 0.70719 0.742424 0.711499 0.69808 0.742424 0.2 0.901961 0.13092
ElasticNet_alpha_.001 LogisticRegression 2 0.259259 0.535714 0.619048 0.740741 0.706173 0.689815 0.740741 0.166667 0.904762 0.094491
ElasticNet_alpha_.001 LogisticRegression 3 0.203704 0.541667 0.797619 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
ElasticNet_alpha_.001 LogisticRegression 4 0.203704 0.690476 0.771825 0.796296 0.793066 0.790463 0.796296 0.5 0.880952 0.393238
ElasticNet_alpha_.001 LogisticRegression 5 0.074074 0.833333 0.944444 0.925926 0.920202 0.932367 0.925926 0.666667 1 0.780189
ElasticNet_alpha_.001 LogisticRegression 6 0.185185 0.583333 0.674603 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
ElasticNet_alpha_.001 LogisticRegression 7 0.166667 0.654762 0.904762 0.833333 0.80543 0.828571 0.833333 0.333333 0.97619 0.443942
ElasticNet_alpha_.001 LogisticRegression 8 0.185185 0.583333 0.609127 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
ElasticNet_alpha_.001 LogisticRegression 9 0.148148 0.666667 0.803571 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
ElasticNet_alpha_.001 Lasso Validation 0.235294 0.764706 0.736159 0.764706 0.759505 0.789773 0.764706 0.617647 0.911765 0.553912
ElasticNet_alpha_.001 Lasso 0 0.227273 0.523529 0.718954 0.772727 0.698675 0.71733 0.772727 0.066667 0.980392 0.115045
ElasticNet_alpha_.001 Lasso 1 0.212121 0.580392 0.705882 0.787879 0.744318 0.757079 0.787879 0.2 0.960784 0.254639
ElasticNet_alpha_.001 Lasso 2 0.240741 0.547619 0.603175 0.759259 0.718954 0.707937 0.759259 0.166667 0.928571 0.136598
ElasticNet_alpha_.001 Lasso 3 0.203704 0.541667 0.815476 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
ElasticNet_alpha_.001 Lasso 4 0.166667 0.714286 0.777778 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
ElasticNet_alpha_.001 Lasso 5 0.092593 0.791667 0.938492 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
ElasticNet_alpha_.001 Lasso 6 0.185185 0.583333 0.68254 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
ElasticNet_alpha_.001 Lasso 7 0.166667 0.654762 0.914683 0.833333 0.80543 0.828571 0.833333 0.333333 0.97619 0.443942
ElasticNet_alpha_.001 Lasso 8 0.185185 0.583333 0.625 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
ElasticNet_alpha_.001 Lasso 9 0.148148 0.666667 0.785714 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
ElasticNet_alpha_.001 ElasticNet Validation 0.235294 0.764706 0.734429 0.764706 0.759505 0.789773 0.764706 0.617647 0.911765 0.553912
ElasticNet_alpha_.001 ElasticNet 0 0.212121 0.556863 0.720261 0.787879 0.728336 0.764791 0.787879 0.133333 0.980392 0.228801
ElasticNet_alpha_.001 ElasticNet 1 0.212121 0.580392 0.70719 0.787879 0.744318 0.757079 0.787879 0.2 0.960784 0.254639
ElasticNet_alpha_.001 ElasticNet 2 0.240741 0.547619 0.599206 0.759259 0.718954 0.707937 0.759259 0.166667 0.928571 0.136598
ElasticNet_alpha_.001 ElasticNet 3 0.203704 0.541667 0.811508 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
ElasticNet_alpha_.001 ElasticNet 4 0.166667 0.714286 0.77381 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
ElasticNet_alpha_.001 ElasticNet 5 0.092593 0.791667 0.938492 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
ElasticNet_alpha_.001 ElasticNet 6 0.185185 0.583333 0.688492 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
ElasticNet_alpha_.001 ElasticNet 7 0.166667 0.654762 0.910714 0.833333 0.80543 0.828571 0.833333 0.333333 0.97619 0.443942
ElasticNet_alpha_.001 ElasticNet 8 0.185185 0.583333 0.611111 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
ElasticNet_alpha_.001 ElasticNet 9 0.148148 0.666667 0.785714 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
ElasticNet_alpha_.01 RandomForest Validation 0.397059 0.602941 0.676471 0.602941 0.587879 0.620567 0.602941 0.794118 0.411765 0.222812
ElasticNet_alpha_.01 RandomForest 0 0.242424 0.490196 0.605229 0.757576 0.666144 0.594406 0.757576 0 0.980392 − 0.06727
ElasticNet_alpha_.01 RandomForest 1 0.227273 0.688235 0.720261 0.772727 0.775268 0.778182 0.772727 0.533333 0.843137 0.368143
ElasticNet_alpha_.01 RandomForest 2 0.092593 0.791667 0.972222 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
ElasticNet_alpha_.01 RandomForest 3 0.074074 0.833333 0.880952 0.925926 0.920202 0.932367 0.925926 0.666667 1 0.780189
ElasticNet_alpha_.01 RandomForest 4 0.092593 0.821429 0.875 0.907407 0.90239 0.906173 0.907407 0.666667 0.97619 0.717137
ElasticNet_alpha_.01 RandomForest 5 0.055556 0.904762 0.980159 0.944444 0.943564 0.943622 0.944444 0.833333 0.97619 0.835631
ElasticNet_alpha_.01 RandomForest 6 0.203704 0.60119 0.65873 0.796296 0.762192 0.768254 0.796296 0.25 0.952381 0.29027
ElasticNet_alpha_.01 RandomForest 7 0.222222 0.678571 0.829365 0.777778 0.777778 0.777778 0.777778 0.5 0.857143 0.357143
ElasticNet_alpha_.01 RandomForest 8 0.277778 0.494048 0.684524 0.722222 0.675716 0.647619 0.722222 0.083333 0.904762 − 0.01708
ElasticNet_alpha_.01 RandomForest 9 0.074074 0.863095 0.871032 0.925926 0.92342 0.924747 0.925926 0.75 0.97619 0.777212
ElasticNet_alpha_.01 SVC Validation 0.5 0.5 0.545848 0.5 0.333333 0.25 0.5 1 0 0
ElasticNet_alpha_.01 SVC 0 0.257576 0.55098 0.751634 0.742424 0.711499 0.69808 0.742424 0.2 0.901961 0.13092
ElasticNet_alpha_.01 SVC 1 0.348485 0.609804 0.747712 0.651515 0.674863 0.719697 0.651515 0.533333 0.686275 0.191315
ElasticNet_alpha_.01 SVC 2 0.166667 0.803571 0.902778 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
ElasticNet_alpha_.01 SVC 3 0.259259 0.714286 0.795635 0.740741 0.756695 0.790123 0.740741 0.666667 0.761905 0.377964
ElasticNet_alpha_.01 SVC 4 0.222222 0.708333 0.849206 0.777778 0.783615 0.791667 0.777778 0.583333 0.833333 0.395285
ElasticNet_alpha_.01 SVC 5 0.148148 0.845238 0.950397 0.851852 0.85873 0.875731 0.851852 0.833333 0.857143 0.628655
ElasticNet_alpha_.01 SVC 6 0.203704 0.660714 0.805556 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
ElasticNet_alpha_.01 SVC 7 0.203704 0.75 0.894841 0.796296 0.803841 0.816524 0.796296 0.666667 0.833333 0.464095
ElasticNet_alpha_.01 SVC 8 0.351852 0.446429 0.555556 0.648148 0.629082 0.612346 0.648148 0.083333 0.809524 −0.11952
ElasticNet_alpha_.01 SVC 9 0.259259 0.77381 0.865079 0.740741 0.76135 0.830177 0.740741 0.833333 0.714286 0.463348
ElasticNet_alpha_.01 LogisticRegression Validation 0.588235 0.411765 0.553633 0.411765 0.328063 0.324138 0.411765 0.764706 0.058824 − 0.24914
ElasticNet_alpha_.01 LogisticRegression 0 0.227273 0.5 0.718954 0.772727 0.67366 0.597107 0.772727 0 1 0
ElasticNet_alpha_.01 LogisticRegression 1 0.227273 0.617647 0.766013 0.772727 0.75531 0.748377 0.772727 0.333333 0.901961 0.27501
ElasticNet_alpha_.01 LogisticRegression 2 0.111111 0.75 0.878968 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
ElasticNet_alpha_.01 LogisticRegression 3 0.12963 0.738095 0.779762 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
ElasticNet_alpha_.01 LogisticRegression 4 0.148148 0.72619 0.837302 0.851852 0.840404 0.842995 0.851852 0.5 0.952381 0.529414
ElasticNet_alpha_.01 LogisticRegression 5 0.092593 0.821429 0.968254 0.907407 0.90239 0.906173 0.907407 0.666667 0.97619 0.717137
ElasticNet_alpha_.01 LogisticRegression 6 0.185185 0.583333 0.827381 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
ElasticNet_alpha_.01 LogisticRegression 7 0.12963 0.708333 0.888889 0.87037 0.848668 0.888889 0.87037 0.416667 1 0.597614
ElasticNet_alpha_.01 LogisticRegression 8 0.259259 0.47619 0.561508 0.740741 0.661939 0.598291 0.740741 0 0.952381 − 0.10483
ElasticNet_alpha_.01 LogisticRegression 9 0.074074 0.833333 0.871032 0.925926 0.920202 0.932367 0.925926 0.666667 1 0.780189
ElasticNet_alpha_.01 Lasso Validation 0.558824 0.441176 0.562284 0.441176 0.416441 0.429167 0.441176 0.647059 0.235294 − 0.1291
ElasticNet_alpha_.01 Lasso 0 0.227273 0.5 0.729412 0.772727 0.67366 0.597107 0.772727 0 1 0
ElasticNet_alpha_.01 Lasso 1 0.212121 0.603922 0.762092 0.787879 0.757025 0.75853 0.787879 0.266667 0.941176 0.282873
ElasticNet_alpha_.01 Lasso 2 0.12963 0.708333 0.853175 0.87037 0.848668 0.888889 0.87037 0.416667 1 0.597614
ElasticNet_alpha_.01 Lasso 3 0.111111 0.75 0.771825 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
ElasticNet_alpha_.01 Lasso 4 0.148148 0.696429 0.80754 0.851852 0.832099 0.849537 0.851852 0.416667 0.97619 0.519701
ElasticNet_alpha_.01 Lasso 5 0.074074 0.833333 0.960317 0.925926 0.920202 0.932367 0.925926 0.666667 1 0.780189
ElasticNet_alpha_.01 Lasso 6 0.185185 0.583333 0.803571 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
ElasticNet_alpha_.01 Lasso 7 0.148148 0.666667 0.890873 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
ElasticNet_alpha_.01 Lasso 8 0.240741 0.488095 0.547619 0.759259 0.671345 0.601677 0.759259 0 0.97619 − 0.07342
ElasticNet_alpha_.01 Lasso 9 0.092593 0.791667 0.876984 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
ElasticNet_alpha_.01 ElasticNet Validation 0.558824 0.441176 0.557958 0.441176 0.416441 0.429167 0.441176 0.647059 0.235294 − 0.1291
ElasticNet_alpha_.01 ElasticNet 0 0.227273 0.5 0.730719 0.772727 0.67366 0.597107 0.772727 0 1 0
ElasticNet_alpha_.01 ElasticNet 1 0.212121 0.603922 0.760784 0.787879 0.757025 0.75853 0.787879 0.266667 0.941176 0.282873
ElasticNet_alpha_.01 ElasticNet 2 0.12963 0.708333 0.853175 0.87037 0.848668 0.888889 0.87037 0.416667 1 0.597614
ElasticNet_alpha_.01 ElasticNet 3 0.111111 0.75 0.77381 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
ElasticNet_alpha_.01 ElasticNet 4 0.148148 0.696429 0.80754 0.851852 0.832099 0.849537 0.851852 0.416667 0.97619 0.519701
ElasticNet_alpha_.01 ElasticNet 5 0.074074 0.833333 0.958333 0.925926 0.920202 0.932367 0.925926 0.666667 1 0.780189
ElasticNet_alpha_.01 ElasticNet 6 0.185185 0.583333 0.801587 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
ElasticNet_alpha_.01 ElasticNet 7 0.148148 0.666667 0.888889 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
ElasticNet_alpha_.01 ElasticNet 8 0.240741 0.488095 0.559524 0.759259 0.671345 0.601677 0.759259 0 0.97619 − 0.07342
ElasticNet_alpha_.01 ElasticNet 9 0.092593 0.791667 0.876984 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
Lasso_alpha_.001 RandomForest Validation 0.470588 0.529412 0.663495 0.529412 0.484848 0.544974 0.529412 0.823529 0.235294 0.072739
Lasso_alpha_.001 RandomForest 0 0.227273 0.570588 0.636601 0.772727 0.73324 0.731818 0.772727 0.2 0.941176 0.205798
Lasso_alpha_.001 RandomForest 1 0.227273 0.664706 0.733333 0.772727 0.769912 0.767483 0.772727 0.466667 0.862745 0.337679
Lasso_alpha_.001 RandomForest 2 0.185185 0.672619 0.75 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
Lasso_alpha_.001 RandomForest 3 0.240741 0.607143 0.730159 0.759259 0.746214 0.738272 0.759259 0.333333 0.880952 0.239046
Lasso_alpha_.001 RandomForest 4 0.185185 0.761905 0.767857 0.814815 0.819679 0.826984 0.814815 0.666667 0.857143 0.496929
Lasso_alpha_.001 RandomForest 5 0.12963 0.797619 0.875 0.87037 0.868315 0.867043 0.87037 0.666667 0.928571 0.614434
Lasso_alpha_.001 RandomForest 6 0.222222 0.559524 0.664683 0.777778 0.731884 0.733333 0.777778 0.166667 0.952381 0.188982
Lasso_alpha_.001 RandomForest 7 0.092593 0.791667 0.775794 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
Lasso_alpha_.001 RandomForest 8 0.185185 0.613095 0.730159 0.814815 0.77657 0.804444 0.814815 0.25 0.97619 0.359066
Lasso_alpha_.001 RandomForest 9 0.277778 0.613095 0.732143 0.722222 0.726104 0.730457 0.722222 0.416667 0.809524 0.219951
Lasso_alpha_.001 SVC Validation 0.573529 0.426471 0.605536 0.426471 0.366005 0.381119 0.426471 0.735294 0.117647 − 0.18699
Lasso_alpha_.001 SVC 0 0.257576 0.668627 0.695425 0.742424 0.75023 0.761048 0.742424 0.533333 0.803922 0.317345
Lasso_alpha_.001 SVC 1 0.287879 0.672549 0.739869 0.712121 0.728747 0.760331 0.712121 0.6 0.745098 0.306786
Lasso_alpha_.001 SVC 2 0.351852 0.595238 0.626984 0.648148 0.67188 0.71462 0.648148 0.5 0.690476 0.165823
Lasso_alpha_.001 SVC 3 0.388889 0.511905 0.613095 0.611111 0.632329 0.661897 0.611111 0.333333 0.690476 0.021313
Lasso_alpha_.001 SVC 4 0.296296 0.690476 0.744048 0.703704 0.725146 0.775163 0.703704 0.666667 0.714286 0.327968
Lasso_alpha_.001 SVC 5 0.166667 0.803571 0.884921 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
Lasso_alpha_.001 SVC 6 0.259259 0.744048 0.857143 0.740741 0.759503 0.80915 0.740741 0.75 0.738095 0.420209
Lasso_alpha_.001 SVC 7 0.222222 0.767857 0.880952 0.777778 0.791453 0.824074 0.777778 0.75 0.785714 0.472456
Lasso_alpha_.001 SVC 8 0.388889 0.541667 0.609127 0.611111 0.637341 0.680702 0.611111 0.416667 0.666667 0.072548
Lasso_alpha_.001 SVC 9 0.37037 0.583333 0.722222 0.62963 0.656433 0.70719 0.62963 0.5 0.666667 0.143486
Lasso_alpha_.001 LogisticRegression Validation 0.367647 0.632353 0.627163 0.632353 0.631636 0.633391 0.632353 0.588235 0.676471 0.265742
Lasso_alpha_.001 LogisticRegression 0 0.19697 0.566667 0.695425 0.80303 0.738851 0.84304 0.80303 0.133333 1 0.32596
Lasso_alpha_.001 LogisticRegression 1 0.181818 0.623529 0.737255 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
Lasso_alpha_.001 LogisticRegression 2 0.240741 0.547619 0.652778 0.759259 0.718954 0.707937 0.759259 0.166667 0.928571 0.136598
Lasso_alpha_.001 LogisticRegression 3 0.203704 0.541667 0.656746 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
Lasso_alpha_.001 LogisticRegression 4 0.166667 0.714286 0.738095 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
Lasso_alpha_.001 LogisticRegression 5 0.074074 0.833333 0.902778 0.925926 0.920202 0.932367 0.925926 0.666667 1 0.780189
Lasso_alpha_.001 LogisticRegression 6 0.185185 0.583333 0.855159 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
Lasso_alpha_.001 LogisticRegression 7 0.111111 0.75 0.84127 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
Lasso_alpha_.001 LogisticRegression 8 0.185185 0.583333 0.626984 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
Lasso_alpha_.001 LogisticRegression 9 0.185185 0.672619 0.712302 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
Lasso_alpha_.001 Lasso Validation 0.426471 0.573529 0.605536 0.573529 0.573437 0.573593 0.573529 0.588235 0.558824 0.147122
Lasso_alpha_.001 Lasso 0 0.227273 0.5 0.729412 0.772727 0.67366 0.597107 0.772727 0 1 0
Lasso_alpha_.001 Lasso 1 0.181818 0.623529 0.717647 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
Lasso_alpha_.001 Lasso 2 0.222222 0.559524 0.64881 0.777778 0.731884 0.733333 0.777778 0.166667 0.952381 0.188982
Lasso_alpha_.001 Lasso 3 0.203704 0.541667 0.706349 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
Lasso_alpha_.001 Lasso 4 0.185185 0.672619 0.730159 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
Lasso_alpha_.001 Lasso 5 0.111111 0.75 0.888889 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
Lasso_alpha_.001 Lasso 6 0.185185 0.583333 0.871032 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
Lasso_alpha_.001 Lasso 7 0.148148 0.666667 0.839286 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
Lasso_alpha_.001 Lasso 8 0.203704 0.541667 0.632937 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
Lasso_alpha_.001 Lasso 9 0.148148 0.666667 0.714286 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
Lasso_alpha_.001 ElasticNet Validation 0.426471 0.573529 0.602941 0.573529 0.573437 0.573593 0.573529 0.588235 0.558824 0.147122
Lasso_alpha_.001 ElasticNet 0 0.212121 0.533333 0.734641 0.787879 0.707876 0.833566 0.787879 0.066667 1 0.228709
Lasso_alpha_.001 ElasticNet 1 0.181818 0.623529 0.720261 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
Lasso_alpha_.001 ElasticNet 2 0.222222 0.559524 0.644841 0.777778 0.731884 0.733333 0.777778 0.166667 0.952381 0.188982
Lasso_alpha_.001 ElasticNet 3 0.203704 0.541667 0.702381 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
Lasso_alpha_.001 ElasticNet 4 0.185185 0.672619 0.730159 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
Lasso_alpha_.001 ElasticNet 5 0.092593 0.791667 0.888889 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
Lasso_alpha_.001 ElasticNet 6 0.185185 0.583333 0.876984 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
Lasso_alpha_.001 ElasticNet 7 0.148148 0.666667 0.847222 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
Lasso_alpha_.001 ElasticNet 8 0.203704 0.541667 0.632937 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
Lasso_alpha_.001 ElasticNet 9 0.148148 0.666667 0.712302 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
Lasso_alpha_.01 RandomForest Validation 0.514706 0.485294 0.474048 0.485294 0.326733 0.246269 0.485294 0.970588 0 − 0.12217
Lasso_alpha_.01 RandomForest 0 0.242424 0.537255 0.762092 0.757576 0.707792 0.698957 0.757576 0.133333 0.941176 0.118003
Lasso_alpha_.01 RandomForest 1 0.242424 0.678431 0.764706 0.757576 0.762727 0.76929 0.757576 0.533333 0.823529 0.341987
Lasso_alpha_.01 RandomForest 2 0.12963 0.738095 0.96627 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
Lasso_alpha_.01 RandomForest 3 0.12963 0.797619 0.956349 0.87037 0.868315 0.867043 0.87037 0.666667 0.928571 0.614434
Lasso_alpha_.01 RandomForest 4 0.092593 0.85119 0.934524 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
Lasso_alpha_.01 RandomForest 5 0.092593 0.910714 0.978175 0.907407 0.910837 0.920798 0.907407 0.916667 0.904762 0.762443
Lasso_alpha_.01 RandomForest 6 0.277778 0.553571 0.634921 0.722222 0.70717 0.696296 0.722222 0.25 0.857143 0.119523
Lasso_alpha_.01 RandomForest 7 0.222222 0.708333 0.730159 0.777778 0.783615 0.791667 0.777778 0.583333 0.833333 0.395285
Lasso_alpha_.01 RandomForest 8 0.277778 0.464286 0.767857 0.722222 0.65233 0.594771 0.722222 0 0.928571 − 0.12964
Lasso_alpha_.01 RandomForest 9 0.092593 0.821429 0.884921 0.907407 0.90239 0.906173 0.907407 0.666667 0.97619 0.717137
Lasso_alpha_.01 SVC Validation 0.838235 0.161765 0.110727 0.161765 0.139241 0.122222 0.161765 0.323529 0 − 0.71492
Lasso_alpha_.01 SVC 0 0.19697 0.707843 0.779085 0.80303 0.80059 0.798576 0.80303 0.533333 0.882353 0.426119
Lasso_alpha_.01 SVC 1 0.227273 0.758824 0.844444 0.772727 0.785853 0.816116 0.772727 0.733333 0.784314 0.460179
Lasso_alpha_.01 SVC 2 0.240741 0.785714 0.900794 0.759259 0.777643 0.83646 0.759259 0.833333 0.738095 0.487316
Lasso_alpha_.01 SVC 3 0.185185 0.821429 0.912698 0.814815 0.826211 0.858025 0.814815 0.833333 0.809524 0.566947
Lasso_alpha_.01 SVC 4 0.148148 0.845238 0.928571 0.851852 0.85873 0.875731 0.851852 0.833333 0.857143 0.628655
Lasso_alpha_.01 SVC 5 0.037037 0.97619 0.996032 0.962963 0.963936 0.968254 0.962963 1 0.952381 0.903508
Lasso_alpha_.01 SVC 6 0.259259 0.625 0.779762 0.740741 0.740741 0.740741 0.740741 0.416667 0.833333 0.25
Lasso_alpha_.01 SVC 7 0.185185 0.761905 0.819444 0.814815 0.819679 0.826984 0.814815 0.666667 0.857143 0.496929
Lasso_alpha_.01 SVC 8 0.203704 0.690476 0.72619 0.796296 0.793066 0.790463 0.796296 0.5 0.880952 0.393238
Lasso_alpha_.01 SVC 9 0.185185 0.791667 0.900794 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
Lasso_alpha_.01 LogisticRegression Validation 0.867647 0.132353 0.122837 0.132353 0.116883 0.104651 0.132353 0.264706 0 − 0.76249
Lasso_alpha_.01 LogisticRegression 0 0.166667 0.633333 0.796078 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
Lasso_alpha_.01 LogisticRegression 1 0.212121 0.627451 0.854902 0.787879 0.767256 0.763424 0.787879 0.333333 0.921569 0.311276
Lasso_alpha_.01 LogisticRegression 2 0.111111 0.809524 0.896825 0.888889 0.88513 0.884848 0.888889 0.666667 0.952381 0.662541
Lasso_alpha_.01 LogisticRegression 3 0.055556 0.904762 0.914683 0.944444 0.943564 0.943622 0.944444 0.833333 0.97619 0.835631
Lasso_alpha_.01 LogisticRegression 4 0.166667 0.714286 0.922619 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
Lasso_alpha_.01 LogisticRegression 5 0.018519 0.958333 0.996032 0.981481 0.981188 0.981912 0.981481 0.916667 1 0.946229
Lasso_alpha_.01 LogisticRegression 6 0.203704 0.60119 0.785714 0.796296 0.762192 0.768254 0.796296 0.25 0.952381 0.29027
Lasso_alpha_.01 LogisticRegression 7 0.092593 0.821429 0.829365 0.907407 0.90239 0.906173 0.907407 0.666667 0.97619 0.717137
Lasso_alpha_.01 LogisticRegression 8 0.222222 0.559524 0.686508 0.777778 0.731884 0.733333 0.777778 0.166667 0.952381 0.188982
Lasso_alpha_.01 LogisticRegression 9 0.092593 0.85119 0.894841 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
Lasso_alpha_.01 Lasso Validation 0.867647 0.132353 0.119377 0.132353 0.116883 0.104651 0.132353 0.264706 0 − 0.76249
Lasso_alpha_.01 Lasso 0 0.181818 0.6 0.816993 0.818182 0.767145 0.852814 0.818182 0.2 1 0.402374
Lasso_alpha_.01 Lasso 1 0.227273 0.617647 0.845752 0.772727 0.75531 0.748377 0.772727 0.333333 0.901961 0.27501
Lasso_alpha_.01 Lasso 2 0.12963 0.738095 0.896825 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
Lasso_alpha_.01 Lasso 3 0.074074 0.863095 0.912698 0.925926 0.92342 0.924747 0.925926 0.75 0.97619 0.777212
Lasso_alpha_.01 Lasso 4 0.166667 0.714286 0.924603 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
Lasso_alpha_.01 Lasso 5 0.055556 0.875 0.996032 0.944444 0.941434 0.948148 0.944444 0.75 1 0.83666
Lasso_alpha_.01 Lasso 6 0.203704 0.60119 0.78373 0.796296 0.762192 0.768254 0.796296 0.25 0.952381 0.29027
Lasso_alpha_.01 Lasso 7 0.148148 0.696429 0.819444 0.851852 0.832099 0.849537 0.851852 0.416667 0.97619 0.519701
Lasso_alpha_.01 Lasso 8 0.203704 0.571429 0.660714 0.796296 0.745042 0.77342 0.796296 0.166667 0.97619 0.259281
Lasso_alpha_.01 Lasso 9 0.092593 0.85119 0.896825 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
Lasso_alpha_.01 ElasticNet validation 0.867647 0.132353 0.117647 0.132353 0.116883 0.104651 0.132353 0.264706 0 − 0.76249
Lasso_alpha_.01 ElasticNet 0 0.181818 0.6 0.815686 0.818182 0.767145 0.852814 0.818182 0.2 1 0.402374
Lasso_alpha_.01 ElasticNet 1 0.227273 0.617647 0.844444 0.772727 0.75531 0.748377 0.772727 0.333333 0.901961 0.27501
Lasso_alpha_.01 ElasticNet 2 0.12963 0.738095 0.896825 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
Lasso_alpha_.01 ElasticNet 3 0.074074 0.863095 0.912698 0.925926 0.92342 0.924747 0.925926 0.75 0.97619 0.777212
Lasso_alpha_.01 ElasticNet 4 0.166667 0.714286 0.924603 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
Lasso_alpha_.01 ElasticNet 5 0.055556 0.875 0.996032 0.944444 0.941434 0.948148 0.944444 0.75 1 0.83666
Lasso_alpha_.01 ElasticNet 6 0.203704 0.60119 0.785714 0.796296 0.762192 0.768254 0.796296 0.25 0.952381 0.29027
Lasso_alpha_.01 ElasticNet 7 0.148148 0.696429 0.821429 0.851852 0.832099 0.849537 0.851852 0.416667 0.97619 0.519701
Lasso_alpha_.01 ElasticNet 8 0.203704 0.571429 0.660714 0.796296 0.745042 0.77342 0.796296 0.166667 0.97619 0.259281
Lasso_alpha_.01 ElasticNet 9 0.092593 0.85119 0.894841 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
Mann_Whitney RandomForest Validation 0.088235 0.911765 0.932526 0.911765 0.911458 0.917544 0.911765 0.852941 0.970588 0.829288
Mann_Whitney RandomForest 0 0.106061 0.813725 0.899346 0.893939 0.889562 0.890572 0.893939 0.666667 0.960784 0.681747
Mann_Whitney RandomForest 1 0.212121 0.67451 0.69281 0.787879 0.782343 0.778467 0.787879 0.466667 0.882353 0.367765
Mann_Whitney RandomForest 2 0.148148 0.785714 0.944444 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
Mann_Whitney RandomForest 3 0.203704 0.720238 0.869048 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
Mann_Whitney RandomForest 4 0.203704 0.720238 0.861111 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
Mann_Whitney RandomForest 5 0.185185 0.791667 0.801587 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
Mann_Whitney RandomForest 6 0.425926 0.39881 0.420635 0.574074 0.580027 0.5862 0.574074 0.083333 0.714286 − 0.1968
Mann_Whitney RandomForest 7 0.203704 0.660714 0.878968 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
Mann_Whitney RandomForest 8 0.092593 0.880952 0.906746 0.907407 0.908701 0.910778 0.907407 0.833333 0.928571 0.740888
Mann_Whitney RandomForest 9 0.092593 0.85119 0.962302 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
Mann_Whitney SVC Validation 0.102941 0.897059 0.943772 0.897059 0.897037 0.897403 0.897059 0.882353 0.911765 0.794461
Mann_Whitney SVC 0 0.151515 0.807843 0.887582 0.848485 0.851705 0.856706 0.848485 0.733333 0.882353 0.590021
Mann_Whitney SVC 1 0.227273 0.688235 0.74902 0.772727 0.775268 0.778182 0.772727 0.533333 0.843137 0.368143
Mann_Whitney SVC 2 0.166667 0.803571 0.911706 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
Mann_Whitney SVC 3 0.203704 0.779762 0.847222 0.796296 0.807411 0.832362 0.796296 0.75 0.809524 0.500851
Mann_Whitney SVC 4 0.222222 0.708333 0.795635 0.777778 0.783615 0.791667 0.777778 0.583333 0.833333 0.395285
Mann_Whitney SVC 5 0.166667 0.803571 0.765873 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
Mann_Whitney SVC 6 0.481481 0.363095 0.363095 0.518519 0.540873 0.56652 0.518519 0.083333 0.642857 − 0.24929
Mann_Whitney SVC 7 0.203704 0.660714 0.763889 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
Mann_Whitney SVC 8 0.092593 0.910714 0.94246 0.907407 0.910837 0.920798 0.907407 0.916667 0.904762 0.762443
Mann_Whitney SVC 9 0.111111 0.839286 0.968254 0.888889 0.888889 0.888889 0.888889 0.75 0.928571 0.678571
Mann_Whitney LogisticRegression Validation 0.132353 0.867647 0.949827 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
Mann_Whitney LogisticRegression 0 0.151515 0.690196 0.904575 0.848485 0.826446 0.849659 0.848485 0.4 0.980392 0.517711
Mann_Whitney LogisticRegression 1 0.181818 0.670588 0.768627 0.818182 0.800505 0.802233 0.818182 0.4 0.941176 0.416631
Mann_Whitney LogisticRegression 2 0.166667 0.714286 0.914683 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
Mann_Whitney LogisticRegression 3 0.185185 0.613095 0.847222 0.814815 0.77657 0.804444 0.814815 0.25 0.97619 0.359066
Mann_Whitney LogisticRegression 4 0.203704 0.660714 0.779762 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
Mann_Whitney LogisticRegression 5 0.203704 0.690476 0.785714 0.796296 0.793066 0.790463 0.796296 0.5 0.880952 0.393238
Mann_Whitney LogisticRegression 6 0.351852 0.446429 0.386905 0.648148 0.629082 0.612346 0.648148 0.083333 0.809524 − 0.11952
Mann_Whitney LogisticRegression 7 0.185185 0.613095 0.781746 0.814815 0.77657 0.804444 0.814815 0.25 0.97619 0.359066
Mann_Whitney LogisticRegression 8 0.185185 0.672619 0.924603 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
Mann_Whitney LogisticRegression 9 0.111111 0.779762 0.944444 0.888889 0.880303 0.887681 0.888889 0.583333 0.97619 0.654802
Mann_Whitney Lasso Validation 0.132353 0.867647 0.949827 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
Mann_Whitney Lasso 0 0.181818 0.623529 0.89281 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
Mann_Whitney Lasso 1 0.212121 0.603922 0.781699 0.787879 0.757025 0.75853 0.787879 0.266667 0.941176 0.282873
Mann_Whitney Lasso 2 0.166667 0.714286 0.93254 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
Mann_Whitney Lasso 3 0.222222 0.529762 0.867063 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
Mann_Whitney Lasso 4 0.240741 0.577381 0.775794 0.759259 0.734345 0.72408 0.759259 0.25 0.904762 0.19155
Mann_Whitney Lasso 5 0.222222 0.64881 0.789683 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
Mann_Whitney Lasso 6 0.259259 0.505952 0.369048 0.740741 0.687198 0.662222 0.740741 0.083333 0.928571 0.018898
Mann_Whitney Lasso 7 0.166667 0.625 0.789683 0.833333 0.791398 0.862745 0.833333 0.25 1 0.453743
Mann_Whitney Lasso 8 0.148148 0.72619 0.924603 0.851852 0.840404 0.842995 0.851852 0.5 0.952381 0.529414
Mann_Whitney Lasso 9 0.111111 0.75 0.926587 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
Mann_Whitney ElasticNet Validation 0.132353 0.867647 0.949827 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
Mann_Whitney ElasticNet 0 0.181818 0.623529 0.89281 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
Mann_Whitney ElasticNet 1 0.19697 0.637255 0.783007 0.80303 0.779381 0.781544 0.80303 0.333333 0.941176 0.352476
Mann_Whitney ElasticNet 2 0.166667 0.714286 0.93254 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
Mann_Whitney ElasticNet 3 0.222222 0.529762 0.865079 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
Mann_Whitney ElasticNet 4 0.240741 0.577381 0.771825 0.759259 0.734345 0.72408 0.759259 0.25 0.904762 0.19155
Mann_Whitney ElasticNet 5 0.222222 0.64881 0.785714 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
Mann_Whitney ElasticNet 6 0.277778 0.494048 0.365079 0.722222 0.675716 0.647619 0.722222 0.083333 0.904762 − 0.01708
Mann_Whitney ElasticNet 7 0.166667 0.625 0.785714 0.833333 0.791398 0.862745 0.833333 0.25 1 0.453743
Mann_Whitney ElasticNet 8 0.148148 0.72619 0.920635 0.851852 0.840404 0.842995 0.851852 0.5 0.952381 0.529414
Mann_Whitney ElasticNet 9 0.111111 0.75 0.928571 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
RandomForest RandomForest Validation 0.117647 0.882353 0.932526 0.882353 0.88143 0.894643 0.882353 0.794118 0.970588 0.776899
RandomForest RandomForest 0 0.106061 0.790196 0.87451 0.893939 0.885811 0.894481 0.893939 0.6 0.980392 0.678357
RandomForest RandomForest 1 0.19697 0.707843 0.708497 0.80303 0.80059 0.798576 0.80303 0.533333 0.882353 0.426119
RandomForest RandomForest 2 0.092593 0.85119 0.986111 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
RandomForest RandomForest 3 0.185185 0.791667 0.902778 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
RandomForest RandomForest 4 0.185185 0.732143 0.84127 0.814815 0.814815 0.814815 0.814815 0.583333 0.880952 0.464286
RandomForest RandomForest 5 0.185185 0.791667 0.882937 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
RandomForest RandomForest 6 0.37037 0.464286 0.484127 0.62963 0.62963 0.62963 0.62963 0.166667 0.761905 − 0.07143
RandomForest RandomForest 7 0.222222 0.64881 0.863095 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
RandomForest RandomForest 8 0.148148 0.755952 0.894841 0.851852 0.84684 0.844949 0.851852 0.583333 0.928571 0.547871
RandomForest RandomForest 9 0.055556 0.904762 0.974206 0.944444 0.943564 0.943622 0.944444 0.833333 0.97619 0.835631
RandomForest SVC Validation 0.161765 0.838235 0.923875 0.838235 0.836503 0.853207 0.838235 0.735294 0.941176 0.69128
RandomForest SVC 0 0.136364 0.770588 0.856209 0.863636 0.858009 0.857323 0.863636 0.6 0.941176 0.588006
RandomForest SVC 1 0.227273 0.711765 0.816993 0.772727 0.779614 0.789773 0.772727 0.6 0.823529 0.398527
RandomForest SVC 2 0.074074 0.952381 0.978175 0.925926 0.929365 0.944444 0.925926 1 0.904762 0.823754
RandomForest SVC 3 0.203704 0.809524 0.880952 0.796296 0.810036 0.850292 0.796296 0.833333 0.785714 0.538925
RandomForest SVC 4 0.148148 0.815476 0.861111 0.851852 0.855743 0.862302 0.851852 0.75 0.880952 0.598574
RandomForest SVC 5 0.166667 0.803571 0.843254 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
RandomForest SVC 6 0.388889 0.482143 0.464286 0.611111 0.625514 0.642735 0.611111 0.25 0.714286 − 0.03315
RandomForest SVC 7 0.259259 0.654762 0.785714 0.740741 0.747551 0.756349 0.740741 0.5 0.809524 0.29364
RandomForest SVC 8 0.185185 0.702381 0.789683 0.814815 0.808551 0.805051 0.814815 0.5 0.904762 0.4332
RandomForest SVC 9 0.092593 0.910714 0.97619 0.907407 0.910837 0.920798 0.907407 0.916667 0.904762 0.762443
RandomForest LogisticRegression Validation 0.161765 0.838235 0.91609 0.838235 0.833889 0.877778 0.838235 0.676471 1 0.71492
RandomForest LogisticRegression 0 0.166667 0.633333 0.875817 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
RandomForest LogisticRegression 1 0.166667 0.727451 0.836601 0.833333 0.826455 0.824074 0.833333 0.533333 0.921569 0.494266
RandomForest LogisticRegression 2 0.092593 0.821429 0.974206 0.907407 0.90239 0.906173 0.907407 0.666667 0.97619 0.717137
RandomForest LogisticRegression 3 0.166667 0.654762 0.884921 0.833333 0.80543 0.828571 0.833333 0.333333 0.97619 0.443942
RandomForest LogisticRegression 4 0.222222 0.619048 0.835317 0.777778 0.760606 0.753623 0.777778 0.333333 0.904762 0.278639
RandomForest LogisticRegression 5 0.148148 0.785714 0.84127 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
RandomForest LogisticRegression 6 0.296296 0.482143 0.44246 0.703704 0.664198 0.636574 0.703704 0.083333 0.880952 − 0.04725
RandomForest LogisticRegression 7 0.12963 0.708333 0.761905 0.87037 0.848668 0.888889 0.87037 0.416667 1 0.597614
RandomForest LogisticRegression 8 0.185185 0.613095 0.642857 0.814815 0.77657 0.804444 0.814815 0.25 0.97619 0.359066
RandomForest LogisticRegression 9 0.12963 0.738095 0.984127 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
RandomForest Lasso Validation 0.161765 0.838235 0.92301 0.838235 0.833889 0.877778 0.838235 0.676471 1 0.71492
RandomForest Lasso 0 0.181818 0.6 0.860131 0.818182 0.767145 0.852814 0.818182 0.2 1 0.402374
RandomForest Lasso 1 0.181818 0.670588 0.831373 0.818182 0.800505 0.802233 0.818182 0.4 0.941176 0.416631
RandomForest Lasso 2 0.12963 0.738095 0.968254 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
RandomForest Lasso 3 0.222222 0.529762 0.894841 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
RandomForest Lasso 4 0.222222 0.589286 0.809524 0.777778 0.748148 0.743056 0.777778 0.25 0.928571 0.236228
RandomForest Lasso 5 0.185185 0.702381 0.815476 0.814815 0.808551 0.805051 0.814815 0.5 0.904762 0.4332
RandomForest Lasso 6 0.259259 0.505952 0.446429 0.740741 0.687198 0.662222 0.740741 0.083333 0.928571 0.018898
RandomForest Lasso 7 0.148148 0.666667 0.746032 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
RandomForest Lasso 8 0.185185 0.613095 0.704365 0.814815 0.77657 0.804444 0.814815 0.25 0.97619 0.359066
RandomForest Lasso 9 0.111111 0.75 0.980159 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
RandomForest ElasticNet Validation 0.161765 0.838235 0.922145 0.838235 0.833889 0.877778 0.838235 0.676471 1 0.71492
RandomForest ElasticNet 0 0.181818 0.6 0.861438 0.818182 0.767145 0.852814 0.818182 0.2 1 0.402374
RandomForest ElasticNet 1 0.181818 0.670588 0.835294 0.818182 0.800505 0.802233 0.818182 0.4 0.941176 0.416631
RandomForest ElasticNet 2 0.12963 0.738095 0.968254 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
RandomForest ElasticNet 3 0.222222 0.529762 0.894841 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
RandomForest ElasticNet 4 0.222222 0.589286 0.809524 0.777778 0.748148 0.743056 0.777778 0.25 0.928571 0.236228
RandomForest ElasticNet 5 0.185185 0.702381 0.815476 0.814815 0.808551 0.805051 0.814815 0.5 0.904762 0.4332
RandomForest ElasticNet 6 0.240741 0.517857 0.446429 0.759259 0.698686 0.684096 0.759259 0.083333 0.952381 0.06482
RandomForest ElasticNet 7 0.148148 0.666667 0.746032 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
RandomForest ElasticNet 8 0.185185 0.613095 0.686508 0.814815 0.77657 0.804444 0.814815 0.25 0.97619 0.359066
RandomForest ElasticNet 9 0.111111 0.75 0.982143 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
RFE_RF RandomForest Validation 0.102941 0.897059 0.933391 0.897059 0.895956 0.914634 0.897059 0.794118 1 0.811503
RFE_RF RandomForest 0 0.090909 0.823529 0.89281 0.909091 0.903813 0.909091 0.909091 0.666667 0.980392 0.727607
RFE_RF RandomForest 1 0.212121 0.67451 0.861438 0.787879 0.782343 0.778467 0.787879 0.466667 0.882353 0.367765
RFE_RF RandomForest 2 0.111111 0.869048 0.952381 0.888889 0.891807 0.897619 0.888889 0.833333 0.904762 0.700219
RFE_RF RandomForest 3 0.12963 0.857143 0.936508 0.87037 0.875171 0.88604 0.87037 0.833333 0.880952 0.662994
RFE_RF RandomForest 4 0.148148 0.815476 0.863095 0.851852 0.855743 0.862302 0.851852 0.75 0.880952 0.598574
RFE_RF RandomForest 5 0.185185 0.791667 0.875 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
RFE_RF RandomForest 6 0.407407 0.410714 0.611111 0.592593 0.592593 0.592593 0.592593 0.083333 0.738095 − 0.17857
RFE_RF RandomForest 7 0.203704 0.660714 0.857143 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
RFE_RF RandomForest 8 0.111111 0.839286 0.869048 0.888889 0.888889 0.888889 0.888889 0.75 0.928571 0.678571
RFE_RF RandomForest 9 0.074074 0.922619 0.956349 0.925926 0.927872 0.932937 0.925926 0.916667 0.928571 0.801863
RFE_RF SVC Validation 0.117647 0.882353 0.947232 0.882353 0.882251 0.883681 0.882353 0.852941 0.911765 0.766032
RFE_RF SVC 0 0.166667 0.727451 0.878431 0.833333 0.826455 0.824074 0.833333 0.533333 0.921569 0.494266
RFE_RF SVC 1 0.19697 0.731373 0.870588 0.80303 0.805232 0.807841 0.80303 0.6 0.862745 0.452509
RFE_RF SVC 2 0.092593 0.910714 0.968254 0.907407 0.910837 0.920798 0.907407 0.916667 0.904762 0.762443
RFE_RF SVC 3 0.185185 0.821429 0.902778 0.814815 0.826211 0.858025 0.814815 0.833333 0.809524 0.566947
RFE_RF SVC 4 0.111111 0.89881 0.894841 0.888889 0.894048 0.910088 0.888889 0.916667 0.880952 0.726205
RFE_RF SVC 5 0.203704 0.779762 0.867063 0.796296 0.807411 0.832362 0.796296 0.75 0.809524 0.500851
RFE_RF SVC 6 0.388889 0.452381 0.460317 0.611111 0.616546 0.622264 0.611111 0.166667 0.738095 − 0.09261
RFE_RF SVC 7 0.185185 0.732143 0.793651 0.814815 0.814815 0.814815 0.814815 0.583333 0.880952 0.464286
RFE_RF SVC 8 0.185185 0.702381 0.809524 0.814815 0.808551 0.805051 0.814815 0.5 0.904762 0.4332
RFE_RF SVC 9 0.148148 0.815476 0.890873 0.851852 0.855743 0.862302 0.851852 0.75 0.880952 0.598574
RFE_RF LogisticRegression Validation 0.161765 0.838235 0.944637 0.838235 0.835351 0.863721 0.838235 0.705882 0.970588 0.701493
RFE_RF LogisticRegression 0 0.166667 0.633333 0.890196 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
RFE_RF LogisticRegression 1 0.166667 0.703922 0.861438 0.833333 0.820561 0.821429 0.833333 0.466667 0.941176 0.476683
RFE_RF LogisticRegression 2 0.111111 0.75 0.97619 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
RFE_RF LogisticRegression 3 0.074074 0.863095 0.888889 0.925926 0.92342 0.924747 0.925926 0.75 0.97619 0.777212
RFE_RF LogisticRegression 4 0.166667 0.714286 0.894841 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
RFE_RF LogisticRegression 5 0.148148 0.815476 0.833333 0.851852 0.855743 0.862302 0.851852 0.75 0.880952 0.598574
RFE_RF LogisticRegression 6 0.277778 0.52381 0.470238 0.722222 0.693475 0.675785 0.722222 0.166667 0.880952 0.058938
RFE_RF LogisticRegression 7 0.166667 0.684524 0.751984 0.833333 0.816085 0.820669 0.833333 0.416667 0.952381 0.456772
RFE_RF LogisticRegression 8 0.277778 0.464286 0.728175 0.722222 0.65233 0.594771 0.722222 0 0.928571 − 0.12964
RFE_RF LogisticRegression 9 0.166667 0.714286 0.875 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
RFE_RF Lasso Validation 0.176471 0.823529 0.943772 0.823529 0.819629 0.854167 0.823529 0.676471 0.970588 0.677003
RFE_RF Lasso 0 0.166667 0.633333 0.870588 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
RFE_RF Lasso 1 0.166667 0.703922 0.867974 0.833333 0.820561 0.821429 0.833333 0.466667 0.941176 0.476683
RFE_RF Lasso 2 0.111111 0.75 0.96627 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
RFE_RF Lasso 3 0.111111 0.779762 0.896825 0.888889 0.880303 0.887681 0.888889 0.583333 0.97619 0.654802
RFE_RF Lasso 4 0.185185 0.642857 0.896825 0.814815 0.790123 0.796296 0.814815 0.333333 0.952381 0.377964
RFE_RF Lasso 5 0.148148 0.785714 0.84127 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
RFE_RF Lasso 6 0.240741 0.517857 0.494048 0.759259 0.698686 0.684096 0.759259 0.083333 0.952381 0.06482
RFE_RF Lasso 7 0.185185 0.642857 0.761905 0.814815 0.790123 0.796296 0.814815 0.333333 0.952381 0.377964
RFE_RF Lasso 8 0.277778 0.464286 0.769841 0.722222 0.65233 0.594771 0.722222 0 0.928571 − 0.12964
RFE_RF Lasso 9 0.185185 0.672619 0.878968 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
RFE_RF ElasticNet Validation 0.176471 0.823529 0.942042 0.823529 0.819629 0.854167 0.823529 0.676471 0.970588 0.677003
RFE_RF ElasticNet 0 0.166667 0.633333 0.870588 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
RFE_RF ElasticNet 1 0.166667 0.703922 0.869281 0.833333 0.820561 0.821429 0.833333 0.466667 0.941176 0.476683
RFE_RF ElasticNet 2 0.111111 0.75 0.96627 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
RFE_RF ElasticNet 3 0.111111 0.779762 0.890873 0.888889 0.880303 0.887681 0.888889 0.583333 0.97619 0.654802
RFE_RF ElasticNet 4 0.185185 0.642857 0.894841 0.814815 0.790123 0.796296 0.814815 0.333333 0.952381 0.377964
RFE_RF ElasticNet 5 0.148148 0.785714 0.845238 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
RFE_RF ElasticNet 6 0.240741 0.517857 0.496032 0.759259 0.698686 0.684096 0.759259 0.083333 0.952381 0.06482
RFE_RF ElasticNet 7 0.185185 0.642857 0.761905 0.814815 0.790123 0.796296 0.814815 0.333333 0.952381 0.377964
RFE_RF ElasticNet 8 0.277778 0.464286 0.757937 0.722222 0.65233 0.594771 0.722222 0 0.928571 − 0.12964
RFE_RF ElasticNet 9 0.185185 0.672619 0.880952 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
RFE_SVM RandomForest Validation 0.235294 0.764706 0.817474 0.764706 0.761404 0.78022 0.764706 0.647059 0.882353 0.544705
RFE_SVM RandomForest 0 0.227273 0.547059 0.750327 0.772727 0.718 0.72434 0.772727 0.133333 0.960784 0.165301
RFE_SVM RandomForest 1 0.272727 0.682353 0.801307 0.727273 0.741477 0.7671 0.727273 0.6 0.764706 0.328139
RFE_SVM RandomForest 2 0.037037 0.916667 0.992063 0.962963 0.96171 0.964646 0.962963 0.833333 1 0.891883
RFE_SVM RandomForest 3 0.185185 0.761905 0.865079 0.814815 0.819679 0.826984 0.814815 0.666667 0.857143 0.496929
RFE_SVM RandomForest 4 0.092593 0.910714 0.928571 0.907407 0.910837 0.920798 0.907407 0.916667 0.904762 0.762443
RFE_SVM RandomForest 5 0.148148 0.785714 0.900794 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
RFE_SVM RandomForest 6 0.203704 0.571429 0.710317 0.796296 0.745042 0.77342 0.796296 0.166667 0.97619 0.259281
RFE_SVM RandomForest 7 0.148148 0.755952 0.894841 0.851852 0.84684 0.844949 0.851852 0.583333 0.928571 0.547871
RFE_SVM RandomForest 8 0.222222 0.619048 0.845238 0.777778 0.760606 0.753623 0.777778 0.333333 0.904762 0.278639
RFE_SVM RandomForest 9 0.092593 0.85119 0.831349 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
RFE_SVM SVC Validation 0.279412 0.720588 0.865052 0.720588 0.696927 0.820755 0.720588 0.441176 1 0.531995
RFE_SVM SVC 0 0.212121 0.792157 0.845752 0.787879 0.801181 0.837393 0.787879 0.8 0.784314 0.5139
RFE_SVM SVC 1 0.181818 0.835294 0.894118 0.818182 0.829584 0.865245 0.818182 0.866667 0.803922 0.589778
RFE_SVM SVC 2 0.148148 0.785714 0.956349 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
RFE_SVM SVC 3 0.185185 0.880952 0.962302 0.814815 0.829535 0.89899 0.814815 1 0.761905 0.644658
RFE_SVM SVC 4 0.074074 0.922619 0.956349 0.925926 0.927872 0.932937 0.925926 0.916667 0.928571 0.801863
RFE_SVM SVC 5 0.111111 0.928571 0.956349 0.888889 0.895726 0.925926 0.888889 1 0.857143 0.755929
RFE_SVM SVC 6 0.222222 0.64881 0.738095 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
RFE_SVM SVC 7 0.055556 0.934524 0.968254 0.944444 0.945221 0.946842 0.944444 0.916667 0.952381 0.845075
RFE_SVM SVC 8 0.12963 0.827381 0.944444 0.87037 0.872182 0.874713 0.87037 0.75 0.904762 0.6367
RFE_SVM SVC 9 0.148148 0.875 0.918651 0.851852 0.860969 0.891975 0.851852 0.916667 0.833333 0.661438
RFE_SVM LogisticRegression Validation 0.323529 0.676471 0.845156 0.676471 0.638647 0.803571 0.676471 0.352941 1 0.46291
RFE_SVM LogisticRegression 0 0.212121 0.603922 0.854902 0.787879 0.757025 0.75853 0.787879 0.266667 0.941176 0.282873
RFE_SVM LogisticRegression 1 0.166667 0.77451 0.901961 0.833333 0.835196 0.8375 0.833333 0.666667 0.882353 0.536875
RFE_SVM LogisticRegression 2 0.074074 0.833333 0.952381 0.925926 0.920202 0.932367 0.925926 0.666667 1 0.780189
RFE_SVM LogisticRegression 3 0.092593 0.791667 0.964286 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
RFE_SVM LogisticRegression 4 0.092593 0.880952 0.964286 0.907407 0.908701 0.910778 0.907407 0.833333 0.928571 0.740888
RFE_SVM LogisticRegression 5 0.111111 0.839286 0.950397 0.888889 0.888889 0.888889 0.888889 0.75 0.928571 0.678571
RFE_SVM LogisticRegression 6 0.222222 0.529762 0.730159 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
RFE_SVM LogisticRegression 7 0.092593 0.791667 0.946429 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
RFE_SVM LogisticRegression 8 0.092593 0.791667 0.910714 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
RFE_SVM LogisticRegression 9 0.166667 0.744048 0.886905 0.833333 0.830691 0.828753 0.833333 0.583333 0.904762 0.503836
RFE_SVM Lasso Validation 0.323529 0.676471 0.849481 0.676471 0.638647 0.803571 0.676471 0.352941 1 0.46291
RFE_SVM Lasso 0 0.181818 0.623529 0.847059 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
RFE_SVM Lasso 1 0.19697 0.684314 0.896732 0.80303 0.794901 0.790825 0.80303 0.466667 0.901961 0.400526
RFE_SVM Lasso 2 0.074074 0.833333 0.96627 0.925926 0.920202 0.932367 0.925926 0.666667 1 0.780189
RFE_SVM Lasso 3 0.092593 0.791667 0.946429 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
RFE_SVM Lasso 4 0.092593 0.85119 0.96627 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
RFE_SVM Lasso 5 0.111111 0.809524 0.952381 0.888889 0.88513 0.884848 0.888889 0.666667 0.952381 0.662541
RFE_SVM Lasso 6 0.222222 0.529762 0.742063 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
RFE_SVM Lasso 7 0.12963 0.708333 0.952381 0.87037 0.848668 0.888889 0.87037 0.416667 1 0.597614
RFE_SVM Lasso 8 0.092593 0.791667 0.924603 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
RFE_SVM Lasso 9 0.148148 0.755952 0.90873 0.851852 0.84684 0.844949 0.851852 0.583333 0.928571 0.547871
RFE_SVM ElasticNet Validation 0.323529 0.676471 0.851211 0.676471 0.638647 0.803571 0.676471 0.352941 1 0.46291
RFE_SVM ElasticNet 0 0.181818 0.623529 0.844444 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
RFE_SVM ElasticNet 1 0.19697 0.684314 0.895425 0.80303 0.794901 0.790825 0.80303 0.466667 0.901961 0.400526
RFE_SVM ElasticNet 2 0.074074 0.833333 0.96627 0.925926 0.920202 0.932367 0.925926 0.666667 1 0.780189
RFE_SVM ElasticNet 3 0.092593 0.791667 0.94246 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
RFE_SVM ElasticNet 4 0.111111 0.839286 0.96627 0.888889 0.888889 0.888889 0.888889 0.75 0.928571 0.678571
RFE_SVM ElasticNet 5 0.12963 0.797619 0.954365 0.87037 0.868315 0.867043 0.87037 0.666667 0.928571 0.614434
RFE_SVM ElasticNet 6 0.222222 0.529762 0.748016 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
RFE_SVM ElasticNet 7 0.12963 0.708333 0.956349 0.87037 0.848668 0.888889 0.87037 0.416667 1 0.597614
RFE_SVM ElasticNet 8 0.092593 0.791667 0.926587 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
RFE_SVM ElasticNet 9 0.148148 0.755952 0.90873 0.851852 0.84684 0.844949 0.851852 0.583333 0.928571 0.547871
RidgeCV RandomForest Validation 0.235294 0.764706 0.82699 0.764706 0.763889 0.768421 0.764706 0.705882 0.823529 0.533114
RidgeCV RandomForest 0 0.19697 0.590196 0.785621 0.80303 0.7556 0.793622 0.80303 0.2 0.980392 0.316827
RidgeCV RandomForest 1 0.181818 0.694118 0.747712 0.818182 0.807626 0.804959 0.818182 0.466667 0.921569 0.436564
RidgeCV RandomForest 2 0.203704 0.660714 0.799603 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
RidgeCV RandomForest 3 0.222222 0.64881 0.789683 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
RidgeCV RandomForest 4 0.222222 0.767857 0.825397 0.777778 0.791453 0.824074 0.777778 0.75 0.785714 0.472456
RidgeCV RandomForest 5 0.166667 0.744048 0.827381 0.833333 0.830691 0.828753 0.833333 0.583333 0.904762 0.503836
RidgeCV RandomForest 6 0.240741 0.607143 0.672619 0.759259 0.746214 0.738272 0.759259 0.333333 0.880952 0.239046
RidgeCV RandomForest 7 0.148148 0.785714 0.845238 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
RidgeCV RandomForest 8 0.240741 0.577381 0.704365 0.759259 0.734345 0.72408 0.759259 0.25 0.904762 0.19155
RidgeCV RandomForest 9 0.092593 0.85119 0.93254 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
RidgeCV SVC Validation 0.279412 0.720588 0.874567 0.720588 0.709989 0.758359 0.720588 0.529412 0.911765 0.477455
RidgeCV SVC 0 0.151515 0.807843 0.871895 0.848485 0.851705 0.856706 0.848485 0.733333 0.882353 0.590021
RidgeCV SVC 1 0.30303 0.662745 0.775163 0.69697 0.715973 0.753838 0.69697 0.6 0.72549 0.286266
RidgeCV SVC 2 0.222222 0.767857 0.837302 0.777778 0.791453 0.824074 0.777778 0.75 0.785714 0.472456
RidgeCV SVC 3 0.259259 0.654762 0.744048 0.740741 0.747551 0.756349 0.740741 0.5 0.809524 0.29364
RidgeCV SVC 4 0.351852 0.684524 0.763889 0.648148 0.677748 0.777318 0.648148 0.75 0.619048 0.307701
RidgeCV SVC 5 0.166667 0.833333 0.892857 0.833333 0.842427 0.866455 0.833333 0.833333 0.833333 0.596759
RidgeCV SVC 6 0.333333 0.577381 0.634921 0.666667 0.682143 0.703947 0.666667 0.416667 0.738095 0.140905
RidgeCV SVC 7 0.222222 0.767857 0.835317 0.777778 0.791453 0.824074 0.777778 0.75 0.785714 0.472456
RidgeCV SVC 8 0.148148 0.785714 0.813492 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
RidgeCV SVC 9 0.259259 0.744048 0.894841 0.740741 0.759503 0.80915 0.740741 0.75 0.738095 0.420209
RidgeCV LogisticRegression Validation 0.397059 0.602941 0.865917 0.602941 0.540885 0.724105 0.602941 0.235294 0.970588 0.303774
RidgeCV LogisticRegression 0 0.212121 0.580392 0.873203 0.787879 0.744318 0.757079 0.787879 0.2 0.960784 0.254639
RidgeCV LogisticRegression 1 0.151515 0.690196 0.772549 0.848485 0.826446 0.849659 0.848485 0.4 0.980392 0.517711
RidgeCV LogisticRegression 2 0.185185 0.583333 0.849206 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
RidgeCV LogisticRegression 3 0.185185 0.613095 0.763889 0.814815 0.77657 0.804444 0.814815 0.25 0.97619 0.359066
RidgeCV LogisticRegression 4 0.240741 0.755952 0.765873 0.759259 0.775497 0.816374 0.759259 0.75 0.761905 0.44565
RidgeCV LogisticRegression 5 0.148148 0.72619 0.882937 0.851852 0.840404 0.842995 0.851852 0.5 0.952381 0.529414
RidgeCV LogisticRegression 6 0.277778 0.52381 0.628968 0.722222 0.693475 0.675785 0.722222 0.166667 0.880952 0.058938
RidgeCV LogisticRegression 7 0.203704 0.571429 0.833333 0.796296 0.745042 0.77342 0.796296 0.166667 0.97619 0.259281
RidgeCV LogisticRegression 8 0.203704 0.60119 0.738095 0.796296 0.762192 0.768254 0.796296 0.25 0.952381 0.29027
RidgeCV LogisticRegression 9 0.148148 0.72619 0.902778 0.851852 0.840404 0.842995 0.851852 0.5 0.952381 0.529414
RidgeCV Lasso Validation 0.367647 0.632353 0.885813 0.632353 0.58486 0.744019 0.632353 0.294118 0.970588 0.359425
RidgeCV Lasso 0 0.227273 0.523529 0.870588 0.772727 0.698675 0.71733 0.772727 0.066667 0.980392 0.115045
RidgeCV Lasso 1 0.181818 0.623529 0.760784 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
RidgeCV Lasso 2 0.203704 0.541667 0.857143 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
RidgeCV Lasso 3 0.222222 0.529762 0.779762 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
RidgeCV Lasso 4 0.166667 0.803571 0.757937 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
RidgeCV Lasso 5 0.12963 0.738095 0.894841 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
RidgeCV Lasso 6 0.240741 0.547619 0.640873 0.759259 0.718954 0.707937 0.759259 0.166667 0.928571 0.136598
RidgeCV Lasso 7 0.203704 0.541667 0.837302 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
RidgeCV Lasso 8 0.203704 0.541667 0.77381 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
RidgeCV Lasso 9 0.148148 0.72619 0.906746 0.851852 0.840404 0.842995 0.851852 0.5 0.952381 0.529414
RidgeCV ElasticNet Validation 0.382353 0.617647 0.884948 0.617647 0.563241 0.734483 0.617647 0.264706 0.970588 0.332182
RidgeCV ElasticNet 0 0.227273 0.523529 0.873203 0.772727 0.698675 0.71733 0.772727 0.066667 0.980392 0.115045
RidgeCV ElasticNet 1 0.181818 0.623529 0.762092 0.818182 0.780844 0.815201 0.818182 0.266667 0.980392 0.391274
RidgeCV ElasticNet 2 0.203704 0.541667 0.855159 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
RidgeCV ElasticNet 3 0.222222 0.529762 0.779762 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
RidgeCV ElasticNet 4 0.166667 0.803571 0.757937 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
RidgeCV ElasticNet 5 0.12963 0.738095 0.894841 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
RidgeCV ElasticNet 6 0.240741 0.547619 0.638889 0.759259 0.718954 0.707937 0.759259 0.166667 0.928571 0.136598
RidgeCV ElasticNet 7 0.203704 0.541667 0.833333 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
RidgeCV ElasticNet 8 0.203704 0.541667 0.77381 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
RidgeCV ElasticNet 9 0.148148 0.72619 0.906746 0.851852 0.840404 0.842995 0.851852 0.5 0.952381 0.529414
SVM RandomForest Validation 0.308824 0.691176 0.831315 0.691176 0.658618 0.809091 0.691176 0.382353 1 0.486172
SVM RandomForest 0 0.19697 0.566667 0.721569 0.80303 0.738851 0.84304 0.80303 0.133333 1 0.32596
SVM RandomForest 1 0.257576 0.598039 0.730719 0.742424 0.731794 0.724327 0.742424 0.333333 0.862745 0.213046
SVM RandomForest 2 0.222222 0.559524 0.642857 0.777778 0.731884 0.733333 0.777778 0.166667 0.952381 0.188982
SVM RandomForest 3 0.185185 0.702381 0.84127 0.814815 0.808551 0.805051 0.814815 0.5 0.904762 0.4332
SVM RandomForest 4 0.222222 0.738095 0.819444 0.777778 0.788095 0.807018 0.777778 0.666667 0.809524 0.433555
SVM RandomForest 5 0.166667 0.744048 0.759921 0.833333 0.830691 0.828753 0.833333 0.583333 0.904762 0.503836
SVM RandomForest 6 0.222222 0.64881 0.755952 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
SVM RandomForest 7 0.240741 0.607143 0.740079 0.759259 0.746214 0.738272 0.759259 0.333333 0.880952 0.239046
SVM RandomForest 8 0.240741 0.547619 0.77381 0.759259 0.718954 0.707937 0.759259 0.166667 0.928571 0.136598
SVM RandomForest 9 0.148148 0.72619 0.855159 0.851852 0.840404 0.842995 0.851852 0.5 0.952381 0.529414
SVM SVC Validation 0.294118 0.705882 0.776817 0.705882 0.704861 0.708772 0.705882 0.647059 0.764706 0.414644
SVM SVC 0 0.212121 0.721569 0.814379 0.787879 0.792386 0.798428 0.787879 0.6 0.843137 0.424665
SVM SVC 1 0.212121 0.721569 0.752941 0.787879 0.792386 0.798428 0.787879 0.6 0.843137 0.424665
SVM SVC 2 0.277778 0.672619 0.706349 0.722222 0.737378 0.764176 0.722222 0.583333 0.761905 0.309036
SVM SVC 3 0.222222 0.738095 0.843254 0.777778 0.788095 0.807018 0.777778 0.666667 0.809524 0.433555
SVM SVC 4 0.333333 0.666667 0.819444 0.666667 0.693164 0.761364 0.666667 0.666667 0.666667 0.282038
SVM SVC 5 0.259259 0.714286 0.825397 0.740741 0.756695 0.790123 0.740741 0.666667 0.761905 0.377964
SVM SVC 6 0.37037 0.642857 0.751984 0.62963 0.660494 0.748148 0.62963 0.666667 0.619048 0.239046
SVM SVC 7 0.314815 0.589286 0.636905 0.685185 0.696845 0.712251 0.685185 0.416667 0.761905 0.165748
SVM SVC 8 0.277778 0.672619 0.835317 0.722222 0.737378 0.764176 0.722222 0.583333 0.761905 0.309036
SVM SVC 9 0.314815 0.678571 0.789683 0.685185 0.709226 0.768158 0.685185 0.666667 0.690476 0.304572
SVM LogisticRegression Validation 0.264706 0.735294 0.760381 0.735294 0.71978 0.802222 0.735294 0.5 0.970588 0.533333
SVM LogisticRegression 0 0.227273 0.523529 0.786928 0.772727 0.698675 0.71733 0.772727 0.066667 0.980392 0.115045
SVM LogisticRegression 1 0.212121 0.580392 0.743791 0.787879 0.744318 0.757079 0.787879 0.2 0.960784 0.254639
SVM LogisticRegression 2 0.185185 0.583333 0.698413 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
SVM LogisticRegression 3 0.148148 0.666667 0.835317 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
SVM LogisticRegression 4 0.203704 0.720238 0.827381 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
SVM LogisticRegression 5 0.12963 0.738095 0.823413 0.87037 0.856955 0.868963 0.87037 0.5 0.97619 0.589384
SVM LogisticRegression 6 0.259259 0.505952 0.75 0.740741 0.687198 0.662222 0.740741 0.083333 0.928571 0.018898
SVM LogisticRegression 7 0.240741 0.547619 0.625 0.759259 0.718954 0.707937 0.759259 0.166667 0.928571 0.136598
SVM LogisticRegression 8 0.166667 0.625 0.805556 0.833333 0.791398 0.862745 0.833333 0.25 1 0.453743
SVM LogisticRegression 9 0.111111 0.75 0.746032 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
SVM Lasso Validation 0.323529 0.676471 0.763841 0.676471 0.645833 0.769841 0.676471 0.382353 0.970588 0.436436
SVM Lasso 0 0.212121 0.533333 0.789542 0.787879 0.707876 0.833566 0.787879 0.066667 1 0.228709
SVM Lasso 1 0.212121 0.580392 0.741176 0.787879 0.744318 0.757079 0.787879 0.2 0.960784 0.254639
SVM Lasso 2 0.203704 0.541667 0.68254 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
SVM Lasso 3 0.185185 0.583333 0.837302 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
SVM Lasso 4 0.148148 0.755952 0.819444 0.851852 0.84684 0.844949 0.851852 0.583333 0.928571 0.547871
SVM Lasso 5 0.12963 0.708333 0.825397 0.87037 0.848668 0.888889 0.87037 0.416667 1 0.597614
SVM Lasso 6 0.222222 0.529762 0.759921 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
SVM Lasso 7 0.203704 0.571429 0.625 0.796296 0.745042 0.77342 0.796296 0.166667 0.97619 0.259281
SVM Lasso 8 0.185185 0.583333 0.823413 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
SVM Lasso 9 0.111111 0.75 0.791667 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
SVM ElasticNet Validation 0.323529 0.676471 0.763841 0.676471 0.645833 0.769841 0.676471 0.382353 0.970588 0.436436
SVM ElasticNet 0 0.212121 0.533333 0.789542 0.787879 0.707876 0.833566 0.787879 0.066667 1 0.228709
SVM ElasticNet 1 0.212121 0.580392 0.741176 0.787879 0.744318 0.757079 0.787879 0.2 0.960784 0.254639
SVM ElasticNet 2 0.203704 0.541667 0.68254 0.796296 0.721907 0.838574 0.796296 0.083333 1 0.256978
SVM ElasticNet 3 0.185185 0.583333 0.835317 0.814815 0.758528 0.850427 0.814815 0.166667 1 0.3669
SVM ElasticNet 4 0.148148 0.755952 0.819444 0.851852 0.84684 0.844949 0.851852 0.583333 0.928571 0.547871
SVM ElasticNet 5 0.12963 0.708333 0.831349 0.87037 0.848668 0.888889 0.87037 0.416667 1 0.597614
SVM ElasticNet 6 0.222222 0.529762 0.761905 0.777778 0.710233 0.724359 0.777778 0.083333 0.97619 0.131036
SVM ElasticNet 7 0.203704 0.571429 0.626984 0.796296 0.745042 0.77342 0.796296 0.166667 0.97619 0.259281
SVM ElasticNet 8 0.166667 0.625 0.823413 0.833333 0.791398 0.862745 0.833333 0.25 1 0.453743
SVM ElasticNet 9 0.111111 0.75 0.791667 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
ttest RandomForest Validation 0.147059 0.852941 0.941176 0.852941 0.852814 0.854167 0.852941 0.882353 0.823529 0.707107
ttest RandomForest 0 0.090909 0.823529 0.904575 0.909091 0.903813 0.909091 0.909091 0.666667 0.980392 0.727607
ttest RandomForest 1 0.227273 0.664706 0.658824 0.772727 0.769912 0.767483 0.772727 0.466667 0.862745 0.337679
ttest RandomForest 2 0.092593 0.880952 0.956349 0.907407 0.908701 0.910778 0.907407 0.833333 0.928571 0.740888
ttest RandomForest 3 0.12963 0.827381 0.89881 0.87037 0.872182 0.874713 0.87037 0.75 0.904762 0.6367
ttest RandomForest 4 0.185185 0.732143 0.819444 0.814815 0.814815 0.814815 0.814815 0.583333 0.880952 0.464286
ttest RandomForest 5 0.203704 0.779762 0.771825 0.796296 0.807411 0.832362 0.796296 0.75 0.809524 0.500851
ttest RandomForest 6 0.388889 0.422619 0.402778 0.611111 0.604945 0.599013 0.611111 0.083333 0.761905 − 0.15975
ttest RandomForest 7 0.222222 0.64881 0.805556 0.777778 0.770261 0.765152 0.777778 0.416667 0.880952 0.318529
ttest RandomForest 8 0.166667 0.77381 0.904762 0.833333 0.835663 0.838649 0.833333 0.666667 0.880952 0.532513
ttest RandomForest 9 0.055556 0.904762 0.964286 0.944444 0.943564 0.943622 0.944444 0.833333 0.97619 0.835631
ttest SVC Validation 0.235294 0.764706 0.939446 0.764706 0.757143 0.802372 0.764706 0.941176 0.588235 0.565825
ttest SVC 0 0.090909 0.847059 0.917647 0.909091 0.906718 0.906716 0.909091 0.733333 0.960784 0.731399
ttest SVC 1 0.227273 0.664706 0.724183 0.772727 0.769912 0.767483 0.772727 0.466667 0.862745 0.337679
ttest SVC 2 0.12963 0.857143 0.938492 0.87037 0.875171 0.88604 0.87037 0.833333 0.880952 0.662994
ttest SVC 3 0.166667 0.833333 0.90873 0.833333 0.842427 0.866455 0.833333 0.833333 0.833333 0.596759
ttest SVC 4 0.185185 0.761905 0.767857 0.814815 0.819679 0.826984 0.814815 0.666667 0.857143 0.496929
ttest SVC 5 0.222222 0.767857 0.781746 0.777778 0.791453 0.824074 0.777778 0.75 0.785714 0.472456
ttest SVC 6 0.444444 0.416667 0.382937 0.555556 0.57619 0.600877 0.555556 0.166667 0.666667 − 0.15174
ttest SVC 7 0.203704 0.720238 0.740079 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
ttest SVC 8 0.203704 0.75 0.918651 0.796296 0.803841 0.816524 0.796296 0.666667 0.833333 0.464095
ttest SVC 9 0.111111 0.869048 0.974206 0.888889 0.891807 0.897619 0.888889 0.833333 0.904762 0.700219
ttest LogisticRegression Validation 0.132353 0.867647 0.933391 0.867647 0.867389 0.870532 0.867647 0.823529 0.911765 0.738173
ttest LogisticRegression 0 0.151515 0.666667 0.930719 0.848485 0.81737 0.873323 0.848485 0.333333 1 0.52791
ttest LogisticRegression 1 0.19697 0.660784 0.720261 0.80303 0.787935 0.784903 0.80303 0.4 0.921569 0.375846
ttest LogisticRegression 2 0.111111 0.809524 0.910714 0.888889 0.88513 0.884848 0.888889 0.666667 0.952381 0.662541
ttest LogisticRegression 3 0.092593 0.791667 0.90873 0.907407 0.897825 0.917258 0.907407 0.583333 1 0.721995
ttest LogisticRegression 4 0.222222 0.589286 0.759921 0.777778 0.748148 0.743056 0.777778 0.25 0.928571 0.236228
ttest LogisticRegression 5 0.148148 0.785714 0.793651 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
ttest LogisticRegression 6 0.296296 0.482143 0.416667 0.703704 0.664198 0.636574 0.703704 0.083333 0.880952 − 0.04725
ttest LogisticRegression 7 0.166667 0.654762 0.751984 0.833333 0.80543 0.828571 0.833333 0.333333 0.97619 0.443942
ttest LogisticRegression 8 0.166667 0.714286 0.849206 0.833333 0.824302 0.822222 0.833333 0.5 0.928571 0.478091
ttest LogisticRegression 9 0.111111 0.779762 0.980159 0.888889 0.880303 0.887681 0.888889 0.583333 0.97619 0.654802
ttest Lasso Validation 0.147059 0.852941 0.934256 0.852941 0.851787 0.864286 0.852941 0.764706 0.941176 0.717137
ttest Lasso 0 0.166667 0.633333 0.918954 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
ttest Lasso 1 0.181818 0.670588 0.717647 0.818182 0.800505 0.802233 0.818182 0.4 0.941176 0.416631
ttest Lasso 2 0.111111 0.779762 0.918651 0.888889 0.880303 0.887681 0.888889 0.583333 0.97619 0.654802
ttest Lasso 3 0.148148 0.666667 0.912698 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
ttest Lasso 4 0.222222 0.589286 0.748016 0.777778 0.748148 0.743056 0.777778 0.25 0.928571 0.236228
ttest Lasso 5 0.148148 0.755952 0.799603 0.851852 0.84684 0.844949 0.851852 0.583333 0.928571 0.547871
ttest Lasso 6 0.259259 0.47619 0.406746 0.740741 0.661939 0.598291 0.740741 0 0.952381 − 0.10483
ttest Lasso 7 0.148148 0.666667 0.746032 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
ttest Lasso 8 0.185185 0.672619 0.859127 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
ttest Lasso 9 0.111111 0.75 0.980159 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438
ttest ElasticNet Validation 0.132353 0.867647 0.930796 0.867647 0.866928 0.875774 0.867647 0.794118 0.941176 0.743376
ttest ElasticNet 0 0.166667 0.633333 0.922876 0.833333 0.7932 0.862903 0.833333 0.266667 1 0.468353
ttest ElasticNet 1 0.19697 0.660784 0.717647 0.80303 0.787935 0.784903 0.80303 0.4 0.921569 0.375846
ttest ElasticNet 2 0.111111 0.779762 0.914683 0.888889 0.880303 0.887681 0.888889 0.583333 0.97619 0.654802
ttest ElasticNet 3 0.12963 0.708333 0.912698 0.87037 0.848668 0.888889 0.87037 0.416667 1 0.597614
ttest ElasticNet 4 0.222222 0.589286 0.75 0.777778 0.748148 0.743056 0.777778 0.25 0.928571 0.236228
ttest ElasticNet 5 0.148148 0.755952 0.799603 0.851852 0.84684 0.844949 0.851852 0.583333 0.928571 0.547871
ttest ElasticNet 6 0.277778 0.464286 0.40873 0.722222 0.65233 0.594771 0.722222 0 0.928571 − 0.12964
ttest ElasticNet 7 0.148148 0.666667 0.746032 0.851852 0.821256 0.875556 0.851852 0.333333 1 0.52915
ttest ElasticNet 8 0.185185 0.672619 0.855159 0.814815 0.800505 0.798309 0.814815 0.416667 0.928571 0.404027
ttest ElasticNet 9 0.111111 0.75 0.97619 0.888889 0.874074 0.902778 0.888889 0.5 1 0.661438

Results

Identification of dose and time-point to perform the feature selection

To select the dose and time-point towards our goal of deriving a gene signature, we utilized the ethinyl estradiol (EE) dataset (Fig. 1A) as prolonged EE exposure causes hepatocellular carcinoma in rats. Glucuronide metabolite of EE is known to cause cholestatic hepatotoxicity by changing expression of ABCB11 and ABCC2 and disrupting bile flow and bile salt excretion50. In the TG-GATES data set, high-dose EE treatment caused a statistically significant change in clinical pathology parameters such as alkaline phosphatase by day 4, and total bilirubin levels by week 2 (Fig. 1B)51. Statistically significant body weight, liver weight and triglyceride changes were not detected until day 4 of the high dose EE treatment (Fig. 1C). Pathology analysis of hematoxylin and eosin (HE) images of liver samples showed that EE exposure resulted in hepatocyte necrosis, centrolobular hypertrophy, sinusoid dilatation, Kupffer cell proliferation and eosinophilic infiltration in periportal region. Necrosis was the only apical change that was common to livers that were exposed to any of the three different doses at earlier time point (4 days) (Table 4). We decided to focus on necrosis as an end-point, since it is predictive of liver carcinogenesis52. Next, we analyzed the dose response of gene expression across different time points (24 h, 4,8 and 29 days), which showed that manifestation of clinical pathologic indicators of liver damage, metabolic changes, and liver necrosis by high-dose EE exposure at the earlier time point was consistent with gene expression. Many genes were up- or downregulated in the liver by the high-dose EE exposure at all-time points assayed (Fig. 1D). Based on these observations, we focused on the high-dose exposure data to identify time points that will give us an early gene expression signature.

Figure 1.

Figure 1

(A) Structure of ethinyl estradiol (EE). Image obtained from Wikipedia (https://commons.wikimedia.org/wiki/File:Ethinylestradiol.svg). (B) Serum alkaline phosphatase and total bilirubin levels of animals that are exposed to EE. Graphs are generated by Graphpad Prism8 software (GraphPad Software Inc., La Jolla, CA, www.graphpad.com). (C) Total body weight, liver weight and serum triglyceride levels of animals that are exposed to EE. Graphs are generated by Graphpad Prism8 software (GraphPad Software Inc., La Jolla, CA, www.graphpad.com). (D) Hierarchical clustering of hepatic genes regulated by low-, medium- and high-dose EE exposure at selected time points. Cluster3 software (https://bonsai.hgc.jp/~mdehoon/software/cluster/) was used for clustering the differentially expressed genes. Data was visualized using Treeview Java (https://jtreeview.sourceforge.net/).

Table 4.

Apical end-points related to ethinyl estradiol exposure.

Barcode Exp_ID Group_ID Individual_ID Compound_name Dose_level Sacrifice_period Finding_type Topography_type
3.02E+09 305 10 3 Ethinylestradiol Middle 8 day Change, eosinophilic Periportal
3.02E+09 305 14 2 Ethinylestradiol High 8 day Change, eosinophilic Periportal
3.02E+09 305 14 4 Ethinylestradiol High 8 day Change, eosinophilic Periportal
No ChipData 305 14 1 Ethinylestradiol High 8 day Change, eosinophilic Periportal
No ChipData 305 14 5 Ethinylestradiol High 8 day Change, eosinophilic Periportal
3.02E+09 305 12 2 Ethinylestradiol Middle 29 day Change, eosinophilic Periportal
3.02E+09 305 12 3 Ethinylestradiol Middle 29 day Change, eosinophilic Periportal
3.02E+09 305 16 2 Ethinylestradiol High 29 day Change, eosinophilic Periportal
3.02E+09 305 16 4 Ethinylestradiol High 29 day Change, eosinophilic Periportal
3.02E+09 305 16 5 Ethinylestradiol High 29 day Change, eosinophilic Periportal
No ChipData 305 12 1 Ethinylestradiol Middle 29 day Change, eosinophilic Periportal
No ChipData 305 12 5 Ethinylestradiol Middle 29 day Change, eosinophilic Periportal
No ChipData 305 16 1 Ethinylestradiol High 29 day Change, eosinophilic Periportal
No ChipData 305 16 3 Ethinylestradiol High 29 day Change, eosinophilic Periportal
3.02E+09 305 11 5 Ethinylestradiol Middle 15 day Change, eosinophilic Periportal
3.02E+09 305 15 2 Ethinylestradiol High 15 day Change, eosinophilic Periportal
3.02E+09 305 15 3 Ethinylestradiol High 15 day Change, eosinophilic Periportal
3.02E+09 305 15 5 Ethinylestradiol High 15 day Change, eosinophilic Periportal
No ChipData 305 11 1 Ethinylestradiol Middle 15 day Change, eosinophilic Periportal
No ChipData 305 11 3 Ethinylestradiol Middle 15 day Change, eosinophilic Periportal
No ChipData 305 15 1 Ethinylestradiol High 15 day Change, eosinophilic Periportal
No ChipData 305 15 4 Ethinylestradiol High 15 day Change, eosinophilic Periportal
3.02E+09 305 16 2 Ethinylestradiol High 29 day Dilatation Sinusoid
No ChipData 305 16 1 Ethinylestradiol High 29 day Dilatation Sinusoid
No ChipData 305 16 3 Ethinylestradiol High 29 day Dilatation Sinusoid
3.02E+09 305 12 3 Ethinylestradiol Middle 29 day Hypertrophy Centrilobular
3.02E+09 305 16 2 Ethinylestradiol High 29 day Hypertrophy Centrilobular
3.02E+09 305 16 4 Ethinylestradiol High 29 day Hypertrophy Centrilobular
3.02E+09 305 16 5 Ethinylestradiol High 29 day Hypertrophy Centrilobular
No ChipData 305 12 5 Ethinylestradiol Middle 29 day Hypertrophy Centrilobular
No ChipData 305 16 1 Ethinylestradiol High 29 day Hypertrophy Centrilobular
No ChipData 305 16 3 Ethinylestradiol High 29 day Hypertrophy Centrilobular
3.02E+09 305 15 2 Ethinylestradiol High 15 day Hypertrophy Centrilobular
3.02E+09 305 15 5 Ethinylestradiol High 15 day Hypertrophy Centrilobular
3.02E+09 305 2 5 Ethinylestradiol Control 8 day Necrosis Hepatocyte
3.02E+09 305 10 3 Ethinylestradiol Middle 8 day Necrosis Hepatocyte
3.02E+09 305 14 3 Ethinylestradiol High 8 day Necrosis Hepatocyte
3.02E+09 305 9 2 Ethinylestradiol Middle 4 day Necrosis Hepatocyte
No ChipData 305 5 3 Ethinylestradiol Low 4 day Necrosis Hepatocyte
No ChipData 305 9 4 Ethinylestradiol Middle 4 day Necrosis Hepatocyte
No ChipData 305 13 5 Ethinylestradiol High 4 day Necrosis Hepatocyte
3.02E+09 305 8 4 Ethinylestradiol Low 29 day Necrosis Hepatocyte
No ChipData 305 8 3 Ethinylestradiol Low 29 day Necrosis Hepatocyte
3.02E+09 305 7 4 Ethinylestradiol Low 15 day Necrosis Hepatocyte
No ChipData 305 3 3 Ethinylestradiol Control 15 day Necrosis Hepatocyte
No ChipData 305 13 5 Ethinylestradiol High 4 day Proliferation, Kupffer cell
3.02E+09 305 16 2 Ethinylestradiol High 29 day Proliferation, Kupffer cell
3.02E+09 305 16 4 Ethinylestradiol High 29 day Proliferation, Kupffer cell
No ChipData 305 16 3 Ethinylestradiol High 29 day Proliferation, Kupffer cell
3.02E+09 305 15 3 Ethinylestradiol High 15 day Proliferation, Kupffer cell
No ChipData 305 15 1 Ethinylestradiol High 15 day Proliferation, Kupffer cell
No ChipData 305 13 5 Ethinylestradiol High 4 day Single cell necrosis Hepatocyte
No ChipData 305 16 3 Ethinylestradiol High 29 day Single cell necrosis Hepatocyte

To identify the earliest time point data to be used in feature selection, we utilized 3, 6, 9, and 24 h and the 4, 8, 15 and 29 days’ time-points. Hierarchical clustering of 1387 differentially expressed genes identified eight clusters with distinct gene expression kinetics and function (C1–8, Fig. 2A–C and Supplementary Fig. 2). C1–4 were characterized by genes that were upregulated at later time points compared to earlier time points. C5 contained genes that were down-regulated at later time points by high-dose EE treatment. C6 had genes that were specifically upregulated at 24 h. These genes were involved in chromatin-DNA binding, potentially pointing out the primary transcriptional changes related to ethinyl estradiol exposure that would drive later liver toxicity. C7 and C8 contained genes that were upregulated at earlier times (3, 6 and 9 h of EE treatment). Principal component analysis of the data utilizing 1387 genes showed that different time points had a unique gene expression profile. Since 24 h time point was quite distinct from earlier time points in the PCA analysis and C6 indicated a robust gene expression program specific to this time point, we chose this time point for the further analysis (Fig. 2D). This time point was chosen for ensuing feature selection and classification since it has a distinct gene expression profile, and ensures expression and sufficient accumulation of markers.

Figure 2.

Figure 2

(A) Hierarchical clustering of hepatic genes that are regulated by high-dose EE exposure over 29 days. Cluster3 software (https://bonsai.hgc.jp/~mdehoon/software/cluster/) was used for clustering the differentially expressed genes. Data was visualized using Treeview Java (https://jtreeview.sourceforge.net/). (B) Gene expression patterns of clusters (C1–8) based on average gene expression values that were identified in 2A. Graphs are generated by Graphpad Prism8 software (GraphPad Software Inc., La Jolla, CA, www.graphpad.com). (C) GO terms that are significantly associated with C6. GSEA analysis was performed. Figures are generated using Gene Set Enrichment Analysis software (https://www.gsea-msigdb.org/gsea/index.jsp)31,32. (D) PCA analysis of hepatic gene regulation time course dataset for high-dose EE exposure. Figure was generated using StrandNGS (Version 3.1.1, Bangalore, India).

Gene expression feature reduction by differential expression analysis

Our data (Figs. 1 and 2) generated using classical approaches to identify differentially expressed genes showed that we need to utilize more advanced statistical and computational approaches to reduce number of gene features that can discriminate between control and toxicant treated individuals, and to generate models that can predict with high accuracy if the toxicant exposure would result in future liver carcinogenesis. To achieve our goal and avoid overfitting or underfitting our data, we utilized the 24 h exposure microarray data for 42 compounds that result in necrosis from TGGATES database, and we performed feature selection from the 31,099 genes to identify a small set of features predictive of necrosis. We chose methods from filtering, wrapper and embedded approaches. Methods for feature selection included Mann–Whitney, t-test, DCor as filter methods; Boruta, RFE with both RF and SVM as wrapper methods; and RF, Elastic Net, Lasso, Ridge Regression Cross Validation (RidgeCV) and SVM as embedded methods (Table 2). When we tested AUC up to 50 (Supplementary Fig. 3A) or 100 (Supplementary Fig. 3B) features, accuracy in majority of models dropped off after 20 or 25 features (Fig. 3A). Thus, we chose the fewest features, top 10 genes that provided a level of desired high accuracy for each method.

Figure 3.

Figure 3

(A) Evaluation of average ROC for training (upper panel) and validation (lower panel) with increasing gene number for feature selection. (B) Comparison of ranges of average ROC values for different Nfold (groups) for each feature selection-prediction method combination. Both graphs are generated using Tableau software (Seattle, WA, USA, https://www.tableau.com/).

Given a set of 10 features from feature selection methods above, we conducted tenfold cross-validation (with all compounds grouped together in the same fold) utilizing the TG-GATEs dataset as training set, and MAQC-II dataset as an independent validation set. With this extensive testing and independent assessment, the gene signature that results is more likely to be a generalizable predictor. Based on ROC values, filter and wrapper feature selection methods in combination with Logistic Regression, RF and SVM performed with high accuracy (AUC > 0.75, F1 score > 0.75). To perform more detailed analysis, we focused on the four best performing feature selection methods (DCor, Boruta, RFE_RF, Mann–Whitney and Random Forest) and five classification methods (ElasticNet, Lasso, RF, SVM and Logistic Regression) (Fig. 3B) and unbiased performance error estimates of the models are obtained from the MAQC-II dataset (Table 5). The Mann–Whitney-RF combination had the highest F1 and MCC (F1 = 0.91, ROC = 0.91,sensitivity = 0.85, specificity = 0.97, MCC = 0.82), followed by Mann–Whitney-SVM (F1 = 0.89, ROC = 0.89,sensitivity = 0.88, specificity = 0.91, MCC = 0.79), Boruta and RF combination (F1 = 0.89, ROC = 0.89, sensitivity = 0.79, specificity = 0.1, MCC = 0.81), and DCor-RF (F1 = 0.89, ROC = 0,89,sensitivity = 0.82, specificity = 0.97, MCC = 0.80), (Fig. 4A, Tables 5 and 6). Overall, the top genes that contributed to the information were similar between Mann–Whitney, DCor and Boruta, five of the ten genes in the signature; Scly, Slc23a1, Dcd, Tkfc and RGD1309534, were the top contributors to the performance of the signature in all three methods used (Fig. 4B). Best performing feature selection method, Mann–Whitney, had Scly, Dcd, RGD1309534, Slc23a1, Bhmt2, Tkfc, Srebf1, Ablim3, Extl1 and Cyp39a1 genes (Fig. 4B).

Table 5.

Comparison of the performance of various combinations of feature selection and classification methods.

Feature selection method Prediction method mse roc_auc roc_auc_prob Accuracy f1_score Precision_score Recall_score Sensitivity Specificity mcc
Mann_Whitney RandomForest 0.088235 0.911765 0.932526 0.911765 0.911458 0.917544 0.911765 0.852941 0.970588 0.829288
Mann_Whitney SVM 0.102941 0.897059 0.943772 0.897059 0.897037 0.897403 0.897059 0.882353 0.911765 0.794461
Boruta RandomForest 0.102941 0.897059 0.933391 0.897059 0.895956 0.914634 0.897059 0.794118 1 0.811503
DCor RandomForest 0.102941 0.897059 0.916955 0.897059 0.896499 0.905836 0.897059 0.823529 0.970588 0.802846
Boruta SVM 0.117647 0.882353 0.947232 0.882353 0.882251 0.883681 0.882353 0.852941 0.911765 0.766032
RFE_RF SVM 0.117647 0.882353 0.947232 0.882353 0.882251 0.883681 0.882353 0.852941 0.911765 0.766032
RandomForest RandomForest 0.117647 0.882353 0.932526 0.882353 0.88143 0.894643 0.882353 0.794118 0.970588 0.776899
DCor LogisticRegression 0.132353 0.867647 0.949827 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
Mann_Whitney LogisticRegression 0.132353 0.867647 0.949827 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
Mann_Whitney Lasso 0.132353 0.867647 0.949827 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
Mann_Whitney ElasticNet 0.132353 0.867647 0.949827 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
DCor Lasso 0.132353 0.867647 0.948962 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
DCor ElasticNet 0.132353 0.867647 0.948097 0.867647 0.865287 0.895349 0.867647 0.735294 1 0.762493
ttest LogisticRegression 0.132353 0.867647 0.933391 0.867647 0.867389 0.870532 0.867647 0.823529 0.911765 0.738173
DCor SVM 0.132353 0.867647 0.933391 0.867647 0.867618 0.867965 0.867647 0.882353 0.852941 0.735612
ttest ElasticNet 0.132353 0.867647 0.930796 0.867647 0.866928 0.875774 0.867647 0.794118 0.941176 0.743376
ttest RandomForest 0.147059 0.852941 0.941176 0.852941 0.852814 0.854167 0.852941 0.882353 0.823529 0.707107
ttest Lasso 0.147059 0.852941 0.934256 0.852941 0.851787 0.864286 0.852941 0.764706 0.941176 0.717137
Boruta LogisticRegression 0.161765 0.838235 0.944637 0.838235 0.835351 0.863721 0.838235 0.705882 0.970588 0.701493
RFE_RF LogisticRegression 0.161765 0.838235 0.944637 0.838235 0.835351 0.863721 0.838235 0.705882 0.970588 0.701493
RandomForest SVM 0.161765 0.838235 0.923875 0.838235 0.836503 0.853207 0.838235 0.735294 0.941176 0.69128
RandomForest Lasso 0.161765 0.838235 0.92301 0.838235 0.833889 0.877778 0.838235 0.676471 1 0.71492
RandomForest ElasticNet 0.161765 0.838235 0.922145 0.838235 0.833889 0.877778 0.838235 0.676471 1 0.71492
RandomForest LogisticRegression 0.161765 0.838235 0.91609 0.838235 0.833889 0.877778 0.838235 0.676471 1 0.71492
Boruta Lasso 0.176471 0.823529 0.943772 0.823529 0.819629 0.854167 0.823529 0.676471 0.970588 0.677003
RFE_RF Lasso 0.176471 0.823529 0.943772 0.823529 0.819629 0.854167 0.823529 0.676471 0.970588 0.677003
Boruta ElasticNet 0.176471 0.823529 0.942042 0.823529 0.819629 0.854167 0.823529 0.676471 0.970588 0.677003
RFE_RF ElasticNet 0.176471 0.823529 0.942042 0.823529 0.819629 0.854167 0.823529 0.676471 0.970588 0.677003
ElasticNet_alpha_.001 LogisticRegression 0.220588 0.779412 0.741349 0.779412 0.771044 0.827254 0.779412 0.588235 0.970588 0.604777
ttest SVM 0.235294 0.764706 0.939446 0.764706 0.757143 0.802372 0.764706 0.941176 0.588235 0.565825
RidgeCV RandomForest 0.235294 0.764706 0.82699 0.764706 0.763889 0.768421 0.764706 0.705882 0.823529 0.533114
RFE_SVM RandomForest 0.235294 0.764706 0.817474 0.764706 0.761404 0.78022 0.764706 0.647059 0.882353 0.544705
ElasticNet_alpha_.001 Lasso 0.235294 0.764706 0.736159 0.764706 0.759505 0.789773 0.764706 0.617647 0.911765 0.553912
ElasticNet_alpha_.001 ElasticNet 0.235294 0.764706 0.734429 0.764706 0.759505 0.789773 0.764706 0.617647 0.911765 0.553912
ElasticNet_alpha_.001 SVM 0.25 0.75 0.762111 0.75 0.748641 0.755526 0.75 0.676471 0.823529 0.505496
SVM LogisticRegression 0.264706 0.735294 0.760381 0.735294 0.71978 0.802222 0.735294 0.5 0.970588 0.533333
RidgeCV SVM 0.279412 0.720588 0.874567 0.720588 0.709989 0.758359 0.720588 0.529412 0.911765 0.477455
RFE_SVM SVM 0.279412 0.720588 0.865052 0.720588 0.696927 0.820755 0.720588 0.441176 1 0.531995
ElasticNet_alpha_.001 RandomForest 0.279412 0.720588 0.75519 0.720588 0.719069 0.725464 0.720588 0.794118 0.647059 0.446026
SVM SVM 0.294118 0.705882 0.776817 0.705882 0.704861 0.708772 0.705882 0.647059 0.764706 0.414644
SVM RandomForest 0.308824 0.691176 0.831315 0.691176 0.658618 0.809091 0.691176 0.382353 1 0.486172
RFE_SVM ElasticNet 0.323529 0.676471 0.851211 0.676471 0.638647 0.803571 0.676471 0.352941 1 0.46291
RFE_SVM Lasso 0.323529 0.676471 0.849481 0.676471 0.638647 0.803571 0.676471 0.352941 1 0.46291
RFE_SVM LogisticRegression 0.323529 0.676471 0.845156 0.676471 0.638647 0.803571 0.676471 0.352941 1 0.46291
SVM Lasso 0.323529 0.676471 0.763841 0.676471 0.645833 0.769841 0.676471 0.382353 0.970588 0.436436
SVM ElasticNet 0.323529 0.676471 0.763841 0.676471 0.645833 0.769841 0.676471 0.382353 0.970588 0.436436
RidgeCV Lasso 0.367647 0.632353 0.885813 0.632353 0.58486 0.744019 0.632353 0.294118 0.970588 0.359425
Lasso_alpha_.001 LogisticRegression 0.367647 0.632353 0.627163 0.632353 0.631636 0.633391 0.632353 0.588235 0.676471 0.265742
RidgeCV ElasticNet 0.382353 0.617647 0.884948 0.617647 0.563241 0.734483 0.617647 0.264706 0.970588 0.332182
RidgeCV LogisticRegression 0.397059 0.602941 0.865917 0.602941 0.540885 0.724105 0.602941 0.235294 0.970588 0.303774
ElasticNet_alpha_.01 RandomForest 0.397059 0.602941 0.676471 0.602941 0.587879 0.620567 0.602941 0.794118 0.411765 0.222812
Lasso_alpha_.001 Lasso 0.426471 0.573529 0.605536 0.573529 0.573437 0.573593 0.573529 0.588235 0.558824 0.147122
Lasso_alpha_.001 ElasticNet 0.426471 0.573529 0.602941 0.573529 0.573437 0.573593 0.573529 0.588235 0.558824 0.147122
Lasso_alpha_.001 RandomForest 0.470588 0.529412 0.663495 0.529412 0.484848 0.544974 0.529412 0.823529 0.235294 0.072739
ElasticNet_alpha_.01 SVM 0.5 0.5 0.545848 0.5 0.333333 0.25 0.5 1 0 0
Lasso_alpha_.01 RandomForest 0.514706 0.485294 0.474048 0.485294 0.326733 0.246269 0.485294 0.970588 0 − 0.12217
ElasticNet_alpha_.01 Lasso 0.558824 0.441176 0.562284 0.441176 0.416441 0.429167 0.441176 0.647059 0.235294 − 0.1291
ElasticNet_alpha_.01 ElasticNet 0.558824 0.441176 0.557958 0.441176 0.416441 0.429167 0.441176 0.647059 0.235294 − 0.1291
Lasso_alpha_.001 SVM 0.573529 0.426471 0.605536 0.426471 0.366005 0.381119 0.426471 0.735294 0.117647 − 0.18699
ElasticNet_alpha_.01 LogisticRegression 0.588235 0.411765 0.553633 0.411765 0.328063 0.324138 0.411765 0.764706 0.058824 − 0.24914
Lasso_alpha_.01 SVM 0.838235 0.161765 0.110727 0.161765 0.139241 0.122222 0.161765 0.323529 0 − 0.71492
Lasso_alpha_.01 LogisticRegression 0.867647 0.132353 0.122837 0.132353 0.116883 0.104651 0.132353 0.264706 0 − 0.76249
Lasso_alpha_.01 Lasso 0.867647 0.132353 0.119377 0.132353 0.116883 0.104651 0.132353 0.264706 0 − 0.76249
Lasso_alpha_.01 ElasticNet 0.867647 0.132353 0.117647 0.132353 0.116883 0.104651 0.132353 0.264706 0 − 0.76249

For methods that produced a regressive score, such as Lasso and ElasticNet, we chose 0.5 as the split point to make a binary classification prediction.

Figure 4.

Figure 4

(A) ROC curves for training (upper) and validation (lower) datasets for best performing feature selection-prediction method combinations. (B) List of genes identified by six feature selection methods and their contribution to prediction methods as indicated by mutual info gain for each gene. Color shows details about Rank. The marks are labelled by rank. Both graphs are generated using Tableau software (Seattle, WA, USA, https://www.tableau.com/).

Table 6.

Performance of best four combinations of feature selection and classification methods.

Feature selection method Prediction method nfold mse roc_auc roc_auc_prob Accuracy f1_score Precision_score Recall_score Sensitivity Specificity mcc
Mann_Whitney RandomForest Validation 0.088235 0.911765 0.932526 0.911765 0.911458 0.917544 0.911765 0.852941 0.970588 0.829288
Mann_Whitney RandomForest 9 0.092593 0.85119 0.962302 0.907407 0.905939 0.905332 0.907407 0.75 0.952381 0.725032
Mann_Whitney RandomForest 8 0.092593 0.880952 0.906746 0.907407 0.908701 0.910778 0.907407 0.833333 0.928571 0.740888
Mann_Whitney RandomForest 7 0.203704 0.660714 0.878968 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
Mann_Whitney RandomForest 6 0.425926 0.39881 0.420635 0.574074 0.580027 0.5862 0.574074 0.083333 0.714286 − 0.1968
Mann_Whitney RandomForest 5 0.185185 0.791667 0.801587 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
Mann_Whitney RandomForest 4 0.203704 0.720238 0.861111 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
Mann_Whitney RandomForest 3 0.203704 0.720238 0.869048 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
Mann_Whitney RandomForest 2 0.148148 0.785714 0.944444 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
Mann_Whitney RandomForest 1 0.212121 0.67451 0.69281 0.787879 0.782343 0.778467 0.787879 0.466667 0.882353 0.367765
Mann_Whitney RandomForest 0 0.106061 0.813725 0.899346 0.893939 0.889562 0.890572 0.893939 0.666667 0.960784 0.681747
Mann_Whitney SVM Validation 0.102941 0.897059 0.943772 0.897059 0.897037 0.897403 0.897059 0.882353 0.911765 0.794461
Mann_Whitney SVM 9 0.111111 0.839286 0.968254 0.888889 0.888889 0.888889 0.888889 0.75 0.928571 0.678571
Mann_Whitney SVM 8 0.092593 0.910714 0.94246 0.907407 0.910837 0.920798 0.907407 0.916667 0.904762 0.762443
Mann_Whitney SVM 7 0.203704 0.660714 0.763889 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
Mann_Whitney SVM 6 0.481481 0.363095 0.363095 0.518519 0.540873 0.56652 0.518519 0.083333 0.642857 − 0.24929
Mann_Whitney SVM 5 0.166667 0.803571 0.765873 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
Mann_Whitney SVM 4 0.222222 0.708333 0.795635 0.777778 0.783615 0.791667 0.777778 0.583333 0.833333 0.395285
Mann_Whitney SVM 3 0.203704 0.779762 0.847222 0.796296 0.807411 0.832362 0.796296 0.75 0.809524 0.500851
Mann_Whitney SVM 2 0.166667 0.803571 0.911706 0.833333 0.839506 0.851282 0.833333 0.75 0.857143 0.563545
Mann_Whitney SVM 1 0.227273 0.688235 0.74902 0.772727 0.775268 0.778182 0.772727 0.533333 0.843137 0.368143
Mann_Whitney SVM 0 0.151515 0.807843 0.887582 0.848485 0.851705 0.856706 0.848485 0.733333 0.882353 0.590021
DCor RandomForest Validation 0.102941 0.897059 0.916955 0.897059 0.896499 0.905836 0.897059 0.823529 0.970588 0.802846
DCor RandomForest 9 0.111111 0.809524 0.958333 0.888889 0.88513 0.884848 0.888889 0.666667 0.952381 0.662541
DCor RandomForest 8 0.092593 0.880952 0.886905 0.907407 0.908701 0.910778 0.907407 0.833333 0.928571 0.740888
DCor RandomForest 7 0.203704 0.660714 0.857143 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
DCor RandomForest 6 0.425926 0.39881 0.380952 0.574074 0.580027 0.5862 0.574074 0.083333 0.714286 − 0.1968
DCor RandomForest 5 0.185185 0.791667 0.791667 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
DCor RandomForest 4 0.203704 0.720238 0.865079 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
DCor RandomForest 3 0.203704 0.720238 0.875 0.796296 0.799143 0.802585 0.796296 0.583333 0.857143 0.428326
DCor RandomForest 2 0.148148 0.785714 0.938492 0.851852 0.851852 0.851852 0.851852 0.666667 0.904762 0.571429
DCor RandomForest 1 0.212121 0.65098 0.696732 0.787879 0.775564 0.770248 0.787879 0.4 0.901961 0.33955
DCor RandomForest 0 0.106061 0.790196 0.917647 0.893939 0.885811 0.894481 0.893939 0.6 0.980392 0.678357
Boruta RandomForest Validation 0.102941 0.897059 0.933391 0.897059 0.895956 0.914634 0.897059 0.794118 1 0.811503
Boruta RandomForest 9 0.092593 0.880952 0.954365 0.907407 0.908701 0.910778 0.907407 0.833333 0.928571 0.740888
Boruta RandomForest 8 0.111111 0.839286 0.865079 0.888889 0.888889 0.888889 0.888889 0.75 0.928571 0.678571
Boruta RandomForest 7 0.203704 0.660714 0.855159 0.796296 0.785258 0.780247 0.796296 0.416667 0.904762 0.358569
Boruta RandomForest 6 0.407407 0.410714 0.605159 0.592593 0.592593 0.592593 0.592593 0.083333 0.738095 − 0.17857
Boruta RandomForest 5 0.185185 0.791667 0.865079 0.814815 0.823413 0.841374 0.814815 0.75 0.833333 0.531105
Boruta RandomForest 4 0.148148 0.815476 0.863095 0.851852 0.855743 0.862302 0.851852 0.75 0.880952 0.598574
Boruta RandomForest 3 0.12963 0.857143 0.934524 0.87037 0.875171 0.88604 0.87037 0.833333 0.880952 0.662994
Boruta RandomForest 2 0.092593 0.910714 0.950397 0.907407 0.910837 0.920798 0.907407 0.916667 0.904762 0.762443
Boruta RandomForest 1 0.19697 0.707843 0.866667 0.80303 0.80059 0.798576 0.80303 0.533333 0.882353 0.426119
Boruta RandomForest 0 0.090909 0.823529 0.895425 0.909091 0.903813 0.909091 0.909091 0.666667 0.980392 0.727607

Discussion

In this study, we built a ML-based predictive process composed of ten genes that should be regulated in rat liver after 24 h of toxicant exposure and accurately predicts a liver necrosis phenotype, an indicator of liver carcinogenicity after long-term molecule exposure52. We compared various feature selection and classification methods to identify early gene biomarkers of liver toxicity using an extensive gene expression database, TG-GATEs and an independent validation dataset, MAQC II. Initially, we focused on necrosis, which is a valid end point to predict liver cancer52 as necrotic cell death is a common feature in liver disease5355. Given that necrosis is a fairly common end point for adverse processes, we anticipate that our methods are applicable to other apical end-points. Rather than depending solely on the parametric models, the methods utilized in the feature selection and predictive analysis are adaptive, and involve models requiring the optimization of a tuning or smoothing parameter to control the trade-off between model generality and complexity. Appropriate choice of tuning parameters is critical for feature selection stability and good performance of the resulting predictive model estimator. TG-GATEs microarray gene expression data contains few samples (n) and very large features or genes (p). In machine learning, this p ≫ n problem usually has major consequences for prediction modeling. For example, over fitting may occur, which can cause unreliability for the prediction model to be used on other data sets 56. Our study design with an extensive, independent validation and careful feature selection and curation, likely overcomes this hurdle.

Parameter tuning has traditionally been a manual task because of the limited number of trials. Recently, it has been shown automated pre-tuning surrogate-based parameter optimization was successfully applied in the learning for a wide variety of feature selector/classifiers57,58 and to deep belief networks59,60. These methods combined computational power with model building about the behavior of the error function in the parameter space, and they improve on manual parameter tuning. To improve the performance of our feature selection and predictive analysis steps we utilized MAQCII-NIEHS (GSE16716) dataset as the surrogate for pre tuning the parameters of these methods17. Since we used an independent validation set (MAQCII) to select prediction models with higher accuracy, we avoided overfitting issues that typically afflict studies that only employ cross-validation. We also utilized methods that dealt directly with binary classification rather than regressive methods to generally predict multiple apical end-points from the TG-GATEs database.

We have previously used t-test and RF coupled with logistic regression to identify biomarkers of breast cancer risk61. The dataset we used contained much less features from a smaller population. Since, in our study we are dealing with many more features from larger number of experiment we used an expanded list of feature selection methods that fall into one of the three main categories: Mann–Whitney, t-test, DCor as filter methods; Boruta, RFE with both RF and SVM as wrapper methods; and RF, Elastic Net, Lasso, Ridge Regression Cross Validation (RidgeCV) and SVM as embedded methods. For assessing classification performance we used logistic regression, RF, and support vector machine (SVM), Lasso and ElasticNet. Instead of relying on one machine learning method79, we used an exhaustive approach wherein we have compared combinations of aforementioned feature selection and classification methods and tested their performance rigorously on a validation set. Our process addresses several limitations of traditional methods for multimodal signature studies in terms of data handling (the number of features are orders of magnitude greater than the number of samples, there are heterogeneous features from different modalities, and there are multiple phenotypic responses to the same conditions) as well as procedural (increased performance over a single approach and assessment of key features in the context of phenotype)35,36. The net outcomes were that we obtained a minimal descriptive set of 10 biomarkers (key star features) related to liver toxicity (specifically, necrosis), a ranked list of biomarkers that describe a phenotype, a classifier useful for toxicity screening, a confidence measure for the classifier, and a classifier performance evaluated on MACQII data unseen during training43,62,63. Number of features used for classification is very low, which avoids the problem of overfitting. In addition, we used an iterative process where we selected features and tested their performance on the validation set. This exhaustive process ensured that only best predictors with minimum number of genes were used and that their performance was validated in an independent dataset (MAQCII) to avoid low reproducibility of identified biomarkers.

To avoid overfitting while building our prediction models and to eventually utilize the biomarker genes in a practical laboratory test for unknown chemicals, we limited our gene list to 10 candidates. The genes that were selected with various methods are involved in metabolism and detoxification (Car3, Crat, Cyp39a1, Dcd, Lbp, Scly, Slc23a1, and Tkfc) and transcriptional regulation (Ablim3, Srebf1). Several of these genes were implicated in liver carcinogenesis including Crat64, Car365 and Slc23a166.

In summary, using feature selection, modeling and validation with an independent data set, we found a robust set of genes that appeared to be broadly generalizable for prediction. We selected the top genes and the best models to predict whether a compound would cause liver necrosis. This selected pipeline provided predictions with high accuracy. Given the broad set of conditions and a manageable set of predictor genes, we anticipate that this signature can be used to predict future carcinogenic effects of long-term exposure to liver toxicants in rodent models and accelerate the predictability of toxic effects in humans.

Supplementary information

Abbreviations

MAQC—II

Microarray quality control—II

TG-GATES

Toxicogenomics project-genomics assisted toxicity evaluation system

ML

Machine learning

RFE

Recursive feature elimination

SVM

Support vector machine

RF

Random forest

RidgeCV

Ridge regression cross validation

ROC

Receiver operating characteristic

RMA

Robust multi-array

Author contributions

B.P.S. performed bioinformatics analysis, interpreted results, and wrote manuscript; L.S.A., M.W., C.B. performed machine learning analysis and interpreted results and wrote the manuscript; R.B., N.E., K.J. developed research design; Z.M.E. developed the research design, wrote the manuscript and interpreted results. All authors read and approved the final manuscript.

Funding

This work was supported by grants from Corteva Agriscience (Dow Agrisciences Day Award to RB and ZME), the University of Illinois, Office of the Vice Chancellor for Research, College of ACES FIRE grant (to ZME), National Center for Supercomputing Applications Faculty Fellowship (to ZME) and National Institute of Food and Agriculture, U.S. Department of Agriculture, award ILLU-698-909 (to ZME). Authors from Corteva Agriscience (NE, KJ) contributed to the development of the research question and design for this study. All other funders had no input in the design and implementation of this study.

Data availability

The datasets analyzed during the current study are available in the Life Science Database Archive, https://dbarchive.biosciencedbc.jp/en/open-tggates/download.html. A public GitHub repository with datasets and code is available here: https://github.com/brandis2/TG-GATES.

Competing interests

There are competing interests between the authors (ZME, RB) and Corteva Agrisciences (NE, KJ); specifically the research was supported by Corteva Agrisciences. Other authors do not declare competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

is available for this paper at 10.1038/s41598-020-76129-8.

References

  • 1.Maggioli J, Hoover A, Weng L. Toxicogenomic analysis methods for predictive toxicology. J. Pharmacol. Toxicol. Methods. 2006;53:31–37. doi: 10.1016/j.vascn.2005.05.006. [DOI] [PubMed] [Google Scholar]
  • 2.Laura Suter-Dick FP. Predictive Toxicology. New York: Springer; 2014. [Google Scholar]
  • 3.Dolinski K, Troyanskaya OG. Implications of Big Data for cell biology. Mol. Biol. Cell. 2015;26:2575–2578. doi: 10.1091/mbc.E13-12-0756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn. Lett. 2014;42:11–24. doi: 10.1016/j.patrec.2014.01.008. [DOI] [Google Scholar]
  • 5.Yang S, Guo L, Shao F, Zhao Y, Chen F. A systematic evaluation of feature selection and classification algorithms using simulated and real miRNA sequencing data. Comput. Math. Methods Med. 2015;2015:11. doi: 10.1155/2015/178572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhao Z, Liu H. Proceedings of the 24th International Conference on Machine Learning. Oregon: ACM; 2007. pp. 1151–1157. [Google Scholar]
  • 7.Manzouri F, Heller S, Dümpelmann M, Woias P, Schulze-Bonhage A. A comparison of machine learning classifiers for energy-efficient implementation of seizure detection. Front. Syst. Neuroscie. 2018 doi: 10.3389/fnsys.2018.00043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Lane T, et al. Comparing and validating machine learning models for mycobacterium tuberculosis drug discovery. Mol. Pharm. 2018;15:4346–4360. doi: 10.1021/acs.molpharmaceut.8b00083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Sakr S, et al. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. BMC Med. Inform. Decis. Mak. 2017;17:174. doi: 10.1186/s12911-017-0566-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kitchen RR, et al. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments. BMC Genom. 2011;12:589. doi: 10.1186/1471-2164-12-589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kohonen P, et al. A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury. Nat. Commun. 2017;8:15932–15932. doi: 10.1038/ncomms15932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Kim J, Shin M. An integrative model of multi-organ drug-induced toxicity prediction using gene-expression data. BMC Bioinform. 2014;15(Suppl 16):S2–S2. doi: 10.1186/1471-2105-15-S16-S2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jennen D, et al. Drug-induced liver injury classification model based on in vitro human transcriptomics and in vivo rat clinical chemistry data. Syst. Biomed. 2014;2:63–70. doi: 10.4161/sysb.29400. [DOI] [Google Scholar]
  • 14.Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A, Benítez JM, Herrera F. A review of microarray datasets and applied feature selection methods. Inf. Sci. 2014;282:111–135. doi: 10.1016/j.ins.2014.05.042. [DOI] [Google Scholar]
  • 15.Yang Z-Y, et al. Multi-view based integrative analysis of gene expression data for identifying biomarkers. Sci. Rep. 2019;9:13504. doi: 10.1038/s41598-019-49967-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Igarashi Y, et al. Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res. 2014;43:D921–D927. doi: 10.1093/nar/gku955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Shi L, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol. 2010;28:827–838. doi: 10.1038/nbt.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Shi L, et al. The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 2006;24:1151. doi: 10.1038/nbt1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Villeneuve DL, Garcia-Reyero N. Vision & strategy: predictive ecotoxicology in the 21st century. Environ. Toxicol. Chem. 2011;30:1–8. doi: 10.1002/etc.396. [DOI] [PubMed] [Google Scholar]
  • 20.Villeneuve DL, Garcia-Reyero N. Vision & strategy: predictive ecotoxicology in the 21st century. Environ. Toxicol. Chem. 2011;30:1–8. doi: 10.1002/etc.1396. [DOI] [PubMed] [Google Scholar]
  • 21.Madak-Erdogan Z, et al. Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Sci. Signal. 2016;9:53. doi: 10.1126/scisignal.aad8170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Madak-Erdogan Z, et al. Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer Res. 2019;79:2494–2510. doi: 10.1158/0008-5472.CAN-18-2849. [DOI] [PubMed] [Google Scholar]
  • 23.Chen KLA, Zhao YC, Hieronymi K, Smith BP, Madak-Erdogan Z. Bazedoxifene and conjugated estrogen combination maintains metabolic homeostasis and benefits liver health. PLoS ONE. 2017;12:e0189911. doi: 10.1371/journal.pone.0189911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307–315. doi: 10.1093/bioinformatics/btg405. [DOI] [PubMed] [Google Scholar]
  • 25.Huber W, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 2016;10:946–963. doi: 10.1214/16-AOAS920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Ritchie ME, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Alston-Knox C, Kuhnert P, Lowchoy S, McVinish R, Mengersen K. Bayesian Model Comparison: Review and Discussion. New York: Springer; 2005. [Google Scholar]
  • 29.Gordon KS. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004 doi: 10.2202/1544-6115.1027. [DOI] [PubMed] [Google Scholar]
  • 30.de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004;20:1453–1454. doi: 10.1093/bioinformatics/bth078. [DOI] [PubMed] [Google Scholar]
  • 31.Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Mootha VK, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003;34:267–273. doi: 10.1038/ng1180. [DOI] [PubMed] [Google Scholar]
  • 33.Li H. Microbiome, metagenomics, and high-dimensional compositional data analysis. Annu. Rev. Stat. Appl. 2015;2:73–94. doi: 10.1146/annurev-statistics-010814-020351. [DOI] [Google Scholar]
  • 34.Shen Q, Diao R, Su P. Feature selection ensemble. Turing. 2012;10:289–306. [Google Scholar]
  • 35.Braundmeier-Fleming A, et al. Stool-based biomarkers of interstitial cystitis/bladder pain syndrome. Sci. Rep. 2016;6:26083. doi: 10.1038/srep26083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Candel S, et al. Microbial profiles and tumor markers from culdocentesis: a novel screening method for epithelial ovarian cancer [3H] Obstet. Gynecol. 2017;129:82S. doi: 10.1097/01.AOG.0000514905.81769.af. [DOI] [Google Scholar]
  • 37.Hagler MA, et al. Identification of novel microRNA profiles in patients with myxomatous mitral valve disease. Circulation. 2015;132:A19746–A19746. [Google Scholar]
  • 38.Robison, H. V. E., Erskine, C., Auvil, L., Escalante, P., & Bailey, R., editors. Profiling cytokine-chemokine dynamics using silicon photonic microing resonators. Bioorganic Chemistry Gordon Research Conference (2016).
  • 39.Su, W. B. M. & Candes, E. False discoveries occur early on the lasso path. http://arxiv.org/abs/151101957 (2015).
  • 40.Gross SM, Tibshirani R. Collaborative regression. Biostatistics. 2014;16:326–338. doi: 10.1093/biostatistics/kxu047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Kohavi, R. Ijcai. 1137–1145 (Montreal, Canada).
  • 42.Pedregosa F, et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830. [Google Scholar]
  • 43.Nilsson, R., M. Peña, J., Björkegren, J. & Tegner, J. Consistent Feature Selection for Pattern Recognition in Polynomial Time. Vol. 8 (2007).
  • 44.Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. [DOI] [Google Scholar]
  • 45.Bureau A, et al. Identifying SNPs predictive of phenotype using random forests. Genet. Epidemiol. 2005;28:171–182. doi: 10.1002/gepi.20041. [DOI] [PubMed] [Google Scholar]
  • 46.Zou H, Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B. 2005;67:301–320. doi: 10.1111/j.1467-9868.2005.00503.x. [DOI] [Google Scholar]
  • 47.Kohavi R. Proceedings of the 14th International Joint Conference on Artificial Intelligence. Montreal: Morgan Kaufmann Publishers Inc.; 1995. pp. 1137–1143. [Google Scholar]
  • 48.Hanson C, Cairns J, Wang L, Sinha S. Computational discovery of transcription factors associated with drug response. Pharmacogenom. J. 2016;16:573–582. doi: 10.1038/tpj.2015.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020;21:6. doi: 10.1186/s12864-019-6413-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Metzler M, Blaich G, Tritscher AM. Role of metabolic activation in the carcinogenicity of estrogens: studies in an animal liver tumor model. Environ. Health Perspect. 1990;88:117–121. doi: 10.1289/ehp.9088117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Hall AP, et al. Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes—conclusions from the 3rd international ESTP expert workshop. Toxicol. Pathol. 2012;40:971–994. doi: 10.1177/0192623312448935. [DOI] [PubMed] [Google Scholar]
  • 52.Allen DG, Pearse G, Haseman JK, Maronpot RR. Prediction of rodent carcinogenesis: an evaluation of prechronic liver lesions as forecasters of liver tumors in NTP carcinogenicity studies. Toxicol. Pathol. 2004;32:393–401. doi: 10.1080/01926230490440934. [DOI] [PubMed] [Google Scholar]
  • 53.Chalasani N, Fontana RJ, Bonkovsky HL, Watkins PB, Davern T, Serrano J, Yang H, Rochon J. Clinical advances in liver, pancreas, and biliary tract: causes, clinical features, and outcome from a prospective study of drug-induced liver injury in the United States. Gastroenterology. 2016;135:1924–1934. doi: 10.1053/j.gastro.2008.09.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Malhi H, GoresGregory J, LemastersJohn J. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology. 2006;43:S31–S44. doi: 10.1002/hep.21062. [DOI] [PubMed] [Google Scholar]
  • 55.Bessems JGM, Vermeulen NPE. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit. Rev. Toxicol. 2001;31:55–138. doi: 10.1080/20014091111677. [DOI] [PubMed] [Google Scholar]
  • 56.Walter Zucchini ILM, Langrock R. Hidden Markov Models for time series: an introduction using R (2nd edition) J. Stat. Softw. 2017;80:1–12. [Google Scholar]
  • 57.Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F. & Leyton-Brown, K. in Automated Machine Learning: Methods, Systems, Challenges (eds F. Hutter, L. Kotthoff, & J. Vanschoren) 81–95 (Springer, New York, 2019).
  • 58.Thornton, C., Hutter, F., Hoos, H. H. & Leyton-Brown, K. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. http://arxiv.org/abs/1208.3719 (2012). https://ui.adsabs.harvard.edu/abs/2012arXiv1208.3719T.
  • 59.Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012;13:281–305. [Google Scholar]
  • 60.Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. in Proceedings of the 24th International Conference on Neural Information Processing Systems 2546–2554 (Curran Associates Inc., Granada, 2011).
  • 61.Oktay K, et al. A computational statistics approach to evaluate blood biomarkers for breast cancer risk stratification. Horm. Cancer. 2020;11:17–33. doi: 10.1007/s12672-019-00372-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Austin PC, Tu JV. Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality. J. Clin. Epidemiol. 2004;57:1138–1146. doi: 10.1016/j.jclinepi.2004.1104.1003. [DOI] [PubMed] [Google Scholar]
  • 63.Heidema AG, et al. The challenge for genetic epidemiologists: how to analyze large numbers of SNPs in relation to complex diseases. BMC Genet. 2006;7:23–23. doi: 10.1186/1471-2156-7-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Gao T, et al. DNA methylation of oxidative stress genes and cancer risk in the Normative Aging Study. Am. J. Cancer Res. 2016;6:553–561. [PMC free article] [PubMed] [Google Scholar]
  • 65.Tawa GJ, et al. Characterization of chemically induced liver injuries using gene co-expression modules. PLoS ONE. 2014;9:e107230. doi: 10.1371/journal.pone.0107230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Lv H, et al. Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2. Precis. Oncol. 2018;2:1. doi: 10.1038/s41698-017-0044-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

The datasets analyzed during the current study are available in the Life Science Database Archive, https://dbarchive.biosciencedbc.jp/en/open-tggates/download.html. A public GitHub repository with datasets and code is available here: https://github.com/brandis2/TG-GATES.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES