Skip to main content
Einstein logoLink to Einstein
. 2020 Nov 5;18:eRW5909. doi: 10.31744/einstein_journal/2020RW5909
View full-text in Portuguese

COVID-19 and the gastrointestinal tract: what do we already know?

Joana Ferro Machado de Almeida 1,, Ethel Zimberg Chehter 1
PMCID: PMC7647386  PMID: 33206816

ABSTRACT

The new coronavirus disease pandemic is defining 2020, with almost 17.5 million infected individuals and 700 thousand deaths up to beginning of August. It is caused by SARS-CoV-2 and the transmission is through the respiratory tract. Those infected may be asymptomatic, present typical symptoms (fever, dry cough and dyspnea), gastrointestinal symptoms (diarrhea, nausea, vomiting and abdominal pain) and viral RNA in stools. The objective of this work was to review the literature related to the prevalence of gastrointestinal symptoms, and to check the possibility of fecal-oral transmission. We searched PubMed® database on COVID-19 and gastrointestinal tract and selected articles using the PRISMA method. We eliminated articles based on titles and abstracts, small number of patients and the mechanism of infection, leaving 14 studies. Comorbidities and laboratory alterations (elevation of hepatic aminotransferases and bilirubin) were related to worsening of the disease. The prevalence of gastrointestinal symptoms ranged from 6.8% to 61.3%, including diarrhea (8.14% to 33.7%), nausea/vomiting (1.53% to 26.4%), anorexia (12.1% to 40.0%) and abdominal pain (0% to 14.5%). The presence of viral RNA in stools was rarely tested, but positive in 0% to 48.1%. The gastrointestinal tract is affected by COVID-19, causing specific symptoms, laboratory alterations and viral presence in the feces. However, the results of prevalence and possibility of fecal-oral transmission were varied, requiring further studies for more assertive conclusions. It is important that healthcare professionals draw attention to this fact, since these changes can help make diagnosis and initiate early treatment.

Keywords: SARS-CoV-2, Betacoronavirus, Coronavirus infections, COVID-19, Gastrointestinal tract, Gastrointestinal diseases/etiology

INTRODUCTION

In December 2019, the first cases of patients infected with the new coronavirus were identified in Wuhan, China.(1) The year 2020 will be remembered by the 2019 coronavirus pandemic (COVID-19), causing a great impact on public health and economy of many countries. On August 1st, 2020, according to the World Health Organization (WHO) website, there were 17,396,943 cumulative cases and 675,060 deaths worldwide. The country with the highest number of infected individuals and deaths is the United States, with 4,456,389 and 151,265, respectively. In Brazil, these figures were 2,610,102 cases and 91,263 deaths.(2)

The virus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the seventh coronavirus known to infect humans. The others are the acute severe respiratory syndrome coronavirus (SARS-CoV), with an epidemic in 2003, and the Middle Eastern respiratory syndrome coronavirus (MERS-CoV), with an epidemic in the Middle East, in 2012, and both cause severe disease; and HKU1, NL63, OC43, and 229E, which cause mild symptoms. SARS-CoV-2 is an encapsulated RNA virus of the order Nidovirales, family Coronaviridae, subfamily Coronavirinae, genus Beta.(3) SARS-CoV-2 probably originated in bats and is transmitted to humans through another animal.(4) The main transmission route is respiratory, through contact with droplets, aerosols, and contaminated surfaces.(5)

Typical symptoms of the disease are fever, dry cough, dyspnea, headache, anosmia, dysgeusia, and pneumonia, but it can also be asymptomatic. It may cause progressive respiratory failure through alveolar injury, which may lead to death.(1,6) However, several studies indicate that patients may present symptoms related to the gastrointestinal tract (GIT), with the presence of the virus in epithelial cells of the GIT and its RNA in feces. Based on this, a possible oral-fecal transmission of the disease is suggested.(6,7) The main gastrointestinal symptoms are diarrhea, nausea, vomiting, and abdominal pain.(8)

The SARS-CoV-2 virus uses the angiotensin 2 converting enzyme (ACE2) as a receptor for entrance into cells. It mainly infects lung cells, but may have gastrointestinal involvement, which also has ACE2 receptors at the brush border of the intestinal mucosa.(6) In addition, the virus is released at the apical part of the lung cells. Dragged by mucociliary movement, it can gain the GIT. These ACE2 receptors operate diminishing the action of the renin-angiotensin-aldosterone system by metabolizing angiotensin 2. At high serum levels, angiotensin 2 has effects on cardiovascular, renal, and respiratory systems, and may cause chronic hypertension and renal and respiratory failure. The SARS-CoV-2 virus causes downregulation and blockage of these ACE2 receptors, which explains the clinical picture of pulmonary failure and adult respiratory distress syndrome in some infected patients.(9)

The viral surface has S (Spike) glycoproteins, which need to be separated into S1 and S2 domains, so that the virus can adhere to the cell membrane. Furin and transmembrane serine protease (TMPRSS2) are substances that allow this separation. Thus, S1 binds to the ACE2 receptor and S2 to the cell membrane, allowing the virus to enter the cell through endocytosis. Furin and TMPRSS2 are enzymes present in the cells of the small intestine; the former also acts in the activation of toxins of some microorganisms.(7,9)

ACE2 of the intestinal mucosa is associated with the amino acid carrier, B0AT1, and regulates the intestinal flora. This occurs because this transporter allows the absorption of tryptophan, which stimulates the mTOR path to produce antimicrobial peptides. Thus, the SARS-CoV-2 infection changes the amount, and blocks the ACE2 receptors in the brush edge, causing tryptophan deficiency and lower production of antimicrobial peptides, which in turn can cause changes in the intestinal microbioma and inflammation.(7,9)

Patients with COVID-19 present with a great inflammatory reaction caused by the so-called cytokine storm, which can be originated or potentiated by the GIT. The small intestine has the largest amount of lymphoid tissue in the body, with Peyer patches, mesenteric lymph nodes, and lymphoid follicles along the intestine. In the mucosa and below the lamina propria, the intestines also have a large population of activated T cells, plasma cells, mast cells, dendritic cells, and macrophages. In the scenario of an infection such as COVID-19, there is an exaggerated release of cytokines, which promote the recruitment of several other cells, causing a great inflammatory process.(9,10) Studies point out that interferon and influenza virus infection (interferon pathway inducer) may be related to increased ACE2 transcription.(11) Smokers and patients with chronic obstructive pulmonary disease (COPD) also have a higher expression of ACE2 receptors.(12) In addition, diabetes and hypertension have been associated with polymorphisms of the ACE2 gene.(7)

Drugs used in the treatment of hypertension, such as ACE inhibitors (ACEi) and angiotensin receptor blockers (ARB), reduce inflammation by decreasing cytokines. In addition, they may increase the expression of ACE2.(13) However, the use of ACEi and ARB has not been associated with a worse clinical evolution in patients with COVID-19. Thus, maintenance of the use of these drugs in hypertensive patients is recommended.(14,15)

While the SARS-CoV and SARS-CoV-2 viruses use ACE2 as a mediator to enter the cells, MERS-CoV uses dipeptidyl-peptidase 4 (DPP4).(7) Because they are viruses from the same family, some authors have studied whether DPP4 is also involved in the infection mechanism of the new disease. According to Vankadari et al., the S1 domain of the SARS-CoV-2 membrane glycoprotein, besides interacting with ACE2, the main gateway for the new virus may have some relation with DPP4.(16) However, the study by Tai et al., found that the virus did not bind to 293T cells that expressed only DPP4. This connection only occurred in 293T cells with ACE2.(17)

Several articles on GIT-related symptoms of COVID-19 and its possible oral-fecal transmission have been published, with divergent results.

The objective of this study was to review the literature related to the prevalence of gastrointestinal symptoms, and to verify the possibility of fecal-oral transmission of the disease.

METHODS

The database chosen for this work was PubMed®. On May 5, 2020, we searched for articles with the words “COVID-19” or “SARS-CoV-2” and “GIT” or “gastrointestinal” or “enteric.” A total of 179 articles resulted from this search. The inclusion criteria for the studies in this review were the fulfillment of eligibility criteria (articles addressing SARS-CoV-2 infection and GIT symptoms), articles in English, and samples with more than 50 patients. Exclusion criteria were study design of case reports, reviews on the infection mechanism and virus, GIT-related procedure recommendation manuals in infected patients, articles in languages other than English, and less than 50 patients evaluated. Figure 1 shows the diagram Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) performed based on reading titles and abstracts; 161 articles were eliminated, leaving 18 articles. One last article was added later. Of these 19 articles, four were reviews about the virus and its mechanism of infection, which were disregarded. Finally, a study including only ten patients was eliminated. With this, the review was carried out with 14 articles, in that four were meta-analyses, one systematic review, and nine retrospective studies. The analysis of the articles was initially made by the author, but the final choice also included a senior reviewer. Due to the small number of large studies related to this subject, and the importance and urgency of the topic, several variations of study designs were included. Information on country of origin, mean age, different comorbidities, typical symptoms (fever, cough, and dyspnea, among others), gastrointestinal symptoms (diarrhea, nausea, vomiting, and abdominal pain), and the presence of viral RNA in feces, when cited, were included in this study for analysis.

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses Diagram (PRISMA).

Figure 1

RESULTS

As to retrospective studies, three were done only with patients from the United States and six only from China. The systematic review included several studies carried out in China. As to the meta-analyses, two of them included studies done only in China and two evaluated various countries. Tables 1 to 3 present general data, typical symptoms, and gastrointestinal symptoms of patients with COVID-19 of the retrospective studies, respectively. Table 4 displays the symptoms of patients with the disease in the meta-analyses.

Table 1. General data of patients with COVID-19 of the nine retrospective studies.

Jin et al.(18) Lin et al.(19) Pan et al.(20)
With GI symptoms Without GI symptoms p value Total With GI symptoms Without GI symptoms p value Total With GI symptoms Without GI symptoms p value
Patients 74 577 95 58 37 204 103 101
Age 46.14±14.19 45.09±14.45 0.559 43.3±18.3 48.0±17.1 41.1±19.5 0.073 52.91±15.98 52.21±15.92 53.61±16.10 0.533
Sex M: 37/74 (50.0) W: 37/74 (50.0) M: 294/577 (51) W: 283/577 (49) M: 0.902 M: 45/95 (47.4) W: 50/95 (52.6) M: 27/58 (46.6) W: 31/58 (53.4) M: 18/37 (48.6) W: 19/37 (51.4) W: 0.84 M: 107/204 (52.5) W: 97/204 (47.5) M: 55/103 (53.4) W: 48/103 (46.6) M: 52/101 (51.5) W: 49/101 (48.5) 0.784
BMI, kg/m2
Tobacco use 3/74 (4.23) 38/577 (6.59) 0.610 6/95 (6.3) 5/58 (8.6) 1/37 (2.7) 0.40
Alcohol use 9/95 (9.5) 6/58 (10.3) 3/37 (8.1) 1.00
Any comorbidity 25/74 (33.78) 153/577 (26.52) 0.212
Coronary artery disease
Congestive heart failure
Arrhythmia
Hypertension 12/74 (16.22) 88/577 (15.25) 0.864 16/95 (16.8) 10/58 (17.2) 6/37 (16.2) 0.90
Diabetes mellitus 7/74 (9.46) 41/577 (7.11) 0.477 6/95 (6.3) 3/58 (5.2) 3/27 (8.1) 0.67
Cerebrovascular disease 4/95 (4.2) 3/58 (5.2) 1/37 (2.7) 1.00
Pulmonary disease 0/74 (0) 1/577 (0.17) 1.00 5/95 (5.3) 1/58 (1.7) 4/37 (10.8) 0.074 9/204 (4.41) 7/103 (6.80) 2/101 (1.98) 0.182
Chronic renal disease 0/74 (0) 6/577 (1.04) 1.00 1/95 (1.1) 1/58 (1.7) 0/37 (0) 1.00
Chronic liver disease 8/74 (10.81) 17/577 (2.95) 0.004 1/204 (0.97)
Cancer 0/74 (0) 6/577 (1.04) 1.00 5/95 (5.3) 4/58 (6.9) 1/37 (2.7) 0.65 13/204 (6.37) 8/103 (7.77) 5/101 (4.95) 0.410
Cardiovascular disease 1/74 (1.35) 4/577 (0.69) 0.454 44/204 (21.57) 23/103 (22.3) 21/101 (20.79) 0.789
Immunossuppression 0/74 (0) 1/577 (0.17) 1.00
Viral RNA in feces 3/9 (33.33) 0/577 (0) 31/65 (47.7) 22/42 (52.4) 9/23 (39.1) 0.31
Oxygen supplementation
ICU 5/74 (6.76) 12/577 (2.08) 0.034 16/204 (7.84) 6/103 (5.94) 10/101 (9.90) 0.279
Mechanical ventilation 5/74 (6.76) 12/577 (2.08) 0.034
Death 0/95 (0) 0/58 (0) 0/37 (0) 36/204 (17.65) 19/103 (18.45) 17/101 (16.83) 0.762
Wan et al.(21) Redd et al.(22) Nobel et al.(23) Cholankeril et al.(24)
Total With GI symptoms Without GI symptoms p value Total With GI symptoms Without GI symptoms p value Total Total
Patients 230 49 181 318 195 123 278 116
Age 47.5 (36.8-60) 55 (40-65) 46 (36-57) 0.017 63.4±16.6 62.3±15.9 65.0±17.6 0.16 18-30: 31/278 (11) 50 (35-67)
31-50: 69/278 (25)
51-70: 103/278 (37)
>70: 75/278 (27)
Sex M: 129/230 (56)
W: 101/230 (44)
M: 27/49 (55)
W: 22/49 (45)
M: 102/181 (56)
W: 79/181 (22)
0.87 M: 174/318 (54.7)
W: 144/318 (45.3)
M: 102/195 (52.3)
W: 93/195 (47.7)
M: 72/123 (58.6)
W: 51/123 (35.4)
W: 0.28 M: 145/278 (52)
W: 133/278 (48)
M: 62/116 (53.4)
W: 54/116 (46.6)
BMI. kg/m2 30.0±6.5 30.5±6.7 29.3±6.2 0.11 <25.0: 25/278 (9) 25.8 (23.2-31.5)
25.0-29.9: 43/278 (16)
≥30.0: 47/278 (17)
Without evaluation: 165/278 (59)
Tobacco use 35/318 (11.0) 23/195 (11.8) 12/123 (9.8) 0.57 Former smoker: 21 (23.3)
Smoker: 3 (2.8)
Alcohol use 39/318 (12.3) 28/195 (14.4) 11/123 (8.9) 0.15
Any comorbidity 58/230 (25) 19/49 (39) 39/181 (22) 0.017
Coronary disease 46/318 (14.5) 26/195 (13.3) 20/123 (16.3)
Congestive heart failure 31/318 (9.8) 16/195 (8.3) 15/123 (12.2) 0.25
Arrhythmia 48/318 (15.1) 26/195 (13.3) 22/123 (17.9) 0.27
Hypertension 40 (17) 188/318 (59.1) 111/195 (56.9) 77/123 (62.6) 0.32 32 (27.8)
Diabetes mellitus 11 (5) 105/318 (33.1) 62/195 (32.0) 43/123 (35.0) 0.58 19 (16.4)
Cerebrovascular disease 11/318 (3.5) 8/195 (4.1) 3/123 (2.4) 0.42
Pulmonary disease (%) 7 (3) 67/318 (21.1) 40/195 (20.5) 27/123 (22.0) 0.76 24 (20.7)
Chronic renal disease 40/318 (13.8) 20/195 (11.7) 20/123 (17.0) 0.20 4 (3.5)
Chronic hepatic disease 6 (3) 3 (2.8)
Cancer 3 (1)
Cardiovascular disease 10 (4) 15 (12.9)
Immunosuppressant 4 (4.3)
Viral RNA in feces
Oxygen supplementation 44/49 (90) 143/181 (79) 0.10
ICU 15/49 (31) 20/181 (11) 0.0015 35/202 (17.5) 20 (15.4) 15 (21.4) 0.28 44/278 (16)
Mechanical ventilation 6/49 (12) 3/181 (2) 0.0036 26/202 (13.0) 14 (10.9) 12 (16.0) 0.22
Death 4/49 (8) 2/181 (1) 0.020 32/202 (15.8) 16 (12.2) 16 (22.5) 0.06 9/278 (3.2)
Zhang et al.(25) Zhou et al.(26)
Total Total Total medical team With GI symptoms - medical team No GI symptoms - medical team p value Total non-medical With GI symptoms - non-medical Without GI symptoms - non-medical p value
Patients 140 254 93 23 70 161 43 118
Age 57 (25-87) 50 (36-65) 36 (31-41) 35 (30-40) 36 (31-42) 0.614 62 (49-69) 61 (49-67) 62 (49-70) 0.615
Sex M: 71/140 (50.7)
W: 69/140 (49.3)
M: 115/254 (45.3)
W: 139/254 (54.7)
M: 32/93 (34)
W: 61/93 (66)
M: 6/23 (26)
W:17/23 (74)
M: 26/70 (37)
W:44/70 (63)
0.45 M: 83/161 (52)
W: 78/161 (48)
M: 16/43 (37)
W: 27/43 (63)
M: 67/118 (57)
W: 51/118 (43)
0.033
BMI, kg/m2
Tobacco use Former smoker: 7/140 (5.0)
Smoker: 2/140 (1.4)
Alcohol use
Any comorbidity 90/140 (64.3)
Coronary disease 7/140 (5.0) 17/254 (6.7) 2/93 (2.1) 0/23 (0) 2/70 (3) 1.00 15/161 (9) 6/43 (14) 9/118 (8) 0.231
Congestive heart failure
Arrhythmia 5/140 (3.6)
Hypertension 42/140 (30.0) 63/254 (24.8) 6/93 (6.4) 0/23 (0) 6/70 (9) 0.33 57/161 (35) 14/43 (33) 43/118 (36) 0.712
Diabetes mellitus 17/140 (12.1) 26/254 (10.2) 3/93 (3.2) 0/23 (0) 3/70 (4) 0.572 23/161 (14) 4/43 (9) 19/118 (16) 0.321
Cerebrovascular disease 3/140 (2.1) 13/254 (5.1) 1/93 (1.1) 0/23 (0) 1/70 (1) 1.00 12/161 (7) 3/43 (7) 9/118 (8) 1.00
Pulmonary disease 2/140 (1.4) 6/254 (2.4) 1/93 (1.1) 0/23 (0) 1/70 (1) 1.00 5/161 (3) 2/43 (5) 3/118 (3) 0.61
Chronic renal disease 2/140 (1.4)
Chronic liver disease 3/254 (1.2) 1/93 (1.1) 0/23 (0) 1/70 (1) 1.00 2/161 (1) 0/43 (0) 2/118 (2) 1.00
Cancer 2/254 (0.8) 1/93 (1.1) 0/23 (0) 1/70 (1) 1.00 1/161 (1) 0/43 (0) 1/118 (1) 1.00
Cardiovascular disease
Immunosuppression 1/254 (0.4) 0/93 (0) 0/23 (0) 0/70 (0) 1/161 (1) 1/43 (2) 0/118 (0) 0.267
Viral RNA in feces
Oxygen supplementation
ICU
Mechanical ventilation 18/254 (7) 5/93 (5.4) 1/23 (4.3) 4/70 (5.7) 1.00 13/161 (8) 2/43 (4.7) 11/118 (9.3) 0.516
Death 16/254 (6.3) 2/93 (2.1) 1/23 (4.3) 1/70 (1.43) 0.435 14/161 (9) 3/43 (7) 11/118 (9.3) 0.457

Results expressed as n. mean±standard deviation. n/n total (%).

GI: gastrointestinal; M: men; W: women; BMI: body mass index; ICU: intensive care unit.

Table 3. Gastrointestinal symptoms of patients with COVID-19 in the nine retrospective studies.

Jin et al.(18) Lin et al.(19) Pan L et al.(20) Wan et al.(21) Redd et al.(22) Nobel et al.(23) Cholankeril et al.(24) Zhang et al.(25) Zhou et al.(26)
Total At admission During hospitalization Total With GI symptoms - medical team With GI symptoms - GI non-medical
Patients 651 95 204 230 318 278 116 140 254 23 43
GIT symptoms 74/651 (11.4) 58/95 (61.1) 11/95 (11.6) 47/95 (49.5) 103/204 (50.5) 49/230 (21) 195/318 (61.3) 97/278 (35) 37 (31.9) 55/139 (39.6) 66/254 (26.0) 23/23 (100) 43/43 (100)
Diarrhea 53/651 (8.14) 23/95 (24.2) 5/95 (5.3) 18/95 (18.9) 35/103 (33.98) 49/230 (21) 107/318 (33.7) 56/278 (20) 12 (10.3) 18/139 (12.9) 46/254 (18.1) 19/23 (86.6) 27/43 (62.8)
N/V N: 10/651 (1.53) N: 17/95 (17.9) N: 3/95 (3.2) N: 14/95 (14.7) V: 4/103 (3.88) N: 84/318 (26.4) 63/278 (23) 12 (10.3) N: 24/139 (17.3) N: 21/254 (8.3) N: 5/23 (21.7) N: 16/43 (37.2)
V: 11/651 (1.69) V: 4/95 (4.2) V: 0/95 (0) V: 4/95 (4.2) V: 49/318 (15.4) V: 7/139 (5.0) V: 15/254 (5.9) V: 1/23 (4.3) V: 14/43 (32.6)
Anorexia 17/95 (17.9) 5/95 (5.3) 12/95 (12.6) 81/103 (78.64) 110/318 (34.8) 22 (25.3) 17/139 (12.1)
Abdominal pain 2/95 (2.1) 0/95 (0) 2/95 (2.1) 2/103 (1.94) 3/230 (1) 46/318 (14.5) 10 (8.8) 8/139 (5.8) 3/254 (1.2) 0/23 (0) 3/43 (7.0)
Weight loss 30/318 (9.4)
Melena 10/230 (4) 2/318 (0.63)
Reflux 2/95 (2.1) 1/95 (1.1) 1/95 (1.1) 2/318 (0.63)
Dysphagia 1/318 (0.31)
Odynophagia 1/318 (0.31)
Hematochezia/UGIB 2/95 (2.1) 0/95 (0) 2/95 (2.1) 1/318 (0.31)
Constipation 3/318 (0.94)

Results expressed as n or n/n total (%).

GI: gastrointestinal; GIT: gastrointestinal tract; N: nausea; V: vomiting; UGIB: upper gastrointestinal bleeding.

Table 4. Typical and gastrointestinal symptoms of patients with COVID-19 in the meta-analyses.

Sultan et al.(8) Cheung et al.(27) meta-analysis Cheung et al.(27) Hong Kong cohort Cao et al.(28) Li et al.(29)
Patients 10,890 4,243 59 46,959 1,994
Age 45.1 (IQR: 41.0-54.8) 58.5 (IQR: 43.5-68.0; range: 22-96) 46.62 (95%CI: 31.710-61.531)
Sex M: 57.3 M: 27/59 (45.8) M: 55.6 (95%CI: 0.530-0.602) M: 60 (95%CI: 0.54-0.65)
Comorbidities 35.6 (95%CI: 0.267-0.444)
GI symptoms Total: 17.6 (95%CI: 12.3-24.5) 15/59 (25,4) 6.8 (95%CI: 0.044-0.092)
60 studies and 4,243 patients
China: 16.1 (95%CI: 10.9-23.0)
53 studies and 4,198 patients
Other countries: 33.4 (95%CI: 15.2-58.3)
7 studies and 45 patients
Anorexia 26.8 (95%CI: 16.2-40.8)
18 studies
Nausea/vomiting Total: 7.8 (7.1-8.5) 10.2 (95%CI: 6.6-15.3) 1/59 (1,7) 3.90
26 studies and 5,955 patients 32 studies
China: 5.2 (4.4-5.9)
19 studies and 4,054 patients
Other countries: 14.9 (13.3-16.6)
7 studies and 1,901 patients
Diarrhea Total: 7.7 (7.2-8.2) 12.5 (95%CI: 9.6-16.0) 13/59 (22.0) 6.8 (95%CI: 0.044-0.092) 4.80
43 studies and 10,676 patients
China: 5.8 (5.3-6.4)
32 studies and 8,612 patients
Other countries: 18.3 (16.6-20.1)
11 studies and 2,064 patients
Abdominal pain Total: 3.6 (3.0-4.3) 9.2 (95%CI: 5.7-14.5) 7/59 (11.9)
15 studies and 4,031 patients 12 studies
China: 2.7 (2.0-3.4)
10 studies and 2,447 patients
Other countries: 5.3 (4.2-6.6)
5 studies and 1,584 patients
PCR in feces 15/50 (30) 48.1% (95%CI: 38.33-57.94) 9/59 (15.3)
7/10 (70) 12 studies and 138 patients
44/153 (29)
Fever 56/59 (94.9) 87.3 (95%CI: 0.838-0.909) 88.50
Dry cough 22/59 (37.3) 58.1 (95%CI: 0.502-0.660) 68.60
Sore throat 12.0 (95%CI: 0.062-0.177)
Productive cough 29.4 (95%CI: 0.171-0.417) 28.20
Chest pain 31.2 (95%CI: −0.024-0.648)
Myalgia or fatigue 35.5 (95%CI: 0.253-0.456) 35.80
Headache or dizziness 9.4 (95%CI: 0.063-0.126) 12.20
Dyspnea 4/59 (6.8) 38.2 (95%CI: 0.246-0.520) 21.90

IQR: interquartile range; CI: confidence interval; M: men; GI: gastrointestinal.

Table 2. Typical symptoms of patients with COVID-19 in the nine retrospective studies.

Symptoms Jin et al.(18) Lin et al.(19) Pan et al.(20) Wan et al.(21) Redd et al.(22)
With GI symptoms Without GI symptoms p value Total Total With GI symptoms Without GI symptoms Total Total With GI symptoms Without GI symptoms p value
Patients 74 577 95 204 103 101 230 318 195 123
Fever 63/74 (85.14) >38.5°C: 29/74 (39.19) 482/577 (83.54) >38.5°C: 101/577 (17.50) 0.867 >38.5°C: <0.001 Yes 95/103 (92.23) 193/230 (84) 258/318 (81.3) 161/195 (82.6) 97/123 (78.9) 0.41
Fatigue 23/74 (31.08) 96/577 (16.64) 0.004 54/103 (52.42) 43 (19) 183/318 (57.5) 127/195 (65.1) 56/123 (45.5) 0.0006
Myalgia 10/74 (13.51) 61/577 (10.57) 0.430 15/103 (14.56) 123/318 (38.7) 96/195 (49.2) 27/123 (22.0) <0.0001
Chills 72/318 (22.6) 50/195 (25.6) 22/123 (17.9) 0.11
Diaphoresis 15/318 (4.7) 12/195 (6.2) 3/123 (2.4) 0.13
Arthralgia 8/318 (2.5) 4/195 (2.1) 4/123 (3.3) 0.51
Dry cough 53/74 (71.62) 382/577 (66.20) 0.431 159/230 (69) 247/318 (77.7) 156/195 (80.0) 91/123 (74.0) 0.21
Productive cough 29/74 (39.19) 198/577 (34.32) 0.438 98/230 (43) 45/318 (14.2) 33/195 (16.9) 12/123 (9.8) 0.74
Dyspnea 8/74 (10.81) 19/577 (3.30) 0.007 30 (13) 191/318 (60.1) 107/195 (54.9) 84/123 (68.3) 0.02
Sore throat 6/74 (8.11) 93/577 (16.12) 0.085 54/318 (17.0) 42/195 (21.5) 12/123 (9.8) 0.0064
Rhinorrhea 36/318 (11.4) 26/195 (13.4) 10/123 (8.1) 0.15
Nasal obstruction 2/74 (2.70) 35/577 (6.07) 0.419
Dizziness
Anosmia 32/318 (10.1) 26/195 (13.3) 6/123 (4.9) 0.0146
Ageusia 24/318 (7.6) 21/195 (10.9) 3/123 (2.4) 0.0057
Headache 16/74 (21.62) 51/577 (8.84) 0.002 19 (8)
Hemoptysis 3/74 (4.05) 8/577 (1.39) 0.119 3 (1)
Symptoms Nobel et al.(23) Cholankeril et al.(24) Zhang et al.(25) Zhou et al.(26)
Total Total Total Total Total - Medical team With GI symptoms - medical team Without GI symptoms - medical team p value Total non-medical With GI symptoms - non-medical Without GI symptoms - non-medical p value
Patients 278 116 140 254 93 23 70 161 43 118
Fever 76.70 110/120 (91.7) 213/254 (83.9) 80/93 (86) 19/23 (83) 61/70 (87) 0.729 133/161 (82) 39/43 (91) 94/118 (80) 0.157
Fatigue 90/120 (75.0) 133/254 (52.4) 52/93 (56.) 12/23 (52) 40/70 (57) 0.809 81/161 (50) 29/43 (67) 52/118 (44) 0.012
Myalgia 52.50 86/254 (33.9) 41/93 (44.) 10/23 (44) 31/70 (44) 1 45/161 (28) 17/43 (40) 28/118 (24) 0.073
Chills
Diaphoresis
Arthralgia
Dry cough 94.8 90/120 (75.0) 98/254 (38.6) 41/93 (44) 7/23 (30) 34/70 (49) 0.152 57/161 (35) 14/43 (33) 43/118 (36) 0.712
Productive cough 107/254 (42.1) 31/93 (33) 6/23 (26) 25/70 (36) 0.454 76/161 (47) 17/43 (40) 59/118 (50) 0.286
Dyspnea 58 44/120 (36.7) 10/254 (3.9) 2/93 (2.1) 1/23 (4) 1/70 (1) 0.435 8/161 (5.0) 2/43 (5) 6/118 (5) 1.00
Sore throat 16/254 (6.3) 6/93 (6.4) 0/23 (0) 6/70 (9) 0.33 10/161 (6.2) 6/43 (14) 4/118 (3) 0.023
Rhinorrhea
Nasal obstruction
Dizziness 18/254 (7.1) 10/93 (11) 4/23 (17) 6/70 (9) 0.256 8/161 (5.0) 5/43 (12) 3/118 (3) 0.032
Anosmia
Ageusia
Headache
Hemoptysis

Results expressed as n, mean±standard deviation, n/n total (%).

GI: gastrointestinal.

Jin et al., did a retrospective study in China that analyzed 651 patients (331 men and 320 women), mean age of 46.14±14.19 years, with confirmed with COVID-19, in the Zhejiang province. Of these, 74 (11.4%) presented with at least one gastrointestinal symptom, such as nausea, vomiting, and diarrhea at hospital admission. The most common gastrointestinal symptom was diarrhea (8.14%), with a mean duration of 4 days, and most of the cases were self-limited. Of the patients with gastrointestinal symptoms, 29 had significantly higher rates of fever >38.5°C (39.19% versus 17.50% of those without gastrointestinal symptoms; p<0.001), 23 fatigue (31.08% versus 16.64%; p=0.004), eight dyspnea (10.81% versus 3.30%; p=0.007), and 16 headache (21.62% versus 8.84%; p=0.002). There was also a significant difference between patients with chronic liver disease (10.81% with gastrointestinal symptoms versus 2.95% without gastrointestinal symptoms; p=0.004) and severity of the disease at admission, with respiratory failure, and shock. In addition, multiple organ failure requiring mechanical ventilation and admission to the intensive care unit (ICU; 22.97% versus 8.14%; p<0.001). Regarding test findings, serum sodium levels were lower in patients with gastrointestinal symptoms (137.65mmol/L versus 138.33mmol/L; p=0.016), with a tendency towards having more severe disease. Aspartate aminotransferase (AST) had a higher rate in these patients (29.35U/L versus 24.4U/L; p=0.02). Patients with gastrointestinal symptoms had more significant complications during treatment, such as progression to SARS with need of ICU admission (6.67% versus 2.08%; p=0.034), and liver injury (17.57% versus 8.84%; p=0.035), than did those without gastrointestinal symptoms. The presence of viral RNA in feces was detected in few patients - only three of nine patients with gastrointestinal symptoms. Because of the small sample, they did not evaluate the implications of oral-fecal transmission, which needs further investigation. It is worth remembering, however, that this study had some limitations. It was not a cohort and did not identify patients with gastrointestinal symptoms who did not have the typical symptoms of cough and fever.(18)

In the study of Lin et al., 95 patients (50 women and 45 men) from Zhuhai, China, with COVID-19 and mean age of 45.3±18.3 years, 58 (61.0%) presented with gastrointestinal symptoms, in which 11 (11.6%) at hospital admission and 47 (49.5%) during hospitalization. The latter probably had the condition aggravated by use of drugs, such as antibiotics. The main gastrointestinal symptoms were diarrhea, anorexia, and nausea, in 24.2%, 17.9%, and 17.9%, respectively. The presence of RNA of the virus in feces was tested in 65 patients (42 with and 23 without gastrointestinal symptoms) and was positive in 22 (52.4%) of those with gastrointestinal symptoms, and 9 (39.1%) of those without. The presence of RNA of the virus in feces does not necessarily indicate more severe gastrointestinal symptoms, because it did not show a significant difference between the two groups (p=0.31). However, the presence of the virus in the tissue indicated a more severe disease. In all, six patients were submitted to endoscopy (two were severe and four non-severe), and one presented with bleeding in the esophagus with ulcers and erosions. The two severe patients were also submitted to proctoscopy, and the RNA of the virus was detected in the esophagus, stomach, duodenum, and rectum of these patients. Of the non-severe patients, only one had viral RNA presente in the duodenum. This study concluded that GIT can be a potential transmission route and target organ for SARS-CoV-2, and gastrointestinal symptoms cannot be underestimated.(19)

According to the descriptive, cross-sectional, multicenter study (three hospitals in Hubei, China) by Pan et al., with 204 patients, in which 107 were male, mean age of 52.91±15.98 years, 103 (50.5%) reported some gastrointestinal symptom, such as lack of appetite (81; 78.6%), diarrhea (35; 34.0%), vomiting (4; 3.9%), and abdominal pain (2; 1.9%). If we eliminate the lack of appetite, there were 38 (18.6%) patients with gastrointestinal symptoms. Six patients (3%) reported only digestive symptoms. It was noted that with increased severity of the disease, the gastrointestinal symptoms became more pronounced. Patients with gastrointestinal symptoms had more laboratory abnormalities, such as elevation of alanine aminotransferase (ALT; 42.24U/L versus 29.53U/L; p=0.011) and AST (35.12U/L versus 27.48U/L; p=0.032), decrease in monocyte count (0.39x109/L versus 0.46x109/L); p=0.021), increased prothrombin time (13.13 seconds versus 12.53 seconds; p=0.024), and received more antimicrobials during treatment (76.70% versus 61.39%; p=0.018), when compared to those without gastrointestinal symptoms. Thus, these patients had a greater chance of suffering hepatic injury. Yet, since this was a retrospective study, some limitations should be considered, such as small sample and they did not test the presence of SARS-CoV-2 in the patients’ feces.(20)

Wan et al., conducted a multicenter retrospective study with 14 hospitals in China and showed gastrointestinal symptoms are common in patients with COVID-19. Of 230 patients with the disease, 129 were men, mean age of 47.5 years, and diarrhea was observed in 49 (21%) of them. Other gastrointestinal symptoms, such as abdominal pain (3.1%) and melena (10.4%), were also reported. The patients with diarrhea had more comorbidities (39% versus 22%; p=0.017), more advanced age (55 years versus 46 years; p=0.017), and presented with more severe symptoms of respiratory problems, requiring ICU (31% versus 11%; p=0.0015), mechanical ventilation (12% versus 2%; p=0.0036), and progressing to death (8% versus 1%; p=0.020). The study has no data on asymptomatic patients, which may overestimate the prevalence of gastrointestinal symptoms in COVID-19.(21)

A cohort study by Redd et al., in nine hospitals in Massachusetts, United States, evaluated the presence of gastrointestinal symptoms in 318 adult patients (174 men) with COVID-19 at hospital admission and mean age 63.4±16.6 years. A total of 195 (61.3%) patients presented with gastrointestinal symptoms upon admission, among which were anorexia (110; 34.8%), diarrhea (107; 33.7%), nausea (84; 26.4%), and vomiting (49; 15.4%). The general symptoms significantly associated with the gastrointestinal tract were fatigue (65.1% versus 45.5%; p=0.0006), myalgia (49.2% versus 22.0%; p<0.0001), sore throat (21.5% versus 9.8%; p=0.0064), anosmia (13.3% versus 4.9%; p=0.0146), and ageusia (10.9% versus 2.4%; p=0.0057). A subgroup of 202 patients required hospitalization at the time this article was being written; 35 (17.5%) went to the ICU, 26 (13.0%) needed mechanical ventilation, and 32 (15.8%) died, but no significant difference was observed with worsening of the clinical picture in patients with and without gastrointestinal symptoms. The limitations of the study were a retrospective design, lack of instruments to validate symptoms, focus only on hospital data, and the fact that outpatients with less severe disease were excluded. In addition, the article did not evaluate the presence of the virus in the stool of these patients.(22)

Nobel et al., performed a retrospective control case study that compared the symptoms of 278 patients positive for SARS-CoV-2 with 238 negative patients in the United States. The gastrointestinal symptoms considered were diarrhea or nausea/vomiting. They found a significant difference between gastrointestinal symptoms in patients with and without COVID-19 (p=0.04). The presence of these symptoms was associated to a risk greater than 70% of having COVID-19. Among the COVID-19 patients, 97 (35%) presented with gastrointestinal symptoms, such as diarrhea (56; 20%) and nausea/vomiting (63; 23%). Patients with gastrointestinal symptoms had a longer duration of the disease when compared to those without these symptoms (33% versus 22%; p=0.048). The limitations of the study were a short patient follow-up period, a retrospective study, and the identification of gastrointestinal symptoms was dependent on documentation done well. This article also did not evaluate the presence of the virus in the feces of the patients.(23)

In a cohort study by Cholankeril et al., in an organization in the United States, gastrointestinal symptoms were reported in 31.9% (97) of patients with COVID-19, and the most common symptoms were loss of appetite (22; 25.3%), nausea/vomiting (12; 10.3%), and diarrhea (12; 10.3%). The study included 116 patients with COVID-19, most of them male (53.4%), mean age of 50 years. No patient presented with isolated gastrointestinal symptoms as the initial manifestation. The mean duration of gastrointestinal symptoms was one day, which was significantly shorter than the duration of respiratory symptoms (p<0.001). The elevation of AST correlated with severity of the disease (p=0.009). This study presented limitations, such as patients from only one organization (regional trend), the fact of documentation of extrapulmonary symptoms may be incomplete, and the diagnosis of COVID-19 was only done in patients with respiratory symptoms. The article did not evaluate the presence of the virus in the feces of these patients.(24)

For Zhang et al., who studied in 140 patients from China with COVID-19, 39.6% of them presented with gastrointestinal symptoms. In this study, the proportion between men and women was practically the same, and mean age was 57.0 years. The main symptoms were fever (91.7%), cough (75.0%), and fatigue (75.0%). They point out that eosinopenia, with or without lymphopenia in patients with symptoms and radiological changes, may be a potential indicator for the diagnosis of COVID-19. In addition, they found that allergic diseases, asthma, and chronic obstructive pulmonary disease (COPD) are not risk factors for SARS-CoV-2 infection, but studies with larger samples are needed to confirm these findings. Advanced age (p<0.001), comorbidities (p=0.002), and laboratory abnormalities are associated with severity of the disease. These laboratory values are high D-dimer (p<0.001), C-reactive protein (p<0.001), procalcitonin (p<0.001), and leukopenia (p<0.014). In this study, patients with COPD and smokers had a lower risk of being infected by SARS-CoV-2, but the progression of the condition in these patients was more severe. However, the relation of smokers with COVID-19 is still uncertain. Smokers and COPD patients are more susceptible to MERS-CoV infections, because tobacco and COPD increase the expression of the DPP4 carrier, which is the receptor for this virus.(25)

Zhou et al., evaluated 254 patients of a Wuhan center with confirmation of COVID-19. They compared the infected medical team separately from the non-medical patients. In the sample, 139 were women, mean age was 50.6 years, and 161 did not belong to the medical team. The most frequently reported symptoms in all patients were fever (211; 83%), cough (98; 38.6%), and gastrointestinal symptoms (66; 26%). In non-medical patients, the proportion of gastrointestinal symptoms in women was significantly higher than in men (62.8% versus 37.2%; p=0.033). In addition, clinical manifestations, such as sore throat (14% versus 3%; p=0.023), dizziness (12% versus 3%; p=0.032), fatigue (67% versus 44%; p=0.012), low hemoglobin (116.7 versus 133; p=0.028), high C-reactive protein (7.3 versus 3.8; p=0.021), and high ALT (64.1 versus 46.6; p=0.049), were also significantly more frequent in non-medical patients with gastrointestinal symptoms. Nonetheless, there was no significant correlation between symptoms and clinical characteristics of patients with and without gastrointestinal symptoms. An explanation of why the medical team was less susceptible to gastrointestinal symptoms is that most of this group was made up of young nurses with no comorbidities. This study has limitations. Most of the cases included were clinically confirmed, therefore it has patients without the PCR test for SARS-CoV-2. Additionally, many patients did not have follow-up, since they were still hospitalized at the time of submission of this article.(26)

Cipriano et al., conducted a systematic review with six studies of patients from China, which points to the possibility of SARS-CoV-2 infection in the gastrointestinal tract and fecal-oral transmission. In the study, 53.42% of stool samples tested positive for the presence of SARS-CoV-2 RNA in 73 hospitalized patients. These samples remained positive between one and 12 days, and 23.29% of patients had feces positive for the virus RNA after the respiratory samples tested negative. The authors conclude that the anal swab can be as important as the nasopharyngeal swab, even in asymptomatic patients. Before hospital discharge, physicians should consider that gastrointestinal infection and potential fecal-oral transmission may remain until after the viral disappearance of the respiratory tract.(30)

Cheung et al., did an interesting study on gastrointestinal symptoms of COVID-19 and the presence of viral RNA in feces. They compared a meta-analysis with a Hong Kong cohort. In a cohort of 59 patients with the disease, 15 (25.4%) presented with gastrointestinal symptoms, and 9 (15.3%) had their feces tested positive for viral RNA; 38.5% and 8.7% of those with and without diarrhea, respectively (p=0.019), had stool viral RNA detected. In the meta-analysis, which included 60 studies and 4,243 patients, the prevalence of patients with gastrointestinal symptoms was 17.6%; in that, 16.1% in studies from China, and 33.4% from other countries (South Korea, Singapore, Vietnam, United States, and United Kingdom). The gastrointestinal symptoms evaluated were anorexia (26.8%), diarrhea (12.5%), nausea/vomiting (10.2%), and abdominal pain (9.2%). The prevalence of RNA of the virus in feces was 48.1%. Of these samples, 70.3% tested positive in the feces and could persist for more than 33 days from the onset of symptoms, even after the respiratory system had resulted negative for viral RNA. This meta-analysis also showed the prevalence of severe disease was more common in patients with gastrointestinal symptoms than in those without (17.1% versus 11.8%). The study limitations are underreporting of gastrointestinal symptoms and fewer studies outside China. Thus, healthcare professionals should pay attention to stool collection and procedures, such as endoscopy in patients with COVID-19.(27)

The systematic review and meta-analysis with 31 articles and 46,959 patients from China, by Cao et al., described the prevalence of symptoms such as fever (87.3%), dry cough (58.1%), dyspnea (38.2%), myalgia or fatigue (35.5%), chest pain (31.2%), productive cough (29.4%), sore throat (12%), headache (9.4%), and diarrhea (6.8%). The incidence of ICU use, SARS, multiple organ failure, and mortality was 29.3%, 28.8%, 8.5%, and 6.8%, respectively. The limitations of these studies were no foreigners included and no comments on viral presence in the feces.(28)

The meta-analysis made by Li et al., with 10 articles and 1,994 patients from China, showed similar results. The main symptoms reported were fever (88.5%), cough (68.6%), myalgia or fatigue (35.8%), productive cough (28.2%), and dyspnea (21.9%). Other symptoms were headache or dizziness (12.1%), diarrhea (4.8%), and nausea and vomiting (3.9%). Lymphopenia (64.5%), increased C-reactive protein (44.3%), increased lactate dehydrogenase (28.3%), and leukopenia (29.4%) were also recorded. In addition, men were more affected (60%), and the fatality rate was 5%. This study presented limitations by the number and quality of studies included.(29)

Sultan et al., performed a systematic review and meta-analysis of 47 studies with 10,890 patients. The prevalence of diarrhea was 7.7%, nausea and vomiting 7.8%, and abdominal pain 2.7%. When comparing data from China and other countries, diarrhea (5.8% versus 18.3%), nausea and vomiting (5.2% versus 14.9%), abdominal pain (2.7% versus 5.3%), and liver abnormalities were more prevalent outside China. The liver alterations studied were AST elevation (total: 15.0%; China: 14.9%; other countries: 20.0%), ALT (total: 15.0%; China: 14.9%; other countries: 19.0%), and bilirubin (total or China: 16.7%). There was no deeper analysis about the presence of viral RNA in the feces of these patients, but the authors found a variable prevalence of 15/50 (30%), 7/10 (70%), and 44/153 (29%). The authors also provided a manual of recommendations for good practices in the management of COVID-19 with seven items; the main points are to obtain a detailed history of symptoms (typical and GIT), to verify liver function values upon admission of patients and monitor during hospitalization, and to evaluate the adverse reactions of drugs used in treatment. Regarding limitations, the patients were hospitalized (prevalence may be under or overestimated), the symptoms may have been analyzed inconsistently, information from laboratory tests was lacking, and there was no information about gastrointestinal symptoms being systematically evaluated at admission, among others. They concluded hepatic enzyme monitoring may be beneficial, and there is still no evidence to support the viral PCR test in the stools as a diagnosis or for monitoring of COVID-19 as a routine in clinical practice, because the results of other meta-analyses are conflicting and further studies on the subject are needed.(8)

DISCUSSION

With the evaluation of all these studies, one can see that there is still a lot of variation in the results regarding several points, and the factors studied were very different.

The mean age of patients ranged from 45.1 to 58.5 years, but only one article significantly correlated advanced age with gastrointestinal symptoms.(21) In another article, advanced age was related to severity of the disease, but without assessing whether these patients had gastrointestinal symptoms.(25) In general, all articles found more men affected with COVID-19 than women, and only one found a significant difference between non-medical women and more gastrointestinal symptoms.(26) These results suggested that advanced age and male gender are risk factors for infection. The ACE2 receptor gene, target of SARV-CoV-2, is located on the X chromosome. A study still under review found that ACE2 expression increases in females and with sex hormones (which decrease with ageing); additionally, inflammatory cytokines decrease this expression (which increase with ageing and chronic diseases). This is contrary to what is currently thought, that is, increased ACE2 is to be blamed for the worse prognosis of COVID-19. SARS-CoV-2 binds directly to ACE2, causing downregulation of this receptor, which is even less in males, for example, and may explain the worse prognosis and the more prevalent infection in them.(31)

Regarding the comorbidities of infected patients, the most often cited were hypertension, diabetes mellitus, cerebrovascular disease, cardiovascular disease, lung disease, kidney disease, liver disease, and cancer, among others. However, only three articles reported a significant relation between gastrointestinal symptoms and comorbidities, and one of them ins chronic liver disease.(18,21,25) On the other hand, the relation between COVID-19 and comorbidities also proved to be diverse. Very frequent comorbidities in the population were addressed and may have important significance in SARS-CoV-2 infection and prognosis.

The typical symptoms most often described are common in respiratory tract infections, such as fever (76.7% to 94.9%), dry cough (38.6% to 77.7%), productive cough (14.2% to 43.0%), fatigue (16.6% to 75.0%), dyspnea (3.3% to 60.1%), headache (8.0% to 21.6%), and sore throat (8.11% to 17.0%).(8,18-29) Other symptoms, such as anosmia and ageusia, are closely related to COVID-19, but only one study identified their presence (10.1% and 7.6%, respectively). This study found a correlation between the presence of fatigue, myalgia, dyspnea, sore throat, anosmia, and ageusia with gastrointestinal symptoms.(22) Two other studies also identified relation between gastrointestinal symptoms and typical symptoms; one with fever above 38.5°C, fatigue, dyspnea, and headache, and the other with fatigue, sore throat, and dizziness.(18,26)

Regarding gastrointestinal symptoms, the prevalence showed great variation, ranging between 6.8% and 61.3% in these studies. This shows that there may be a regional trend in them, and studies with many patients from several countries are warranted to improve this relation between GIT and COVID-19. It is important to remember that two meta-analyses analysed China and other countries, and showed that the other sites presented with higher rates of gastrointestinal symptoms.(8,27) However, there were few other countries, and many were in Asia. Nevertheless, this shows that gastrointestinal symptoms are important in this disease, may have a great impact in some countries, and should be evaluated based on history of suspected patients. The most often cited gastrointestinal symptoms were diarrhea (8.14% to 33.7%), nausea/vomiting (1.53% to 26.4%), anorexia (12.1% to 40.0%), and abdominal pain (0% to 14.5%).(8,18-29)

Several studies point out relations between laboratory changes and gastrointestinal symptoms or severity of the disease. Liver injury (elevation of AST, ALT, and bilirubin) was the most often evaluated, but elevations of C-reactive protein, procalcitonin, lactate dehydrogenase, D-dimer, and prothrombin were also verified, as well as a decrease in serum sodium levels, leukocytes, lymphocytes, and monocytes.(8,18,20,24,25,29) Hence, it is very important to evaluate these parameters in patients hospitalized with COVID-19, since they may indicate a worse prognosis of the disease.

An important factor infrequently evaluated among the studies was the presence of viral RNA in stool samples from patients infected with SARS-CoV-2. This data would help us to understand if there is a possibility of fecal-oral transmission in this disease. Only four studies performed this analysis, in which two were meta-analyses and two retrospective studies. This test was positive in 0% to 48.1% of cases, with great heterogeneity in the results, but patients showing gastrointestinal symptoms presented more frequently the presence of virus RNA in feces.(8,18,19,27) Some also identified that this result remained positive even after the negativity of respiratory tract samples. In one of them, 53.42% of feces samples were positive for the virus, and 23.29% were still positive when the respiratory tract was negative.(30) In another, 70.3% of patients who had feces positive for the virus (48.1%) also remained positive after respiratory clearance.(27) However, studies did not evaluate whether the RNA present in feces represents infecting virus or only viral residues, with no capacity to infect. These data lead us to doubt whether the PCR test in feces of patients with COVID-19 should be done routinely or not. Therefore, further studies should be concerned and evaluate this issue, as possible fecal-oral transmission can have a major impact in developing countries that lack basic sanitation in many places.

Finally, the need for ICU admission ranged from 2.08% to 31.0%, and cases that had evolved to death from 0% to 17.65%. Several studies have commented on this, but only two presented with a significant difference between the presence of gastrointestinal symptoms and the need for ICU, or death.(8,21) Thus, the investigation of these patients with gastrointestinal symptoms since the onset of the infectious condition becomes very important, considering many of them, more than those without these symptoms, may develop a more serious disease and need ICU, or even progress to death.

The articles in this review have several limitations. In general, the evaluation of the symptoms was done differently among them, there may be underreporting of gastrointestinal symptoms, and few were carried out with patients outside China. Additionally, the design was retrospective and had small samples, many did not evaluate the presence of viral RNA in feces, did not include asymptomatic patients, the data were hospital data, and the follow-up of patients was short. Moreover, because this review includes different study designs, there is a risk that the meta-analyses and systematic reviews also contain some retrospective article and may have duplicate results. The various study designs, per se, are also a limitation of this review, since the ideal would be to use the same model.

COMMENTS

The high rates of SARS-CoV-2 infection worldwide have caused the World Health Organization to declare a pandemic in 2020. Therefore, information about this new disease is of extreme importance, both in terms of pathophysiology and prevalence, severity, risk factors, diagnosis, and treatment. With this effort, we realize that the gastrointestinal tract can be greatly influenced by the disease, causing specific symptoms (diarrhea, abdominal pain, nausea, and vomiting) and laboratory changes (mainly of hepatic enzymes). Health professionals should pay attention to this, keeping alert to the modifications that can help in the diagnosis, and initiate early treatment in order to avoid bad prognosis. However, the results of prevalence of the gastrointestinal symptoms were very different, presenting a variation from 6.8% to 61.3%. These symptoms were diarrhea (8.14% to 33.7%), nausea/vomiting (1.53% to 26.4%), anorexia (12.1% to 40.0%), and abdominal pain (0% to 14.5%). This important variation demands larger studies, with more patients and from various countries. As to the possibility of fecal-oral transmission, the presence of viral RNA was tested little, but was positive between 0% and 48.1%. These data also varied a lot, preventing any conclusion about them, but they should also be studied further so that preventive measures can be taken. The RNA of the virus in feces does not necessarily indicate that there is fecal-oral transmission, and its evaluation in new studies to know if this presence is infectious or not is very important.

REFERENCES

  • 1.Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7. [DOI] [PMC free article] [PubMed] [Google Scholar]; 1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. [DOI] [PMC free article] [PubMed]
  • 2.World Health Organization (WHO) WHO Coronavirus Disease (COVID-19) Dashboard [Internet] Geneva: World Health Organization (WHO); 2020. [cited 2020 May 31]. Available from: https://covid19.who.int/ [Google Scholar]; 2. World Health Organization (WHO). WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Geneva: World Health Organization (WHO); 2020 [cited 2020 May 31]. Available from: https://covid19.who.int/
  • 3.Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res. 2018;100:163–188. doi: 10.1016/bs.aivir.2018.01.001. Review. [DOI] [PMC free article] [PubMed] [Google Scholar]; 3. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res. 2018;100:163–88. Review. [DOI] [PMC free article] [PubMed]
  • 4.Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–455. doi: 10.1038/s41591-020-0820-9. [DOI] [PMC free article] [PubMed] [Google Scholar]; 4. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–5. [DOI] [PMC free article] [PubMed]
  • 5.Eder P, Łodyga M, Dobrowolska A, Rydzewska G, Kamhieh-Milz J. Addressing multiple gastroenterological aspects of COVID-19. Pol Arch Intern Med. 2020;130(5):420–430. doi: 10.20452/pamw.15332. Review. [DOI] [PubMed] [Google Scholar]; 5. Eder P, Łodyga M, Dobrowolska A, Rydzewska G, Kamhieh-Milz J. Addressing multiple gastroenterological aspects of COVID-19. Pol Arch Intern Med. 2020;130(5):420-30. Review. [DOI] [PubMed]
  • 6.Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831.e3–1833.e3. doi: 10.1053/j.gastro.2020.02.055. [DOI] [PMC free article] [PubMed] [Google Scholar]; 6. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-3. e3. [DOI] [PMC free article] [PubMed]
  • 7.Ding S, Liang TJ. Is SARS-CoV-2 Also an enteric pathogen with potential fecal-oral transmission: a covid-19 virological and clinical review. Gastroenterology. 2020:159153–159161. doi: 10.1053/j.gastro.2020.04.052. [DOI] [PMC free article] [PubMed] [Google Scholar]; 7. Ding S, Liang TJ. Is SARS-CoV-2 Also an enteric pathogen with potential fecal-oral transmission: a covid-19 virological and clinical review. Gastroenterology. 2020;159153-61. [DOI] [PMC free article] [PubMed]
  • 8.Sultan S, Altayar O, Siddique SM, Davitkov P, Feuerstein JD, Lim JK, Falck-Ytter Y, El-Serag HB. AGA Institute. Electronic address: ewilson@gastro.org. AGA Institute rapid review of the gastrointestinal and liver manifestations of covid-19, meta-analysis of international data, and recommendations for the consultative management of patients with COVID-19. Gastroenterology. 2020;159(1):320. e27–334. e27. doi: 10.1053/j.gastro.2020.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]; 8. Sultan S, Altayar O, Siddique SM, Davitkov P, Feuerstein JD, Lim JK, Falck-Ytter Y, El-Serag HB; AGA Institute. Electronic address: ewilson@gastro.org. AGA Institute rapid review of the gastrointestinal and liver manifestations of covid-19, meta-analysis of international data, and recommendations for the consultative management of patients with COVID-19. Gastroenterology. 2020;159(1):320-34.e27. [DOI] [PMC free article] [PubMed]
  • 9.Monkemuller K, Fry L, Rickes S. Covid-19, coronavirus, SARS-CoV-2 and the small bowel. Rev Esp Enferm Dig. 2020;112(4):383–388. doi: 10.17235/reed.2020.7137/2020. Review. [DOI] [PubMed] [Google Scholar]; 9. Monkemuller K, Fry L, Rickes S. Covid-19, coronavirus, SARS-CoV-2 and the small bowel. Rev Esp Enferm Dig. 2020;112(4):383–8. Review. [DOI] [PubMed]
  • 10.Platt AM, Mowat AMI. Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett. 2008;119(1–2):22–31. doi: 10.1016/j.imlet.2008.05.009. Review. [DOI] [PubMed] [Google Scholar]; 10. Platt AM, Mowat AMI. Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett. 2008;119(1–2):22–31. Review. [DOI] [PubMed]
  • 11.Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH, 2nd, Kazer SW, Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mead BE, Guo Z, Wang JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre JMS, Taylor CJ, Lin B, Waghray A, Mitsialis V, Dwyer DF, Buchheit KM, Boyce JA, Barrett NA, Laidlaw TM, Carroll SL, Colonna L, Tkachev V, Peterson CW, Yu A, Zheng HB, Gideon HP, Winchell CG, Lin PL, Bingle CD, Snapper SB, Kropski JA, Theis FJ, Schiller HB, Zaragosi LE, Barbry P, Leslie A, Kiem HP, Flynn JL, Fortune SM, Berger B, Finberg RW, Kean LS, Garber M, Schmidt AG, Lingwood D, Shalek AK, Ordovas-Montanes J. HCA Lung Biological Network. Electronic address: lung-network@humancellatlas.org; HCA Lung Biological Network. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016. e19–1035. e19. doi: 10.1016/j.cell.2020.04.035. [DOI] [PMC free article] [PubMed] [Google Scholar]; 11. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH 2nd, Kazer SW, Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mead BE, Guo Z, Wang JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre JMS, Taylor CJ, Lin B, Waghray A, Mitsialis V, Dwyer DF, Buchheit KM, Boyce JA, Barrett NA, Laidlaw TM, Carroll SL, Colonna L, Tkachev V, Peterson CW, Yu A, Zheng HB, Gideon HP, Winchell CG, Lin PL, Bingle CD, Snapper SB, Kropski JA, Theis FJ, Schiller HB, Zaragosi LE, Barbry P, Leslie A, Kiem HP, Flynn JL, Fortune SM, Berger B, Finberg RW, Kean LS, Garber M, Schmidt AG, Lingwood D, Shalek AK, Ordovas-Montanes J; HCA Lung Biological Network. Electronic address: lung-network@humancellatlas.org; HCA Lung Biological Network. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016-35. e19. [DOI] [PMC free article] [PubMed]
  • 12.Leung JM, Yang CX, Tam A, Shaipanich T, Hackett TL, Singhera GK, et al. ACE-2 expression in the small airway epithelia of smokers and COPD Patients: Implications for COVID-19. Eur Respir J. 2020;55(5):2000688–2000688. doi: 10.1183/13993003.00688-2020. [DOI] [PMC free article] [PubMed] [Google Scholar]; 12. Leung JM, Yang CX, Tam A, Shaipanich T, Hackett TL, Singhera GK, et al. ACE-2 expression in the small airway epithelia of smokers and COPD Patients: Implications for COVID-19. Eur Respir J. 2020;55(5):2000688. [DOI] [PMC free article] [PubMed]
  • 13.Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142–108142. doi: 10.1016/j.diabres.2020.108142. [DOI] [PMC free article] [PubMed] [Google Scholar]; 13. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142. [DOI] [PMC free article] [PubMed]
  • 14.Fosbøl EL, Butt JH, Østergaard L, Andersson C, Selmer C, Kragholm K, et al. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with covid-19 diagnosis and mortality. JAMA. 2020;324(2):168–177. doi: 10.1001/jama.2020.11301. [DOI] [PMC free article] [PubMed] [Google Scholar]; 14. Fosbøl EL, Butt JH, Østergaard L, Andersson C, Selmer C, Kragholm K, et al. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with covid-19 diagnosis and mortality. JAMA. 2020; 324(2):168-77. [DOI] [PMC free article] [PubMed]
  • 15.Li J, Wang X, Chen J, Zhang H, Deng A. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol. 2020;5(7):825–830. doi: 10.1001/jamacardio.2020.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]; 15. Li J, Wang X, Chen J, Zhang H, Deng A. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol. 2020;5(7):825-30. [DOI] [PMC free article] [PubMed]
  • 16.Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601–604. doi: 10.1080/22221751.2020.1739565. [DOI] [PMC free article] [PubMed] [Google Scholar]; 16. Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601-4. [DOI] [PMC free article] [PubMed]
  • 17.Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17:613–620. doi: 10.1038/s41423-020-0400-4. [DOI] [PMC free article] [PubMed] [Google Scholar]; 17. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17:613-20. [DOI] [PMC free article] [PubMed]
  • 18.Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002–1009. doi: 10.1136/gutjnl-2020-320926. [DOI] [PMC free article] [PubMed] [Google Scholar]; 18. Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002-9. [DOI] [PMC free article] [PubMed]
  • 19.Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020;69:997–1001. doi: 10.1136/gutjnl-2020-321013. [DOI] [PubMed] [Google Scholar]; 19. Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020;69:997-1001. [DOI] [PubMed]
  • 20.Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China. Am J Gastroenterol. 2020;115(5):766–773. doi: 10.14309/ajg.0000000000000620. [DOI] [PMC free article] [PubMed] [Google Scholar]; 20. Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China. Am J Gastroenterol. 2020;115(5)766-73. [DOI] [PMC free article] [PubMed]
  • 21.Wan Y, Li J, Shen L, Zou Y, Hou L, Zhu L, et al. Enteric involvement in hospitalised patients with COVID-19 outside Wuhan. Lancet Gastroenterol Hepatol. 2020;5(6):534–535. doi: 10.1016/S2468-1253(20)30118-7. [DOI] [PMC free article] [PubMed] [Google Scholar]; 21. Wan Y, Li J, Shen L, Zou Y, Hou L, Zhu L, et al. Enteric involvement in hospitalised patients with COVID-19 outside Wuhan. Lancet Gastroenterol Hepatol. 2020;5(6):534-5. [DOI] [PMC free article] [PubMed]
  • 22.Redd WD, Zhou JC, Hathorn KE, McCarty TR, Bazarbashi AN, Thompson CC, et al. Prevalence and characteristics of gastrointestinal symptoms in patients with SARS-CoV-2 infection in the United States: a multicenter cohort study. Gastroenterology. 2020;159(2):765. e2–767. e2. doi: 10.1053/j.gastro.2020.04.045. [DOI] [PMC free article] [PubMed] [Google Scholar]; 22. Redd WD, Zhou JC, Hathorn KE, McCarty TR, Bazarbashi AN, Thompson CC, et al. Prevalence and characteristics of gastrointestinal symptoms in patients with SARS-CoV-2 infection in the United States: a multicenter cohort study. Gastroenterology. 2020;159(2):765-7. e2. [DOI] [PMC free article] [PubMed]
  • 23.Nobel YR, Phipps M, Zucker J, Lebwohl B, Wang TC, Sobieszczyk ME, et al. Gastrointestinal symptoms and COVID-19: case-control study from the United States. Gastroenterology. 2020;159(1):373. e2–375. e2. doi: 10.1053/j.gastro.2020.04.017. [DOI] [PMC free article] [PubMed] [Google Scholar]; 23. Nobel YR, Phipps M, Zucker J, Lebwohl B, Wang TC, Sobieszczyk ME, et al. Gastrointestinal symptoms and COVID-19: case-control study from the United States. Gastroenterology. 2020;159(1):373-5. e2. [DOI] [PMC free article] [PubMed]
  • 24.Cholankeril G, Podboy A, Aivaliotis VI, Tarlow B, Pham EA, Spencer S, et al. High prevalence of concurrent gastrointestinal manifestations in patients with SARS-CoV-2: early experience from California. Gastroenterology. 2020;159(2):775–777. doi: 10.1053/j.gastro.2020.04.008. [DOI] [PMC free article] [PubMed] [Google Scholar]; 24. Cholankeril G, Podboy A, Aivaliotis VI, Tarlow B, Pham EA, Spencer S, et al. High prevalence of concurrent gastrointestinal manifestations in patients with SARS-CoV-2: early experience from California. Gastroenterology. 2020;159(2):775-7. [DOI] [PMC free article] [PubMed]
  • 25.Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–1741. doi: 10.1111/all.14238. [DOI] [PubMed] [Google Scholar]; 25. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730-41. [DOI] [PubMed]
  • 26.Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X. Effect of gastrointestinal symptoms on patients infected with COVID-19. Gastroenterology. 2020;158(8):2294–2297. doi: 10.1053/j.gastro.2020.03.020. [DOI] [PMC free article] [PubMed] [Google Scholar]; 26. Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X. Effect of gastrointestinal symptoms on patients infected with COVID-19. Gastroenterology. 2020; 158(8):2294-7. [DOI] [PMC free article] [PubMed]
  • 27.Cheung KS, Hung IF, Chan PP, Lung KC, Tso E, Liu R, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology. 2020;159(1):81–95. doi: 10.1053/j.gastro.2020.03.065. [DOI] [PMC free article] [PubMed] [Google Scholar]; 27. Cheung KS, Hung IF, Chan PP, Lung KC, Tso E, Liu R, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology. 2020;159(1):81-95. [DOI] [PMC free article] [PubMed]
  • 28.Cao Y, Liu X, Xiong L, Cai K. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Med Virol. 2020 Apr 03; doi: 10.1002/jmv.25822. Review. [DOI] [PMC free article] [PubMed] [Google Scholar]; 28. Cao Y, Liu X, Xiong L, Cai K. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Med Virol. 2020 Apr 3:10.1002/jmv.25822. Review. [DOI] [PMC free article] [PubMed]
  • 29.Li L, Huang T, Wang Y, Wang Z, Liang Y, Huang T, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577–583. doi: 10.1002/jmv.25757. Review. [DOI] [PMC free article] [PubMed] [Google Scholar]; 29. Li L, Huang T, Wang Y, Wang Z, Liang Y, Huang T, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577-83. Review. [DOI] [PMC free article] [PubMed]
  • 30.Cipriano M, Ruberti E, Giacalone A. Gastrointestinal infection could be new focus for coronavirus diagnosis. Cureus. 2020;12(3):e7422. doi: 10.7759/cureus.7422. [DOI] [PMC free article] [PubMed] [Google Scholar]; 30. Cipriano M, Ruberti E, Giacalone A. Gastrointestinal infection could be new focus for coronavirus diagnosis. Cureus. 2020;12(3)e7422. [DOI] [PMC free article] [PubMed]
  • 31.Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. Individual variation of the SARS-CoV2 receptor ACE2 gene expression and regulation. Aging Cell. 2020;19(7):e13168. doi: 10.1111/acel.13168. [DOI] [PMC free article] [PubMed] [Google Scholar]; 31. Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. Individual variation of the SARS-CoV2 receptor ACE2 gene expression and regulation. Aging Cell. 2020; 19(7):e13168. [DOI] [PMC free article] [PubMed]
Einstein (Sao Paulo). 2020 Nov 5;18:eRW5909. [Article in Portuguese]

COVID-19 e o trato gastrintestinal: o que já sabemos?

Joana Ferro Machado de Almeida 1,, Ethel Zimberg Chehter 1

RESUMO

Com quase 17,5 milhões de infectados e 700 mil mortos até o início de agosto no mundo, a pandemia do novo coronavírus está marcando o ano de 2020. O agente causador da doença é o vírus SARS-CoV-2, e a transmissão é por via respiratória. Os infectados podem ser assintomáticos, apresentar sintomas típicos (febre, tosse seca e dispneia), sintomas gastrintestinais (diarreia, náusea, vômito e dor abdominal) e RNA viral nas fezes. O objetivo deste trabalho foi revisar a literatura relacionada com a prevalência dos sintomas gastrintestinais, e verificar se é possível a transmissão fecal-oral da doença. Fizemos uma pesquisa na base de dados PubMed® sobre a COVID-19 e o trato gastrintestinal, selecionando artigos pelo método PRISMA. Eliminamos artigos com base em títulos e resumos, quantidade pequena de pacientes e sobre mecanismo de infecção, restando 14 estudos. Comorbidades e alterações laboratoriais (elevação de aminotransferases hepáticas e bilirrubina) foram relacionadas com piora da doença. A prevalência de sintomas gastrintestinais variou entre 6,8% e 61,3%, sendo eles diarreia (8,14% a 33,7%), náusea/vômito (1,53% a 26,4%), anorexia (12,1% a 40,0%) e dor abdominal (0% a 14,5%). A presença do RNA viral foi pouco testada, mas foi positiva entre 0% a 48,1%. O trato gastrintestinal é muito acometido pela COVID-19, provocando sintomas específicos, alterações laboratoriais e presença viral nas fezes. Contudo, os resultados de prevalência e a possibilidade de transmissão fecal-oral foram variados, necessitando de estudos maiores para conclusões mais assertivas. É importante a atenção de profissionais da saúde a isso, visto que essas alterações podem ajudar no diagnóstico e a iniciar tratamento precoce.

Descritores: SARS-CoV-2, Betacoronavírus, Infecções por coronavírus, COVID-19, Trato gastrointestinal, Doenças gastrointestinais/etiologia

INTRODUÇÃO

Em dezembro de 2019, foram identificados os primeiros casos de pacientes infectados com o novo coronavírus em Wuhan, na China.(1) O ano de 2020 está sendo marcado pela pandemia da doença pelo coronavírus 2019 (COVID-19), causando grande impacto na saúde pública e na economia de diversos países. Em 1º de agosto, segundo o site da Organização Mundial da Saúde (OMS), havia 17.396.943 casos acumulados e 675.060 mortes no mundo. O país com maior número de infectados e mortes é os Estados Unidos, com 4.456.389 e 151.265, respectivamente. No Brasil, esses números eram de 2.610.102 casos e 91.263 mortes.(2)

O vírus, chamado de coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2), é o sétimo coronavírus que, sabidamente, infecta humanos. Os demais são o coronavírus da síndrome respiratória aguda grave (SARS-CoV), cuja epidemia ocorreu em 2003, e o coronavírus da síndrome respiratória do Oriente Médio (MERS-CoV), cuja epidemia ocorreu no Oriente Médio em 2012, os quais causam doença severa, e HKU1, NL63, OC43 e 229E, que provocam sintomas leves. O SARS-CoV-2 é um vírus RNA encapsulado da ordem Nidovirales, família Coronaviridae, subfamília Coronavirinae, gênero Beta.(3) Provavelmente, o SARS-CoV-2 foi originado de morcegos e transmitido para humanos por meio de outro animal.(4) A principal via de transmissão é respiratória, por meio de contato com gotículas, aerossóis e superfícies contaminadas.(5)

Os sintomas típicos da doença são febre, tosse seca, dispneia, cefaleia, anosmia, disgeusia e pneumonia, mas ela também pode ser assintomática. Pode provocar insuficiência respiratória progressiva, por meio de lesão alveolar, podendo levar à morte.(1,6) Entretanto, diversos estudos apontam que os pacientes podem apresentar sintomas relacionados com o trato gastrintestinal (TGI) e a presença do vírus em células epiteliais do TGI e de seu RNA nas fezes. Com base nisso, uma possível transmissão oral-fecal da doença é apontada.(6,7) Os principais sintomas gastrintestinais são diarreia, náusea, vômitos e dor abdominal.(8)

O vírus SARS-CoV-2 utiliza a enzima conversora de angiotensina 2 (ECA2) como receptor para sua entrada nas células. Ele infecta principalmente as células pulmonares, mas pode ter acometimento gastrintestinal, que também possui receptores ECA2 na borda em escova da mucosa intestinal.(6) Além disso, o vírus é liberado na parte apical das células pulmonares. Com isso, ele é arrastado pelo movimento mucociliar e pode ganhar o TGI. Esses receptores ECA2 agem diminuindo a ação do sistema renina-angiotensina-aldosterona, ao metabolizar a angiotensina 2. Em níveis séricos altos, a angiotensina 2 tem efeitos nos sistemas cardiovascular, renal e respiratório, podendo causar hipertensão crônica e falência renal e pulmonar. O vírus SARS-CoV-2 provoca downregulation (regulação negativa) e bloqueio desses receptores ECA2, explicando o quadro clínico de falência pulmonar e síndrome de dificuldade respiratória do adulto em alguns pacientes infectados.(9)

A superfície viral possui glicoproteínas S (Spike), que precisam ser separadas em domínios S1 e S2, para que o vírus consiga aderir à membrana celular. Furina e serina protease transmembrana (TMPRSS2) são substâncias que possibilitam essa separação. Assim, a S1 se liga ao receptor ECA2 e a S2 à membrana celular, possibilitando a entrada do vírus na célula por meio de endocitose. Furina e TMPRSS2 são enzimas presentes nas células do intestino delgado, sendo que a primeira também tem ação na ativação de toxinas de alguns microrganismos.(7,9)

A ECA2 da mucosa intestinal está associada com o transportador de aminoácidos B0AT1 e regula a flora intestinal. Isso ocorre porque esse transportador permite a absorção de triptofano, que estimula a via mTOR a produzir peptídeos antimicrobianos. Assim, a infecção pelo SARS-CoV-2 altera a quantidade e bloqueia os receptores ECA2 na borda em escova, causando deficiência de triptofano e menor produção de peptídeos antimicrobianos, podendo causar alteração do microbioma intestinal e inflamação.(7,9)

Pacientes com COVID-19 apresentam grande reação inflamatória, causada pela chamada tempestade de citocinas, que pode ser originada ou potencializada pelo TGI. O intestino delgado possui a maior quantidade de tecido linfoide do organismo, com placas de Peyer, linfonodos mesentéricos e folículos linfoides ao longo do intestino. Os intestinos também possuem, na mucosa e abaixo da lâmina própria, grande população de células T ativadas, células plasmáticas, mastócitos, células dendríticas e macrófagos. No cenário de uma infecção como a COVID-19, há liberação exagerada de citocinas, que promovem o recrutamento de diversas células, causando grande processo inflamatório.(9,10) Estudos apontam que o interferon e a infecção pelo vírus influenza (indutor da via de interferon) podem estar relacionados com aumento de transcrição de ECA2.(11) Fumantes e pacientes com doença pulmonar obstrutiva crônica (DPOC) também têm maior expressão de receptores ECA2.(12) Além disso, diabetes e hipertensão têm sido associados com polimorfismos do gene da ECA2.(7)

Medicamentos utilizados no tratamento de hipertensão, como inibidores da ECA (IECA) e bloqueadores dos receptores de angiotensina (BRA), reduzem inflamação pela diminuição de citocinas. Além disso, eles podem aumentar a expressão da ECA2.(13) Entretanto, o uso de IECA e BRA não foi associado com pior evolução clínica em pacientes com COVID-19. Assim, recomenda-se a manutenção do uso desses medicamentos em pacientes hipertensos.(14,15)

Enquanto os vírus SARS-CoV e SARS-CoV-2 utilizam a ECA2 como mediadora para entrar nas células, o MERS-CoV utiliza a dipeptidil-peptidase 4 (DPP4).(7) Por serem vírus da mesma família, alguns autores passaram a estudar se a DPP4 também está envolvida no mecanismo de infecção da nova doença. De acordo com Vankadari et al., o domínio S1 da glicoproteína de membrana do SARS-CoV-2, além de interagir com a ECA2, que é a principal porta de entrada para o novo vírus, pode ter relação com a DPP4.(16) Entretanto, estudo de Tai et al., verificou que o vírus não se ligou a células 293T que expressavam apenas DPP4. Essa ligação ocorreu apenas em células 293T com ECA2.(17)

Diversos artigos sobre os sintomas da COVID-19 relacionados ao TGI e sua possível transmissão oral-fecal têm sido publicados, com resultados muito divergentes.

O objetivo deste estudo foi revisar a literatura relacionada com a prevalência dos sintomas gastrintestinais e verificar se há a possibilidade de transmissão fecal-oral da doença.

MÉTODOS

A base de dados escolhida para esse trabalho foi o PubMed®. No dia 5 de maio de 2020, procuramos artigos com as palavras “COVID-19” ou “SARS-CoV-2” e “TGI” ou “gastrointestinal” ou “entérico”. Dessa pesquisa, resultaram 179 artigos. Os critérios de inclusão desses estudos nesta revisão foram preenchimento dos critérios de elegibilidade (artigos que abordassem a infecção pelo SARS-CoV-2 e sintomas do TGI), artigos em inglês e amostragem com mais de 50 pacientes. Já os critérios de exclusão foram desenho de estudo de relatos de casos, revisões sobre o mecanismo de infecção e o vírus, manuais de recomendações de procedimentos relacionados com o TGI em pacientes infectados, artigos em idiomas diferentes do inglês e com menos de 50 pacientes avaliados. A figura 1 mostra o diagrama Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) realizado com base em leitura de títulos e resumos; 161 artigos foram eliminados, restando 18 artigos. Um último artigo foi adicionado posteriormente. Desses 19 artigos, quatro eram revisões sobre o vírus e seu mecanismo de infecção, sendo desconsiderados. Por fim, foi eliminado um estudo que incluíra apenas dez pacientes. Com isso, essa revisão foi feita com 14 artigos, sendo quatro metanálises, uma revisão sistemática e nove retrospectivos. Essa análise dos artigos foi feita inicialmente pelo autor, mas a eleição final contou também com um revisor sênior. Devido à pouca quantidade de estudos grandes relacionados a esse assunto e à importância e à urgência do tema, foram incluídas diversas variações de desenhos de estudo. As informações sobre país de origem, média de idade, diferentes comorbidades, sintomas típicos (febre, tosse, dispneia, entre outros), sintomas gastrintestinais (diarreia, náusea, vômito e dor abdominal) e presença de RNA viral nas fezes, quando citadas, foram incluídas neste estudo para análise.

Figura 1. Diagrama Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Figura 1

RESULTADOS

Em relação aos estudos retrospectivos, três foram feitos apenas com pacientes dos Estados Unidos e seis da China. A revisão sistemática incluiu vários estudos conduzidos na China. Sobre as metanálises, duas incluíram estudos realizados apenas na China e duas avaliaram diversos países. As tabelas 1 a 3 apresentam os dados gerais, sintomas típicos e sintomas gastrintestinais de pacientes com COVID-19 dos estudos retrospectivos, respectivamente. A tabela 4 apresenta os sintomas dos pacientes com a doença nas metanálises.

Tabela 1. Dados gerais dos pacientes com COVID-19 dos nove estudos retrospectivos.

Jin et al.(18) Lin et al.(19) Pan et al.(20)
Com sintomas GI Sem sintomas GI Valor de p Total Com sintomas GI Sem sintomas GI Valor de p Total Com sintomas GI Sem sintomas GI Valor de p
Pacientes 74 577 95 58 37 204 103 101
Idade 46,14±14,19 45,09±14,45 0,559 43,3±18,3 48,0±17,1 41,1±19,5 0,073 52,91±15,98 52,21±15,92 53,61±16,10 0,533
Sexo H: 37/74 (50,0) M: 37/74 (50,0) H: 294/577 (51) M: 283/577 (49) H: 0,902 H: 45/95 (47,4) M: 50/95 (52,6) H: 27/58 (46,6) M: 31/58 (53,4) H: 18/37 (48,6) M: 19/37 (51,4) M: 0,84 H: 107/204 (52,5) M: 97/204 (47,5) H: 55/103 (53,4) M: 48/103 (46,6) H: 52/101 (51,5) M: 49/101 (48,5) 0,784
IMC, kg/m2
Tabaco 3/74 (4,23) 38/577 (6,59) 0,610 6/95 (6,3) 5/58 (8,6) 1/37 (2,7) 0,40
Álcool 9/95 (9,5) 6/58 (10,3) 3/37 (8,1) 1,00
Alguma comorbidade 25/74 (33,78) 153/577 (26,52) 0,212
Doença coronariana
Insuficiência cardíaca congestiva
Arritmia
Hipertensão 12/74 (16,22) 88/577 (15,25) 0,864 16/95 (16,8) 10/58 (17,2) 6/37 (16,2) 0,90
Diabetes mellitus 7/74 (9,46) 41/577 (7,11) 0,477 6/95 (6,3) 3/58 (5,2) 3/27 (8,1) 0,67
Doença cerebrovascular 4/95 (4,2) 3/58 (5,2) 1/37 (2,7) 1,00
Doença pulmonar 0/74 (0) 1/577 (0,17) 1,00 5/95 (5,3) 1/58 (1,7) 4/37 (10,8) 0,074 9/204 (4,41) 7/103 (6,80) 2/101 (1,98) 0,182
Doença renal crônica 0/74 (0) 6/577 (1,04) 1,00 1/95 (1,1) 1/58 (1,7) 0/37 (0) 1,00
Doença hepática crônica 8/74 (10,81) 17/577 (2,95) 0,004 1/204 (0,97)
Câncer 0/74 (0) 6/577 (1,04) 1,00 5/95 (5,3) 4/58 (6,9) 1/37 (2,7) 0,65 13/204 (6,37) 8/103 (7,77) 5/101 (4,95) 0,410
Doença cardiovascular 1/74 (1,35) 4/577 (0,69) 0,454 44/204 (21,57) 23/103 (22,3) 21/101 (20,79) 0,789
Imunossupressão 0/74 (0) 1/577 (0,17) 1,00
RNA viral nas fezes 3/9 (33,33) 0/577 (0) 31/65 (47,7) 22/42 (52,4) 9/23 (39,1) 0,31
Suplementação de oxigênio
UTI 5/74 (6,76) 12/577 (2,08) 0,034 16/204 (7,84) 6/103 (5,94) 10/101 (9,90) 0,279
Ventilação mecânica 5/74 (6,76) 12/577 (2,08) 0,034
Morte 0/95 (0) 0/58 (0) 0/37 (0) 36/204 (17,65) 19/103 (18,45) 17/101 (16,83) 0,762
Wan et al.(21) Redd et al.(22) Nobel et al.(23) Cholankeril et al.(24)
Total Com sintomas GI Sem sintomas GI Valor de p Total Com sintomas GI Sem sintomas GI Valor de p Total Total
Pacientes 230 49 181 318 195 123 278 116
Idade 47,5 (36,8-60) 55 (40-65) 46 (36-57) 0,017 63,4±16,6 62,3±15,9 65,0±17,6 0,16 18-30: 31/278 (11) 50 (35-67)
31-50: 69/278 (25)
51-70: 103/278 (37)
>70: 75/278 (27)
Sexo H: 129/230 (56)
M: 101/230 (44)
H: 27/49 (55)
M: 22/49 (45)
H: 102/181 (56)
M: 79/181 (22)
0,87 H: 174/318 (54,7)
M: 144/318 (45,3)
H: 102/195 (52,3)
M: 93/195 (47,7)
H: 72/123 (58,6)
M: 51/123 (35,4)
M: 0,28 H: 145/278 (52)
M: 133/278 (48)
H: 62/116 (53,4)
M: 54/116 (46,6)
IMC, kg/m2 30,0±6,5 30,5±6,7 29,3±6,2 0,11 <25,0: 25/278 (9) 25,8 (23,2-31,5)
25,0-29,9: 43/278 (16)
≥30,0: 47/278 (17)
Sem avaliação: 165/278 (59)
Tabaco 35/318 (11,0) 23/195 (11,8) 12/123 (9,8) 0,57 Ex-fumante: 21 (23,3)Fumante: 3 (2,8)
Álcool 39/318 (12,3) 28/195 (14,4) 11/123 (8,9) 0,15
Alguma comorbidade 58/230 (25) 19/49 (39) 39/181 (22) 0,017
Doença coronariana 46/318 (14,5) 26/195 (13,3) 20/123 (16,3)
Insuficiência cardíaca congestiva 31/318 (9,8) 16/195 (8,3) 15/123 (12,2) 0,25
Arritmia 48/318 (15,1) 26/195 (13,3) 22/123 (17,9) 0,27
Hipertensão 40 (17) 188/318 (59,1) 111/195 (56,9) 77/123 (62,6) 0,32 32 (27,8)
Diabetes mellitus 11 (5) 105/318 (33,1) 62/195 (32,0) 43/123 (35,0) 0,58 19 (16,4)
Doença cerebrovascular 11/318 (3,5) 8/195 (4,1) 3/123 (2,4) 0,42
Doença pulmonar (%) 7 (3) 67/318 (21,1) 40/195 (20,5) 27/123 (22,0) 0,76 24 (20,7)
Doença renal crônica 40/318 (13,8) 20/195 (11,7) 20/123 (17,0) 0,20 4 (3,5)
Doença hepática crônica 6 (3) 3 (2,8)
Câncer 3 (1)
Doença cardiovascular 10 (4) 15 (12,9)
Imunossupressão 4 (4,3)
RNA viral nas fezes
Suplementação de oxigênio 44/49 (90) 143/181 (79) 0,10
UTI 15/49 (31) 20/181 (11) 0,0015 35/202 (17,5) 20 (15,4) 15 (21,4) 0,28 44/278 (16)
Ventilação mecânica 6/49 (12) 3/181 (2) 0,0036 26/202 (13,0) 14 (10,9) 12 (16,0) 0,22
Morte 4/49 (8) 2/181 (1) 0,020 32/202 (15,8) 16 (12,2) 16 (22,5) 0,06 9/278 (3,2)
Zhang et al.(25) Zhou et al.(26)
Total Total Total equipe médica Com sintomas
GI equipe médica
Sem sintomas
GI equipe médica
Valor de p Total não médicos Com sintomas GI não médicos Sem sintomas GI não médicos Valor de p
Pacientes 140 254 93 23 70 161 43 118
Idade 57 (25-87) 50 (36-65) 36 (31-41) 35 (30-40) 36 (31-42) 0,614 62 (49-69) 61 (49-67) 62 (49-70) 0,615
Sexo H: 71/140 (50,7)
M: 69/140 (49,3)
H: 115/254 (45,3)
M: 139/254 (54,7)
H: 32/93 (34)
M: 61/93 (66)
H: 6/23 (26)
M:17/23 (74)
H: 26/70 (37)
M:44/70 (63)
0,45 H: 83/161 (52)
M: 78/161 (48)
H: 16/43 (37)
M: 27/43 (63)
H: 67/118 (57)
M: 51/118 (43)
0,033
IMC, kg/m2
Tabaco Ex-fumante: 7/140 (5,0)
Fumante: 2/140 (1,4)
Álcool
Alguma comorbidade 90/140 (64,3)
Doença coronariana 7/140 (5,0) 17/254 (6,7) 2/93 (2,1) 0/23 (0) 2/70 (3) 1,00 15/161 (9) 6/43 (14) 9/118 (8) 0,231
Insuficiência cardíaca congestiva
Arritmia 5/140 (3,6)
Hipertensão 42/140 (30,0) 63/254 (24,8) 6/93 (6,4) 0/23 (0) 6/70 (9) 0,33 57/161 (35) 14/43 (33) 43/118 (36) 0,712
Diabetes mellitus 17/140 (12,1) 26/254 (10,2) 3/93 (3,2) 0/23 (0) 3/70 (4) 0,572 23/161 (14) 4/43 (9) 19/118 (16) 0,321
Doença cerebrovascular 3/140 (2,1) 13/254 (5,1) 1/93 (1,1) 0/23 (0) 1/70 (1) 1,00 12/161 (7) 3/43 (7) 9/118 (8) 1,00
Doença pulmonar 2/140 (1,4) 6/254 (2,4) 1/93 (1,1) 0/23 (0) 1/70 (1) 1,00 5/161 (3) 2/43 (5) 3/118 (3) 0,61
Doença renal crônica 2/140 (1,4)
Doença hepática crônica 3/254 (1,2) 1/93 (1,1) 0/23 (0) 1/70 (1) 1,00 2/161 (1) 0/43 (0) 2/118 (2) 1,00
Câncer 2/254 (0,8) 1/93 (1,1) 0/23 (0) 1/70 (1) 1,00 1/161 (1) 0/43 (0) 1/118 (1) 1,00
Doença cardiovascular
Imunossupressão 1/254 (0,4) 0/93 (0) 0/23 (0) 0/70 (0) 1/161 (1) 1/43 (2) 0/118 (0) 0,267
RNA viral nas fezes
Suplementação de oxigênio
UTI
Ventilação mecânica 18/254 (7) 5/93 (5,4) 1/23 (4,3) 4/70 (5,7) 1,00 13/161 (8) 2/43 (4,7) 11/118 (9,3) 0,516
Morte 16/254 (6,3) 2/93 (2,1) 1/23 (4,3) 1/70 (1,43) 0,435 14/161 (9) 3/43 (7) 11/118 (9,3) 0,457

Resultados expressos como n, média±desvio padrão, n/n total (%).

GI: gastrintestinal; H: homens; M: mulheres; IMC: índice de massa corporal; UTI: unidade de terapia intensiva.

Tabela 3. Sintomas gastrintestinais dos pacientes com COVID-19 dos nove estudos retrospectivos.

Jin et al.(18) Lin et al.(19) Pan L et al.(20) Wan et al.(21) Redd et al.(22) Nobel et al.(23) Cholankeril et al.(24) Zhang et al.(25) Zhou et al.(26)
Total Admissão Durante hospitalização Total Com sintomas GI equipe médica Com sintomas GI não médicos
Pacientes 651 95 204 230 318 278 116 140 254 23 43
Sintomas TGI 74/651 (11,4) 58/95 (61,1) 11/95 (11,6) 47/95 (49,5) 103/204 (50,5) 49/230 (21) 195/318 (61,3) 97/278 (35) 37 (31,9) 55/139 (39,6) 66/254 (26,0) 23/23 (100) 43/43 (100)
Diarreia 53/651 (8,14) 23/95 (24,2) 5/95 (5,3) 18/95 (18,9) 35/103 (33,98) 49/230 (21) 107/318 (33,7) 56/278 (20) 12 (10,3) 18/139 (12,9) 46/254 (18,1) 19/23 (86,6) 27/43 (62,8)
N/V N: 10/651 (1,53) N: 17/95 (17,9) N: 3/95 (3,2) N: 14/95 (14,7) V: 4/103 (3,88) N: 84/318 (26,4) 63/278 (23) 12 (10,3) N: 24/139 (17,3) N: 21/254 (8,3) N: 5/23 (21,7) N: 16/43 (37,2)
V: 11/651 (1,69) V: 4/95 (4,2) V: 0/95 (0) V: 4/95 (4,2) V: 49/318 (15,4) V: 7/139 (5,0) V: 15/254 (5,9) V: 1/23 (4,3) V: 14/43 (32,6)
Anorexia 17/95 (17,9) 5/95 (5,3) 12/95 (12,6) 81/103 (78,64) 110/318 (34,8) 22 (25,3) 17/139 (12,1)
Dor abdominal 2/95 (2,1) 0/95 (0) 2/95 (2,1) 2/103 (1,94) 3/230 (1) 46/318 (14,5) 10 (8,8) 8/139 (5,8) 3/254 (1,2) 0/23 (0) 3/43 (7,0)
Perda de peso 30/318 (9,4)
Melena 10/230 (4) 2/318 (0,63)
Refluxo 2/95 (2,1) 1/95 (1,1) 1/95 (1,1) 2/318 (0,63)
Disfagia 1/318 (0,31)
Odinofagia 1/318 (0,31)
Hematoquezia/HDA 2/95 (2,1) 0/95 (0) 2/95 (2,1) 1/318 (0,31)
Constipação 3/318 (0,94)

Resultados expressos como n ou n/n total (%).

GI: gastrintestinal; TGI: trato gastrintestinal; N: náusea; V: vômito; HDA: hemorragia digestiva alta.

Tabela 4. Sintomas típicos e gastrintestinais dos pacientes com COVID-19 das metanálises.

Sultan et al.(8) Cheung et al.(27) – metanálise Cheung et al.(27) – coorte de Hong Kong Cao et al.(28) Li et al.(29)
Pacientes 10.890 4.243 59 46.959 1.994
Idade 45,1 (IIQ: 41,0-54,8) 58,5 (IIQ: 43,5-68,0; range: 22-96) 46,62 (IC95%: 31,710-61,531)
Sexo H: 57,3 H: 27/59 (45,8) H: 55,6 (IC95%: 0,530-0,602) H: 60 (IC95%: 0,54-0,65)
Comorbidades 35,6 (IC95%: 0,267-0,444)
Sintomas GI Total: 17,6 (IC95%: 12,3-24,5) 15/59 (25,4) 6,8 (IC95%: 0,044-0,092)
60 estudos e 4.243 pacientes
China: 16,1 (IC95%: 10,9-23,0)
53 estudos e 4.198 pacientes
Outros países: 33,4 (IC95%: 15,2-58,3)
7 estudos e 45 pacientes
Anorexia 26,8 (IC95%: 16,2-40,8)
18 estudos
Náusea/vômito Total: 7,8 (7,1-8,5) 10,2 (IC95%: 6,6-15,3) 1/59 (1,7) 3,90
26 estudos e 5.955 pacientes 32 estudos
China: 5,2 (4,4-5,9)
19 estudos e 4.054 pacientes
Outros países: 14,9 (13,3-16,6)
7 estudos e 1.901 pacientes
Diarreia Total: 7,7 (7,2-8,2) 12,5 (IC95%: 9,6-16,0) 13/59 (22,0) 6,8 (IC95%: 0,044-0,092) 4,80
43 estudos e 10.676 pacientes
China: 5,8 (5,3-6,4)
32 estudos e 8.612 pacientes
Outros países: 18,3 (16,6-20,1)
11 estudos e 2.064 pacientes
Dor abdominal Total: 3,6 (3,0-4,3) 9,2 (IC95%: 5,7-14,5) 7/59 (11,9)
15 estudos e 4.031 pacientes 12 estudos
China: 2,7 (2,0-3,4)
10 estudos e 2.447 pacientes
Outros países: 5,3 (4,2-6,6)
5 estudos e 1.584 pacientes
PCR fezes 15/50 (30) 48,1% (IC95%: 38,33-57,94) 9/59 (15,3)
7/10 (70) 12 estudos e 138 pacientes
44/153 (29)
Febre 56/59 (94,9) 87,3 (IC95%: 0,838-0,909) 88,50
Tosse seca 22/59 (37,3) 58,1 (IC95%: 0,502-0,660) 68,60
Dor de garganta 12,0 (IC95%: 0,062-0,177)
Tosse produtiva 29,4 (IC95%: 0,171-0,417) 28,20
Dor no peito 31,2 (IC95%: −0,024-0,648)
Mialgia ou fadiga 35,5 (IC95%: 0,253-0,456) 35,80
Cefaleia ou tontura 9,4 (IC95%: 0,063-0,126) 12,20
Dispneia 4/59 (6,8) 38,2 (IC95%: 0,246-0,520) 21,90

IIQ: intervalo interquartil; IC: intervalo de confiança; H: homens; GI: gastrintestinal.

Tabela 2. Sintomas típicos dos pacientes com COVID-19 dos nove estudos retrospectivos.

Sintomas Jin et al.(18) Lin et al.(19) Pan et al.(20) Wan et al.(21) Redd et al.(22)
Com sintomas GI Sem sintomas GI Valor de p Total Total Com sintomas GI Sem sintomas GI Total Total Com sintomas GI Sem sintomas GI Valor de p
Pacientes 74 577 95 204 103 101 230 318 195 123
Febre 63/74 (85,14) >38,5°C: 29/74 (39,19) 482/577 (83,54) >38,5°C: 101/577 (17,50) 0,867 >38,5°C: <0,001 Sim 95/103 (92,23) 193/230 (84) 258/318 (81,3) 161/195 (82,6) 97/123 (78,9) 0,41
Fadiga 23/74 (31,08) 96/577 (16,64) 0,004 54/103 (52,42) 43 (19) 183/318 (57,5) 127/195 (65,1) 56/123 (45,5) 0,0006
Mialgia 10/74 (13,51) 61/577 (10,57) 0,430 15/103 (14,56) 123/318 (38,7) 96/195 (49,2) 27/123 (22,0) <0,0001
Calafrios 72/318 (22,6) 50/195 (25,6) 22/123 (17,9) 0,11
Diaforese 15/318 (4,7) 12/195 (6,2) 3/123 (2,4) 0,13
Artralgia 8/318 (2,5) 4/195 (2,1) 4/123 (3.3) 0,51
Tosse seca 53/74 (71,62) 382/577 (66,20) 0,431 159/230 (69) 247/318 (77,7) 156/195 (80,0) 91/123 (74,0) 0,21
Tosse produtiva 29/74 (39,19) 198/577 (34,32) 0,438 98/230 (43) 45/318 (14,2) 33/195 (16,9) 12/123 (9,8) 0,74
Dispneia 8/74 (10,81) 19/577 (3,30) 0,007 30 (13) 191/318 (60,1) 107/195 (54,9) 84/123 (68,3) 0,02
Dor de garganta 6/74 (8,11) 93/577 (16,12) 0,085 54/318 (17,0) 42/195 (21,5) 12/123 (9,8) 0,0064
Rinorreia 36/318 (11,4) 26/195 (13,4) 10/123 (8,1) 0,15
Obstrução nasal 2/74 (2,70) 35/577 (6,07) 0,419
Tontura
Anosmia 32/318 (10,1) 26/195 (13,3) 6/123 (4,9) 0,0146
Ageusia 24/318 (7,6) 21/195 (10,9) 3/123 (2,4) 0,0057
Cefaleia 16/74 (21,62) 51/577 (8,84) 0,002 19 (8)
Hemoptise 3/74 (4,05) 8/577 (1,39) 0,119 3 (1)
Sintomas Nobel et al.(23) Cholankeril et al.(24) Zhang et al.(25) Zhou et al.(26)
Total Total Total Total Total equipe médica Com sintomas GI equipe médica Sem sintomas GI equipe médica Valor de p Total não médicos Com sintomas GI não médicos Sem sintomas GI não médicos Valor de p
Pacientes 278 116 140 254 93 23 70 161 43 118
Febre 76,70 110/120 (91,7) 213/254 (83,9) 80/93 (86) 19/23 (83) 61/70 (87) 0,729 133/161 (82) 39/43 (91) 94/118 (80) 0,157
Fadiga 90/120 (75,0) 133/254 (52,4) 52/93 (56,) 12/23 (52) 40/70 (57) 0,809 81/161 (50) 29/43 (67) 52/118 (44) 0,012
Mialgia 52,50 86/254 (33,9) 41/93 (44,) 10/23 (44) 31/70 (44) 1 45/161 (28) 17/43 (40) 28/118 (24) 0.073
Calafrios
Diaforese
Artralgia
Tosse seca 94,8 90/120 (75,0) 98/254 (38,6) 41/93 (44) 7/23 (30) 34/70 (49) 0,152 57/161 (35) 14/43 (33) 43/118 (36) 0,712
Tosse produtiva 107/254 (42,1) 31/93 (33) 6/23 (26) 25/70 (36) 0,454 76/161 (47) 17/43 (40) 59/118 (50) 0,286
Dispneia 58 44/120 (36,7) 10/254 (3,9) 2/93 (2,1) 1/23 (4) 1/70 (1) 0,435 8/161 (5,0) 2/43 (5) 6/118 (5) 1,00
Dor de garganta 16/254 (6,3) 6/93 (6,4) 0/23 (0) 6/70 (9) 0,33 10/161 (6,2) 6/43 (14) 4/118 (3) 0,023
Rinorreia
Obstrução nasal
Tontura 18/254 (7,1) 10/93 (11) 4/23 (17) 6/70 (9) 0,256 8/161 (5,0) 5/43 (12) 3/118 (3) 0,032
Anosmia
Ageusia
Cefaleia
Hemoptise

Resultados expressos como n, média±desvio padrão, n/n total (%).

GI: gastrintestinal.

Jin et al., fizeram um estudo retrospectivo na China que analisou 651 pacientes (331 homens e 320 mulheres) confirmados com COVID-19 na província de Zhejiang, com média de idade de 46,14±14,19 anos. Destes, 74 (11,4%) apresentaram pelo menos um sintoma gastrintestinal como náusea, vômito e diarreia na admissão hospitalar. O sintoma gastrintestinal mais comum foi a diarreia (8,14%), com duração média de 4 dias, e a maioria dos casos foi autolimitada. Dos pacientes com sintomas gastrintestinais, 29 tiveram significativamente maiores taxas de febre >38,5°C (39,19% versus 17,50% dos sem sintomas gastrintestinais; p<0,001), 23 fadiga (31,08% versus 16,64%; p=0,004), oito dispneia (10,81% versus 3,30%; p=0,007) e 16 cefaleia (21,62% versus 8,84%; p=0,002). Também houve diferença significativa entre os pacientes com doença hepática crônica (10,81% com sintomas gastrintestinais versus 2,95% sem sintomas gastrintestinais; p=0,004) e gravidade da doença na admissão, com falência respiratória, choque e falência múltipla de órgãos com necessidade de ventilação mecânica e internação na unidade de terapia intensiva (UTI; 22,97% versus 8,14%; p<0,001). Em relação aos achados de exames, os níveis séricos de sódio foram menores nos pacientes com sintomas gastrintestinais (137,65mmol/L versus 138,33mmol/L; p=0,016), tendendo a ter doença mais grave, e a aspartato aminotransferase (AST) teve taxa maior nesses pacientes (29,35U/L versus 24,4U/L; p=0,02). Pacientes com sintomas gastrintestinais tiveram mais complicações significativas durante o tratamento, como evolução para SARS com necessidade de internação em UTI (6,67% versus 2,08%; p=0,034) e lesão hepática (17,57% versus 8,84%; p=0,035), do que os sem sintomas gastrintestinais. A presença do RNA do vírus nas fezes foi detectada em poucos pacientes, apenas em três de nove pacientes com sintomas gastrintestinais. Pela pequena amostra, não avaliaram as implicações da transmissão oral-fecal, precisando de mais investigação. Entretanto, vale lembrar que esse estudo possui algumas limitações, pois não era de coorte e não identificou os pacientes com sintomas gastrintestinais que não tinham os sintomas típicos de tosse e febre.(18)

No estudo de Lin et al., com 95 pacientes (50 mulheres e 45 homens) de Zhuhai, China, com COVID-19 e média de idade 45,3±18,3 anos, 58 (61,0%) apresentaram sintomas gastrintestinais, sendo que 11 (11,6%) foram na admissão hospitalar e 47 (49,5%) durante a internação. Esses últimos provavelmente tiveram o quadro agravado pelo uso de medicamentos como antibióticos. Os principais sintomas gastrintestinais foram diarreia, anorexia e náusea, em 24,2%, 17,9% e 17,9%, respectivamente. A presença do RNA do vírus nas fezes foi testada em 65 pacientes (42 com e 23 sem sintomas gastrintestinais), sendo positiva em 22 (52,4%) dos que tinham sintomas gastrintestinais, e nove (39,1%) dos que não tinham. A presença do RNA do vírus nas fezes não indica necessariamente sintomas gastrintestinais mais severos, pois não mostrou diferença significativa entre os dois grupos (p=0,31). Entretanto, a presença do vírus no tecido indicou doença mais grave. Ao todo, seis pacientes foram submetidos à endoscopia (dois severos e quatro não severos), e um apresentou sangramento no esôfago com úlceras e erosões. Os dois pacientes severos também foram submetidos à proctoscopia, e o RNA do vírus foi detectado no esôfago, no estômago, no duodeno e no reto desses pacientes. Dos pacientes não severos, apenas um teve a presença do RNA viral no duodeno. O estudo conclui que o TGI pode ser uma potencial rota de transmissão e órgão-alvo para o SARS-CoV-2, e os sintomas gastrintestinais não podem ser subestimados.(19)

De acordo com o estudo descritivo, transversal, multicêntrico (três hospitais de Hubei, na China) de Pan et al., com 204 pacientes, sendo 107 homens, com média de idade de 52,91±15,98 anos, 103 (50,5%) relataram algum sintoma gastrintestinal, como falta de apetite (81; 78,6%), diarreia (35; 34,0%), vômitos (4; 3,9%) e dor abdominal (2; 1,9%). Se eliminarmos a falta de apetite, foram 38 (18,6%) pacientes com sintomas gastrintestinais. Seis pacientes (3%) relataram apenas sintomas digestivos. Foi observado que, com o aumento da severidade da doença, os sintomas gastrintestinais se tornaram mais pronunciados. Pacientes com sintomas gastrintestinais tiveram mais anormalidades laboratoriais, como elevação de alanina aminotransferase (ALT; 42,24U/L versus 29,53U/L; p=0,011) e AST (35,12U/L versus 27,48U/L; p=0,032), diminuição na contagem de monócitos (0,39x109/L versus 0,46x109/L; p=0,021), aumento do tempo de protrombina (13,13 segundos versus 12,53 segundos; p=0,024) e receberam mais antimicrobianos durante o tratamento (76,70% versus 61,39%; p=0,018), quando comparados com os sem sintomas gastrintestinais. Desse modo, esses pacientes tiveram mais chance de sofrer lesão hepática. Porém, algumas limitações devem ser consideradas, já que este foi um estudo retrospectivo, com amostra pequena e não testou a presença do SARS-CoV-2 nas fezes dos pacientes.(20)

Wan et al., fizeram um estudo retrospectivo multicêntrico com 14 hospitais na China, e mostraram que os sintomas gastrintestinais são comuns em paciente com COVID-19. De 230 pacientes com a doença, 129 eram homens, com média de idade 47,5 anos, e diarreia foi observada em 49 (21%) deles. Outros sintomas gastrintestinais, como dor abdominal (3,1%) e melena (10,4%), também foram relatados. Esses pacientes com diarreia tinham mais comorbidades (39% versus 22%; p=0,017), idade mais avançada (55 anos versus 46 anos; p=0,017) e apresentaram sintomas mais severos de problemas respiratórios, com necessidade de UTI (31% versus 11%; p=0,0015), ventilação mecânica (12% versus 2%; p=0,0036) e morte (8% versus 1%; p=0,020). O estudo não tem dados de pacientes assintomáticos, o que pode superestimar a prevalência dos sintomas gastrintestinais na COVID-19.(21)

Um estudo de coorte feito por Redd et al., em nove hospitais em Massachusetts, Estados Unidos, avaliou a presença de sintomas gastrintestinais em 318 pacientes adultos (174 homens) com COVID-19 na admissão hospitalar e média de idade 63,4±16,6 anos. Apresentaram sintomas gastrintestinais na admissão 195 pacientes (61,3%), dentre os quais anorexia (110; 34,8%), diarreia (107; 33,7%), náusea (84; 26,4%) e vômito (49; 15,4%). Os sintomas gerais que foram associados significativamente com os gastrintestinais em relação aos pacientes sem sintomas gastrintestinais, foram fadiga (65,1% versus 45,5%; p=0,0006), mialgia (49,2% versus 22,0%; p<0,0001), dor de garganta (21,5% versus 9,8%; p=0,0064), anosmia (13,3% versus 4,9%; p=0,0146) e ageusia (10,9% versus 2,4%; p=0,0057). Um subgrupo de 202 pacientes precisou de hospitalização até a finalização do artigo em questão, sendo que 35 (17,5%) foram para a UTI, 26 (13,0%) precisaram de ventilação mecânica e 32 (15,8%) foram a óbito, mas não foi observada diferença significativa com piora do quadro clínico em pacientes com e sem sintomas gastrintestinais. As limitações do estudo foram ser um desenho retrospectivo, faltar instrumentos de validação de sintomas, focar apenas em dados hospitalares e o fato de terem sido excluídos pacientes ambulatoriais com doença menos severa. Além disso, o artigo não avaliou a presença do vírus nas fezes desses pacientes.(22)

Nobel et al., fizeram estudo retrospectivo de caso controle que comparou os sintomas de 278 pacientes positivos para SARS-CoV-2 com 238 pacientes negativos nos Estados Unidos. Os sintomas gastrintestinais considerados foram diarreia ou náusea/vômito. Eles encontraram diferença significativa entre a presença de sintomas gastrintestinais em pacientes com e sem COVID-19 (p=0,04). A presença desses sintomas foi associada a um risco maior de 70% de ter COVID-19. Entre os pacientes com COVID-19, (97; 35%) apresentaram sintomas gastrintestinais, sendo estes diarreia (56; 20%) e náusea/vômito (63; 23%). Pacientes com sintomas gastrintestinais tiveram duração maior da doença quando comparados com os sem esses sintomas (33% versus 22%; p=0,048). As limitações do estudo foram curto período de acompanhamento dos pacientes, estudo retrospectivo e a identificação dos sintomas gastrintestinais ter sido dependente de documentação bem feita. Esse artigo também não avaliou a presença do vírus nas fezes dos pacientes.(23)

Em um estudo de coorte de Cholankeril et al., em uma instituição dos Estados Unidos, os sintomas gastrintestinais foram relatados em 31,9% (97) dos pacientes com COVID-19, sendo os sintomas mais comuns perda de apetite (22; 25,3%), náusea/vômitos (12; 10,3%) e diarreia (12; 10,3%). Foram incluídos no estudo 116 pacientes com COVID-19, sendo a maioria do sexo masculino (53,4%) e com média de idade de 50 anos. Nenhum paciente apresentou sintomas gastrintestinais isolados como manifestação inicial. A duração média dos sintomas gastrintestinais foi de 1 dia, sendo significativamente menor que a duração dos sintomas respiratórios (p<0,001). Elevação de AST esteve correlacionada com a severidade da doença (p=0,009). Esse estudo apresentou limitações, como pacientes de apenas instituição (tendência regional), o fato de a documentação dos sintomas extrapulmonares poder estar incompleta e o diagnóstico de COVID-19 ter sido feito apenas em pacientes com sintomas respiratórios. O artigo não avaliou a presença do vírus nas fezes desses pacientes.(24)

Para Zhang et al., que estudaram em 140 pacientes da China com COVID-19, 39,6% deles apresentaram sintomas gastrintestinais. Nesse estudo, a proporção entre homens e mulheres foi praticamente a mesma, e a média de idade foi de 57,0 anos. Os principais sintomas foram febre (91,7%), tosse (75,0%) e fadiga (75,0%). Eles apontam que eosinopenia com ou sem linfopenia em pacientes com sintomatologia e alterações radiológicas pode ser um potencial indicador para diagnóstico da COVID-19. Além disso, encontraram que doenças alérgicas, asma e doença pulmonar obstrutiva crônica (DPOC) não são fatores de risco para infecção por SARS-CoV-2, mas estudos com amostras maiores são necessários para confirmar esses achados. Idade avançada (p<0,001), comorbidades (p=0,002) e anormalidades laboratoriais estão associadas com severidade da doença. Essas alterações laboratoriais são altos valores de dímero D (p<0,001), proteína C-reativa (p<0,001), procalcitonina (p<0,001) e leucopenia (p<0,014). Nesse estudo, pacientes com DPOC e fumantes apresentaram menor risco de serem infectados pelo SARS-CoV-2, mas a evolução do quadro nesses pacientes foi mais severa. Entretanto, a relação com fumantes com COVID-19 ainda é incerta. Fumantes e pacientes com DPOC são mais suscetíveis a infecções pelo MERS-CoV, pois o tabaco e a DPOC aumentam a expressão do transportador DPP4, que é o receptor para esse vírus.(25)

Zhou et al., avaliaram 254 pacientes de um centro de Wuhan com confirmação de COVID-19. Eles compararam a equipe médica infectada separadamente dos pacientes não médicos. Na amostra, 139 eram mulheres, a média de idade foi de 50,6 anos, e 161 não pertenciam à equipe médica. Os sintomas mais relatados em todos os pacientes foram febre (211; 83%), tosse (98; 38,6%) e sintomas gastrintestinais (66; 26%). Nos pacientes não médicos, a proporção de sintomas gastrintestinais em mulheres foi significativamente maior que nos homens (62,8% versus 37,2%; p=0,033). Além disso, manifestações clínicas, como dor de garganta (14% versus 3%; p=0,023), tontura (12% versus 3%; p=0,032), fadiga (67% versus 44%; p=0,012), hemoglobina baixa (116,7 versus 133; p=0,028), proteína C-reativa alta (7,3 versus 3,8; p=0,021) e ALT alta (64,1 versus 46,6; p=0,049), também foram significativamente mais frequentes nos pacientes não médicos com sintomas gastrintestinais. Entretanto, não houve correlação significativa entre os sintomas e as características clínicas dos pacientes da equipe médica com e sem sintomas gastrintestinais. Uma explicação do porquê a equipe médica foi menos susceptível aos sintomas gastrintestinais é que a grande parte desse grupo é formada por enfermeiros jovens sem comorbidades. Esse estudo possui limitações. A maioria dos casos incluídos foram confirmados clinicamente, portanto ele possui pacientes sem o teste de PCR para SARS-CoV-2. Além disso, muitos pacientes não foram acompanhados, pois ainda estavam hospitalizados no momento da submissão do artigo.(26)

Cipriano et al., fizeram uma revisão sistemática com 6 estudos com pacientes da China, a qual aponta para a possibilidade de infecção do SARS-CoV-2 pelo trato gastrintestinal e transmissão fecal-oral. No estudo, 53,42% das amostras de fezes testaram positivo para a presença do SARS-CoV-2 em 73 pacientes hospitalizados. Essas amostras se mantiveram positivas entre 1 e 12 dias, e 23,29% dos pacientes tiveram fezes positivas para o RNA do vírus após a negativação das amostras respiratórias. Os autores concluem que o swab anal pode ser tão importante quando o swab nasofaríngeo, mesmo em pacientes assintomáticos. Médicos devem considerar, antes da alta hospitalar, que a infecção gastrintestinal e a potencial transmissão fecal-oral podem permanecer até após o desaparecimento viral do trato respiratório.(30)

Cheung et al., fizeram estudo interessante sobre os sintomas gastrintestinais da COVID-19 e a presença de RNA viral nas fezes. Eles compararam uma metanálise com uma coorte de Hong Kong. Na coorte de 59 pacientes com a doença, 15 (25,4%) apresentaram sintomas gastrintestinais e 9 (15,3%) tiveram suas fezes testadas positivas para o RNA viral, sendo que 38,5% e 8,7% foram nos com e nos sem diarreia, respectivamente (p=0,019). Na metanálise, que incluiu 60 estudos e 4.243 pacientes, a prevalência de pacientes com sintomas gastrintestinais foi de 17,6%, sendo 16,1% em estudos da China e 33,4% em outros países (Coreia do Sul, Singapura, Vietnam, Estados Unidos e Reino Unido). Os sintomas gastrintestinais avaliados foram anorexia (26,8%), diarreia (12,5%), náusea/vômito (10,2%) e dor abdominal (9,2%). A prevalência do RNA do vírus nas fezes foi de 48,1%. Dessas amostras, 70,3% testaram positivo nas fezes, podendo persistir por mais de 33 dias do início dos sintomas, mesmo após o sistema respiratório ter resultado negativo para RNA viral. Essa metanálise também mostrou que a prevalência de doença severa foi mais comum em pacientes com sintomas gastrintestinais do que os sem (17,1% versus 11,8%). As limitações do estudo são subnotificação dos sintomas gastrintestinais e menor número de estudos fora da China. Com isso, os profissionais da saúde devem se atentar para coleta de fezes e em procedimentos como endoscopia em pacientes com COVID-19.(27)

A revisão sistemática e metanálise com 31 artigos e 46.959 pacientes da China, por Cao et al., descreveu a prevalência de sintomas como febre (87,3%), tosse seca (58,1%), dispneia (38,2%), mialgia ou fadiga (35,5%), dor no peito (31,2%), tosse produtiva (29,4%), dor de garganta (12%), cefaleia (9,4%) e diarreia (6,8%). A incidência de necessidade de UTI, SARS, falência múltipla de órgãos e mortalidade foi de 29,3%, 28,8%, 8,5% e 6,8%, respectivamente. As limitações desse estudos foram não haver casos estrangeiros e não comentar sobre a presença viral nas fezes.(28)

A metanálise feita por Li et al., com dez artigos e 1.994 pacientes da China, apresentou resultados parecidos. Os principais sintomas relatados foram febre (88,5%), tosse (68,6%), mialgia ou fadiga (35,8%), tosse produtiva (28,2%) e dispneia (21,9%). Outros sintomas foram cefaleia ou tontura (12,1%), diarreia (4,8%) e náusea e vômito (3,9%). Também foram registrados linfopenia (64,5%), aumento da proteína C-reativa (44,3%), aumento da desidrogenase láctica (28,3%) e leucopenia (29,4%). Além disso, os homens foram mais acometidos (60%), e a taxa de fatalidade foi de 5%. Esse estudo apresentou limitações pelo número e pela qualidade dos estudos incluídos.(29)

Sultan et al., fizeram revisão sistemática e metanálise com 47 estudos com 10.890 pacientes. A prevalência de diarreia foi de 7,7%, de náusea e vômito de 7,8% e da dor abdominal de 2,7%. Ao comparar os dados da China e de outros países, diarreia (5,8% versus 18,3%), náusea e vômito (5,2% versus 14,9%), dor abdominal (2,7% versus 5,3%) e anormalidades hepáticas foram mais prevalentes fora da China. As alterações do fígado estudadas foram elevação de AST (total: 15,0%; China: 14,9%; outros países: 20,0%), ALT (total: 15,0%; China: 14,9%; outros países 19,0%) e bilirrubina (total ou China: 16,7%). Eles não fizeram análise mais profunda sobre a presença do RNA viral nas fezes desses pacientes, mas comentam que encontraram prevalência variável de 15/50 (30%), 7/10 (70%) e 44/153 (29%). Os autores também disponibilizam um manual de recomendações de boas práticas no manejo da COVID-19 com sete itens, sendo os principais obter história detalhada dos sintomas (típicos e do TGI), verificar valores de função hepática na admissão de pacientes para monitoramento durante hospitalização e avaliar as reações adversas de medicamentos utilizados no tratamento. Sobre as limitações, os pacientes estavam hospitalizados (prevalência pode estar sub ou superestimada), os sintomas podem ter sido analisados de maneira inconsistente, faltaram informações de exames laboratoriais, não houve informação sobre sintomas gastrintestinais terem sido avaliados sistematicamente na admissão, entre outras. Eles concluem que a monitorização das enzimas hepáticas pode ser benéfica, e ainda não há evidências que suportam o teste de PCR viral das fezes como diagnóstico ou para monitoramento da COVID-19 como rotina da prática clínica, pois os resultados de outras metanálises são conflitantes e são necessários mais estudos sobre o tema.(8)

DISCUSSÃO

Com a avaliação de todos esses estudos, percebe-se que ainda há muita variação nos resultados em vários pontos, e os quesitos estudados também foram muito diferentes.

A média de idade dos pacientes variou entre 45,1 e 58,5 anos, mas apenas um artigo correlacionou significativamente idade avançada com sintomas gastrintestinais.(21) Em outro artigo, a idade avançada foi relacionada com gravidade da doença, mas sem avaliar se esses pacientes tinham sintomas gastrintestinais.(25) De modo geral, todos os artigos tiveram mais homens acometidos com a COVID-19 do que mulheres, e apenas um encontrou diferença significativa entre mulheres não médicas e mais sintomas gastrintestinais.(26) Esses resultados sugerem que idade avançada e sexo masculino são fatores de risco para a infecção. O gene do receptor ECA2, alvo do SARV-CoV-2, está localizado no cromossomo X. Um estudo, ainda em revisão, verificou que a expressão da ECA2 aumenta no sexo feminino e com hormônios sexuais (que diminuem com aumento da idade), e citocinas inflamatórias diminuem essa expressão (que aumentam com idade e doenças crônicas). Isso é contrário ao que é pensado atualmente, que aumento da ECA2 é culpado pelo pior prognóstico da COVID-19. SARS-CoV-2 se liga diretamente à ECA2, provocando downregulation (regulação negativa) desse receptor, que fica ainda em menor quantidade em homens, por exemplo, podendo explicar o pior prognóstico e a maior infecção neles.(31)

Em relação às comorbidades dos pacientes infectados, as mais citadas foram hipertensão arterial, diabetes mellitus, doença cerebrovascular, doença cardiovascular, doença pulmonar, doença renal, doença hepática, câncer, entre outras. Porém, apenas três artigos tiveram relação significativa entre sintomas gastrintestinais e comorbidades, sendo que um deles é a doença hepática crônica.(18,21,25) Entretanto, a relação entre a COVID-19 e as comorbidades também se mostrou muito variada. Foram abordadas comorbidades muito frequentes na população e que podem ter significado importante na infecção pelo SARS-CoV-2 e prognóstico.

Os sintomas típicos mais descritos são comuns em infecções do trato respiratório, como febre (76,7% a 94,9%), tosse seca (38,6% a 77,7%), tosse com expectoração (14,2% a 43,0%), fadiga (16,6% a 75,0%), dispneia (3,3% a 60,1%), cefaleia (8,0% a 21,6%) e dor de garganta (8,11% a 17,0%).(8,18-29) Outros sintomas, como anosmia e ageusia, estão sendo muito relacionados com a COVID-19, mas apenas um estudo os verificou (10,1% e 7,6%, respectivamente). Esse estudo encontrou correlação entre presença de fadiga, mialgia, dispneia, dor de garganta, anosmia e ageusia com sintomas gastrintestinais.(22) Outros dois estudos também identificaram relações entre sintomas gastrintestinais e sintomas típicos, sendo que um foi com febre acima de 38,5°C, fadiga, dispneia e cefaleia e o outro com fadiga, dor de garganta e tontura.(18,26)

Sobre os sintomas gastrintestinais, a prevalência teve grande variação, ficando entre 6,8% e 61,3% nesses estudos. Isso mostra que pode haver uma tendência regional neles, e estudos com muitos pacientes e de diversos países são necessários para melhorar essa relação entre o TGI e a COVID-19. Importante lembrar que duas metanálises fizeram esse estudo entre China e outros países e perceberam que os demais locais apresentaram maiores taxas de sintomas gastrintestinais.(8,27) Entretanto, ainda eram poucos os outros países e muitos eram na própria Ásia. De qualquer forma, isso mostra que os sintomas gastrintestinais são importantes nessa doença, podendo ter grande impacto em alguns países, e que deve ser avaliado em anamnese de pacientes com suspeita. Os sintomas gastrintestinais mais citados foram diarreia (8,14% a 33,7%), náusea/vômito (1,53% a 26,4%), anorexia (12,1% a 40,0%) e dor abdominal (0% a 14,5%).(8,18-29)

Diversos estudos apontam relações entre alterações laboratoriais e sintomas gastrintestinais ou severidade da doença. Lesão hepática (elevação de AST, ALT e bilirrubina) foi a mais avaliada, mas também foram verificadas elevação de proteína C-reativa, procalcitonina, desidrogenase láctea, dímero e protrombina, além de diminuição de sódio sérico, leucócitos, linfócitos e monócitos.(8,18,20,24,25,29) Com isso, é muito importante a avaliação desses parâmetros em pacientes internados com COVID-19, pois eles podem indicar prognóstico pior da doença.

Um importante fator que foi pouco avaliado entre os estudos foi a presença do RNA viral em amostras de fezes de pacientes infectados com SARS-CoV-2. Esse dado nos ajudaria a entender se existe a possibilidade de transmissão fecal-oral nessa doença. Apenas quatro estudos fizeram essa análise, sendo duas metanálises e dois retrospectivos. Esse teste foi positivo entre 0% e 48,1% dos casos, com grande heterogeneidade nos resultados, mas os pacientes com sintomas gastrintestinais apresentaram mais frequentemente a presença do RNA do vírus nas fezes.(8,18,19,27) Alguns também identificaram que esse resultado se manteve positivo mesmo após a negativação de amostras do trato respiratório. Em um deles, 53,42% das amostras de fezes foram positivas para o vírus, e 23,29% ainda estavam positivas quando o trato respiratório negativou.(30) Em outro, 70,3% dos pacientes que tiveram fezes positivas para o vírus (48,1%) também se mantiveram positivas após o clearence (clareamento) respiratório.(27) Entretanto, os estudos não avaliaram se o RNA presente nas fezes representam vírus infectante ou apenas resíduos virais, sem capacidade de infectar. Esses dados nos levam à dúvida se o teste de PCR nas fezes de pacientes com COVID-19 deve ser feito rotineiramente ou não. Assim, mais estudos devem se preocupar e avaliar essa questão, visto que a possível transmissão fecal-oral pode ter impacto grande em países em desenvolvimento que possuem falta de saneamento básico em muitos locais.

Por fim, a necessidade de admissão em UTI variou entre 2,08% a 31,0% e casos que evoluíram a óbito entre 0% a 17,65%. Vários estudos comentaram sobre isso, mas apenas dois apresentaram diferença significativa entre a presença de sintomas gastrintestinais e a necessidade de UTI ou morte.(18,21) Assim, torna-se muito importante a investigação desses pacientes com sintomas gastrintestinais desde o início do quadro infeccioso, visto que, uma parcela deles, maior do que os sem esses sintomas, pode desenvolver doença mais grave e necessitar de UTI, ou até evoluir a óbito.

Os artigos dessa revisão possuem diversas limitações. De forma geral, a avaliação dos sintomas foi feita de maneira diferente entre eles, pode haver subnotificação dos sintomas gastrintestinais, poucos foram feitos com pacientes fora da China, os desenhos foram retrospectivos e com pequenas amostras, muitos não avaliaram a presença de RNA viral nas fezes, não incluíram pacientes assintomáticos, os dados eram hospitalares e o acompanhamento dos pacientes foi curto. Além disso, por essa revisão incluir diferentes desenhos de estudos, há o risco de que as metanálises e revisões sistemáticas também contenham algum artigo retrospectivo, podendo ter resultados duplicados. Os variados desenhos de estudo, por si só, também são uma limitação dessa revisão, visto que o ideal seria utilizar um mesmo modelo.

COMENTÁRIOS

Os altos índices de infecção pelo SARS-CoV-2 no mundo inteiro fizeram com que a Organização Mundial da Saúde decretasse estado de pandemia em 2020. Com isso, informações acerca dessa nova doença são de extrema importância, tanto de fisiopatologia, quanto de prevalência, severidade, fatores de risco, diagnóstico e tratamento. Com este trabalho, percebemos que o trato gastrintestinal pode ser muito influenciado pela doença, causando sintomas específicos (diarreia, dor abdominal, náusea e vômito) e alterações laboratoriais (principalmente de enzimas hepáticas). Os profissionais da saúde devem se atentar a isso, mantendo-se alerta a essas alterações, que podem ajudar no diagnóstico e a iniciar o tratamento precoce, para evitar mal prognóstico. Entretanto, os resultados de prevalência dos sintomas gastrintestinais foram muito diferentes, apresentando variação de 6,8% a 61,3%, sendo esses sintomas diarreia (8,14% a 33,7%), náusea/vômito (1,53% a 26,4%), anorexia (12,1% a 40,0%) e dor abdominal (0% a 14,5%). Essa importante variação demanda estudos maiores, com mais pacientes e de diversos países. Em relação à possibilidade de transmissão fecal-oral, a presença do RNA viral foi pouco testada, mas foi positiva entre 0% a 48,1%. Esses dados também variaram muito, impedindo que houvesse conclusão quanto a eles, mas também devem ser mais estudados, para que medidas de prevenção possam ser tomadas. O RNA do vírus nas fezes não indica, necessariamente, que haja transmissão fecal-oral, sendo importante sua avaliação em novos estudos para saber se essa presença é infectante ou não.


Articles from Einstein are provided here courtesy of Instituto de Ensino e Pesquisa Albert Einstein

RESOURCES