To the Editor,
In a recent study, McGuigan et al. [1] reported that a low PaO2/FiO2 ratio, hypoxemia, and hypocapnia are associated with higher mortality following out of hospital cardiac arrest (OHCA) and secondly that PaCO2 modifies the relationship between oxygenation and mortality following OHCA.
Whereas the authors should be congratulated for their noteworthy study, we believe that their interpretation requires some cautions.
First, McGuigan et al. choose a PaO2 > 100 mmHg to define hyperoxemia and a PaO2 of 150–200 mmHg as reference category. Conversely, in the two first princeps papers reporting an association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality, Kilgannon et al. [2] and Bellomo et al. [3] have defined hyperoxia as a PaO2 > 300 mmHg. Consequently, the large interval of PaO2 considered by McGuigan et al. [1] does not guarantee that mortality is uniform for all the patients presenting with a PaO2 > 100 mmHg, and could fully explain the discrepancy with the results of Kilgannon et al. [2] and Bellomo et al. [3].
Secondly, the interpretation of PaO2 and PaCO2 values would have been more pertinent if the authors had presented the time and cause of death of the patients. On the one hand, hypoxemic patients (PaO2 < 60 mmHg) were probably those suffering from respiratory injuries following cardiac arrest, i.e., mainly aspiration and/or alveolar hemorrhage. While it could be hypothesized that a protective ventilation strategy had been initiated for them, inducing high PaCO2 values, the direct effect of PaCO2 by itself is limited on respiratory function and therefore on mortality from respiratory origin [4]. On the other hand, for patients presenting with neurological injury but without respiratory insufficiency, the effect of PaCO2 should be considered as ambivalent. In the absence of cerebral edema, hypocapnia is deleterious by reducing cerebral blood flow and exacerbating cerebral ischemia; on the opposite, for patients presenting with cerebral edema following cardiac arrest resuscitation, hypercapnia is deleterious by inducing cerebral vasodilation. Nevertheless, the cause of death for patients with neurological assault following cardiac arrest, whatever they were hypocapnic or hypercapnic, was probably mainly from neurological origin.
Finally, the post cardiac arrest resuscitation period must be considered as a bundle of care, in which the therapeutic strategy should be multimodal and mostly individualized for each patient [5].
Acknowledgements
None.
Authors’ contributions
BV and RJ wrote the manuscript. The author(s) read and approved the final manuscript.
Funding
None.
Availability of data and materials
Not applicable.
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
None.
Footnotes
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.McGuigan PJ, Shankar-Hari M, Harrison DA, et al. The interaction between arterial oxygenation and carbon dioxide and hospital mortality following out of hospital cardiac arrest: a cohort study. Version 2. Crit Care. 2020;24(1):336. doi: 10.1186/s13054-020-03039-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Kilgannon J, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–2171. doi: 10.1001/jama.2010.707. [DOI] [PubMed] [Google Scholar]
- 3.Bellomo R, Bailey M, Eastwood GM, et al. Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care. 2011;15:R90. doi: 10.1186/cc10090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Nolan JP, Soar J, Cariou A, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post- resuscitation Care 2015: section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–222. doi: 10.1016/j.resuscitation.2015.07.018. [DOI] [PubMed] [Google Scholar]
- 5.Jouffroy R, Vivien B. Bundle of care taking into account time to improve long-term outcome after cardiac arrest. Crit Care. 2018;22(1):192. doi: 10.1186/s13054-018-2128-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Elmer J, Torres C, Aufderheide TP, Austin MA, Callaway CW, Golan E, et al. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation. 2016;102:127–135. doi: 10.1016/j.resuscitation.2016.01.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Elmer J, Scutella M, Pullalarevu R, et al. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015;41(1):49–57. doi: 10.1007/s00134-014-3555-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
