Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2020 Aug 13;52(5):959–963. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2020.05.028

光磁双模态探针钆-[4, 7-双-羧甲基-10-(2-荧光素硫脲乙基)-1, 4, 7, 10-四氮杂环十二烷-1-基]-乙酸络合物合成方法的改进

Improved synthesis process of optical-magnetic bimodal probe of Gd-[4, 7-Bis-carboxymethyl-10-(2-fluoresceinthioureaethyl)-1, 4, 7, 10-tetraaza-cyclododec-1-yl]-acetic acid complexes

Hui SHENG 1,2,3, Lei LIANG 4, Tong-liang ZHOU 4, Yan-xing JIA 4, Tong WANG 1,2,3, Lan YUAN 1,2,*, Hong-bin HAN 3,5,*
PMCID: PMC7653407  PMID: 33047737

Abstract

Objective

To improve the methods to synthesize and purify of optical-magnetic bimodal molecular probe of Gd-[4, 7-Bis-carboxymethyl-10-(2-fluorescein thioureaethyl)-1, 4, 7, 10-tetraaza-cyclododec-1-yl]-acetic acid complexes.

Methods

Target compound (7), optical-magnetic bimodal molecular molecular probe, was synthesized by the use of 1, 4, 7, 10-tetraazacyclododecane (1) as starting material via substitution reaction, hydrolysis reaction, coupling reaction and complexation reaction with metal.

Results

The synthetic route of Gd-[4, 7-Bis-carboxymethyl-10-(2-fluoresceinthioureaethyl)-1, 4, 7, 10-tetraaza-cyclododec-1-yl]-acetic acid complexes was improved. The optical-magnetic bimodal molecular probes were synthesized by substitution reaction, hydrolysis reaction, coupling reaction and complex reaction with metal respectively. For the improved route, the total yield could reach 34.6% which was higher than the original route (18.0%). The structures of those compounds were identified by 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and mass spectrometry. The improved route could avoid the uncontrollable disadvantage of the substitution reaction, this process could reduce the formation of impurities and made the purification process easier, and in the aspect of purification and separation, the preparative high-performance liquid chromatography with less sample loading and high cost was improved to a column chromatography with many sample loads and being easy to operate. Therefore, the use of column chromatography could be more conducive to mass production of the optical-magnetic bimodal molecular molecular probe.

Conclusion

The improved synthetic route improves the controllability of the reaction conditions and makes it easier to purify and separate the compounds. At the same time, the improved synthetic route can increase the total yield significantly. The optical-magnetic bimodal molecular probe can combine the living magnetic resonance imaging with the in vitro optical imaging to realize the dual synchronous detection of magneto-optics, so that the detection results of the living magnetic resonance imaging and the in vitro optical imaging are mutually verified. In other words, this synthetic optical-magnetic bimodal molecular probe will make the experimental results more accurate and reliable. In subsequent biological experimental studies, the optical-magnetic bimodal molecular probe can be applied to related research of brain structure and function, and the probe can be used for the brain-related diseases researches, such as brain tumors. after intravenous administration, and thus the optical-magnetic bimodal molecular probe can play an important role in medical treatment of brain tumors and cerebrovascular diseases.

Keywords: Bimodal probe, Chemical synthesis, Bimodal imaging, Optical imaging, Magnetic resonance imaging


磁共振成像是一种非常有潜力的组织成像方法,能够实现在体观察组织深部的特征。本课题组以往的研究中发现,采用磁示踪法可以检测脑深部广阔区域的脑细胞外间隙(brain extracellular space,ECS),实现在体、实时、全脑尺度的对脑组织间液(interstitial fluid,ISF)的流动进行监测,并发现ISF在不同脑区的引流分布范围不同,存在ISF分区引流[1-4]。磁示踪法利用射频信号监测可3D动态观察ISF的流动,并同时检测脑组织间隙中水分子的扩散参数[2],是目前唯一一种可以实现对活体脑间质系统(interstitial system, ISS)进行三维可视化成像的技术,但是该方法的分辨率低,有时无法精确显示示踪剂分布的范围。20世纪90年代,美国纽约大学的一项研究采用光学示踪法作为脑细胞间隙的检测手段[4]。光学示踪法是利用光学信号的一种检测手段,由于光的穿透能力有限,因此只能探测距离脑浅表 < 200 μm区域内组织间液分子的扩散运动[5],且只能在离体状态下成像,然而光学方法分辨率高、成像清晰,可弥补磁共振方法分辨率相对较低这一缺陷。

光学方法分辨率高但探测深度浅,磁示踪法虽然分辨率低但能实现全脑活体成像,如果能够实现两种技术同步检测,将极大地提高研究的准确性和可信度。本课题组通过化学合成方法将磁共振成像探针金属钆离子(Gd3+)与荧光成像探针异硫氰酸荧光素(fluorescein isothiocyanate, FITC)相连接,合成能在脑组织间隙中磁共振成像与荧光成像效果好的光磁双模态探针钆-[4, 7-双-羧甲基-10-(2-荧光素硫脲乙基)-1, 4, 7, 10-四氮杂环十二烷-1-基]-乙酸络合物(Gd-DO3A-EA-FITC),为脑组织间隙的研究与探索提供了重要的工具[6-7]

本研究拟对已有的方法进行适当的改进,首先通过改变取代顺序,使反应更易控制与操作,从而减少杂质生成而使纯化过程更加容易,之后对连接上荧光分子探针后化合物的纯化方法进行改进,将原文献中载样量少、成本高的制备型高效液相色谱法改为载样量多、成本更低的柱层析法,以期待改进后更有利于该探针的大量生产,达到改进后将总收率显著提升的目的。

1. 材料与方法

1.1. 仪器与试剂

核磁共振氢谱(1H nuclear magnetic resonance, 1H NMR)和核磁共振碳谱(13C nuclear magnetic resonance, 13C NMR)用瑞士Bruker公司avance Ⅲ 400型磁共振仪测定,四甲基硅烷(tetramethylsilane, TMS)为内标,氘代氯仿(CDCl3)或重水(D2O)为溶剂。电喷雾飞行时间质谱(electrospray ionization time of flight mass spectrometry,ESI-TOF-MS)用美国Water公司的Quattro micro 2000型仪器测定。其他试剂为化学纯试剂。

1.2. N-[2-(1, 4, 7, 10-四氮杂环十二烷-1-基)乙基]-1, 1-二甲基乙基酯(3)

室温下向1, 4, 7, 10-四氮杂环十二烷化合物1(1.7 g、10 mmol、1.0 eq)的氯仿溶液(25 mL)中加入N-Boc-溴乙胺(1.48 g、6.6 mmol、0.66 eq),并在此温度下继续搅拌20 h。减压蒸馏除去溶剂,得到无色透明黏稠油状物。柱色谱[采用干法上样,以含有3%(体积分数)的三乙胺的洗脱剂DCM/MeOH:20/1→10/1→5/1进行梯度洗脱]分离得到白色泡沫状固体化合物3 (2.5 g、79%)。1H NMR (400 MHz、CDCl3):δ1.40(s, 9H),2.58~2.84(m, 18H),3.18(br, 2H),4.02(br, 1.7H),5.78(br, 1H)。13C NMR (100 MHz、CDCl3):δ28.2, 38.3, 45.9, 46.3, 47.5, 51.4, 54.2, 78.5, 155.8。HRMS (ESI) m/z:316.3[M+H]+,分子式C15H34N5O2

1.3. [4, 7-双丁氧羰基-10-(N-Boc-2-氨基乙基)-1, 4, 7, 10-四氮杂吡啶-1-基]-乙酸叔丁酯(4)

室温下向含有化合物3 (466 mg、1.48 mmol、1.0 eq)的乙腈溶液(6 mL)中依次加入溴乙酸叔丁酯(975 mg、0.73 mL、5.0 mmol、3.4 eq)及碳酸钠(1.22 g、11.5 mmol、7.8 eq), 将反应液升温至60 ℃并在该温度下继续搅拌10 h。将反应液进行过滤,所得滤液减压蒸馏除去溶剂,得到黄色透明黏稠油状物。柱色谱[采用干法上样,以含有1%(体积分数)的三乙胺的洗脱剂PE/EA:20/1→DCM/MeOH:20/1进行梯度洗脱]分离得到淡黄色泡沫状固体化合物4 (850 mg、87%)。1H NMR (400 MHz、CDCl3):δ1.39 (s, 9H),1.42 (s, 9H),1.47 (s, 18H),2.30~3.24 (m, 26H),5.18 (br, 1H)。13C NMR (100 MHz、CDCl3):δ27.03, 27.22, 27.63, 36.94, 49.52, 53.14, 54.90, 55.70, 78.32, 81.63, 81.99, 155.68, 171.79, 172.50。HRMS(ESI) m/z:658.5[M+H]+, 分子式C33H64N5O8

1.4. [4, 7-双-羧甲基-10-(2-氨基乙基)-1, 4, 7, 10-四氮杂吡啶-1-基]-乙酸(5)

室温下向含有化合物4 (500 mg、0.76 mmol、1.0 eq)的溶液中加入三氟乙酸(3 mL),搅拌18~20 h,减压蒸馏除去三氟乙酸,加入甲醇(1 mL)溶解,剧烈搅拌下缓慢滴加乙醚(5 mL)至不再产生固体沉淀,抽滤,固体用玻璃棒碾碎并用大量乙醚冲洗,乙醚挥干即可得到白色粉末固体化合物5(290 mg、98%)。1H NMR (400 MHz、D2O):δ2.90~3.06(m, 12H),2.27~3.46(m, 10H),3.93 (br.s, 4H)。13C NMR (100 MHz、D2O):δ36.2, 48.4, 49.9, 50.4, 51.9, 52.6, 55.9, 169.9, 175.1, HRMS(ESI) m/z:388.2[M-H]-,分子式C16H30N5O6

1.5. [4, 7-双-羧甲基-10-(2-荧光素硫脲乙基)-1, 4, 7, 10-四氮杂环十二烷-1-基]-乙酸(6)

室温避光条件下向含有化合物5 (300 mg、0.54 mmol、1.0 eq)的四氢呋喃/水(体积比4 :1)混合溶液(6 mL)中加入异硫氰酸荧光素异构体Ⅰ(209 mg、0.54 mmol、1.0 eq)。用饱和NaHCO3水溶液调节pH值并维持在8.0~8.5,继续搅拌2~3 d。波层色谱法(thin-layer chromatography, TLC)监测反应结束后减压蒸馏除去溶剂,加入足量三氟乙酸(6 mL),室温下继续搅拌24 h。减压蒸馏除去三氟乙酸直接柱色谱分离(DCM/MeOH=2/1→1/2),得到红棕色固体化合物6(223 mg、53%)。1H NMR (400 MHz、D2O):δ2.52~3.40(m, 24H),3.69 (br.s, 2H),6.51~6.55(m, 4H),7.12~7.14(m, 3H), 7.42 (br.d, J=6.8, 1H), 7.57 (br.s, 1H)。13C NMR (100 MHz、D2O):δ43.0, 52.1, 53.1, 53.6, 54.0, 56.0, 59.6, 106.5, 114.9, 125.8, 127.1, 128.2, 131.6, 133.5, 134.1, 143.5, 160.9, 161.2, 176.7, 181.6, 182.4, 183.3。HRMS(ESI) m/z:777.2[M-H]-, 分子式C37H41N6O11S。

1.6. 钆-[4, 7-双-羧甲基-10-(2-荧光素硫脲乙基)-1, 4, 7, 10-四氮杂环十二烷-1-基]-乙酸络合物(7)

室温条件下向化合物6 (130 mg、0.17 mmol、1.0 eq)溶于水(3 mL)中加入GdCl3·6H2O(74 mg、0.20 mmol、1.2 eq),并用饱和NaHCO3水溶液调节pH值至7~8。室温下搅拌6 h,TLC监测反应结束后抽滤,固体分别用水和甲醇洗涤,即可得到红棕色固体化合物7(150 mg、97%)。HRMS(ESI) m/z:934.2[M+H]+, 分子式C37H40N6O11SGd。该化合物经高效液相色谱测定(甲醇-水=5%→70%→100%)纯度为98.0%。

2. 结果与讨论

目标产物化合物7(Gd-DO3A-EA-FITC)具有两个部分,即荧光部分和与顺磁性金属结合的大环化合物部分。顺磁性金属钆(Gd)是临床上常用的磁共振成像造影剂,可以进一步提高成像的特异性和灵敏度。然而,直接在体内引入顺磁性金属离子受固有毒性的限制,用大环多氨基羧酸盐作强配体来络合这种金属以防止其毒性。根据以上原理,为了与三价钆离子(Gd3+)络合,本研究用溴乙酸叔丁酯保护基团在大环化合物1上进行三取代反应。由于胺基基团具有容易反应性的特性,可与多种亲电试剂(如醛、羧酸和异硫氰酸酯)形成多种靶向造影剂,如常用的荧光示踪剂FITC,因此,本研究又在1, 4, 7, 10-四氮杂环十二烷(DOTA)的另一取代位点引入胺基基团(N-Boc-溴乙胺),用于连接荧光示踪剂FITC,从而得到光磁双模态分子探针。

钆-[4, 7-双-羧甲基-10-(2-荧光素硫脲乙基)-1, 4, 7, 10-四氮杂环十二烷-1-基]-乙酸络合物(7)原路线[6]图 1中的Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五步反应,化合物1经过三取代反应(Ⅰ)、单取代反应(Ⅱ)、水解反应(Ⅲ)、胺基与异硫氰基偶联反应(Ⅳ)、与金属钆离子络合反应(Ⅴ),生成光磁双模态探针化合物7。其中,化合物1在进行三取代反应时,由于易受到滴加速度、搅拌不均匀等不利因素影响,极易发生四取代反应等,使杂质增多,加大纯化困难。化合物5生成化合物6的偶联反应中,纯化方法采用的是制备型高效液相色谱,其载样量较小且成本较高,不太适用于大量纯化与生产。

图1.

化合物7合成路线

Synthetic route of compound 7

Ⅰ, tert-butyl bromoacetate, Na2CO3, MeCN; Ⅱ, N-Boc-ethylamine, K2CO3, DMF; i, N-Boc-ethylamine, CHCl3; ii, tert-butyl bromoacetate, Na2CO3, MeCN; Ⅲ(iii), TFA; Ⅳ, FITC, Na2CO3, H2O; iv, FITC, NaHCO3, THF/H2O; Ⅴ(v), GdCl3·6H2O, H2O; 1, 2, 3, 4, 5, 6, 7, chemical compound.

图1

针对上述合成路线中存在的问题,本研究进行了相关合成及纯化方法的改进(图 1中ⅰ、ⅱ、ⅲ、ⅳ、ⅴ五步反应)。先将过量化合物1与N-Boc-溴乙胺进行单取代反应生成化合物3[8],该反应无需缓慢滴加,产物较纯易分离,避免了原路线中易受到滴加速度、搅拌不均匀等不易控制因素的影响,然后与溴乙酸叔丁酯三取代反应后得到化合物4[9],利用三氟乙酸水解后制备的产物5与荧光示踪剂FITC偶联生成化合物6[6],并通过载样量大、操作简易及成本较低的柱层析方法进行纯化分离,避免了使用载样量较小且成本较高的制备型高效液相色谱,解决了载样量受实验仪器限制的问题,有利于大量制备。化合物6最后与钆离子络合得到目标光磁双模态探针化合物7

综上所述,本研究完成了光磁双模态探针钆-[4, 7-双-羧甲基-10-(2-荧光素硫脲乙基)-1, 4, 7, 10-四氮杂环十二烷-1-基]-乙酸络合物(7)合成路线的改进,以1, 4, 7, 10-四氮杂环十二烷(1)为起始物,经过亲核取代反应、水解反应、偶联反应、与金属络合反应生成钆-[4, 7-双-羧甲基-10-(2-荧光素硫脲乙基)-1, 4, 7, 10-四氮杂环十二烷-1-基]-乙酸络合物(7)。改进路线避免了三取代反应易受滴加速度、搅拌不均匀等因素的影响,同时将原路线总收率18.0%显著提升至34.6%,并且将载样量少、成本高的制备型高效液相色谱纯化改进为载样量多、简便易操作的柱层析纯化分离,利于大量生产制备,对光磁双模态探针的合成研究与结构扩展具有重要意义。

此光磁双模态探针可将在体的磁共振成像与离体的激光扫描共聚焦显微镜成像结果相匹配,可以更好地在细胞和分子水平阐明ISS内的ISF生理引流分区产生的机制,进一步对ISS内分区的结构基础和机制进行深入研究[10-14],并且对不同病理生理状态下ISS内的ISF研究提供了一种新的思路与方法[15]

Funding Statement

国家自然科学基金(91330103、91630314、81471633、61625102)、国家重点研发计划(2016YFC0103605、2016YFC0103602)、北京市科学技术委员会基金(Z161100000116041)

Supported by the National Natural Science Foundation of China (91630314, 91330103, 81471633, 61625102), the National Key Research and Development Plan (2016YFC0103605, 2016YFC0103602), and the Beijing Municipal Science and Technology Commission (Z161100000116041)

Contributor Information

袁 兰 (Lan YUAN), Email: yuan_lan@bjmu.edu.cn.

韩 鸿宾 (Hong-bin HAN), Email: hanhongbin@bjmu.edu.cn.

References

  • 1.Han HB, Li K, Yan JH, et al. An in vivo study with an MRI tracer method reveals the biophysical properties of interstitial fluid in the rat brain. Sci China Life Sci. 2012;55(9):782–787. doi: 10.1007/s11427-012-4361-4. [DOI] [PubMed] [Google Scholar]
  • 2.Han H, Shi C, Fu Y, et al. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain. IEEE J Biomed Health Inform. 2014;18(3):978–983. doi: 10.1109/JBHI.2014.2308279. [DOI] [PubMed] [Google Scholar]
  • 3.和 清源, 韩 鸿宾, 许方 婧伟, et al. Gd-DTPA磁共振成像示踪法对脑细胞外间隙成像与定量分析的初步研究. 北京大学学报(医学版) 2010;42(2):188–191. doi: 10.3969/j.issn.1671-167X.2010.02.016. [DOI] [Google Scholar]
  • 4.韩 鸿宾. 细胞微环境成像新方法与脑分区稳态的发现. 武警医学. 2016;27(4):325–328. doi: 10.3969/j.issn.1004-3594.2016.04.001. [DOI] [Google Scholar]
  • 5.Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi: 10.1126/science.1241224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Mishra A, Pfeuffer J, Mishra R, et al. A new class of Gd-based DO3A- ethylamine-derived targeted contrast agents for MR and optical imaging. Bioconjug Chem. 2006;17(3):773–780. doi: 10.1021/bc050295b. [DOI] [PubMed] [Google Scholar]
  • 7.李 昀倩, 盛 荟, 梁 磊, et al. 光磁双模态分子探针Gd-DO3A-EA-FITC在脑组织间隙成像分析中的应用. 北京大学学报(医学版) 2018;50(2):221–225. doi: 10.3969/j.issn.1671-167X.2018.02.004. [DOI] [PubMed] [Google Scholar]
  • 8.Laakso J, Rosser GA, Szíjjártó C, et al. Synthesis of chlorin-sensitized near infrared-emitting lanthanide complexes. Inorg Chem. 2012;51(19):10366–10374. doi: 10.1021/ic3015354. [DOI] [PubMed] [Google Scholar]
  • 9.Junker AKR, Tropiano M, Faulkner S, et al. Kinetically inert lanthanide complexes as reporter groups for binding of potassium by 18-crown-6. Inorg Chem. 2016;55(23):12299. doi: 10.1021/acs.inorgchem.6b02063. [DOI] [PubMed] [Google Scholar]
  • 10.Nicholson C. Factors governing diffusing molecular signals in brain extracellular space. J Neural Transm (Vienna) 2005;112(1):29–44. doi: 10.1007/s00702-004-0204-1. [DOI] [PubMed] [Google Scholar]
  • 11.Sherpa AD, Van d NP, Xiao F, et al. Gliotoxin-induced swelling of astrocytes hinders diffusion in brain extracellular space via formation of dead-space microdomains. Glia. 2014;62(7):1053–1065. doi: 10.1002/glia.22661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Saghyan A, Lewis DP, Hrabe J, et al. Extracellular diffusion in laminar brain structures exemplified by hippocampus. J Neurosci Methods. 2012;205(1):110–118. doi: 10.1016/j.jneumeth.2011.12.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.李 怀业, 赵 越, 左 龙, et al. 光、磁分子探针在脑组织间隙内的扩散分布规律. 北京大学学报(医学版) 2015;47(4):667–673. doi: 10.3969/j.issn.1671-167X.2015.04.024. [DOI] [PubMed] [Google Scholar]
  • 14.Dmytrenko L, Cicanic M, Anderova M, et al. The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions. PLoS One. 2013;8(7):e68044. doi: 10.1371/journal.pone.0068044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Guan X, Wang W, Wang A, et al. Brain interstitial fluid drainage alterations in glioma-bearing rats. Aging Dis. 2018;9(2):228. doi: 10.14336/AD.2017.0415. [DOI] [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES