Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2020 Aug 19;52(5):845–850. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2020.05.008

不同血清型腺相关病毒载体转染小鼠视网膜后的表达效率

Expression pattern of different serotypes of adeno-associated viral vectors in mouse retina

Shuang HU 1, Li-ping YANG 1,*
PMCID: PMC7653430  PMID: 33047717

Abstract

Objective

To investigate the expression efficiency of exogenous gene mediated by different serotypes of adeno-associated virus (AAV) vectors in retina, and to compare the expression efficiency of AAV vector and two kinds of promoters commonly used in ophthalmology after transfection into mouse retina, so as to provide the basis for selecting appropriate AAV vector and promoter for gene therapy of retinitis pigmentosa.

Methods

AAV2/2, AAV2/5, AAV2/8 and AAV2/9 were prepared. The C57BL/6J mice were injected subretinally with 1 μL purified AAV vectors (1.00×1013 mg/L). Then the mice were killed 2 or 4 weeks after treatment, and the eyes were enucleated for frozen section. The expression of green fluorescent protein (GFP) was observed under the confocal microscope. Two kinds of promoters, CMV and CAG, were selectd, and the expression of AAV2/8-GFP-CMV and AAV2/8-GFP-CAG was observed under confocal microscope.

Results

No bacterial infection or immune response were seen in the injected mice. 2 weeks after injection, the GFP green fluorescence of AAV2/8 and AAV2/9 in the mouse retina was obvious, which indicated that the GFP green fluorescence of AAV2/8 and AAV2/9 was high after transfection into the mouse retina. In these two serotypes, GFP green fluorescence of AAV2/8 was mainly concentrated in photoreceptor cells while AAV2/8 was expressed in the whole retina, indicating that AAV2/8 was more specific to photoreceptors. Further experiments on AAV2/8 showed that the GFP green fluorescence of the mouse retina was obvious 4 weeks after injection, indicating that the exogenous gene mediated by AAV2/8 could be stably expressed in vivo. For CMV and CAG promoters, CMV promoter was expressed stronger in retinal pigment epithelium (RPE)cells, while CAG promoter was stronger in photorecepters. In photorecepters, CAG promoter was expressed almost the same as CMV promoter, while CMV promoter was stronger in RPE cells.

Conclusion

AAV vectors could express transgene robustly in retinal cells; Among several AAV serotypes, AAV2/2 and AAV2/5 showed weaker GFP fluorescence than AAV2/8 and AAV2/9. AAV2/9 showed expression in each layer of the retina including ganglion cells. AAV2/8 was more specific for photoreceptor; CAG promoters had higher specificity for photoreceptors than CMV promoters.

Keywords: Serotype adeno-associated viral, Retinitis pigmentosa, Gene therapy


腺相关病毒(adeno-associated virus,AAV)是微小病毒科(Parvoviridae)家族的成员之一,是一种微小、无被膜及具有二十面体结构的病毒。病毒颗粒的直径在20~26 nm之间,含有大小在4.7~6.0 kb之间的线状单链DNA基因组,1967年最初在腺病毒液中的一种污染成分中被发现[1]。AAV为复制缺陷型病毒,只有在辅助病毒包括腺病毒或疱疹病毒共同感染条件下才能复制包装发生病毒性感染,大多数成年人都感染过AAV病毒,但尚未发现该病毒是任何疾病的致病因素。AAV可转染分裂和非分裂细胞, 并在体内长期稳定地表达所携带的治疗基因[2]

近年来,各种遗传性视网膜疾病的基因治疗得到广泛开展,为了使基因治疗工具或目的基因进入宿主细胞,需要基于转染效率、运载容量以及安全性选取合适的治疗用载体。AAV载体作为基因载体具有无致病性、免疫原性低、能有效转移目的基因、携带的治疗基因能长期表达和对视网膜具有特异亲和性等优势,因此成为最广泛使用的视网膜基因治疗载体[3-4]。以AAV为载体的基因治疗,为遗传性视网膜疾病的治疗带来了希望。

从人体中分离到的AAV2是研究最清楚的一种AAV,而其他亚型的AAV几乎都是自然界中筛选出来的,如AAV1、AAV2、AAV3、AAV5、AAV6、AAV7、AAV8和AAV9。AAV2的基因组为长度4 681个核苷酸的单链DNA,包括两个末端反向重复序列(inverted terminal repeat, ITR)和中间的编码区,共编码4种Rep蛋白(Rep40、Rep52、Rep68、Rep72)和3种capsid (Cap)蛋白(VP1、VP2、VP3)。虽然1980年以来对AAV2作为基因治疗载体的研究已超过30年,但两个方面的局限性限制了其进一步的临床应用,首先是AAV2对部分组织转染效率不理想,再者大约80%人群存在对野生型AAV2的中和抗体[5-6],因此,对AAV载体进行各种改造以适应基因治疗需要的研究十分活跃[7-8]。基因治疗中,通常使用不同血清型AAV的杂合载体,即包装时将来源于AAV2的ITR和治疗基因包装入其他AAV血清型衣壳蛋白内,比如AAV2/8,表示该病毒载体具有AAV2的ITR和AAV8的Cap蛋白衣壳。改造后的杂合载体包装外源基因的容量 < 4.7 kb,不含产生细胞免疫反应的病毒基因,一般不会诱发炎症反应,改造后的病毒感染特性与其衣壳蛋白对组织亲和性一致。

使目的基因到达靶细胞是基因治疗取得成功的关键,由于不同AAV血清型载体对视网膜亲和力差异较大,选择一个合适血清型载体非常重要。本课题组交付山东维真生物科技有限公司构建了视网膜疾病基因治疗中常用的AAV2/2、AAV2/5、AAV2/8和AAV2/9四种血清型病毒载体[9-10],通过视网膜下腔注射至小鼠眼球,比较其对视网膜感染特性的差异,为眼科治疗遗传性疾病基因选择合适的AAV载体血清型提供依据。

1. 资料与方法

回顾性分析视网膜疾病基因治疗中常用的AAV2/2、AAV2/5、AAV2/8和AAV2/9四种血清型注射至小鼠眼球视网膜下腔后,对视网膜感染特性的差异。

1.1. 实验动物

本研究获得北京大学医学部实验动物伦理审查委员会的批准。本实验所使用的小鼠为C57BL/6J品系,购自维通利华公司,所有实验小鼠饲养在北大医学部实验动物科学部SPF动物房中,温度控制在22~24 ℃,每天光照12 h,黑暗12 h。小鼠2个月大时经视网膜下腔注射入AAV病毒载体,2周或4周后断颈处死检测效果。

1.2. 主要实验试剂与仪器

4%(质量分数)的多聚甲醛(AR-0211)购自广州鼎国生物技术有限公司,Triton X-100(T2070)购自上海源聚生物科技有限公司,聚乙二醇和聚乙烯醇混合物(optimal cutting temperature compound,OCT,ZLI-9301)、磷酸盐缓冲液粉末(ZLI-9061)、封闭液(ZLI-9056)、防荧光淬灭封片剂(ZLI-9557)及4’, 6-二脒基-2-苯基吲哚(4’, 6-diamidino-2-phenylindole, DAPI)染色液(ZLI-9557)购自中杉金桥生物技术有限公司,多聚赖氨酸溶液(P4832)购自美国Sigma公司。1% (体积分数)阿托品购自美国Alcon公司,2%(体积分数)羟甲基纤维素购自天津晶明新技术开发有限公司,氯胺酮和甲苯噻嗪安购自美国Sigma公司。实验使用到的主要仪器有眼科手术显微镜(美国Alcon公司)、冰冻切片机(CM3050,德国Leica公司)、激光共聚焦显微镜(A+/AIR+,日本NICON公司)。

1.3. AAV病毒载体构建与包装

AAV病毒载体由山东维真生物科技有限公司提供,构建步骤如下:(1)质粒扩增:构建好的AAV载体、包装质粒和辅助质粒需经过大量去内毒素抽提,使用德国Qiagen公司质粒大提试剂盒(12963)进行质粒的大量抽提。(2)AAV-293细胞转染:转染当天观察293细胞密度,密度达到80%~90%即可将载体质粒、包装质粒和辅助质粒进行转染。(3)AAV病毒收毒:病毒颗粒同时存在于包装细胞和培养上清液中,可以将细胞和培养上清液都收集下来以获得最好的收率。(4)AAV载体纯化后-80 ℃长期保存。(5) AAV-GFP病毒的滴度:滴度经测定为1×1013 mg/L。包装后的病毒载体结构为ITR-CMV-GFP-ITR,GFP是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光, 在基因治疗中被作为报告基因包装入基因治疗载体,用其可以发出绿色荧光的特性观察载体转染效率;ITR折叠成发夹结构,是AAV病毒开放阅读框DNA复制起始和包装重组AAV病毒颗粒所需顺式作用元件。AAV2/8血清型除CMV启动子外,还包装一种CAG启动子。CMV启动子是一种广谱的强启动子, CAG启动子是一种人工构建的组合启动子,由CMV增强子和鸡β-肌动蛋白启动子组成,用于驱动基因在哺乳动物体内的高水平表达,这两种启动子是眼科基因治疗最常用的广谱启动子。

1.4. 视网膜下腔注射

视网膜下腔注射前30 min用1%阿托品散瞳;麻醉前再次散瞳。按80 mg/kg氯胺酮+ 8 mg/kg甲苯噻嗪腹腔内注射麻醉,然后将小鼠放置在眼外科手术显微镜的动物实验平台前方,在小鼠眼睛上滴加0.5% (体积分数)丙美卡因进行局部麻醉。以100 :1的浓度在AAV病毒里加入荧光素钠原液,低速离心混匀。用胰岛素针在小鼠眼睛睫状体平坦部预扎一个小孔,用微量注射器的针头穿过该小孔后进入小鼠眼睛玻璃体腔,这时在小鼠眼睛上滴加适量2%羟甲基纤维素使在激光共聚焦显微镜下能清晰见到小鼠眼底,再继续将针头避开晶状体插入对侧的视网膜下,缓慢推入带有荧光素钠的AAV病毒,每只眼睛注射量为1 μL,以荧光素钠为指示剂判断是否注射入视网膜下腔。术后观察小鼠有无异常,给予新霉素眼膏预防感染。

1.5. 小鼠眼球处理

视网膜下腔注射两周后,断颈处死小鼠取小鼠眼球,放入装有1mL 4%多聚甲醛的1.5 mL EP管内4 ℃过夜,将固定后的小鼠眼球在体式显微镜下沿角膜缘将角膜剪去,去除晶状体与玻璃体做成视杯,然后分别使用20%蔗糖(质量分数)和30%蔗糖溶液进行梯度脱水,待小鼠眼球沉底即完成脱水。将小鼠眼睛放入装有冷冻包埋剂OCT的1.5 mL EP管中,用镊子将小鼠眼睛摆成直视前方的方位,盖好EP管后放入气态液氮内,待完全冻上后可进行冰冻切片,切片厚度为6 μm。4 ℃丙酮固定10 min后放入-80 ℃保存。

1.6. 免疫荧光染色与采图

取出冰冻切片,待切片恢复至室温后,用PBS洗3次,每次5 min;尽量将玻片无组织处擦干,每张切片滴加40 μL封闭液,室温封闭30 min。PBS洗3遍后,滴加DAPI稀释液染核(1 :5 000),室温孵育15 min。在载玻片中滴加防荧光淬灭封片剂,盖上盖玻片,-20 ℃避光保存。用配备有NIS-Elements C软件的尼康A1激光共聚焦显微镜观察GFP蛋白荧光并拍照。

2. 结果

2.1. 视网膜下腔注射

取2月龄C57BL/6J小鼠24只,随机分为6组,分别单次、单侧视网膜下腔注射AAV上清液、AAV2/2-CMV、AAV2/5-CMV、AAV2/8-CMV、AAV2/9-CMV和AAV2/8-CAG,注射方式为从颞侧进针,穿过玻璃体腔将1 μL AAV载体注射入对侧视网膜下腔(图 1A),显微镜下可见注射局部视网膜脱落,眼底呈黄绿色(图 1B)。注射后所有小鼠存活,实验周期内无眼内炎症等异常表现。

图1.

视网膜下腔注射方法示意图和显微镜下小鼠视网膜下腔注射过程

Subretinal injection schematis and subretinal injection under the microscope

A, subretinal injection schematis, the mice lateral limbus was focused with a ligation tweezer, and the needle was injected from temporal side, the AAVs were injected into the contralateral retina; B, under the microscope, the treated part of retina turns to yellowish green and retinal blood vessels were visible, showing that drugs were injected into the subretinal space correctly.

图1

2.2. 不同血清型AAV载体携带的GFP报告基因在小鼠视网膜的表达

注射后两周检测结果显示,AAV2/2、AAV2/5、AAV2/8和AAV2/9在视网膜均有表达绿色荧光,其中AAV2/5最弱,几乎看不到特异性荧光表达,AAV2/2次之,AAV2/8荧光较强,在感光细胞外核层都有大量绿色荧光表达,AAV2/9荧光最强,在视网膜色素上皮细胞、感光细胞以及神经节细胞都有绿色荧光表达。在外核层,绿色荧光密度与DAPI所染细胞核密度相当,说明两周时大部分感光细胞都有感染AAV病毒并表达报告基因,在DAPI标记的相应神经节细胞部位也有绿色荧光蛋白表达(图 2)。

图2.

小鼠视网膜下腔注射不同血清型AAV病毒载体后2周的免疫荧光染色(×40)

Expression of GFP reporter gene in different AAV serotype in mouse retina (×40)

A, AAV2/2 showed weak GFP fluorescence (with DAPI marked nuclear); B, AAV2/2 showed weak GFP fluorescence; C, AAV2/5 showed little GFP fluorescence(with DAPI marked nuclear); D, AAV2/5 showed little GFP fluorescence; E, AAV2/8 showed specific GFP fluorescence for photorecepter (with DAPI marked nuclear); F, AAV2/8 showed specific GFP fluorescence for photoreceptor; G, AAV2/9 show GFP fluorescence expression in each layer of the retina including ganglion cell (with DAPI marked nuclear); H, AAV2/9 show GFP fluorescence expression in each layer of the retina including ganglion cell. GFP is green; DAPI is blue. AAV, adeno-associated virus; GFP, green fluorescent protein; DAPI, 4', 6-diamidino-2-phenylindole; RPE, retinal pigment epithelium; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.

图2

选取对视网膜感光细胞亲和力和特异性较强的AAV2/8血清型继续观察其GFP表达,结果显示AAV2/8-GFP注射后4周绿色荧光蛋白荧光强度依然很高,并且与2周时感染特性一致,在视网膜色素上皮(retinal pigment epithelium, RPE)细胞和感光细胞均有大量绿色荧光,说明AAV2/8病毒在体内可稳定表达(图 3)。

图3.

小鼠视网膜下腔注射AAV8-CMV病毒载体后2周和4周的免疫荧光染色(×40)

GFP reporter gene expression after 2 weeks and 4 weeks subretinal injection of AAV8-CMV (×40)

A, AAV8 GFP fluorescence expression at 2 weeks (with DAPI marked nuclear); B, AAV8 GFP fluorescence expression at 2 weeks; C, AAV8 GFP fluorescence expression at 4 weeks showed parallel GFP fluorescence as 2 weeks (with DAPI marked nuclear); D, AAV8 GFP fluorescence expression at 4 weeks. GFP is green; DAPI is blue. W, week; AAV, adeno-associated virus; GFP, green fluorescent protein; DAPI, 4', 6-diamidino-2-phenylindole.

图3

另外,我们还比较了同一血清型病毒载体(AAV2/8)包装CAG和CMV两种启动子时的表达差异,在视网膜下腔注射后两周检测GFP荧光蛋白表达情况,发现在两种启动子作用下,GFP在感光细胞的表达量相差不大,但明显的差异是AAV2/8-CMV在RPE细胞有很强的表达,而AAV8-CAG在相同部位几乎没有表达(图 4),说明AAV8-CAG对感光细胞特异性更强。

图4.

小鼠视网膜下腔注射不同启动子的AAV8病毒载体后2周的免疫荧光染色(×20)

GFP reporter gene in different promoters (×20)

A, AAV8 with CAG showed strong GFP fluorescence expression in photorecepter(with DAPI marked nuclear); B, AAV8 with CAG showed strong GFP fluorescence expression in photoreceptor; C, AAV8 with CMV showed strong GFP fluorescence expression both in photoreceptor and RPE(with DAPI marked nuclear); D, AAV8 with CMV showed strong GFP fluorescence expression both in photoreceptor and retinal pigment epithelium. GFP is green; DAPI is blue. AAV, adeno-associated virus; GFP, green fluorescent protein; DAPI, 4', 6-diamidino-2-phenylindole.

图4

3. 讨论

本研究以绿色荧光蛋白作为标记, 观察不同AAV血清型载体介导的视网膜基因表达,发现AAV2/2、AAV2/5、AAV2/8和AAV2/9四种血清型中AAV2/8特异性最好,对感光细胞亲和力最强;AAV2/9虽然在视网膜色素上皮细胞和感光细胞都有大量表达,但因为有侵犯中枢神经的风险,不适合运用于眼科基因治疗[11],本研究结果也显示AAV2/9在神经节细胞中有绿色荧光蛋白表达。CMV和CAG两种广谱启动子用于眼科基因治疗,CAG启动子对感光细胞特异性更高,而CMV启动子除了感光细胞还可启动GFP在RPE细胞内表达。

为了实现靶基因在体内高效率、高特异性的表达,可以从改造AAV载体体系的基因组(启动子、调控序列、自身互补AAV)、衣壳(血清型)及注射方式几方面实现。AAV具有多种血清型,不同血清型有不同转染特性,9种自然产生的血清型(AAV1~9)被广泛运用于生产不同的杂合血清型[11],基因治疗研究与临床运用时可根据靶细胞不同选取不同类型AAV血清型载体,对于遗传性视网膜疾病的治疗,可以根据已知的致病机制选取合适的AAV血清型,如RPGR基因编码感光细胞连接纤毛(connec-ting cilium,CC)部位的一种转运蛋白,突变后主要影响感光细胞,因此可以首选AAV2/8,而对于致病机制尚不清楚的致病基因,可以选取靶细胞较广的AAV血清型。2017年12月20日以AAV2为载体的RPE65基因替代治疗药物已在美国获批上市[12],是人类历史上首款应用AAV病毒作为载体、体内直接给药、用于治疗基因缺失遗传病的药物。

一些小的眼科特异性启动子已被发现可以启动视锥和/或视杆细胞内蛋白表达,例如视锥阻遏蛋白(cone arrestin)可以特异启动视锥细胞内基因表达[13],而视紫红质(rhodopsin, RHO)启动子可以特异启动视杆细胞内基因表达[14],而一种视紫红质激酶1启动子(rhodopsin kinase 1,GRK1)可同时启动视锥视杆内基因表达[15],RPE65启动子和卵黄样黄斑病变(vitelliform macular dystrophy,VMD)启动子则特别适合以RPE细胞作为靶细胞的表达[16-17]。广谱启动子也是眼科基因治疗一大选择,特别是靶基因特别大时,在这些启动子中,最常用的就是CMV启动子[18]和CAG启动子[19],但不是所有广谱启动子对视网膜各类型细胞亲和力一致,这与所用AAV载体血清及给药途径有关,对AAV衣壳蛋白及其与不同启动子组合后表达特性的在体研究将助力基因治疗的临床运用。

Funding Statement

国家自然科学基金(81470666,81770966)

Supported by the National Natural Science Foundation of China (81470666, 81770966)

References

  • 1.Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors. Nat Protoc. 2006;1(3):1412–1428. doi: 10.1038/nprot.2006.207. [DOI] [PubMed] [Google Scholar]
  • 2.Berns KI, Nicholas M. AAV: An overview of unanswered questions. Hum Gene Ther. 2017;28(4):308–313. doi: 10.1089/hum.2017.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Alves CH, Wijnholds J. AAV gene augmentation therapy for CRB1-associated retinitis pigmentosa. Methods Mol Biol. 2018;1715:135–151. doi: 10.1007/978-1-4939-7522-8_10. [DOI] [PubMed] [Google Scholar]
  • 4.Moore NA, Morral N, Ciulla TA. Gene therapy for inherited retinal and optic nerve degenerations. Expert Opin Biol Ther. 2018;18(1):37–49. doi: 10.1080/14712598.2018.1389886. [DOI] [PubMed] [Google Scholar]
  • 5.Sullivan JA, Stanek LM, Lukason MJ. Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain. Gene Ther. 2018;25(3):205–219. doi: 10.1038/s41434-018-0017-8. [DOI] [PubMed] [Google Scholar]
  • 6.Ong T, Pennesi ME, Birch DG. Adeno-Associated viral gene therapy for inherited retinal disease. Pharm Res. 2019;36(2):34. doi: 10.1007/s11095-018-2564-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Russell S, Bennett J, Wellman JA. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–860. doi: 10.1016/S0140-6736(17)31868-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hung SC, Chrysostomou V, Li F. AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Invest Ophthalmol Vis Sci. 2016;57(7):3470–3476. doi: 10.1167/iovs.16-19316. [DOI] [PubMed] [Google Scholar]
  • 9.Day TP, Byrne LC, Schaffer DV, et al. Advances in AAV vector development for gene therapy in the retina. Adv Exp Med Biol. 2014;801:687–693. doi: 10.1007/978-1-4614-3209-8_86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Allocca M, Mussolino C, Garcia-Hoyos M, et al. Novel Adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol. 2007;81(20):11372–11380. doi: 10.1128/JVI.01327-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vision Res. 2008;48(3):353–359. doi: 10.1016/j.visres.2007.07.027. [DOI] [PubMed] [Google Scholar]
  • 12.Bennett J, Wellman J, Marshall KA. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388(10045):661–672. doi: 10.1016/S0140-6736(16)30371-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Carvalho LS, Xu J, Pearson RA, et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet. 2011;20(16):3161–3175. doi: 10.1093/hmg/ddr218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Flannery JG, Zolotukhin S, Vaquero MI. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci USA. 1997;94(13):6916–6921. doi: 10.1073/pnas.94.13.6916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Young JE, Vogt T, Gross KW, et al. A short, highly active photoreceptor-specific enhancer/promoter region upstream of the human rhodopsin kinase gene. Invest Ophthalmol Vis Sci. 2003;44(9):4076–4085. doi: 10.1167/iovs.03-0197. [DOI] [PubMed] [Google Scholar]
  • 16.Nicoletti A, Kawase K, Thompson DA. Promoter analysis of RPE65, the gene encoding a 61-kDa retinal pigment epithelium-specific protein. Invest Ophthalmol Vis Sci. 1998;39(3):637–644. [PubMed] [Google Scholar]
  • 17.Esumi N, Oshima Y, Li Y, et al. Analysis of the VMD2 promoter and implication of E-box binding factors in its regulation. J Biol Chem. 2004;279(18):19064–19073. doi: 10.1074/jbc.M309881200. [DOI] [PubMed] [Google Scholar]
  • 18.Corti M, Liberati C, Smith BK. Safety of intradiaphragmatic deli-very of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by pompe disease. Hum Gene Ther Clin Dev. 2017;28(4):208–218. doi: 10.1089/humc.2017.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Martier R, Sogorb-Gonzalez M, Stricker-Shaver J. Development of an AAV-based MicroRNA gene therapy to treat Machado-Joseph disease. Mol Ther Methods Clin Dev. 2019;15:343–358. doi: 10.1016/j.omtm.2019.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES