Abstract
We report an alternative approach to the unnatural nucleobase fragment seen in remdesivir (Veklury). Remdesivir displays broad-spectrum antiviral activity and is currently being evaluated in Phase III clinical trials to treat patients with COVID-19. Our route relies on the formation of a cyanoamidine intermediate, which undergoes Lewis acid-mediated cyclization to yield the desired nucleobase. The approach is strategically distinct from prior routes and could further enable the synthesis of remdesivir and other small-molecule therapeutics.
The ongoing COVID-19 pandemic has prompted a remarkable response from the scientific community.1 In roughly 6 months, numerous breakthroughs have been disclosed in testing,2 vaccinations,3 small-molecule therapeutics,4,5 and other areas.6 With respect to small-molecule therapeutic approaches to combat COVID-19, remdesivir (1) (Figure 1) has gained considerable attention from scientists and the general public.4,7 This unnatural nucleotide analogue, discovered by Gilead Sciences, Inc. and now marketed as Veklury, displays broad-spectrum antiviral activity and is currently being evaluated in Phase III clinical trials to treat patients with COVID-19.4i The U.S. Food and Drug Administration has granted emergency use authorization for remdesivir, allowing hospitalized adult and pediatric COVID-19 patients to receive remdesivir treatments.4a
Figure 1.
Antiviral drug remdesivir (1) and nucleobase fragment 2.
From a synthetic perspective, 1 (Figure 1) possesses several structural features that render it a challenging target.8 In addition to the presence of a tertiary anomeric center bearing a nitrile group, the molecule contains a phosphoramidate unit with a stereogenic phosphorus center. Moreover, the nucleobase present in 1 is the unnatural pyrrolo[2,1-f][1,2,4]triazin-4-amine moiety (2) (Figure 1). This structural motif is present in a variety of other approved and experimental drugs, such as 3–6 (Figure 2).9−12
Figure 2.
Selected examples of experimental and approved drugs that possess fragment 2 or a derivative thereof.
With the overall aim of lowering the cost of manufacturing remdesivir or identifying alternative pathways for its synthesis, we considered the few known synthetic approaches to 2.13 As summarized in Figure 3, 2 has been generally prepared from nitrile 7.14 In turn, 7 can be accessed from 2-formylpyrrole (8)14a or aminopyrrole derivative 9.14b−14f An exciting improvement to the synthesis of 2 via intermediate 7, which uses pyrrole as the starting material, has recently been reported by the Medicines for All Institute.8a We devised a distinct, complementary approach in which 2 would be accessed from cyanoamidine 10 via electrophilic aromatic substitution. Amidine 10 would arise from condensation of cyanamide (11) with formamide 12.15 To our knowledge, this alternate strategy has not been evaluated previously. The overall conversion of 11 + 12 to 2 could theoretically proceed with water as the only byproduct, thus rendering the approach highly attractive.
Figure 3.
Prior and current strategies for the synthesis of 2.
We initiated our experimental efforts by preparing formamide 12 (Figure 4). Two distinct routes proved fruitful.16 In the first, 1-aminopyrrole (13), which can be prepared in two steps from 2,5-dimethoxyfuran (15),17 underwent formylation to provide 12.18 Alternatively, Boc-protected aminopyrrole 9 could be utilized, which is notable since it is easily accessible in a single high-yielding step from 15.14b,14f,19,20 Treatment of 9 with acetic anhydride in formic acid21 at room temperature gave formamide 12 in 70% yield.
Figure 4.
Synthetic routes to formamide 12 stemming from 15.
Table 1 provides a sampling of conditions that were examined for the next step, which is the conversion of formamide 12 to cyanoamidine 10. Although the reaction of 12 with 2 equivalents of cyanamide and substoichiometric amounts of sodium methoxide as the base did not give the desired product (entry 1), the use of stoichiometric sodium methoxide led to complete conversion, thus furnishing two isomers of cyanoamidine 10 in a ratio of 1.8 to 1 (entry 2), presumably favoring the depicted E isomer.22 We also found that only 1 equivalent of cyanamide was necessary. Thus, treatment of formamide 12 with 1 equiv of cyanamide and 1 equivalent of sodium methoxide at 23 °C gave quantitative conversion to (E)-10 and an isomer (entry 3). Although the cyanoamidine products displayed sensitivity to water, they could be easily isolated by filtering the crude reaction mixture over Celite and removing the volatiles under reduced pressure.
Table 1. Selected Conditions for the Conversion of Formamide 12 to Cyanoamidine (E)-10a.
| entry | equiv of H2NCN | equiv of NaOMe | conversionb |
|---|---|---|---|
| 1 | 2.0 | 0.5 | 0% |
| 2 | 2.0 | 1.0 | quantitative |
| 3 | 1.0 | 1.0 | quantitative |
Conditions: formamide 12 (1.0 equiv), cyanamide (1.0–2.0 equiv), sodium methoxide (0.5–1.0 equiv), and methanol (0.5 M) stirred at 23 °C for 1 h in a sealed vial under an atmosphere of N2.
Conversion to (E)-10 and its isomer was determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an external standard; for entries 2 and 3, the ratio of (E)-10 to its isomer was observed to be 1.8 to 1.
We then investigated the key cyclization.23 Given the aforementioned sensitivity of the cyanoamidine intermediates to water, 12 was converted to 10 (presumed to be (E)-10 and an unassigned isomer) using our optimized reaction conditions, and it was carried directly into the next step without purification (see Table 2). The crude intermediate was subjected to a variety of acid sources with the hope of obtaining 2 through cyclization of the Z isomer of 10. Table 2 features a comparison of 1H NMR yields obtained using 1,2-dichloroethane as the solvent at 90 °C (see the Supporting Information for additional results on variation of the acid source, solvent, temperature, etc.). We were delighted to find that BF3·OEt2 could be employed as the Lewis acid (entries 1–3), with the highest yield of 2 (22%) being observed at a concentration of 0.1 M (entry 3). Protic acids such as hydrochloric acid and acetic acid were ineffective (entries 4 and 5). Whereas chlorotrimethylsilane also failed to deliver 2 (or a silylated derivative thereof), trace amounts or low yields were obtained using zinc triflate, copper triflate, or titanium tetrachloride (entries 7–9). However, subjecting crude 10 to tin tetrachloride furnished the desired heterocycle 2 in 28% yield (entry 10).24
Table 2. Selected Conditions for the Synthesis of 2a.
| entry | acid | conc. (M) | yield of 2b |
|---|---|---|---|
| 1 | BF3·OEt2 | 1.0 | 4% |
| 2 | BF3·OEt2 | 0.5 | 3% |
| 3 | BF3·OEt2 | 0.1 | 22% |
| 4 | HCl | 0.1 | 0% |
| 5 | AcOH | 0.1 | 0% |
| 6 | TMSCl | 0.1 | 0% |
| 7 | Zn(OTf)2 | 0.1 | trace |
| 8 | Cu(OTf)2 | 0.1 | trace |
| 9 | TiCl4 | 0.1 | 7% |
| 10 | SnCl4 | 0.1 | 28% |
Conditions for the cyclization step: crude 10 (1.0 equiv, assuming quantitative conversion from 12), acid (2.5 equiv), and 1,2-dichloroethane (0.1 M) heated at 90 °C for 16 h in a sealed vial under an atmosphere of N2.
Yields were determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an external standard.
Given the urgency and importance of efforts to alleviate the COVID-19 pandemic and the currently limited research capacity at our home institutions, we opted to limit further optimization studies and instead evaluate our current protocol on a millimolar scale. Figure 5 provides an overview of the synthetic sequence with isolated yields.25 Furan 15 is converted to formamide 12 in two steps. Subsequent condensation with cyanamide furnishes intermediate 10, which in turn undergoes cyclization through its Z isomer to give 2. We are optimistic that further optimization efforts will lead to practical improvements and welcome the expertise of process chemists worldwide to help address this challenge.
Figure 5.
Synthesis of 2 on a >1 mmol scale.
In summary, we have developed an alternative strategy to synthesize nucleobase 2, a key fragment in remdesivir and other experimental or approved small-molecule therapeutics. The route relies on intermediate formamide 12, which is derived in two steps from 2,5-dimethoxyfuran (15). Condensation of 12 with cyanamide yields an intermediate cyanoamidine (i.e., 10), which then undergoes Lewis acid-mediated cyclization to deliver 2. Our approach to 2 is atom-economical and strategically distinct from prior routes. Further improvements in the final cyclization step can be expected in future studies. We anticipate that our synthetic route will further enable the synthesis of remdesivir and other small-molecule therapeutics that possess nucleobase 2.
Acknowledgments
The authors thank the Bill and Melinda Gates Foundation for financial support (INV-005860 to R.S. and N.K.G.), the Max Kade Foundation and the Austrian Academy of Sciences (ÖAW) (Fellowship to V.T.), the Astellas Foundation for Research on Metabolic Disorders (for a grant to T.O.), and the Trueblood Family (N.K.G.). These studies were supported by shared instrumentation grants from the NSF (CHE-1048804) and the NIH NCRR (S10RR025631). We are grateful to Melissa A. Hardy (UC Berkeley) and Brandon A. Wright (UC Berkeley) for serving as facilitators of our collaborative project. We also thank them and J. Logan Bachman (UCLA), Timothy B. Boit (UCLA), Hannah M. S. Haley (UC Berkeley), Robert F. Lusi (UC Berkeley), Trevor Laird (Trevor Laird Associates), John Dillon (JLD Pharma Consulting), and Silpa Sundaram (Bill and Melinda Gates Foundation) for helpful discussions.
Supporting Information Available
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c03052.
Experimental details and compound characterization data (PDF)
Author Contributions
§ R.R.K. and V.T. contributed equally to this study.
The authors declare no competing financial interest.
Supplementary Material
References
- a Kupferschmidt K.‘A completely new culture of doing research.’ Coronavirus outbreak changes how scientists communicate. Science, February 26, 2020. https://www.sciencemag.org/news/2020/02/completely-new-culture-doing-research-coronavirus-outbreak-changes-how-scientists/ (accessed 2020-08-30). [Google Scholar]; b Hao K.Over 24,000 coronavirus research papers are now available in one place. MIT Technology Review, March 16, 2020. https://www.technologyreview.com/2020/03/16/905290/coronavirus-24000-research-papers-available-open-data/ (accessed 2020-08-30).; c Hardy M. A.; Wright B. A.; Bachman J. L.; Boit T. B.; Haley H. M. S.; Knapp R. R.; Lusi R. F.; Okada T.; Tona V.; Garg N. K.; Sarpong R. Treating a global health crisis with a dose of synthetic chemistry. ACS Cent. Sci. 2020, 6, 1017–1030. 10.1021/acscentsci.0c00637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- a Peplow M.Rapid COVID-19 testing breaks free from the lab. Chem. Eng. News, August 10, 2020. https://cen.acs.org/analytical-chemistry/diagnostics/Rapid-COVID-19-testing-breaks/98/web/2020/08 (accessed 2020-08-30).; b Tromberg B. J.; Schwetz T. A.; Pérez-Stable E. J.; Hodes R. J.; Woychik R. P.; Bright R. A.; Fleurence R. L.; Collins F. S. Rapid scaling up of COVID-19 diagnostic testing in the United States – The NIH RADx Initiative. N. Engl. J. Med. 2020, 383, 1071–1077. 10.1056/NEJMsr2022263. [DOI] [PMC free article] [PubMed] [Google Scholar]; c NIH delivering new COVID-19 testing technologies to meet U.S. demand. National Institutes of Health, July 31, 2020. https://www.nih.gov/news-events/news-releases/nih-delivering-new-covid-19-testing-technologies-meet-us-demand (accessed 2020-08-30).; d La Marca A.; Capuzzo M.; Paglia T.; Roli L.; Trenti T.; Nelson S. M. Testing for SARS-CoV-2 (COVID-19): A systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod. BioMed. Online 2020, 41, 483–499. 10.1016/j.rbmo.2020.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]; e SARS-CoV-2 Diagnostic Pipeline. Foundation for Innovative New Diagnostics (FIND), 2020. https://www.finddx.org/covid-19/pipeline/ (accessed 2020-08-30).; f Bustin S. A.; Benes V.; Garson J. A.; Hellemans J.; Huggett J.; Kubista M.; Mueller R.; Nolan T.; Pfaffl M. W.; Shipley G. L.; Vandesompele J.; Wittwer C. T. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. 10.1373/clinchem.2008.112797. [DOI] [PubMed] [Google Scholar]; g Abbott realtime SARS-CoV-2 assay. Abbott Laboratories, 2020. https://www.molecular.abbott/us/en/products/infectious-disease/RealTime-SARS-CoV-2-Assay (accessed 2020-08-30).; h New Rutgers saliva test for coronavirus gets FDA approval. Rutgers University, April 13, 2020. https://www.rutgers.edu/news/new-rutgers-saliva-test-coronavirus-gets-fda-approval (accessed 2020-08-30).; i Hahn S. M.Coronavirus (COVID-19) update: serological tests. U.S. Food and Drug Administration, April, 7, 2020. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-serological-tests (accessed 2020-08-30).; j Kobokovich A.; West R.; Gronvall G.. Serology-based tests for COVID-19. Center for Health Security, Johns Hopkins Bloomberg School of Public Health, 2020. https://www.centerforhealthsecurity.org/resources/COVID-19/serology/Serology-based-tests-for-COVID-19.html (accessed 2020-08-30).; k Bloom J. S.; Jones E. M.; Gasperini M.; Lubock N. B.; Sathe L.; Munugala C.; Booeshaghi A. S.; Brandenberg O. F.; Guo L.; Boocock J.; Simpkins S. W.; Lin I.; LaPierre N.; Hong D.; Zhang Y.; Oland G.; Choe B. J.; Chandrasekaran S.; Hilt E. E.; Butte M. J.; Damoiseaux R.; Cooper A. R.; Yin Y.; Pachter L.; Garner O. B.; Flint J.; Eskin E.; Luo C.; Kosuri S.; Kruglyak L.; Arboleda V. A. Swab-Seq: A high-throughput platform for massively scaled up SARS-CoV-2 testing. medRxiv 2020, 10.1101/2020.08.04.20167874. [DOI] [Google Scholar]
- a Corum J.; Grady D.; Wee S.-L.; Zimmer C.. Coronavirus Vaccine Tracker. The New York Times, August 31, 2020. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html. (accessed 2020-08-31). [Google Scholar]; b Deming M. E.; Michael N. L.; Robb M.; Cohen M. S.; Neuzil K. M. Accelerating development of SARS-CoV-2 vaccines—the role for controlled human infection models. N. Engl. J. Med. 2020, 383, e63. 10.1056/NEJMp2020076. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Slaoui M.; Hepburn M. Developing safe and effective COVID vaccines—Operation Warp Speed’s strategy and approach. N. Engl. J. Med. 2020, 10.1056/NEJMp2027405. [DOI] [PubMed] [Google Scholar]; d Lurie N.; Saville M.; Hatchett R.; Halton J. Developing COVID-19 vaccines at pandemic speed. N. Engl. J. Med. 2020, 382, 1969–1973. 10.1056/NEJMp2005630. [DOI] [PubMed] [Google Scholar]; e Liu C.; Zhou Q.; Li Y.; Garner L. V.; Watkins S. P.; Carter L. J.; Smoot J.; Gregg A. C.; Daniels A. D.; Jervey S.; Albaiu D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci. 2020, 6, 315–331. 10.1021/acscentsci.0c00272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- For recent studies pertaining to remdesivir, see:; a COVID-19 update: FDA broadens emergency use authorization of Veklury (remdesivir) to include all hospital patients for treatment of COVID-19. U.S. Food and Drug Administration, August, 28, 2020. https://www.fda.gov/news-events/press-announcements/covid-19-update-fda-broadens-emergency-use-authorization-veklury-remdesivir-include-all-hospitalized (accessed 2020-08-30).; b O’Day D.An open letter from our Chairman & CEO. Gilead Sciences, Inc., April 29, 2020. https://stories.gilead.com/articles/an-open-letter-from-our-chairman-and-ceo-april-29 (accessed 2020-08-30).; c Gilead submits new drug application to U.S. Food and Drug Administration for Veklury (remdesivir) for the treatment of COVID-19. Gilead Sciences, Inc., August 10, 2020. https://www.gilead.com/news-and-press/press-room/press-releases/2020/8/gilead-submits-new-drug-application-to-us-food-and-drug-administration-for-veklury-remdesivir-for-the-treatment-of-covid19 (accessed 2020-08-30).; d Beigel J. H.; Tomashek K. M.; Dodd L. E.; Mehta A. K.; Zingman B. S.; Kalil A. C.; Hohmann E.; Chu H. Y.; Luetkemeyer A.; Kline S.; Lopez de Castilla D.; Finberg R. W.; Dierberg K.; Tapson V.; Hsieh L.; Patterson T. F.; Paredes R.; Sweeney D. A.; Short W. R.; Touloumi G.; Lye D. C.; Ohmagari N.; Oh M-d.; Ruiz-Palacios G. M.; Benfield T.; Fätkenheuer G.; Kortepeter M. G.; Atmar R. L.; Creech C. B.; Lundgren J.; Babiker A. G.; Pett S.; Neaton J. D.; Burgess T. H.; Bonnett T.; Green M.; Makowski M.; Osinusi A.; Nayak S.; Lane H. C. Remdesivir for the treatment of COVID-19—Final report. N. Engl. J. Med. 2020, 10.1056/NEJMoa2007764. [DOI] [PMC free article] [PubMed] [Google Scholar]; e Spinner C. D.; Gottlieb R. L.; Criner G. J.; Arribas López J. R.; Cattelan A. M.; Soriano Viladomiu A.; Ogbuagu O.; Malhotra P.; Mullane K. M.; Castagna A.; Chai L. Y. A.; Roestenberg M.; Tsang O. T. Y.; Bernasconi E.; Le Turnier P.; Chang S.-C.; SenGupta D.; Hyland R. H.; Osinusi A. O.; Cao H.; Blair C.; Wang H.; Gaggar A.; Brainard D. M.; McPhail M. J.; Bhagani S.; Ahn M. Y.; Sanyal A. J.; Huhn G.; Marty F. M. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19. JAMA 2020, 324, 1048–1057. 10.1001/jama.2020.16349. [DOI] [PMC free article] [PubMed] [Google Scholar]; f Al-Tawfiq J. A.; Al-Homoud A. H.; Memish Z. A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis. 2020, 34, 101615. 10.1016/j.tmaid.2020.101615. [DOI] [PMC free article] [PubMed] [Google Scholar]; g Wang M.; Cao R.; Zhang L.; Yang X.; Liu J.; Xu M.; Shi Z.; Hu Z.; Zhong W.; Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. 10.1038/s41422-020-0282-0. [DOI] [PMC free article] [PubMed] [Google Scholar]; h Sheahan T. P.; Sims A. C.; Leist S. R.; Schäfer A.; Won J.; Brown A. J.; Montgomery S. A.; Hogg A.; Babusis D.; Clarke M. O.; Spahn J. E.; Bauer L.; Sellers S.; Porter D.; Feng J. Y.; Cihlar T.; Jordan R.; Denison M. R.; Baric R. S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon β against MERS-CoV. Nat. Commun. 2020, 11, 222. 10.1038/s41467-019-13940-6. [DOI] [PMC free article] [PubMed] [Google Scholar]; For remdesivir clinical trials for COVID-19, see:; i https://clinicaltrials.gov/ct2/results?cond=&term=remdesivir&cntry=&state=&city=&dist= (accessed 2020-08-30).
- For recent studies pertaining to other small-molecule therapeutics besides remdesivir that are relevant to COVID-19, see:; a Li G.; De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov. 2020, 19, 149–150. 10.1038/d41573-020-00016-0. [DOI] [PubMed] [Google Scholar]; b Sheahan T. P.; Sims A. C.; Zhou S.; Graham R. L.; Pruijssers A. J.; Agostini M. L.; Leist S. R.; Schäfer A.; Dinnon K. H. III; Stevens L. J.; Chappell J. D.; Lu X.; Hughes T. M.; George A. S.; Hill C. S.; Montgomery S. A.; Brown A. J.; Bluemling G. R.; Natchus M. G.; Saindane M.; Kolykhalov A. A.; Painter G.; Harcourt J.; Tamin A.; Thornburg N. J.; Swanstrom R.; Denison M. R.; Baric R. S. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 2020, 12, eabb5883. 10.1126/scitranslmed.abb5883. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Halford B.An emerging antiviral takes aim at COVID-19. Chem. Eng. News, May 5, 2020. https://cen.acs.org/pharmaceuticals/drug-development/emerging-antiviral-takes-aim-COVID-19/98/web/2020/05 (accessed 2020-08-30).; d Eddy J.Ridgeback Biotherapeutics announces launch of phase 2 trials testing EIDD-2801 as potential treatment for COVID-19. Bloomberg, June 19, 2020. https://www.bloomberg.com/press-releases/2020-06-19/ridgeback-biotherapeutics-announces-launch-of-phase-2-trials-testing-eidd-2801-as-potential-treatment-for-covid-19 (accessed 2020-08-30).; e De Savi C.; Hughes D. L.; Kvaerno L. Quest for a COVID-19 cure by repurposing small-molecule drugs: mechanism of action, clinical development, synthesis at scale, and outlook for supply. Org. Process Res. Dev. 2020, 24, 940–976. 10.1021/acs.oprd.0c00233. [DOI] [PubMed] [Google Scholar]; f Maxmen A. More than 80 clinical trials launch to test coronavirus treatments. Nature 2020, 578, 347–348. 10.1038/d41586-020-00444-3. [DOI] [PubMed] [Google Scholar]; g Main protease structure and XChem fragment screen. Diamond Light Source, May 5, 2020. https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem.htm (accessed 2020-08-30).; h Moskal M.; Beker W.; Roszak R.; Gajewska E. P.; Wolos A.; Molga K.; Szymkuć S.; Grynkiewicz G.; Grzybowski B. A. Suggestions for second-pass anti-COVID-19 drugs based on the artificial intelligence measures of molecular similarity, shape and pharmacophore distribution. ChemRxiv 2020, 10.26434/chemrxiv.12084690.v2. [DOI] [Google Scholar]; i Wang J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model. 2020, 60, 3277–3286. 10.1021/acs.jcim.0c00179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- a FDA issues emergency use authorization for convalescent plasma as potential promising COVID-19 treatment, another achievement in administration’s fight against pandemic. U.S. Food and Drug Administration, August 23, 2020. https://www.fda.gov/news-events/press-announcements/fda-issues-emergency-use-authorization-convalescent-plasma-potential-promising-covid-19-treatment (accessed 2020-08-30).; b Joyner M. J.; Wright R. S.; Fairweather D.; Senefeld J. W.; Bruno K. A.; Klassen S. A.; Carter R. E.; Klompas A. M.; Wiggins C. C.; Shepherd J. R. A.; Rea R. F.; Whelan E. R.; Clayburn A. J.; Spiegel M. R.; Johnson P. W.; Lesser E. R.; Baker S. E.; Larson K. F.; Ripoll J. G.; Andersen K. J.; Hodge D. O.; Kunze K. L.; Buras M. R.; Vogt M. N. P.; Herasevich V.; Dennis J. J.; Regimbal R. J.; Bauer P. R.; Blair J. E.; van Buskirk C. M.; Winters J. L.; Stubbs J. R.; Paneth N. S.; Verdun N. C.; Marks P.; Casadevall A. Early safety indicators of COVID-19 convalescent plasma in 5000 patients. J. Clin. Invest. 2020, 130, 4791–4797. 10.1172/JCI140200. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Green S. A.; Wigman B.; Nistanaki S. K.; Montgomery H. R.; Jones C. G.; Nelson H. M. Chemocatalytic amplification probes enable transcriptionally-regulated Au(I)-catalysis in E. coli and sensitive detection of SARS-CoV-2 RNA fragments. ChemRxiv 2020, 10.26434/chemrxiv.12915761.v2. [DOI] [Google Scholar]
- a Warren T. K.; Jordan R.; Lo M. K.; Ray A. S.; Mackman R. L.; Soloveva V.; Siegel D.; Perron M.; Bannister R.; Hui H. C.; Larson N.; Strickley R.; Wells J.; Stuthman K. S.; van Tongeren S. A.; Garza N. L.; Donnelly G.; Shurtleff A. C.; Retterer C. J.; Gharaibeh D.; Zamani R.; Kenny T.; Eaton B. P.; Grimes E.; Welch L. S.; Gomba L.; Wilhelmsen C. L.; Nichols D. K.; Nuss J. E.; Nagle E. R.; Kugelman J. R.; Palacios G.; Doerffler E.; Neville S.; Carra E.; Clarke M. O.; Zhang L.; Lew W.; Ross B.; Wang Q.; Chun K.; Wolfe L.; Babusis D.; Park Y.; Stray K. M.; Trancheva I.; Feng J. Y.; Barauskas O.; Xu Y.; Wong P.; Braun M. R.; Flint M.; McMullan L. K.; Chen S.-S.; Fearns R.; Swaminathan S.; Mayers D. L.; Spiropoulou C. F.; Lee W. A.; Nichol S. T.; Cihlar T.; Bavari S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016, 531, 381–385. 10.1038/nature17180. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Siegel D.; Hui H. C.; Doerffler E.; Clarke M. O.; Chun K.; Zhang L.; Neville S.; Carra E.; Lew W.; Ross B.; Wang Q.; Wolfe L.; Jordan R.; Soloveva V.; Knox J.; Perry J.; Perron M.; Stray K. M.; Barauskas O.; Feng J. Y.; Xu Y.; Lee G.; Rheingold A. L.; Ray A. S.; Bannister R.; Strickley R.; Swaminathan S.; Lee W. A.; Bavari S.; Cihlar T.; Lo M. K.; Warren T. K.; Mackman R. L. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f ][triazine-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. J. Med. Chem. 2017, 60, 1648–1661. 10.1021/acs.jmedchem.6b01594. [DOI] [PubMed] [Google Scholar]; c Mackman R. L.; Parrish J. P.; Ray A. S.; Theodore D. A.. Methods and compounds for treating Paramyxoviridae virus infections. WO 2012012776 A1, January 26, 2012.; d Chun B. K.; Clarke M. O. H.; Doerffler E.; Hui H. C.; Jordan R.; Mackman R. L.; Parrish J. P.; Ray A. S.; Siegel D.. Methods for treating Filoviridae virus infections. WO 2016069826 A1, May 6, 2016.; e Clarke M. O. H.; Jordan R.; Mackman R. L.; Ray A. S.; Siegel D.. Methods for treating Filoviridae virus infections. WO 2017184668 A1, October 26, 2017.; f Chun B. K.; Clarke M. O. H.; Doerffler E.; Hui H. C.; Jordan R.; Mackman R. L.; Parrish J. P.; Ray A. S.; Siegel D.. Methods for treating Filoviridae virus infections. US 20190275063 A1, September 12, 2019.
- For discussions related to the cost of manufacturing remdesivir, see refs (1c) and (5e) and the following:; a Paymode D. J.; Cardoso F. S. P.; Agrawal T.; Tomlin J. W.; Cook D. W.; Burns J.; Stringham R. W.; Sieber J. D.; Gupton B. F.; Snead D. Expanding access to remdesivir via an improved pyrrolotriazine synthesis: supply centered synthesis. Org. Lett. 2020, 22, 7656–7661. 10.1021/acs.orglett.0c02848. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Jarvis L. M.Scaling up remdesivir amid the coronavirus crisis. Chem. Eng. News, April 20, 2020. https://cen.acs.org/biological-chemistry/infectious-disease/Scaling-remdesivir-amid-coronavirus-crisis/98/web/2020/04 (accessed 2020-08-30).
- For 3, see:Wu C.-P.; Lusvarghi S.; Wang J.-C.; Hsiao S.-H.; Huang Y.-H.; Hung T.-H.; Ambudkar S. V. Avapritinib: A selective inhibitor of KIT and PDGFRα that reverses ABCB1 and ABCG2-mediated multidrug resistance in cancer cell lines. Mol. Pharmaceutics 2019, 16, 3040–3052. 10.1021/acs.molpharmaceut.9b00274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- For 4, see:Grünewald S.; Politz O.; Bender S.; Héroult M.; Lustig K.; Thuss U.; Kneip C.; Kopitz C.; Zopf D.; Collin M.-P.; Boemer U.; Ince S.; Ellinghaus P.; Mumberg D.; Hess-Stumpp H.; Ziegelbauer K. Rogaratinib: A potent and selective pan-FGFR inhibitor with broad antitumor activity in FGFR-overexpressing preclinical cancer models. Int. J. Cancer 2019, 145, 1346–1357. 10.1002/ijc.32224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- For 5, see:Carboni J. M.; Wittman M.; Yang Z.; Lee F.; Greer A.; Hurlburt W.; Hillerman S.; Cao C.; Cantor G. H.; Dell-John J.; Chen C.; Discenza L.; Menard K.; Li A.; Trainor G.; Vyas D.; Kramer R.; Attar R. M.; Gottardis M. M. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol. Cancer Ther. 2009, 8, 3341–3349. 10.1158/1535-7163.MCT-09-0499. [DOI] [PubMed] [Google Scholar]
- For 6, see:de La Motte Rouge T.; Galluzzi L.; Olaussen K. A.; Zermati Y.; Tasdemir E.; Robert T.; Ripoche H.; Lazar V.; Dessen P.; Harper F.; Pierron G.; Pinna G.; Araujo N.; Harel-Belan A.; Armand J.-P.; Wong T. W.; Soria J. C.; Kroemer G. A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res. 2007, 67, 6253–6262. 10.1158/0008-5472.CAN-07-0538. [DOI] [PubMed] [Google Scholar]
- Although scaffold 2 is featured in a number of bioactive molecules, there are only a few known strategies to access it, all of which follow a similar bond disconnection strategy. Our strategy relies on a new bond disconnection that has the potential to further enable the synthesis of this key motif. See the Supporting Information for details of known routes and key points of comparison.
- a Patil S. A.; Otter B. A.; Klein R. S. Synthesis of pyrrolo[2,1-f][1,2,4]triazine congeners of nucleic acid purines via the N-amination of 2-substituted pyrroles. J. Heterocycl. Chem. 1994, 31, 781–786. 10.1002/jhet.5570310415. [DOI] [Google Scholar]; b O’Connor S. J.; Dumas J.; Lee W.; Dixon J.; Cantin D.; Gunn D.; Burke J.; Phillips B.; Lowe D.; Shelekhin T.; Wang G.; Ma X.; Ying S.; Mcclure A.; Achebe F.; Lobell M.; Ehrgott F.; Iwuagwu C.; Parcella K.. Preparation of pyrrolo[2,1-f][1,2,4]triazin-4-ylamines as IGF-1R kinase inhibitors for the treatment of cancer and other hyperproliferative diseases. WO 2007056170 A2, May 18, 2007.; c Dixon J.; Phillips B.; Achebe F.; Kluender H.; Newcom J.; Parcella K.; O’Connor S. J.; Magnuson S.; Hong Z.; Zhang Z.; Liu Z.; Khire U.; Wang L.; Michels M.; Chandler B.. Preparation of substituted 4-amino-pyrrolotriazine derivatives useful for treating hyper-proliferative disorders and diseases associated with angiogenesis. WO 2007064931 A2, June 7, 2007.; d Duan M.; Tian S.; Liu J.. N-heterocycle-containing derivative and its pharmaceutical application. CN 110627796 A, December 31, 2019.; e Huang L.; Mao W.; Wang Z.; Liu Y.; Huang J.; Ouyang F.. Preparing method and application of tricyclic compounds capable of inhibiting EGFR kinase mutant. CN 110092787 A, August 6, 2019.; f Zhang Z.; Shen M.; Zhao L.. Method for preparing 7-bromopyrrolo[2,1-f][1,2,4]triazin-4-amine as GS-441524 intermediate for treating feline infectious peritonitis (FIP). CN 110845502 A, February 28, 2020.
- For the condensation of cyanamide on a formamide, see:Dozorova E. N.; Solov’eva N. P.; Chistyakov V. V.; Shvarts G. Y.; Faermark I. F.; Syubaev R. D.; Granik V. G.; Mashkovskii M. D. Synthesis and biological activity of N-cyanoamidines and derivatives of 2,4-diaminotriazine. Pharm. Chem. J. 1987, 21, 712–717. 10.1007/BF00758132. [DOI] [Google Scholar]
- Preliminary efforts to synthesize 12 by Clauson–Kaas synthesis from 15 and formic hydrazide were unsuccessful, likely because of acid-mediated decomposition of formic hydrazide.
- Dey S. K.; Lightner D. A. 1,1’-Bipyrroles: Synthesis and stereochemistry. J. Org. Chem. 2007, 72, 9395–9397. 10.1021/jo7016789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- The conversion of 13 to 12 was not fully optimized because of the greater efficiency seen in accessing 12 via intermediate 9.
- Collin M.-P.; Lobell M.; Hübsch W.; Brohm D.; Schirok H.; Jautelat R.; Lustig K.; Bömer U.; Vöhringer V.; Héroult M.; Grünewald S.; Hess-Stumpp H. Discovery of Rogaratinib (BAY 1163877): a pan-FGFR inhibitor. ChemMedChem 2018, 13, 437–445. 10.1002/cmdc.201700718. [DOI] [PubMed] [Google Scholar]
- Vidal Juan B.; Alonso Diez J. A.; Buil Albero M. A.; Eastwood P. R.; Esteve Trias C.; Lozoya Toribio M. E.; Roberts R. S.; Vidal Gispert L.; Gonzalez Rodriguez J.; Mir Cepeda M.. New CRTh2 antagonists. WO 2013010880 A1, January 24, 2013.
- For examples of the direct conversion of a Boc-protected amine to a formamide, see:; a Takihiro H.; Uruma Y.; Usuki Y.; Miyake A.; Iio H. Practical synthesis of blepharismone, a mating inducing pheromone of Blepharisma japonicum. Tetrahedron: Asymmetry 2006, 17, 2339–2343. 10.1016/j.tetasy.2006.09.005. [DOI] [Google Scholar]; b Zimuwandeyi M.; Kola F.; Lemmerer A.; Brady D.; Rousseau A. L.; Bode M. L. PADAM reactions of α-aminoaldehydes: Identity of major and minor diastereomers from the Passerini reaction. Tetrahedron 2018, 74, 2925–2941. 10.1016/j.tet.2018.04.065. [DOI] [Google Scholar]
- Molecular mechanics (MMFF) and DFT (B3LYP/6-31G*) equilibrium geometry calculations suggest that the E isomer of 10 is favored over the Z isomer of 10. Amidine isomers of 10 were also found to be higher in energy than (E)-10. Thus, we surmise that the major observed isomer is (E)-10, as depicted. At this time, we prefer not to speculate on what the minor isomer is, but nonetheless, we postulate that stereo- and amidine isomers of 10 can interconvert. See Figure S1 for a depiction of the possible products.
- Although the cyclization of pyrroles onto cyanoimines is not known, related cyclizations of heterocycles onto nitriles have been reported. For examples, see:; a Outlaw V. K.; Townsend C. A. A practical route to substituted 7-aminoindoles from pyrrole-3-carboxaldehydes. Org. Lett. 2014, 16, 6334–6337. 10.1021/ol503078h. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Mizoi K.; Mashima Y.; Kawashima Y.; Takahashi M.; Mimori S.; Hosokawa M.; Murakami Y.; Hamana H. A new methodology for functionalization at the 3-position of indoles by a combination of boron lewis acid with nitriles. Chem. Pharm. Bull. 2015, 63, 538–545. 10.1248/cpb.c15-00157. [DOI] [PubMed] [Google Scholar]; c Zhang L.; Xiao Q.; Ma C.; Xie X.-Q.; Floreancig P. E. Construction of a bicyclic β-benzyloxy and β-hydroxy amide library through a multicomponent cyclization reaction. J. Comb. Chem. 2009, 11, 640–644. 10.1021/cc800200h. [DOI] [PMC free article] [PubMed] [Google Scholar]; d Neidlein R.; Jeromin G. Synthese neuer N-vinylpyrrole. Chem. Ber. 1982, 115, 714–721. 10.1002/cber.19821150231. [DOI] [Google Scholar]; e Hosmane R. S.; Leonard N. J. Chemical modification of nucleic acid components: reactions of cytosine, cytidine, isocytosine, and adenine with methyl N-cyanomethanimidate. J. Org. Chem. 1981, 46, 1457–1465. 10.1021/jo00320a043. [DOI] [Google Scholar]; f Agasimundin Y. S.; Oakes F. T.; Leonard N. J. Annelation of isocytosines by reaction with methyl N-cyanomethanimidate and sodium methoxide: influence of substitution on the course of the reaction and rearrangements. J. Org. Chem. 1985, 50, 2474–2480. 10.1021/jo00214a014. [DOI] [Google Scholar]
- 1H NMR analysis of the crude reaction mixture showed no remaining starting material and no major side products. Thus, the mass balance could plausibly be attributed to decomposition or Lewis acid complexation of intermediates.
- Estimated bulk pricing for key compounds based on overseas import/export prices: 2,5-dimethoxytetrahydrofuran (15), $44/kg; tert-butyl carbazate, $40/kg; cyanamide, $3/kg.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.








