Skip to main content
PLOS One logoLink to PLOS One
. 2020 Nov 12;15(11):e0242305. doi: 10.1371/journal.pone.0242305

Analysis of the SARS-CoV-2 epidemic in Italy: The role of local and interventional factors in the control of the epidemic

Daniele Lilleri 1,2,*, Federica Zavaglio 1,2, Elisa Gabanti 1,2, Giuseppe Gerna 1, Eloisa Arbustini 1
Editor: Patrick Tang3
PMCID: PMC7660511  PMID: 33180880

Abstract

Containment measures have been applied in several countries in order to limit the diffusion of the SARS-CoV-2 epidemic. The scope of this study is to analyze the evolution of the first wave of the SARS-CoV-2 epidemic throughout Italy and factors associated to the different way it spread in the Italian Regions, starting from the day that the first indigenous cases were detected through day 81 (6 days after the end of the strict lockdown). Data were obtained from daily reports and are represented as number (and percentage) of cases/100,000 persons. A lockdown with movement restrictions, especially across Regions, was declared at day 20. At day 81, 219,070 cases (363/100,000 persons) were diagnosed. A regression analysis based on the Gompertz model predicts a total number 233,606 cases (386/100,000 persons) at the end of the epidemic. The 21 areas, divided into Italian Regions and autonomous Provinces, showed a wide range in the frequency of cases at day 81 (58–921, median 258/100,000 persons) and total predicted cases (58–946, median 267/100,000 persons). Similarly, the predicted time for the end of the wave of the epidemic (considering as surrogate marker the time at which 99% of the total cases are predicted to occur) was highly variable, ranging from 64 to 136 (median 99) days. We analyzed the impact of local and interventional variables on the epidemic curve in each Region. The number of cases correlated inversely with the distance from the area in which first cases were detected and directly also with the gross domestic product pro capite (as a marker of industrial activity) of the Region. Moreover, an earlier start of the lockdown (i.e. in the presence of a lower number of cases) and wider testing were associated with a lower final number of total cases. In conclusion, this analysis shows that population-wide testing and early lockdown enforcement appear effective in limiting the spreading of the SARS-CoV-2 epidemic.

Introduction

After the emergence in China of the novel coronavirus SARS-CoV-2 at the end of 2019 [1, 2], the coronavirus disease 2019 (COVID-19) spread worldwide as a pandemic disease. As at October 8, 36 million cases throughout the world (0.46% of the overall population) and 1 million related deaths have been reported to the World Health Organization (WHO). The epidemic showed an uneven distribution among different countries: in USA and Brazil 7.4 and 5 million cases, respectively, were reported to the WHO (corresponding to >2% of the population), in Europe 6.6 million cases (1.46% of the population), 1.2 million in Africa (0.10%), 27,000 in Australia (0.11%), and 90,000 in China (0.01%).

Although the infection is asymptomatic or mildly symptomatic in the majority of cases (>80%), a smaller proportion of patients, particularly the elderly and those with chronic diseases, develop a severe or critical disease, involving primarily the lungs but also vascular pathology and multi-organ failure.

On March 7, the WHO issued guidelines to slow down the transmission, decrease the number of cases and prevent outbreaks in the community [3]. Among the preventive measures, hand hygiene, respiratory etiquette, confinement of cases and contacts and social distancing were suggested.

Different containment measures were implemented in each country to reduce the burden of the epidemic. The Oxford COVID-19 Government Response Tracker compares the policy responses of governments around the world and throughout time [4]. The Stringency score (ranging from 0 to 100) provides a quantitative index of the level of the containment policy, taking into account school and workplace closing, restrictions on gatherings and public events, home confinement, closure of public transport, restrictions on internal and international movement, information campaigns, and whether they are applied to the general territory or to targeted regions. For example, as reported on the WHO website [5], Sweden and Japan adopted poor stringent measures (maximum stringency index reported during the epidemic: 46 and 47), USA higher but not completely stringent measures (maximum stringency index: 73), other European countries such as Spain and France applied more stringent measures (maximum index: 85, 88).

Italy was the first of the Western countries to be severely affected [6] and currently accounts for 333,940 reported cases (0.55% of the population). The first indigenous cases were diagnosed on February 20 (day 1) in Northern Italy (Lombardia Region) and subsequently the infection spread throughout the country. Infected persons that were not hospitalized were quarantined at home, as well as the close contacts of infected subjects. After initial local measures to contain the epidemic spread, a nationwide lockdown was implemented since March 10 (day 20), and subsequently, restriction reinforcements were adopted, reaching a high maximum level of the stringency index (94/100). The movement of people, especially across regional borders, was blocked (except for health emergencies or unavoidable work needs); any form of gathering and social or sport events were prohibited; all commercial and non-essential activities were closed [7]. Total lockdown continued until May 4 (day 75), when a partial re-opening was declared by the government.

The scope of the present work is to analyze as per May 10 (day 81) the evolution of the SARS-CoV-2 epidemic throughout Italy and the Italian Regions. Since the spread of the infection at the beginning of the lockdown was uneven, borders between Regions were closed, and since each Region has an autonomous health system, we could approximately consider each Region as an independent unit and analyze the potential association between local variables and the epidemic parameters. Useful information for health policymakers can arise from this analysis, which shows the importance of early lockdown and broad testing in containing the epidemic curve.

Methods

Data collection

Data relevant to the number of infected subjects (cases) per day, and number of swabs tested were obtained from daily reports of the “Protezione Civile” and are available at [8]. The number of inhabitants, population density (persons/km2), and gross domestic product (GDP) pro capite (€) were obtained from [9] and are relevant to 2019. The distance between each Region and the origin of the epidemic was determined as the distance (km) between Milano (capital city of Lombardia) and the capital city of each Region.

Regression model to describe the epidemic dynamics

Generalized logistic curves (Richards model) are used to study the infection trajectories [10]. In this study, we adopted a re-parameterization of the Gompertz growth equation [11] as regression model to describe the cumulative number of infected subjects per day and to define epidemic parameters in Italy and in the Italian Regions. The curve was fitted with the GraphPad Prism 8 software by the least square method. The model is: y=YM(Y0/YM)ekx, where y is the cumulative number of cases, YM is the maximum number of cases, Y0 is the number of cases at day 0, x is the time (days) and k is a growth constant. The relative maximum growth rate (i.e. the growth rate at inflection) is given by k/e and the absolute maximum growth rate is given by YM∙(k/e). The re-parameterization of the Gompertz model adopted, which involves 3 parameters, can be considered as a simpler special case of the 5-parameter Richards model [12, 13], with the inflection (i.e. the point at which the growth rate reaches the maximum to start decreasing subsequently) locked at 36.8% of the upper asymptote (i.e. YM/e). The 3-parameter Gompertz was preferred to the 5-parameter Richards model for fitting the data according to the Akaike Information Criteria and the Extra-sum-of squares F test.

Correlation analysis

Using the data obtained from each Region, a correlation analysis was performed to analyze the potential association between “local” or “interventional” variables and the following epidemic parameters: total number of cases, growth rate, inflection time and time to reach 95% and 99% of the total cases. Population density, distance from the origin and GDP were considered as local variables, while number of cases at lockdown (representing the earliness of lockdown implementation with respect to the epidemic trajectory) and number of swabs per case (representing the width of testing) were considered interventional variables. The non-parametric Spearman correlation coefficient “R” was calculated to assess the strength of the correlation. In addition, a multiple regression analysis was performed to verify the independent association between the variables analyzed and the total number of cases predicted. Analyses were performed with GraphPad Prism 8 software.

Results

The SARS-CoV-2 epidemic in Italy

The cumulative number of cases per day in Italy and the fitting curve are shown in Fig 1, reporting the absolute number of cases (Fig 1A) and the number of cases/100,000 persons (Fig 1B). The actual number of new cases per day and the number predicted by the curve are shown in Fig 1C (absolute cases) and 1D (cases/100,000 persons). Data were collected until day 81 (May 10) after the first detected case, when the number of cases was 219,070 (363/100,000 persons). The total predicted number of cases is 233,606 (386/100,000 persons). The inflection occurred at day 38 (18 days after lockdown) and the detection of 95% and 99% of the cases (surrogate markers of the potential end of the epidemic) is predicted to occur at day 86 (66 days after lockdown) and at day 113 (93 days after lockdown). The epidemic parameters derived from the model are reported in Table 1. Due to the fact that restrictive measures have been partially loosened on May 4 (day 75), and would be further reduced from May 18 (day 89), the future dynamic of the epidemic might diverge from the curve.

Fig 1.

Fig 1

Cumulative (A, B) and new daily (C, D) cases of the SARS-CoV-2 epidemic in Italy. In A and B, white circles represent the actual cumulative cases and the black line the regression curve.

Table 1. Epidemic parameters in Italy and in the Italian Regions.

Region no. cases/100.000 persons (%) at lockdown (day 20) no. cases /100.000 persons (%) at day 81 Maximum no. cases /100.000 persons (%) predicted Maximum growth rate [cases /100.000 persons (%) per day] Inflection time (day) Time to reach 95% cases (day) Time to reach 99% cases (day)
V Aosta 14 (0.01) 921 (0.92) 946 (0.95) 29 (0.03) 36 71 91
Trento 10 (0.01) 793 (0.79) 867 (0.87) 20 (0.02) 40 87 112
Lombardia 58 (0.06) 810 (0.81) 847 (0.85) 18 (0.02) 35 86 113
Piemonte 10 (0.01) 658 (0.66) 793 (0.79) 15 (0.02) 47 104 136
Liguria 9 (0.01) 567 (0.57) 639 (0.64) 13 (0.01) 43 98 128
Emilia Romagna 34 (0.03) 601 (0.60) 623 (0.62) 15 (0.02) 36 80 104
Bolzano 7 (0.01) 482 (0.48) 500 (0.50) 15 (0.02) 36 72 92
Marche 26 (0.03) 428 (0.42) 434 (0.43) 12 (0.01) 33 73 95
Veneto 17 (0.02) 382 (0.38) 409 (0.41) 10 (0.01) 37 83 109
Toscana 7 (0.01) 262 (0.26) 276 (0.28) 7 (0.01) 38 80 103
Friuli V G 10 (0.01) 258 (0.26) 267 (0.27) 7 (0.01) 36 76 97
Abruzzo 3 (0.00) 237 (0.24) 251 (0.25) 6 (0.01) 40 83 107
Umbria 4 (0.00) 160 (0.16) 158 (0.16) 8 (0.01) 32 53 64
Lazio 2 (0.00) 122 (0.12) 128 (0.13) 3 (0.00) 40 85 110
Puglia 1 (0.00) 107 (0.11) 113 (0.11) 3 (0.00) 40 83 106
Molise 5 (0.01) 121 (0.12) 106 (0.11) 3 (0.00) 38 73 92
Sardegna 1 (0.00) 82 (0.08) 83 (0.08) 3 (0.00) 36 69 87
Campania 2 (0.00) 79 (0.08) 81 (0.08) 3 (0.00) 38 73 93
Sicilia 1 (0.00) 67 (0.07) 68 (0.07) 2 (0.00) 38 78 99
Basilicata 1 (0.00) 68 (0.07) 67 (0.07) 3 (0.00) 36 63 77
Calabria 1 (0.00) 58 (0.06) 58 (0.06) 2 (0.00) 36 70 89
Median 7 (0.01) 258 (0.26) 267 (0.27) 7 (0.01) 37 78 99
Range 1–58 (0.00–0.06) 58–921 (0.06–0.92) 58–946 (0.06–0.95) 2–29 (0.00–0.03) 32–47 53–104 64–136
Italy 19 (0.02) 363 (0.36) 386 (0.39) 9 (0.01) 38 86 113

The fitting model was also calculated with the data obtained at subsequent time-points during the epidemic: 20, 30, 40, 50, 60 and 70 days (Fig 2). The curves calculated at day 20 (start of lockdown) and 30 (10 days after lockdown) predicted a total number of cases of 3,949 and 1,286/100,000 persons, respectively (about 10 and 4 times higher than the number predicted with the present model), with the inflection point occurring at days 68 and 55, respectively. The curves calculated subsequently predicted a total number of cases between 324 and 407/100,000 persons (with a maximum discrepancy of 16% from the present data indicating 386 total cases) and inflection points between day 35 and day 38. Although sigmoidal growth curves fitted before the inflection point should be considered with caution (and the number of measures available at day 20 and 30 is quite small), these data suggest that the lockdown was effective in flattening the epidemic curve. In addition, the Gompertz curves fitted from day 40 onward (after the inflection point) appears to be a simple and reliable model for the prediction of the dynamic of the epidemic with an acceptable error.

Fig 2. Determination of the regression curves at different time-points during the epidemic.

Fig 2

White circles represent actual cases.

The SARS-CoV-2 epidemic in the Italian Regions

The dynamic of the epidemic in the Italian Regions is shown in Fig 3 and actual parameters along with those derived from the curves are reported in Table 1. The number of cases at the beginning of the lockdown showed a wide range, from 1 to 58 cases/100,000 persons (median 7), as well as the number of cases at day 81 (58–921, median 258) and the total predicted cases (58–946, median 267). Similarly, the time at which 95% and 99% of the total cases is predicted to occur ranged from day 53 to 104 (median 78) and day 64 to 136 (median 99), respectively. When we observe the epidemic curves (Fig 3A and 3B for a more detailed representation of the initial stage), we can distinguish three clusters that separate after the lockdown: 8 Regions (the most distant from Lombardia, almost all in Southern Italy) showed flatter curves, 4 intermediate and 9 more steepened curves. One Region of the intermediate cluster B (Umbria) showed a faster inflection time and was separated from the other cluster B curves by reaching the plateau earlier and stopping at a number of total cases similar to that of cluster C. It is noteworthy that the Regions with the flatter curves (cluster C) had a median number of 1 (range 1–5) case/100,000 persons at the start of the lockdown, while Regions with the more steepened curves (cluster A) had a median number of 14 (7–58) cases at lockdown. This suggests that starting the lockdown earlier, when the number of cases is still low (i.e. <5 cases/100,000 persons), may have contributed to flattening of the epidemic curve.

Fig 3.

Fig 3

Cumulative cases of the SARS-CoV-2 epidemic in the Italian Regions (A). In panel (B) a magnification of the initial phase is shown.

Analysis of the variables associated with the epidemic parameters

The potential association between selected variables and epidemic curve parameters was evaluated by the Spearman’s correlation analysis. For each Region, the following “local” variables (see S1 Table) were analyzed: i) distance from the Italian origin of the epidemic (i.e. Lombardia, where the first indigenous cases were detected), ii) population density, iii) GDP pro capite (as a rough surrogate indicator of the industrial activity of the Region). In addition, we analyzed the following “interventional” variables: i) number of cases at lockdown (as a marker of the starting point of the lockdown compared to the epidemic curve), and ii) number of swabs tested per case detected (as a marker of the extent of testing in the population). The total number of cases and the maximum absolute growth rate were inversely correlated with the distance from the origin and directly with the GDP, but not with the population density. The total number of cases and growth rate were also correlated with the number of cases at lockdown and inversely correlated with the extent of the testing (see Table 2 for details). Times to reach 95% and 99% of the cases were correlated with the distance from the origin, the population density and the extent of the testing (although with less strength). The inflection time did not correlate with any of the variables considered. A correlation plot between the total number of cases and the variables is shown in Fig 4. Similar results were obtained if considering the actual number of cases at day 81 instead of the total number of cases predicted by the curves (S1 Fig). To test whether the selected variables were independently associated with the total number of cases we performed a multiple regression analysis (Table 3 and Fig 5). In particular, the distance from the origin and the GDP were also inversely correlated (Spearman r: -0.81) between each other (i.e. the more distant regions also had a lower GDP, S2 Table). Thus, it is possible that only one of these two variables is independently correlated with the total number of cases. However, the two local variables (distance and GDP) significantly correlated with the total number of cases also in multiple regression analysis (a model with distance, GDP, and their interaction had an R2 of 0.79; Table 3). Similarly, the number of cases at lockdown and the extent of testing were inversely correlated between each other (Spearman r: -0.70, S2 Table). However, the two interventional variables were independently correlated with the total number of cases (model R2: 0.74; Table 3). Lastly, the combination of both local and interventional variables in a model involving distance, GDP and extent of testing showed an R2 of 0.88 in predicting the total number of cases, whereas the number of cases at lockdown did not significantly improve the model.

Table 2. Correlation coefficient R (p value) between epidemic parameters and local or interventional variables.

Parameter Distance from the origin Population density Gross Domestic Product pro capite No. cases at lockdown No. swabs per case
Total no. cases/ 100.000 persons -0.94 (<0.001) ns 0.78 (<0.001) 0.86 (<0.001) -0.86 (<0.001)
Maximum growth rate (cases/100.000 persons per day) -0.92 (<0.001) ns 0.80 (<0.001) 0.87 (<0.001) -0.76 (<0.001)
Inflection time ns ns ns ns ns
Time to reach 95% of the cases -0.55 (0.010) 0.63 (0.002) ns ns -0.66 (0.001)
Time to reach 99% of the cases -0.57 (0.007) 0.65 (0.002) ns 0.43 (0.051) -0.70 (<0.001)

Fig 4. Correlation between the total number of cases and local or interventional variables.

Fig 4

Correlation between the total number of cases predicted and (A) the distance from the origin of the epidemic, (B) gross domestic product pro capite, (C) number of cases at lockdown (note that the x-axis is logarithmic) and (D) number of swabs tested per case detected.

Table 3. Multiple linear regression analysis of local, interventional variables, and their combination vs total number of cases.

Model Variable Estimate parameter value p R2
Local GDP 0.026 <0.001
Distance 0.673 0.028
Interaction (GDP x Distance) -5.78 x 10−5 0.002 0.79
Interventional Intercept 489.2 0. 010
Swabs -13.63 0.011
Cases at Lockdown 234.8 0.035 0.74
Local + Interventional GDP 0.030 <0.001
Interaction (GDP x Distance) -2.04 x 10−5 0.013
Interaction (GDP x Swabs) -6.23 x 10−4 <0.001
Interaction (Distance x Swabs) 0.008 0.036 0.88

GDP, Gross Domestic Product.

Fig 5. Multiple linear regression analysis of local, interventional variables, and their combination vs the total number of cases.

Fig 5

The actual number of cases is reported on the x-axis and the number predicted by the regression lines are reported on the y-axis. Variables used in the three regression analyses are reported in Table 3.

Discussion

In this study, we used the Gompertz model to describe the SARS-CoV-2 epidemic in Italy and in the Italian Regions. The curve parameters obtained were adopted to analyze the differences in the infection spreading within the Italian Regions and the relevant associated variables. The model adopted was simple and provided consistent results when calculated at different time-points after the inflection time. Limitations of this study concern the likely underestimation of the actual number of cases by the reported data (testing was indicated for symptomatic subjects only), as well as potential differences in the lapse of time between testing and data reporting among the Regions. The rate of infected subjects in Italy was estimated to be at least ten times higher than that diagnosed [14]. However, with the assumption that the fraction of undiagnosed cases is constant, the general dynamic of the event here described is reliable (although the absolute epidemic extent is not available), and regression analysis helps in reducing stochastic measurement errors.

We analyzed the potential association between local and interventional factors with the uneven spreading of the epidemic in the Italian Regions. The local factors analyzed are the population density of the region, the GDP (as a surrogate indicator of industrial activity) and the distance from the origin of the epidemic. The interventional factors analyzed were lockdown implementation and the extent of testing.

The population density was not associated with the total number of cases predicted and with the growth rate. This observation may reflect the fact that Regions with a low average population density may have large territories with low population density and highly populated urban centers, where the infection can spread easily. On the other hand, the correlation between the extent of the epidemic and the GDP may indicate that, before lockdown implementation, the infection spread more efficiently in the areas with higher industrialization, probably because of broader social interactions and population movement associated with the industrial activities. Lastly, the epidemic was limited in the Regions that were more distant from the initial foci. This could be also a consequence of the efficacy of the containment measures. In fact, we can hypothesize that the epidemic would have spread similarly in all the areas, although with delayed kinetics, if containment measures would have not been implemented. In this respect, the WHO advised to slow and stop transmission, prevent outbreaks and reduce case numbers and, in response to large outbreaks of community transmission, promoted the practice of social distancing among the public health measures [3].

In our analysis, as indicators of the interventional factors, we considered the number of cases at the start of the lockdown (as marker of the earliness of the measure’s implementation) and the number of swabs tested per case detected (as a marker of the extent of testing). The number of infected cases at the start of the lockdown was associated with the local factors discussed above (i.e. Regions with higher GDP and lower distance from the origin had a higher number of cases at lockdown). Where the number of infected subjects was lower at the start of lockdown, the total number of infected subjects predicted for the end of the epidemic also remained lower. Thus, the restrictive measures adopted in Italy appear effective in reducing the transmission of the infection and flattened the epidemic curve, as shown also by mathematical modelling [15, 16], and their early application is associated with a better control of the spread of the infection. Another indirect indication of the efficacy of the measures adopted is the observation that the curves determined using only the data obtained before or a few days after the lockdown predicted a higher number of infected subjects than the curves determined from 20 days after the lockdown onwards. Although this observation may be questionable, due to both the low number of data used to fit the model at the beginning of the epidemic, as well as the difficulty in defining the curve parameters before the inflection point, there was a clear trend towards a flattening of the curves after the lockdown.

In addition, a broader testing (considered here as a higher number of swabs tested per case detected) was also associated with a better control of the epidemic. Since this is an observational retrospective analysis, we cannot prove a causal relationship between wider testing and the containment of the epidemic. It is also possible that in the areas with higher frequency of infected subjects, the testing capacity of the health system was overwhelmed. In this respect, the WHO guidance suggested to prioritize testing in health care settings and vulnerable groups and to test only the first suspected cases in closed settings [3]. Nevertheless, the correlation between wider testing and lower frequency of cases is in agreement with results from a model study by Giordano and colleagues [16], which showed, through simulation analysis, that widespread testing helps in reducing the epidemic burden. Another model showed that timely diagnosis of infection shortens the peak time, decreases the peak value of new infections, and reduces the number of cumulative infections [17]. A wide testing policy permits a rapid identification and isolation of infected subjects, thus helping to limit the epidemic.

Broader testing may also have the following advantages. Widespread testing could be combined with softer social-distancing measures, thus obtaining an effect similar to a stricter lockdown in limiting the epidemic [16]. In addition, reduction in the total number of infected subjects will also reduce the number of those patients that require admission to intensive care units.

In view of the rise of secondary epidemic waves in Italy and in other countries, healthcare policymakers could consider increasing testing capacity and implementing broad screening as a potentially cost-effective containment option that would permit a milder lockdown and a reduced need for intensive care units (thus reducing the relevant costs). Broad screening would allow rapid detection of new epidemic foci, identification and isolation of infected subjects, prompt closure of the affected area and, finally, an earlier resolution of epidemic episodes with a lower number of infected subjects. It is worth considering that undocumented infection was found to be the cause of the large spread of the infection [18].

With respect to testing possibilities, rapid molecular methods providing reliable results have been developed [19]. Rapid serological tests have also been proposed [20] and may be useful as first-line screening in the territory, although they are not sufficiently accurate for diagnosis of hospitalized patients with acute infection [21]. As for neutralizing assays, it would be important to verify where non-antibody serum inhibitor factors present in human sera and neutralizing human CoV OC43 may interfere with neutralizing assays for SARS-CoV-2 [22].

In conclusion, our analysis of the first SARS-CoV-2 epidemic evolution in Italy could help in the planning of future strategies for the control of secondary breakthrough episodes. In fact, in agreement with previous simulation studies, the analysis of the actual epidemic data support the effectiveness of interventional measures such as population-wide testing and early lockdown enforcement in limiting the burden of the SARS-CoV-2 epidemic. Lockdown appears more effective if applied at the very beginning of the epidemic, when the number of cases is low. On the other hand, the implementation of a broad testing capacity also appears effective and may have the advantage of reducing the need for social distancing and closure of the productive activities required by lockdown enforcement.

Supporting information

S1 Fig. Correlation between the number of cases at day 81 and local or interventional variables.

Correlation between the total number of cases predicted and (A) distance from the origin of the epidemic, (B) gross domestic product pro capite, (C) number of cases at lockdown (note that the x-axis is logarithmic) and (D) number of swabs tested per case detected.

(TIF)

S1 Table. Local variables analyzed for the association with epidemic parameters.

(DOCX)

S2 Table. Correlation matrix between local and interventional variables.

(DOCX)

Acknowledgments

We thank Antonio Colangelo for helpful discussion.

Data Availability

All relevant data are within the manuscript.

Funding Statement

This work was funded by Fondazione Cariplo, Milano, Italy (Grant CoVIM to DL). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There was no additional external funding received for this study.

References

  • 1.Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. 10.1038/s41586-020-2012-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–452. 10.1038/s41591-020-0820-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.World Health Organization. Critical preparedness, readiness and response actions for COVID-19: interim guidance, 7 March 2020. https://apps.who.int/iris/handle/10665/331422.
  • 4.Hale T, Angrist A, Cameron-Blake E, Hallas L, Kira B, Majumdar S, Petherick A, Phillips T, Tatlow H, Webster S. “Variation in Government Responses to COVID-19” Version 7.0. Blavatnik School of Government Working Paper. May 25, 2020. www.bsg.ox.ac.uk/covidtracker [cited October 8, 2020].
  • 5.World Health Organization. COVID-19 explorer. https://worldhealthorg.shinyapps.io/covid/ [cited October 8 2020].
  • 6.Day M. Covid-19: surge in cases in Italy and South Korea makes pandemic look more likely. BMJ. 2020;368:m751 10.1136/bmj.m751 [DOI] [PubMed] [Google Scholar]
  • 7.Chronology of main steps and legal acts taken by the Italian Government for the containment of the COVID-19 epidemiological emergency. http://www.protezionecivile.gov.it/documents/20182/1227694/Summary+of+measures+taken+against+the+spread+of+C-19/c16459ad-4e52-4e90-90f3-c6a2b30c17eb [cited May 15, 2020].
  • 8.Dipartimento della Protezione Civile. https://github.com/pcm-dpc/COVID-19/tree/master/schede-riepilogative/regioni [cited May 15, 2020].
  • 9.ISTAT. http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1 [cited May 15, 2020].
  • 10.Lee SY, Lei B, Mallick B. Estimation of COVID-19 spread curves integrating global data and borrowing information. PLoS One. 2020; 15(7): e0236860 10.1371/journal.pone.0236860 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond B Biol Sci. 1825; 182:513–85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Tjørve E, Tjørve KM. A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms. 2010;267(3):417–25. 10.1016/j.jtbi.2010.09.008 [DOI] [PubMed] [Google Scholar]
  • 13.Tjørve KMC, Tjørve E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS One. 2017;12(6):e0178691 10.1371/journal.pone.0178691 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Michaela A. C. Vollmer, Swapnil Mishra, H Juliette T Unwin, Axel Gandy et al. Using mobility to estimate the transmission intensity of COVID-19 in Italy: a subnational analysis with future scenarios. Imperial College London (2020) 10.25561/78677. [DOI]
  • 15.Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc Natl Acad Sci U S A. 2020;117(19):10484–10491. 10.1073/pnas.2004978117 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat Med. 2020. 10.1038/s41591-020-0883-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Rong XM, Yang L, Chu HD, Fan M. Effect of delay in diagnosis on transmission of COVID-19 Math Biosci Eng. 2020;17(3):2725–2740. 10.3934/mbe.2020149 [DOI] [PubMed] [Google Scholar]
  • 18.Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020;368(6490):489–493. 10.1126/science.abb3221 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Bordi L, Piralla A, Lalle E, Giardina F, Colavita F, Tallarita M, et al. Rapid and sensitive detection of SARS-CoV-2 RNA using the Simplexa™ COVID-19 direct assay. J Clin Virol. 2020;128:104416 10.1016/j.jcv.2020.104416 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020. 10.1002/jmv.25727 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Cassaniti I, Novazzi F, Giardina F, Salinaro F, Sachs M, Perlini S, et al. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol. 2020. 10.1002/jmv.25800 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Gerna G, Cattaneo E, Cereda PM, Revelo MG, Achilli G. Human coronavirus OC43 serum inhibitor and neutralizing antibody by a new plaque-reduction assay. Proc Soc Exp Biol Med. 1980;163(3):360–6. 10.3181/00379727-163-40778 [DOI] [PubMed] [Google Scholar]

Decision Letter 0

Patrick Tang

2 Oct 2020

PONE-D-20-19843

Analysis of SARS-CoV-2 epidemic in Italy: role of baseline and interventional factors in the epidemic control.

PLOS ONE

Dear Dr. Lilleri,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

==============================

We apologize for the delay as it has been extremely difficult in obtaining reviewers, as most people working on COVID-19 have been too busy. The manuscript in its current format requires revision. As indicated by the reviewers, there needs to be more description and justification of the methods and analytical models used. 

==============================

Please submit your revised manuscript by Nov 16 2020 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

We look forward to receiving your revised manuscript.

Kind regards,

Patrick Tang, M.D., Ph.D.

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. We note that you have included the phrase “data not shown” in your manuscript. Unfortunately, this does not meet our data sharing requirements. PLOS does not permit references to inaccessible data. We require that authors provide all relevant data within the paper, Supporting Information files, or in an acceptable, public repository. Please add a citation to support this phrase or upload the data that corresponds with these findings to a stable repository (such as Figshare or Dryad) and provide and URLs, DOIs, or accession numbers that may be used to access these data. Or, if the data are not a core part of the research being presented in your study, we ask that you remove the phrase that refers to these data.

3. Thank you for stating in your Funding Statement:

'This work was partially funded by Fondazione Cariplo, Milano, Italy (Grant CoVIM to DL). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.'

a. Please provide an amended statement that declares *all* the funding or sources of support (whether external or internal to your organization) received during this study, as detailed online in our guide for authors at http://journals.plos.org/plosone/s/submit-now

Please also include the statement “There was no additional external funding received for this study.” in your updated Funding Statement.

b. Please include your amended Funding Statement within your cover letter. We will change the online submission form on your behalf.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Partly

Reviewer #2: Yes

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: No

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: This manuscript is about the Analysis of SARS-CoV-2 epidemic in Italy: role of baseline and intervention factors in

the epidemic control.

In as much as SARS-CoV-2 manuscripts are of interest, I find almost every aspect of the paper needs further revision for clarity; context; methodological rigor; and interpretation. Please see my comments below:

Firstly. Please find native speaker to assist with the English language editing and flow of the manuscript.

Abstract

Please give a brief introduction of what your paper seeks to achieve (aims and objectives of your paper)

Also, please talk about the methodology used. for example how your sample was achieved and how you interpreted your results. for example, talk about cases were represented in xxx per 10,000 and xxxx was shown in means, or percentages to make your work more readable to the international world.

At the bottom part of your abstract, please talk a little on conclusion.

Introduction

Your introduction is too scanty. though CoV-2 is a novel disease, I believe you can deliberate more on literature in both Europe and around the globe than just talking about how lock downs and restrictions were done in Italy which is already known because of news casters.

please talk about the disease, its global burden ( for example, in USA, China, Africa, etc and limit it to Italy and compare these burdens with that of Italy. compare the international strategies of other countries with what happened in Italy. Please explore more on this.

Methods

In your methods thank you for telling us about how 'Swab' reports were taken and the availability of the data. However, why did you decide to use the Gompertz growth equation ( which is a nonlinear regression model, used to describe growth curves

mostly in biology to determine growth of animals and plants, as well as the number or volume of bacteria and cancer cells?. Can you please explain further on why this is befitting for your work, or replace it with linear curves if possible.Also, please explain more on the correlations between the variables.

Table 1: please add percentages

You seem to be dwelling more on the GDP of the various regions, please represent that with a graph where appropriate and compare that with the various interventions within the regions in the discussion part.

Discussions

please discuss you findings as in: What was the baseline, what were the intervention factors, are they attributed to GDPs of the various regions? What are the implications, and how will that be used as a future baseline implementation, should there be any future epidemic. lastly, please also discuss a bit on how the CoV-2 protocol approved by the WHO either helped or did not in the intervention factors to the control of the epidemic in Italy.

Thank You.

Reviewer #2: Thanks for developing this nice manuscript. Authors analyzed the impact of baseline and interventional variables on the epidemic curve in each region in Italy. They found that the number of cases correlated inversely with the distance from the area in which first cases were detected and directly also with the gross domestic product pro capite of the Region. In their opinion, earlier start of the lockdown and a wider testing were associated with a lower final number of total cases, which could help policy makers to act promptly.

My only comment on the analysis technique: did you consider the probability of reinfection in your model? It may be true that 99% of the population will got Covid by 113 days in Italy, but if reinfection occurs after around one month for some of the recovered patients, how we will fit that in our model? Please respond or adjust your analysis.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: Yes: Mahbub-Ul Alam

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2020 Nov 12;15(11):e0242305. doi: 10.1371/journal.pone.0242305.r002

Author response to Decision Letter 0


26 Oct 2020

We believe to have addressed the issues raised by the reviewers, which helped in improving the manuscript. We added a supporting S1 Figure reporting the data that were referred as “data not shown” in the previous version. In addition, we would like to update the funding statement as follows:

“This work was funded by Fondazione Cariplo, Milano, Italy (Grant CoVIM to DL). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There was no additional external funding received for this study.”

Please find below or response to reviewers' comments.

Reviewer #1: This manuscript is about the Analysis of SARS-CoV-2 epidemic in Italy: role of baseline and intervention factors in the epidemic control.

In as much as SARS-CoV-2 manuscripts are of interest, I find almost every aspect of the paper needs further revision for clarity; context; methodological rigor; and interpretation. Please see my comments below:

Firstly. Please find native speaker to assist with the English language editing and flow of the manuscript.

R: The manuscript was revised by a native speaker

Abstract

Please give a brief introduction of what your paper seeks to achieve (aims and objectives of your paper)

Also, please talk about the methodology used. for example how your sample was achieved and how you interpreted your results. for example, talk about cases were represented in xxx per 10,000 and xxxx was shown in means, or percentages to make your work more readable to the international world.

At the bottom part of your abstract, please talk a little on conclusion.

R: we thank the Reviewer for his suggestion and revised the abstract accordingly.

Introduction

Your introduction is too scanty. though CoV-2 is a novel disease, I believe you can deliberate more on literature in both Europe and around the globe than just talking about how lock downs and restrictions were done in Italy which is already known because of news casters.

please talk about the disease, its global burden ( for example, in USA, China, Africa, etc and limit it to Italy and compare these burdens with that of Italy. compare the international strategies of other countries with what happened in Italy. Please explore more on this.

R: On the basis of the reviewer suggestion, the Introduction was improved by adding information about the disease burden throughout the world, the major clinical characteristics of the disease, and a comparison of the international containment strategies adopted, quantified according to the Oxford stringency score.

Methods

In your methods thank you for telling us about how 'Swab' reports were taken and the availability of the data. However, why did you decide to use the Gompertz growth equation ( which is a nonlinear regression model, used to describe growth curves

mostly in biology to determine growth of animals and plants, as well as the number or volume of bacteria and cancer cells?. Can you please explain further on why this is befitting for your work, or replace it with linear curves if possible. Also, please explain more on the correlations between the variables.

R: The epidemic trajectory follow a sigmoidal curve (logistic model), thus a linear regression model is not suitable for the analysis. Usually the 5-parameters Richards curve is adopted. We used a re-parametrization of the Gompertz growth equation which is a special case of the Richards equation. The Gompertz curve has a lower number of parameters than the Richards curve (3 instead of 5): thus, for the purpose of this study, the simpler model was preferred (according to both to Akaike Information Criteria and Extra-sum-of squares F test) because is easier to fit while providing an equally acceptable description of the epidemic trajectory. In addition, the parameters analysed in this study (maximum number of infected subjects and maximum growth rate) are easily obtained from the fitted curve. We explained more on it as well as on the correlation analysis in the relevant Methods paragraphs.

Table 1: please add percentages

R: percentages have been added to Table 1

You seem to be dwelling more on the GDP of the various regions, please represent that with a graph where appropriate and compare that with the various interventions within the regions in the discussion part.

R: we added a supplementary S1 Table, showing population density, distance and GDP for each Region, and S2 Table showing the correlation matrix between the variables analyzed in multiple regression (GDP, distance, no. cases at lockdown, no. swabs per case). In our study, GDP was considered as a surrogate marker of the industrial activity of the regions, which appears to have influenced the extent of the epidemic before lockdown implementation. The infection may have spread more efficiently in the areas with higher industrialization, probably because of broader social interactions and population movement associated with the industrial activities.

Discussions

please discuss you findings as in: What was the baseline, what were the intervention factors, are they attributed to GDPs of the various regions? What are the implications, and how will that be used as a future baseline implementation, should there be any future epidemic. lastly, please also discuss a bit on how the CoV-2 protocol approved by the WHO either helped or did not in the intervention factors to the control of the epidemic in Italy.

Thank You.

We thank the reviewer for the suggestions on Discussion improvement. We replaced the term “baseline” factor with “local” factors, which appears more appropriate. We defined what are the local and interventional factors considered (para 2), then we discussed about the role of local factors (para 3) and about the role of interventional factors and their association with GDP and distance (paras 4-6). In the last paras (7-9) we discussed about implications of our analysis for the management of secondary waves or future epidemic. We mentioned also the WHO interim guidance on response actions for COVID-19 both in the Introduction and in the Discussion. We believe that now the Discussion is clearer.

Reviewer #2: Thanks for developing this nice manuscript. Authors analyzed the impact of baseline and interventional variables on the epidemic curve in each region in Italy. They found that the number of cases correlated inversely with the distance from the area in which first cases were detected and directly also with the gross domestic product pro capite of the Region. In their opinion, earlier start of the lockdown and a wider testing were associated with a lower final number of total cases, which could help policy makers to act promptly.

My only comment on the analysis technique: did you consider the probability of reinfection in your model? It may be true that 99% of the population will got Covid by 113 days in Italy, but if reinfection occurs after around one month for some of the recovered patients, how we will fit that in our model? Please respond or adjust your analysis.

R: we appreciate the reviewer’s considerations about our manuscript. The model does not consider the probability of reinfection but only new cases of infection. However, there was no case of reinfection reported in Italy during the period analyzed.

Attachment

Submitted filename: Response to reviewers.docx

Decision Letter 1

Patrick Tang

2 Nov 2020

Analysis of the SARS-CoV-2 epidemic in Italy: the role of local and interventional factors in the control of the epidemic.

PONE-D-20-19843R1

Dear Dr. Lilleri,

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Patrick Tang, M.D., Ph.D.

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Acceptance letter

Patrick Tang

4 Nov 2020

PONE-D-20-19843R1

Analysis of the SARS-CoV-2 epidemic in Italy: the role of local and interventional factors in the control of the epidemic.

Dear Dr. Lilleri:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at plosone@plos.org.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Patrick Tang

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Fig. Correlation between the number of cases at day 81 and local or interventional variables.

    Correlation between the total number of cases predicted and (A) distance from the origin of the epidemic, (B) gross domestic product pro capite, (C) number of cases at lockdown (note that the x-axis is logarithmic) and (D) number of swabs tested per case detected.

    (TIF)

    S1 Table. Local variables analyzed for the association with epidemic parameters.

    (DOCX)

    S2 Table. Correlation matrix between local and interventional variables.

    (DOCX)

    Attachment

    Submitted filename: Response to reviewers.docx

    Data Availability Statement

    All relevant data are within the manuscript.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES