Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2020 Nov 19;9(47):e01154-20. doi: 10.1128/MRA.01154-20

Draft Genome Sequences of 59 Endospore-Forming Gram-Positive Bacteria Associated with Crop Plants Grown in Vietnam

Le Thi Thanh Tam a,#, Jennifer Jähne b,#, Pham Thi Luong a, Le Thi Phuong Thao a, Le Thi Kim Chung c, Andy Schneider b, Christian Blumenscheit b, Peter Lasch b, Thomas Schweder d, Rainer Borriss d,e,
Editor: David Raskof
PMCID: PMC7679102  PMID: 33214309

We report the draft genome sequences of 59 Gram-positive bacterial strains that were isolated from Vietnamese crop plants. The strains were assigned to nine different Bacillus or Brevibacillus species. Ten strains classified as being Bacillus spp. (3 strains), Brevibacillus spp. (6 strains), or Lysinibacillus sp. (1 strain) could not be identified to the species level.

ABSTRACT

We report the draft genome sequences of 59 Gram-positive bacterial strains that were isolated from Vietnamese crop plants. The strains were assigned to nine different Bacillus and Brevibacillus species. Ten strains classified as being a Bacillus sp. (3 strains), Brevibacillus sp. (6 strains), or Lysinibacillus sp. (1 strain) could not be identified to the species level.

ANNOUNCEMENT

Endophytic and plant-associated Gram-positive bacteria were isolated from Vietnamese crop plants such as coffee, black pepper, maize, orange trees, dragon trees, tomato, and cabbage (for details, see Table 1). Samples were obtained from the soil adjacent to plant roots, the surface, and the inner tissue of different plant parts such as root, stem, and leaf (Table 1). Samples from inner tissues were propagated after surface sterilization using 70% ethanol and 1% sodium hypochlorite (1). Brevibacillus spp. were found to be enriched when soil samples adherent to plant roots were incubated with shaking for a further 2 weeks. Diluted samples were incubated on either half-strength tryptic soy broth or tryptone-yeast extract-glucose agar (2) for 3 to 5 days at 30°C. In order to enrich endospore-forming bacteria, single colonies were picked from agar plates, diluted in 0.5 ml 0.9% NaCl, and heat treated for 20 min at 80°C. Only strains that were able to suppress fungal plant pathogens, such as Fusarium oxysporum, Phytophthora palmivora, or Neoscytalidium dimidiatum, under in vitro conditions were used in further experiments. As a first step for characterizing these strains more completely, the isolates underwent genome sequencing, and their taxonomy based on their draft genome sequences was evaluated.

TABLE 1.

List of the 59 endospore-forming Gram-positive bacteria isolated from Vietnamese crop plants

GenBank accession no. SRA accession no. Sample name Estimated genome size (bp) G+C content (%) Total no. of raw reads Genome coverage (×) No. of contigs Contig N50 (bp) Total no. of genes Isolation source and date (day-mo-yr) Taxonomy according to dDDH and ANIb results dDDH (%)a ANIb (%)b Similar type strain
JABMIW000000000 SRR12133238 BT2.2 3,708,421 44.0 7,888,450 28.0 22 556,510 3,798 Dragon tree stem, 5-5-2019 B. altitudinis 86.20 98.26 B. altitudinis DSM 21631
VDDR00000000 SRR12104977 A8 5,071,716 35.4 5,427,083 52.0 52 307,045 5,877 Coffee root, 1-9-2018 B. cereus 90.50 98.74 B. cereus ATCC 14579
VEPO00000000 SRR12104976 A22 5,812,849 35.2 5,059,544 56.0 57 315,527 6,032 Coffee root, 1-9-2018 B. cereus 74.20 96.80 B. cereus ATCC 14579
VEPP00000000 SRR12104975 A24 5,689,021 35.7 2,398,472 28.0 73 233,470 5,897 Black pepper root, 1-9-2018 B. cereus 85.50 98.13 B. cereus ATCC 14579
VEPT00000000 SRR12283339 A31 5,319,678 35.3 5,328,004 40.0 102 246,002 5,556 Coffee rhizosphere, 1-9-2018 B. cereus 90.10 98.64 B. cereus ATCC 14579
VEPQ00000000 SRR12104956 A42 5,604,011 35.6 6,770,872 80.0 42 489,606 5,708 Black pepper root, 1-9-2018 B. cereus 74.30 96.75 B. cereus ATCC 14579
JABSVB000000000 SRR12115356 HB3.1 5,796,358 34.8 5,938,348 15.0 82 478,132 5,867 Orange plant adherent soil, 17-4-2019 B. cereus 89.80 98.25 B. cereus ATCC 14579
JABSVE000000000 SRR12132980 HD1.4B 5,660,925 34.9 5,561,352 13.0 53 831,879 5,737 Tomato root soil, 23-4-2019 B. cereus 88.40 98.20 B. cereus ATCC 14579
JABSVC000000000 SRR12124346 HD2.4 5,660,820 34.9 8,250,328 20.0 48 378,831 5,734 Tomato root adherent soil, 23-4-2019 B. cereus 88.30 98.22 B. cereus ATCC 14579
JABSVF000000000 SRR12141689 M2.1B 5,869,336 34.8 8,131,108 20,0 63 344,459 6,029 Maize field soil, 6-12-2018 B. cereus 73.10 96.28 B. cereus ATCC 14579
VEPR00000000 SRR12104981 SN4.3 5,594,617 35.6 3,571,304 45.0 78 146,072 5,773 Ostrinia nubilalis, 1-11-2018 B. cereus 73.60 96.76 B. cereus ATCC 14579
VEPS00000000 SRR12042680 TK1 6,195,299 34.7 11,965,210 30.0 363 83,852 6,483 Coffee rhizosphere, 1-11-2018 B. cereus 73.50 95.96 B. cereus ATCC 14579
VEPU00000000 SRR12104980 SN4.1 5,443,801 35.2 4,526,204 40.0 32 868,705 5,590 Ostrinia nubilalis, 1-11-2018 B. pacificus 77.20 97.10 B. pacificus EB422
VEPY00000000 SRR12104982 CD3-1a 5,150,560 35.2 4,168,978 56.0 40 589,852 5,431 Brassica juncea rhizosphere, 1-11-2018 Bacillus sp. 62.50 94.31 B. tropicus N24
VEPX00000000 SRR12104984 CD3-5 5,695,940 35.3 4,593,634 60.0 50 302,092 5,784 Brassica juncea rhizosphere, 1-11-2018 Bacillus sp. 69.60 95.45 B. pacificus EB422
JABSVD000000000 SRR12132949 HD1.3 5,695,940 35.1 7,791,502 19.0 56 469,972 5,784 Tomato root soil, 23-4-2019 Bacillus sp. 66.30 95.04 B. pacificus EB422
JABMIX000000000 SRR12141623 GR2.1 4,084,062 43.6 3,512,065 25.0 22 1,042,180 4,240 Green egg-plant root, 6-12-2018 B. subtilis 88.50 98.49 B. subtilis ATCC 6051
JABMIY000000000 SRR12142185 DL2.1 3,927,651 44.0 3,260,262 24.0 46 476,949 4,159 Maize field soil, 8-5-2018 B. tequilensis 78.50 97.25 B. tequilensis KCTC 13622
VEPW00000000 SRR12104983 CD3-2 5,958,606 35.8 2,788,296 30.0 68 236,159 6,186 Brassica juncea rhizosphere, 1-11-2018 B. tropicus 72.40 96.68 B. tropicus N24
VEPV00000000 SRR12104979 SN1 5,335,513 35.2 5,015,568 63.0 34 456,889 5,560 Ostrinia nubilalis, 1-11-2018 B. tropicus 72.50 96.70 B. tropicus N24
VEWT00000000 SRR12132949 A25 3,833,140 46.2 5,120,982 88.0 25 981,821 3,834 Black pepper root, 1-9-2018 B. velezensis 79.90 96.41 B. velezensis KCTC 13012
VEWU00000000 SRR12104957 A35 3,867,857 46.3 5,469,886 93.0 20 561,718 3,896 Black pepper root, 1-9-2018 B. velezensis 79.60 96.48 B. velezensis KCTC 13012
JABSVZ000000000 SRR12142193 BP1.2A 3,872,427 46.4 7,443,818 30.0 30 471,958 3,832 Sand in Mooc River, 8-5-2019 B. velezensis 96.20 98.16 B. velezensis KCTC 13012
JABSVT000000000 SRR12133237 BT2.1 3,889,067 46.4 13,578,068 50.0 33 475,102 3,855 Dragon tree stem, 8-5-2019 B. velezensis 85.80 98.23 B. velezensis KCTC 13012
JABSVU000000000 SRR12133171 BT2.4 3,865,088 46.4 3,355,802 12.0 46 422,236 3,851 Dragon tree stem, 8-5-2019 B. velezensis 95.30 98.24 B. velezensis KCTC 13012
JABSVG000000000 SRR12113939 CP5.2 3,932,265 46.4 4,591,652 17.0 34 563,859 3,876 Orange plant root, 17-4-2019 B. velezensis 80.30 97.25 B. velezensis KCTC 13012
JABSVH000000000 SRR12114569 CP6 3,825,619 46.7 6,766,126 19.0 34 482,295 3,782 Orange plant leaf, 17-4-2019 B. velezensis 81.10 97.46 B. velezensis KCTC 13012
JABSVI000000000 SRR12115431 CP7.1A 3,874,748 46.4 4,658,644 17.0 36 475,102 3,836 Orange plant soil, 17-4-2019 B. velezensis 96.40 98.04 B. velezensis KCTC 13012
JABSVJ000000000 SRR12123548 CP7.1C 3,871,413 46.4 4,273,868 16.0 45 339,955 3,840 Orange plant soil, 17-4-2019 B. velezensis 96.20 98.04 B. velezensis KCTC 13012
JABSVK000000000 SRR12123552 CP7.2A 3,883,818 46.4 4,191,800 16.0 34 468,775 3,857 Orange plant soil, 17-4-2019 B. velezensis 85.80 98.03 B. velezensis KCTC 13012
JABSVM000000000 SRR12123706 DP1.3B 3,877,050 46.4 4,778,546 18.0 24 486,178 3,827 Orange plant soil, 17-4-2019 B. velezensis 96.70 98.03 B. velezensis KCTC 13012
JABSVL000000000 SRR12123599 DP2.2B 3,871,310 46.4 4,996,856 18.0 40 471,958 3,840 Orange plant soil, 17-4-2019 B. velezensis 96.20 98.04 B. velezensis KCTC 13012
JABSVX000000000 SRR12134139 EG5.1A 4,030,371 46.2 9,630,302 35.0 36 451,426 3,954 White egg-plant root, 6-12-2018 B. velezensis 92.20 98.93 B. velezensis KCTC 13012
JABSVP000000000 SRR12132923 HD1.1 3,875,639 46.4 4,494,558 16.0 33 475,102 3,834 Tomato root soil, 23-4-2019 B. velezensis 96.50 98.03 B. velezensis KCTC 13012
JABSVN000000000 SRR12123774 HD2.2 3,874,124 46.4 3,903,166 15.0 41 475,603 3,842 Tomato root soil, 23-4-2019 B. velezensis 96.40 98.04 B. velezensis KCTC 13012
JABSVO000000000 SRR12132925 HD2.5 3,878,653 46.4 4,716,380 17.0 37 428,165 3,861 Tomato root soil, 23-4-2019 B. velezensis 98.30 98.03 B. velezensis KCTC 13012
JABSVQ000000000 SRR12132982 HD3.1B 3,891,722 46.4 4,185,344 15.0 49 356,004 3,869 Tomato root soil, 23-4-2019 B. velezensis 98.20 98.04 B. velezensis KCTC 13012
JABSVR000000000 SRR12132999 HD5.1 3,874,949 46.4 1,960,848 14.0 48 475,102 3,852 Tomato root soil, 23-4-2019 B. velezensis 96.40 98.06 B. velezensis KCTC 13012
JABSVS000000000 SRR12133003 HD5.2A 3,878,897 46.4 6,893,794 25.0 37 428,165 3,861 Tomato leaves, 23-4-2019 B. velezensis 98.30 98.22 B. velezensis KCTC 13012
VEWV00000000 SRR12104919 KT1 3,950,573 46.4 5,413,752 90.0 40 280,310 3,970 Black pepper root, 1-9-2018 B. velezensis 84.70 96.13 B. velezensis KCTC 13012
JABSVY000000000 SRR12142183 MR2.1A 4,027,596 46.2 6,220,582 23.0 41 451,426 3,956 Maize root, 6-12-2018 B. velezensis 92.20 98.93 B. velezensis KCTC 13012
JABSVV000000000 SRR12133236 OL1.1 3,921,211 46.4 3,249,582 12.0 34 1,032,611 3,850 Orange plant leaf, 13-6-2019 B. velezensis 80.20 97.48 B. velezensis KCTC 13012
JABSVW000000000 SRR12133982 OR2.1 3,864,359 46.4 8,863,958 30.0 33 428,160 3,834 Orange plant soil, 13-6-2019 B. velezensis 95.30 98.25 B. velezensis KCTC 13012
VEWW00000000 SRR12104916 S1 3,866,305 46.1 6,223,108 106 30 486,485 3,893 Coffee rhizosphere, 1-9-2018 B. velezensis 85.80 97.01 B. velezensis KCTC 13012
VEWX00000000 SRR12104917 S2 3,864,301 46.1 6,033,960 103 33 397,838 3,893 Coffee rhizosphere, 1-9-2018 B. velezensis 85.70 97.12 B. velezensis KCTC 13012
VEWY00000000 SRR12105026 TK2 4,044,692 46.2 4,395,588 71.0 48 808,279 4,144 Field soil, 1-11-2018 B. velezensis 79.80 96.26 B. velezensis KCTC 13012
VEWZ00000000 SRR12104978 TL7 3,865,047 46.4 4,381,374 77.0 29 428,384 3,879 Coffee rhizosphere, 1-9-2018 B. velezensis 85.70 97.94 B. velezensis KCTC 13012
JABSUV000000000 SRR12113944 HB2.2 6,346,173 47.2 5,448,236 13.0 137 133,518 5,928 Orange plant soil, 17-4-2019 Brevibacillus sp. 53.70 93.46 Brevibacillus formosus NRRL NRS-863
JABSVA000000000 SRR12142184 RS1.1 6,246,682 47.2 4,526,908 11.0 46 810,856 5,867 Maize field soil, 8-5-2019 Brevibacillus sp. 54.20 93.10 Brevibacillus formosus NRRL NRS-863
JABSUW000000000 SRR12132961 HD1.4A 6,032,732 52.2 4,713,548 11.0 120 286,241 5,720 Tomato root soil, 23-4-2019 Brevibacillus parabrevis 93.80 99.07 Brevibacillus parabrevis 605
JABSUX000000000 SRR12132995 HD3.3A 6,074,516 52.1 4,338,330 11.0 178 190,049 5,781 Tomato root soil, 23-4-2019 Brevibacillus parabrevis 93.60 99.05 Brevibacillus parabrevis 605
JABMIV000000000 SRR12105150 HB1.1 6,317,805 47.2 6,867,506 28.0 44 376,218 6,010 Orange plant soil, 17-4-2019 Brevibacillus porteri 82.70 97.36 Brevibacillus porteri B-41110
JABMIU000000000 SRR12105325 HB1.2 6,342,770 47.1 6,815,744 17.0 55 468,289 6,077 Orange plant soil, 17-4-2019 Brevibacillus porteri 82.80 97.38 Brevibacillus porteri B-41110
JABSUT000000000 SRR12113913 HB1.4B 6,377,995 47.2 12,209,194 29.0 41 493,935 6,133 Orange plant soil, 17-4-2019 Brevibacillus porteri 82.20 97.24 Brevibacillus porteri B-41110
JABSUU000000000 SRR12123671 DP1.3A 6,579,985 47.1 5,839,560 13.0 62 512,617 6,114 Orange plant soil, 17-4-2019 Brevibacillus sp. 59.10 93.65 Brevibacillus porteri B-41110
JABMIT000000000 SRR12105327 HB1.3 6,066,817 47.3 4,162,250 17.0 44 476,614 5,750 Orange plant soil, 17-4-2019 Brevibacillus sp. 53.80 93.00 Brevibacillus formosus DSM 9885
JABSUY000000000 SRR12141636 M2.1A 6,216,907 47.3 4,162,250 10.0 53 477,247 5,898 Maize field soil, 6-12-2018 Brevibacillus sp. 56.50 93.95 Brevibacillus formosus DSM 9885
JABSUZ000000000 SRR12141690 MS2.2 6,273,578 47.3 1,594,872 10.0 72 144,852 5,898 Maize field soil, 8-5-2019 Brevibacillus sp. 55.50 93.30 Brevibacillus brevis DSM 30
VEXA00000000 SRR12104985 CD3.6 4,369,550 36.8 6,766,126 25.0 13 533,701 4,321 Brassica juncea rhizosphere, 1-11-2018 Lysinibacillus sp. 31.10 85.47 Lysinibacillus varians GY32
a

The cutoff value for species delimitation of ANIb (6) is defined as 96%.

b

The cutoff value for species delimitation of dDDH (7) is defined as 70%.

For biomass production, colonies of a fresh culture grown on Luria-Bertani (LB) agar plates were selected. Genomic DNA was extracted using the DNeasy blood and tissue kit (Qiagen, Hilden, Germany) after growth on LB agar plates for 24 h at 37°C. The sequencing was conducted at LGC Genomics (Berlin, Germany) with an Illumina HiSeq system using paired-end 150-bp reads. Default parameters were used for all software unless otherwise specified. Reads were trimmed and filtered using fastp v0.20.1 (https://github.com/OpenGene/fastp) with default settings. De novo assemblies were generated by using the short-read assembler SPAdes v3.13.0 (3) (http://cab.spbu.ru/software/spades) without read correction and with normal bridging. The quality of assemblies was assessed by determining the proportion of falsely trimmed proteins by using Ideel (https://github.com/phiweger/ideel). The complete pipeline results were saved as a Snakemake file (4) and uploaded on GitHub (https://github.com/CptChiler/snakeGenome). Genome coverage of the contigs obtained was 50× on average (Table 1). Contigs were submitted to GenBank for gene annotation, which was implemented using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v4.11 (5). The Genome-to-Genome Distance Calculator (GGDC) v2.1 provided by DSMZ (http://ggdc.dsmz.de) was used for genome-based species delineation via estimated digital DNA-DNA hybridization (dDDH) values against a reference genome. Formula 2, which is especially appropriate for analyzing draft genomes, was used (6). In addition, JSpeciesWS (http://jspecies.ribohost.com/jspeciesws) was used to determine average nucleotide identity based on BLAST+ (ANIb) values by pairwise genome comparisons (7). Accession numbers and characteristics of the genomes, including their ANIb values, are summarized in Table 1.

According to their draft genome sequences, we have assigned 49 of the isolates with potential to control plant pathogens as representatives of Bacillus altitudinis (strain BT2.2), Bacillus cereus (strains A8, A22, A24, A31, A42, HB3.1, HD1.4B, HD2.4, M2.1B, SN4.3, and TK1), Bacillus pacificus (strain SN4-1), Bacillus subtilis subsp. subtilis (strain GR2.1), Bacillus tequilensis (strain DL2.1), Bacillus tropicus (strains CD3.2 and SN1), Bacillus velezensis (strains A25, A35, BT2.1, BT2.4, CP5.2, CP6, CP7.1A, CP7.1C, CP7.2A, DP1.3B, DP2.2B, EG5.1A, HD1.1, HD2.2, HD2.5, HD3.1B, HD5.1, HD5.2A, KT1, MR2.1A, OL1.1, OR2.1, S1, S2, TK2, TL7, and BP1.2A), Brevibacillus parabrevis (strains HD1.4A and HD3.3A), and Brevibacillus porteri (strains HB1.1, HB1.2, and HB1.4B).

Ten strains, i.e., Bacillus sp. strains HD1.3, CD3.1A, and CD3.5, Brevibacillus sp. strains HB2.2, RS1.1, DP1.3A, HB1.3, MS2.1A, and MS2.2, and Lysinibacillus sp. strain CD3.6, could not be identified to the species level since their estimated taxonomic values and values were below the species cutoff values (GGDC, <70%; ANIb, <96%). Further research in order to characterize these novel biocontrol strains and their secondary metabolites is in progress.

Data availability.

These whole-genome shotgun projects have been deposited in GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS

This work was supported through project ENDOBICA (Bundesministerium für Bildung und Forschung [BMBF] grant no. 031B0582A), the National Foundation for Science and Technology Development (NAFOSTED; code no. 106.03-2017.28), and the Ministry of Science and Technology (MOST) in Vietnam (code no. NDT.40.GER/18).

REFERENCES

  • 1.Thongkham D, Soytong K. 2016. Isolation, identification, and pathogenicity test from Neoscytalidium dimidiatum causing stem canker. Int J Agric Technol 12:2187–2190. http://www.ijat-aatsea.com/pdf/v12_n7_2_16_DecemberSpecialissue/123--Danupat%20Thongkham--P.pdf. [Google Scholar]
  • 2.Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P. 2015. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369. doi: 10.1038/nature16192. [DOI] [PubMed] [Google Scholar]
  • 3.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Köster J, Rahmann S. 2012. Snakemake: a scalable bioinformatics workflow engine. Bioinformatics 28:2520–2522. doi: 10.1093/bioinformatics/bts480. [DOI] [PubMed] [Google Scholar]
  • 5.Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. doi: 10.1093/nar/gkw569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. doi: 10.1186/1471-2105-14-60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. 2016. JSpeciesWS: a Web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. doi: 10.1093/bioinformatics/btv681. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

These whole-genome shotgun projects have been deposited in GenBank under the accession numbers listed in Table 1.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES