Skip to main content
3 Biotech logoLink to 3 Biotech
. 2020 Sep 11;10(10):422. doi: 10.1007/s13205-020-02406-y

Identification of potential mRNA panels for severe acute respiratory syndrome coronavirus 2 (COVID-19) diagnosis and treatment using microarray dataset and bioinformatics methods

Basavaraj Vastrad 1, Chanabasayya Vastrad 2,, Anandkumar Tengli 3
PMCID: PMC7679428  PMID: 33251083

Abstract

The goal of the present investigation is to identify the differentially expressed genes (DEGs) between SARS-CoV-2 infected and normal control samples to investigate the molecular mechanisms of infection with SARS-CoV-2. The microarray data of the dataset E-MTAB-8871 were retrieved from the ArrayExpress database. Pathway and Gene Ontology (GO) enrichment study, protein–protein interaction (PPI) network, modules, target gene–miRNA regulatory network, and target gene–TF regulatory network have been performed. Subsequently, the key genes were validated using an analysis of the receiver operating characteristic (ROC) curve. In SARS-CoV-2 infection, a total of 324 DEGs (76 up- and 248 down-regulated genes) were identified and enriched in a number of associated SARS-CoV-2 infection pathways and GO terms. Hub and target genes such as TP53, HRAS, MAPK11, RELA, IKZF3, IFNAR2, SKI, TNFRSF13C, JAK1, TRAF6, KLRF2, CD1A were identified from PPI network, target gene–miRNA regulatory network, and target gene–TF regulatory network. Study of the ROC showed that ten genes (CCL5, IFNAR2, JAK2, MX1, STAT1, BID, CD55, CD80, HAL-B, and HLA-DMA) were substantially involved in SARS-CoV-2 patients. The present investigation identified key genes and pathways that deepen our understanding of the molecular mechanisms of SARS-CoV-2 infection, and could be used for SARS-CoV-2 infection as diagnostic and therapeutic biomarkers.

Keywords: SARS-CoV-2 infection, Bioinformatics analysis, Biomarkers, Protein–protein interaction (PPI) network, Differentially expressed genes

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is known as novel coronavirus disease-2019 (COVID-19) and has spread widely throughout the globe in an epidemic proportion with the current pandemic risk (Li et al. 2020). This infection is related to respiratory diseases, and this virus mainly infects respiratory epithelial cells and transmits from human to human primarily through the respiratory tract, contributing to more deaths (Zou et al. 2020; Madurai Elavarasan and Pugazhendhi 2020). In the present situation, the survival rate of patients with SARS-CoV-2 infection has been slightly increased, and patients with this infection have no apparent benefit from the current antiviral drugs (Hoffmann et al. 2020). Knowing the molecular pathogenesis of the viral infections and their routes of transmission is completely necessary for the creation of new therapeutic targets.

Present situation for investigating the pathogenesis of SARS-CoV-2 infection is needed in molecular biology. Although the pathogenesis of SARS-CoV-2 infection remains to be clarified, abnormal gene expression in nasal epithelial cells can serve significant roles (Sungnak et al. 2020). Entry factors related genes such as angiotensin-converting enzyme 2 (ACE2) (Zhang et al. 2020); TMPRSS2 (Sungnak et al. 2020); and inflammatory related genes (IL-2, IL-7, IL-10, GCSF, IP-10, MCP-1, MIP-1A, and TNF-α) (Fu et al. 2020) were linked with pathogenesis of SARS-CoV-2 infections. Therefore, targeted regulation of these genes may reveal potential strategies for the treatment of SARS-CoV-2 infections. Therefore, targeted regulation of entry factors and inflammatory-related genes could become potential strategies for the treatment of SARS-CoV-2 infection.

Throughout this investigation, we used bioinformatics methods to examine differentially expressed genes (DEGs) between SARS-CoV-2-infected samples and standard control samples. We performed pathway enrichment and gene ontology (GO) analysis of DEGs, and established the protein–protein interactions (PPI) network, modules analysis, target gene–miRNA regulatory network, and target gene–TF regulatory network to reveal molecular mechanisms in SARS-CoV-2 infection. Finally, we performed validation hub genes by receiver operating characteristic (ROC) curve analysis. Finally, through receiver operating characteristic (ROC) curve analysis, we conducted validation hub genes. The aim of this study is thus to have a better understanding of the exact mechanisms of SARS-CoV-2 infection and to identify potential novel diagnostic or therapeutic targets through bioinformatics analysis.

Materials and methods

Microarray data selection

Microarray data of gene expression profile (E-MTAB-8871) was downloaded from ArrayExpress (https://www.ebi.ac.uk/arrayexpress), which is the largest resource of gene expression publicly available (Kolesnikov et al. 2015). Samples from this dataset were RNA extracted from the blood sample and processed for hybridization on NanoString nCounter Human Immunology V2 Panel Array. A total of 32 samples were investigated, including 22 SARS-CoV-2-infected samples, and 10 normal control samples. The study was designed according to the flowchart (Fig. 1).

Fig. 1.

Fig. 1

The workflow representing the methodology and the major outcome of the study. SARS-CoV-2—Severe acute respiratory syndrome coronavirus 2 infection - breast cancer, GO—gene ontology, miRNA—MicroRNA, TF-transcription factor, DEGs—deferential expressed genes

Identification of DEGs

The DEGs between the SARS-CoV-2-infected samples and normal control samples were analyzed with various methods including data preparation (data normalization and summarization) and DEGs identification (up- and down-regulated genes). The limma package in R Software was used for background correction, quantile normalization and probe summarization, and limma package was also applied for DEGs identification (Ritchie et al. 2015). The development of DEGs choice included model design, linear model fitness, contrast matrix generation, bayesian model building and gene filtering, all of which were managed by the functions in the limma package. Genes with the p < 0.05, |log Fc| (fold change) > 1.5 were considered as DEGs (up- and down-regulated genes).

Pathway enrichment analysis for DEGs

BIOCYC (https://biocyc.org/) (Caspi et al. 2016), Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/pathway.html) (Kanehisa et al. 2019), Pathway Interaction Database (PID) (https://wiki.nci.nih.gov/pages/viewpage.action?pageId=315491760) (Schaefer et al. 2009), REACTOME (https://reactome.org/) (Fabregat et al. 2018), GenMAPP (http://www.genmapp.org/) (Dahlquist et al. 2002), MSigDB C2 BIOCARTA (http://software.broadinstitute.org/gsea/msigdb/collections.jsp) (Subramanian et al. 2005), PantherDB (http://www.pantherdb.org/) (Mi et al. 2017), Pathway Ontology (http://www.obofoundry.org/ontology/pw.html) (Petri et al. 2014) and Small Molecule Pathway Database (SMPDB) (http://smpdb.ca/) (Jewison et al. 2014) are a data resource for genes and genomes with assigned corresponding functional importance. The ToppGene (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) (Chen et al. 2009) is an online resource for interpreting genes originating from genomic investigation with bioinformatics data. The p value < 0.05 was considered statistically significant.

Gene ontology (GO) enrichment analysis for DEGs

GO (http://www.geneontology.org/) (Lewis et al. 2017) was used to determine gene actions in three aspects: biological process (BP), cellular component (CC) and molecular function (MF). ToppGene (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) (Chen et al. 2009) is an online website that provides an extensive set of functional annotation tools to understand the biological meaning behind a massive list of genes. In the current investigation, the GO enrichment analyses for statistically important DEGs. The p value < 0.05 was considered statistically significant.

PPI network construction and module analysis

The common up and down-regulated genes of E-MTAB-8871 was analyzed using the online website STRING (https://string-db.org/, version 11) (Szklarczyk et al. 2019), with 0.700 (moderate confidence) as the minimum required interaction score. Then, the software Cytoscape (http://www.cytoscape.org/, version 3.8.0) (Shannon et al. 2003) was used to establish a PPI network. The Network Analyzer in Cytoscape was utilized to calculate node degree (Przulj et al. 2004), betweenness centrality (Nguyen et al. 2011), stress centrality (Shi and Zhang 2011), closeness centrality (Nguyen and Liu 2011) and clustering coefficient (Wang et al. 2012). PEWCC1 (http://apps.cytoscape.org/apps/PEWCC1) (Zaki et al. 2013) was used to perform module analysis.

Construction of target gene–miRNA regulatory network

miRNet database (https://www.mirnet.ca/) (Fan and Xia 2018) provides certain target gene–miRNA regulatory association pairs, which are verified by experiments and predicted by ten programs, including TarBase (http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index) (Vlachos et al. 2015), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/php/download.php) (Chou et al. 2018), miRecords (http://miRecords.umn.edu/miRecords) (Xiao et al. 2009), miR2Disease (http://www.mir2disease.org/) (Jiang et al. 2009), HMDD (http://www.cuilab.cn/hmdd) (Huang et al. 2019), PhenomiR (http://mips.helmholtz-muenchen.de/phenomir/) (Ruepp et al. 2010), SM2miR (http://bioinfo.hrbmu.edu.cn/SM2miR/) (Liu et al. 2013), PharmacomiR (http://www.pharmaco-mir.org/) (Rukov et al. 2014), EpimiR (http://bioinfo.hrbmu.edu.cn/EpimiR/) (Dai et al. 2014) and starBase (http://starbase.sysu.edu.cn/) (Li et al. 2014). This investigation inputted the up- and down-regulated genes into the database to examine the regulatory association pairs between target gene and miRNA. Target gene–miRNA regulatory network was constructed and visualized by Cytoscape 3.8.0 software to show the target genes and miRNA. Therefore, these target genes and miRNA might play a potential role in the pathogenesis and treatment of SARS-CoV-2 infection.

Construction of target gene–TF regulatory network

NetworkAnalyst database (https://www.networkanalyst.ca/) (Zhou et al. 2019) provides certain target gene–TF regulatory association pairs, which are verified by experiments and predicted by JASPAR (http://jaspar.genereg.net/) (Khan et al. 2018) database. This investigation inputted the up- and down-regulated genes into the database to examine the regulatory association pairs between target gene and TF. Target gene–TF regulatory network was constructed and visualized by Cytoscape 3.8.0 software to show the target genes and TF. Therefore, these target genes and TF may play a potential role in the pathogenesis and treatment of SARS-CoV-2 infection.

Validation of hub genes

Receiver‐operating characteristic (ROC) analyses were operated to calculate the diagnostic value of the hub genes for SARS-CoV-2 infection. The ROC curve with area under curve (AUC) was determined using R “pROC” package (Robin et al. 2011).

Results

Identification of DEGs

Microarray dataset (E-MTAB-8871) was obtained from ArrayExpress database and normalized mRNA expression data through R language (Fig. 2). Volcano plot was generated to manifest up-regulated (green) and down-regulated (red) genes between SARS-CoV-2-infected samples and normal controls samples (Fig. 3) and were also visualized on a heatmap for up- and down-regulated genes (Figs. 4, 5). This approach indicated presence of a total of 324 statistically significant genes (P < 0.05, |log Fc| (fold change) > 1.5), of which 76 genes were up-regulated and 248 genes were down-regulated (Table 1).

Fig. 2.

Fig. 2

Box plots of the normalized data. a 22 SARS-CoV-2 infected samples b 10 normal control samples. Horizontal axis represents the sample symbol and the vertical axis represents the gene expression values. The black line in the box plot represents the median value of gene expression

Fig. 3.

Fig. 3

Volcano plot of differentially expressed genes. Genes with a significant change of more than twofold were selected. Green dot on right side ( Inline graphic ) represented up regulated significant genes and red dot on left side (Inline graphic ) represented down regulated significant genes

Fig. 4.

Fig. 4

Heat map of up regulated differentially expressed genes. Legend on the top left indicate log fold change of genes. White represents decreased expression of genes; light green represents not significant expression of genes; dark green represents increased expression of genes. (A1–A10 = Normal control samples; B1–B22 = SARS-CoV-2 infected samples)

Fig. 5.

Fig. 5

Heat map of down regulated differentially expressed genes. Legend on the top left indicate log fold change of genes. White represents decreased expression of genes; light pink represents not significant expression of genes; dark pink represents increased expression of genes. (A1–A10 = Normal control samples; B1–B22 = SARS-CoV-2 infected samples)

Table 1.

The statistical metrics for key differentially expressed genes (DEGs)

Gene Symbol logFC pValue adj.P.Val t value Regulation Gene Name
JAK1 0.641818 1.84E − 11 1.84E − 11 9.973193 Up Janus kinase 1
ZAP70 0.810545 2.91E − 10 2.91E − 10 8.897328 Up Zeta chain of T cell receptor associated protein kinase 70
CCR5 1.239182 3.04E − 10 3.04E − 10 8.880753 Up C–C motif chemokine receptor 5 (gene/pseudogene)
CTNNB1 0.633545 4.11E − 10 4.11E − 10 8.766907 Up Catenin beta 1
TRAF6 0.644773 7.11E − 10 7.11E − 10 8.561082 Up TNF receptor associated factor 6
FYN 0.536182 1.96E − 08 1.96E − 08 7.357891 Up FYN proto-oncogene, Src family tyrosine kinase
HRAS 0.668773 2.14E − 08 2.14E − 08 7.325507 Up HRas proto-oncogene, GTPase
ITGB2 0.805182 2.8E − 06 2.8E − 06 5.644273 Up Integrin subunit beta 2
ZBTB16 1.099955 3.88E − 06 3.88E − 06 5.53388 Up Zinc finger and BTB domain containing 16
ABL1 0.468091 4.46E − 06 4.46E − 06 5.486138 Up ABL proto-oncogene 1, non-receptor tyrosine kinase
CX3CR1 0.834227 6.3E − 06 6.3E − 06 5.369313 Up C-X3-C motif chemokine receptor 1
PDCD1 0.880955 7.79E − 06 7.79E − 06 5.297093 Up Programmed cell death 1
IRF5 0.884364 1.56E − 05 1.56E − 05 5.062275 Up Interferon regulatory factor 5
IL2RG 0.590818 1.7E − 05 1.7E − 05 5.032467 Up Interleukin 2 receptor subunit gamma
IKZF3 0.467273 1.78E − 0E − 05 1.78E − 05 5.016592 Up IKAROS family zinc finger 3
CCR1 1.613727 2.3E − 05 2.3E − 05 4.929543 Up C–C motif chemokine receptor 1
CD99 0.398773 4.76E − 05 4.76E − 05 4.681138 Up CD99 molecule (Xg blood group)
SMAD5 0.349818 5.02E − 05 5.02E − 05 4.662446 Up SMAD family member 5
CD247 0.51 5.34E − 05 5.34E − 05 4.641555 Up CD247 molecule
TP53 0.372273 5.85E − 05 5.85E − 05 4.609909 Up Tumor protein p53
LAG3 0.988591 6.64E − 05 6.64E − 05 4.566916 Up Lymphocyte activating 3
LCP2 0.432682 6.74E − 05 6.74E − 05 4.561553 Up Lymphocyte cytosolic protein 2
SLAMF7 0.577409 8.58E − 05 8.58E − 05 4.478485 Up SLAM family member 7
TMEM173 0.377318 0.000103 0.000103 4.416144 Up Transmembrane protein 173
CUL9 0.4155 0.000119 0.000119 4.366647 Up Cullin 9
C2 1.280182 0.000153 0.000153 4.279415 Up Complement C2
GNLY 1.067364 0.000167 0.000167 4.248083 Up Granulysin
ATG10 0.490955 0.000234 0.000234 4.130655 Up Autophagy related 10
IKZF1 0.321682 0.000285 0.000285 4.061503 Up IKAROS family zinc finger 1
KIR_Activating_Subgroup_2 1.279318 0.00043 0.00043 3.915229 Up Killer-cell immunoglobulin-like receptorSubgroup 2
ITGAL 0.370273 0.000461 0.000461 3.890576 Up Integrin subunit alpha L
SERPING1 1.992773 0.00057 0.00057 3.815201 Up Serpin family G member 1
STAT1 1.066864 0.000762 0.000762 3.711251 Up signal transducer and activator of transcription 1
CCRL2 0.621773 0.000844 0.000844 3.674266 Up C–C motif chemokine receptor like 2
RUNX1 0.392409 0.001035 0.001035 3.600334 Up RUNX family transcription factor 1
KIR_Activating_Subgroup_1 1.243455 0.001444 0.001444 3.478418 Up Killer-cell immunoglobulin-like receptor Subgroup 1
IFIH1 1.189 0.001492 0.001492 3.466339 Up Interferon induced with helicase C domain 1
GP1BB 1.252364 0.001517 0.001517 3.460324 Up Glycoprotein Ib platelet subunit beta
TBX21 0.557591 0.001716 0.001716 3.414736 Up T-box transcription factor 21
BST2 0.825727 0.00183 0.00183 3.390875 Up Bone marrow stromal cell antigen 2
JAK2 0.436727 0.001927 0.001927 3.371677 Up Janus kinase 2
PSMB9 0.490864 0.001928 0.001928 3.371431 Up Proteasome 20S subunit beta 9
XBP1 0.485455 0.002051 0.002051 3.348399 Up X-box binding protein 1
GBP1 0.999545 0.003627 0.003627 3.133218 Up Guanylate binding protein 1
STAT4 0.295591 0.003667 0.003667 3.129061 Up Signal transducer and activator of transcription 4
MAP4K1 0.2385 0.003959 0.003959 3.099644 Up Mitogen-activated protein kinase kinasekinasekinase 1
CCND3 0.326591 0.004076 0.004076 3.08846 Up cyclin D3
LILRA6 0.817091 0.004839 0.004839 3.022071 Up Leukocyte immunoglobulin like receptor A6
GFI1 0.495591 0.005741 0.005741 2.955427 Up Growth factor independent 1 transcriptional repressor
HLA-A 0.385909 0.005824 0.005824 2.949825 Up Major histocompatibility complex, class I, A
IL18RAP 0.982227 0.006135 0.006135 2.929331 Up Interleukin 18 receptor accessory protein
C1QBP 0.264182 0.006145 0.006145 2.928686 Up Complement C1q binding protein
CCL5 0.3105 0.006563 0.006563 2.902767 Up C–C motif chemokine ligand 5
SOCS1 0.704318 0.007115 0.007115 2.870801 Up Suppressor of cytokine signaling 1
STAT3 0.370545 0.010179 0.010179 2.72698 Up Signal transducer and activator of transcription 3
CEACAM1 0.784909 0.011682 0.011682 2.670737 Up CEA cell adhesion molecule 1
TLR2 0.589773 0.013287 0.013287 2.617647 Up toll like receptor 2
KLRK1 0.358136 0.014239 0.014239 2.588898 Up killer cell lectin like receptor K1
MAP4K2 0.221227 0.018828 0.018828 2.471244 Up Mitogen-activated protein kinase kinasekinasekinase 2
KLRC1 0.7945 0.019896 0.019896 2.4477 Up Killer cell lectin like receptor C1
ATG5 0.327 0.020137 0.020137 2.44253 Up Autophagy related 5
IL18R1 0.713136 0.020905 0.020905 2.426467 Up Interleukin 18 receptor 1
IKBKB 0.1695 0.027641 0.027641 2.304841 Up Inhibitor of nuclear factor kappa B kinase subunit beta
STAT5B 0.2575 0.032278 0.032278 2.235871 Up Signal transducer and activator of transcription 5B
MX1 1.111727 0.032817 0.032817 2.228441 Up MX dynamin like GTPase 1
IRF7 0.898909 0.033248 0.033248 2.222589 Up Interferon regulatory factor 7
TRAF2 0.171955 0.034273 0.034273 2.208908 Up TNF receptor associated factor 2
IFI35 0.725909 0.035093 0.035093 2.198229 Up Interferon induced protein 35
IKBKE 0.236545 0.035149 0.035149 2.197514 Up Inhibitor of nuclear factor kappa B kinase subunit epsilon
CLEC7A 0.421227 0.037828 0.037828 2.164155 Up C-type lectin domain containing 7A
LTB4R 0.465227 0.03902 0.03902 2.149988 Up Leukotriene B4 receptor
GZMB 0.437364 0.040654 0.040654 2.131179 Up Granzyme B
NLRP3 0.290364 0.04286 0.04286 2.106829 Up NLR family pyrin domain containing 3
LILRB2 0.299364 0.042931 0.042931 2.106059 Up Leukocyte immunoglobulin like receptor B2
IFNAR2 0.184136 0.048633 0.048633 2.047965 Up Interferon alpha and beta receptor subunit 2
KLRD1 0.4455 0.049759 0.049759 2.037205 Up Killer cell lectin like receptor D1
CD19 − 1.7175 5.18E − 16 5.18E − 16 − 14.7177 Down CD19 molecule
CD22 − 1.757 4.93E − 15 4.93E − 15 − 13.592 Down CD22 molecule
MS4A1 − 1.67741 1.67E − 14 1.67E − 14 − 13.0082 Down Membrane spanning 4-domains A1
CD45RB − 0.94709 4.17E − 14 4.17E − 14 − 12.5832 Down Receptor-Type Tyrosine-Protein Phosphatase C
IL6R − 2.0375 1.05E − 13 1.05E − 13 − 12.164 Down interleukin 6 receptor
TNFRSF13C − 1.46186 2.18E − 13 2.18E − 13 − 11.8375 Down TNF receptor superfamily member 13C
PAX5 − 1.37636 2.92E − 13 2.92E − 13 − 11.7085 Down Paired box 5
CD79A − 1.29577 2.53E − 12 2.53E − 12 − 10.7841 Down CD79a molecule
ARHGDIB − 0.65064 3.68E − 12 3.68E − 12 − 10.6278 Down Rho GDP dissociation inhibitor beta
HLA-DQB1 − 4.88305 5.18E − 12 5.18E − 12 − 10.4865 Down Major histocompatibility complex, class II, DQ beta 1
HLA-DQA1 − 6.1155 1.8E − 11 1.8E − 11 − 9.98021 Down Major histocompatibility complex, class II, DQ alpha 1
MAPKAPK2 − 0.99755 5.49E − 11 5.49E − 11 − 9.53915 Down MAPK activated protein kinase 2
SLAMF6 − 0.87414 2.16E − 10 2.16E − 10 − 9.01008 Down SLAM family member 6
PTGER4 − 0.76932 2.43E − 10 2.43E − 10 − 8.96519 Down Prostaglandin E receptor 4
CD79B − 0.84082 2.75E − 10 2.75E − 10 − 8.91788 Down CD79b molecule
CD97 − 1.1985 3.22E − 10 3.22E − 10 − 8.85915 Down Leukocyte antigen CD97
IL1RL2 − 1.04873 3.57E − 10 3.57E − 10 − 8.81964 Down Interleukin 1 receptor like 2
CD1A − 1.07114 3.6E − 10 3.6E − 10 − 8.81626 Down CD1a molecule
IL1RAP − 1.43418 8.92E − 10 8.92E − 10 − 8.47672 Down Interleukin 1 receptor accessory protein
TNFSF12 − 0.53718 2.42E − 09 2.42E − 09 − 8.10915 Down TNF superfamily member 12
AICDA − 0.94759 2.89E − 09 2.89E − 09 − 8.04473 Down Activation induced cytidinedeaminase
MBP − 0.77614 4.02E − 09 4.02E − 09 − 7.92468 Down myelin basic protein
TRAF4 − 0.67777 5.69E − 09 5.69E − 09 − 7.79888 Down TNF receptor associated factor 4
MIF − 0.59309 5.94E − 09 5.94E − 09 − 7.78344 Down Macrophage migration inhibitory factor
CCBP2 − 1.34027 6.31E − 09 6.31E − 09 − 7.76207 Down Chemokine-binding protein 2
CCL22 − 0.68986 8.3E − 09 8.3E − 09 − 7.66358 Down C–C motif chemokine ligand 22
HLA-DRA − 1.87223 9.28E − 09 9.28E − 09 − 7.62328 Down Major histocompatibility complex, class II, DR alpha
FCER1A − 2.15768 9.79E − 09 9.79E − 09 − 7.60411 Down Fc fragment of IgE receptor Ia
LILRB5 − 0.76595 1.11E − 08 1.11E − 08 − 7.55809 Down Leukocyte immunoglobulin like receptor B5
CCL15 − 0.7105 1.48E − 08 1.48E − 08 − 7.4567 Down C–C motif chemokine ligand 15
IL12B − 0.99886 1.5E − 08 1.5E − 08 − 7.45174 Down Interleukin 12B
TFRC − 1.07782 1.61E − 08 1.61E − 08 − 7.42698 Down Transferrin receptor
EBI3 − 0.72195 1.86E − 08 1.86E − 08 − 7.37653 Down Epstein-Barr virus induced 3
IL4 − 0.69941 2.72E − 08 2.72E − 08 − 7.24189 Down Interleukin 4
ICAM2 − 0.74745 2.86E − 08 2.86E − 08 − 7.22422 Down Intercellular adhesion molecule 2
KLRAP1 − 1.0865 3.09E − 08 3.09E − 08 − 7.19683 Down Killer cell lectin-like receptor subfamily A pseudogene 1
CD40 − 0.79436 3.29E − 08 3.29E − 08 − 7.17439 Down CD40 molecule
IL22RA2 − 0.6365 4.34E − 08 4.34E − 08 − 7.07766 Down Interleukin 22 receptor subunit alpha 2
IL2 − 0.64395 4.65E − 08 4.65E − 08 − 7.05298 Down Interleukin 2
IL29 − 0.64395 4.65E − 08 4.65E − 08 − 7.05298 Down Interleukin 29
CD3E − 0.73018 5.24E − 08 5.24E − 08 − 7.01159 Down CD3e molecule
CD55 − 0.92114 5.29E − 08 5.29E − 08 − 7.00828 Down CD55 molecule (Cromer blood group)
IL19 − 0.6555 5.33E − 08 5.33E − 08 − 7.00515 Down Interleukin 19
NOS2 − 0.81432 5.6E − 08 5.6E − 08 − 6.98829 Down Nitric oxide synthase 2
C4BPA − 1.83359 5.78E − 08 5.78E − 08 − 6.97697 Down Complement component 4 binding protein alpha
CCL26 − 0.57677 6.5E − 08 6.5E − 08 − 6.93596 Down C–C motif chemokine ligand 26
CDH5 − 0.60586 7.09E − 08 7.09E − 08 − 6.90577 Down Cadherin 5
IL9 − 0.60586 7.09E − 08 7.09E − 08 − 6.90577 Down Interleukin 9
FCGRT − 0.75709 8.18E − 08 8.18E − 08 − 6.85603 Down Fc fragment of IgG receptor and transporter
C8B − 0.6555 1.1E − 07 1.1E − 07 − 6.75159 Down Complement C8 beta chain
IL5 − 0.64086 1.16E − 07 1.16E − 07 − 6.7344 Down Interleukin 5
PIGR − 0.66695 1.33E − 07 1.33E − 07 − 6.68821 Down Polymeric immunoglobulin receptor
XCL1 − 1.06423 1.98E − 07 1.98E − 07 − 6.54928 Down X-C motif chemokine ligand 1
AIRE − 0.78032 2.01E − 07 2.01E − 07 − 6.5441 Down Autoimmune regulator
IL3 − 0.60723 2.08E − 07 2.08E − 07 − 6.53283 Down Interleukin 3
CCL16 − 0.6195 2.31E − 07 2.31E − 07 − 6.4973 Down C–C motif chemokine ligand 16
CCL7 − 0.6195 2.31E − 07 2.31E − 07 − 6.4973 Down C–C motif chemokine ligand 7
CSF2 − 0.6195 2.31E − 07 2.31E − 07 − 6.4973 Down Colony stimulating factor 2
ITLN2 − 0.6195 2.31E − 07 2.31E − 07 − 6.4973 Down Intelectin 2
THY1 − 0.6195 2.31E − 07 2.31E − 07 − 6.4973 Down Thy-1 cell surface antigen
IL21 − 0.70245 3.28E − 07 3.28E − 07 − 6.37574 Down Interleukin 21
BCL2 − 0.7385 4.11E − 07 4.11E − 07 − 6.29854 Down BCL2 apoptosis regulator
EDNRB − 0.60541 4.11E − 07 4.11E − 07 − 6.29833 Down Endothelin receptor type B
CCR6 − 0.88205 4.78E − 07 4.78E − 07 − 6.24666 Down C–C motif chemokine receptor 6
TIRAP − 0.70182 5.91E − 07 5.91E − 07 − 6.17398 Down TIR domain containing adaptor protein
STAT6 − 0.52186 6.37E − 07 6.37E − 07 − 6.14848 Down Signal transducer and activator of transcription 6
PSMB10 − 0.43945 6.43E − 07 6.43E − 07 − 6.14519 Down Proteasome 20S subunit beta 10
SKI − 0.52182 7.16E − 07 7.16E − 07 − 6.10886 Down SKI proto-oncogene
RAG2 − 0.56723 8.47E − 07 8.47E − 07 − 6.05149 Down Recombination activating 2
CD209 − 0.7285 8.56E − 07 8.56E − 07 − 6.04758 Down CD209 molecule
VTN − 0.68305 9.43E − 07 9.43E − 07 − 6.01488 Down Vitronectin
IFNB1 − 0.57768 9.97E − 07 9.97E − 07 − 5.99573 Down Interferon beta 1
EOMES − 0.77505 1.47E − 06 1.47E − 06 − 5.8643 Down Eomesodermin
CD74 − 0.69905 1.52E − 06 1.52E − 06 − 5.85145 Down CD74 molecule
CCR10 − 0.60368 1.7E − 06 1.7E − 06 − 5.81503 Down C–C motif chemokine receptor 10
LGALS3 − 1.12309 1.85E − 06 1.85E − 06 − 5.78563 Down Galectin 3
PDGFB − 0.64241 1.86E − 06 1.86E − 06 − 5.78395 Down Platelet derived growth factor subunit B
ICAM4 − 0.96814 1.96E − 06 1.96E − 06 − 5.76557 Down Intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)
ICOSLG − 0.74791 2.07E − 06 2.07E − 06 − 5.74698 Down Inducible T cell costimulator ligand
C9 − 0.52132 2.66E − 06 2.66E − 06 − 5.66169 Down Complement C9
IL16 − 0.45973 2.88E − 06 2.88E − 06 − 5.63467 Down Interleukin 16
RELA − 0.47205 3.09E − 06 3.09E − 06 − 5.61097 Down RELA proto-oncogene, NF-kB subunit
DEFB1 − 0.8105 3.38E − 06 3.38E − 06 − 5.58051 Down Defensin beta 1
IL13RA1 − 0.90159 3.41E − 06 3.41E − 06 − 5.57755 Down Interleukin 13 receptor subunit alpha 1
HLA-DOB − 1.24595 3.65E − 06 3.65E − 06 − 5.55493 Down Major histocompatibility complex, class II, DO beta
KIR3DL3 − 0.56905 3.78E − 06 3.78E − 06 − 5.54244 Down Killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 3
HLA-C − 0.93941 3.97E − 06 3.97E − 06 − 5.52568 Down Major histocompatibility complex, class I, C
KLRB1 − 1.79632 5.31E − 06 5.31E − 06 − 5.42732 Down Killer cell lectin like receptor B1
HLA-DMB − 0.85005 5.86E − 06 5.86E − 06 − 5.39367 Down Major histocompatibility complex, class II, DM beta
KLRF2 − 0.53859 6E − 06 6E − 06 − 5.3857 Down Killer cell lectin like receptor F2
ICAM3 − 0.66718 6.38E − 06 6.38E − 06 − 5.36481 Down Intercellular adhesion molecule 3
IL28A − 0.55718 7.03E − 06 7.03E − 06 − 5.33194 Down Interleukin 28A
SIGIRR − 0.41545 7.52E − 06 7.52E − 06 − 5.30925 Down Single Ig and TIR domain containing
MASP2 − 0.68927 7.93E − 06 7.93E − 06 − 5.29109 Down Mannan binding lectin serine peptidase 2
CSF2RB − 1.12332 8.36E − 06 8.36E − 06 − 5.27318 Down Colony stimulating factor 2 receptor beta common subunit
CD46 − 0.59905 9.11E − 06 9.11E − 06 − 5.24408 Down CD46 molecule
S1PR1 − 0.60436 9.23E − 06 9.23E − 06 − 5.23966 Down Sphingosine − 1-phosphate receptor 1
TLR9 − 0.56841 1.05E − 05 1.05E − 05 − 5.19438 Down Toll like receptor 9
HLA-DPB1 − 0.70064 1.07E − 05 1.07E − 05 − 5.19046 Down Major histocompatibility complex, class II, DP beta 1
CCL13 − 0.57018 1.16E − 05 1.16E − 05 − 5.16161 Down C–C motif chemokine ligand 13
PLA2G2E − 0.67155 1.19E − 05 1.19E − 05 -5.15362 Down Phospholipase A2 group IIE
IL20 − 0.67032 1.29E − 05 1.29E − 05 -5.12687 Down Interleukin 20
PTAFR − 0.91373 1.37E − 05 1.37E − 05 -5.10671 Down Platelet activating factor receptor
TGFBI − 0.59209 1.44E − 05 1.44E − 05 -5.08943 Down Transforming growth factor beta induced
IL26 − 0.50514 1.52E − 05 1.52E − 05 -5.07029 Down Interleukin 26
IFNAR1 − 0.78755 2.03E − 05 2.03E − 05 − 4.97214 Down Interferon alpha and beta receptor subunit 1
LTA − 0.56282 2.17E − 05 2.17E − 05 − 4.94915 Down Lymphotoxin alpha
FCGR2B − 0.85355 2.4E − 05 2.4E − 05 − 4.91443 Down Fc fragment of IgG receptor IIb
EGR1 − 0.63082 2.41E − 05 2.41E − 05 − 4.9133 Down Early growth response 1
CD86 − 0.76691 2.54E − 05 2.54E − 05 − 4.89525 Down CD86 molecule
CD82 − 0.99568 2.76E − 05 2.76E − 05 − 4.86674 Down CD82 molecule
CD34 − 0.56045 2.79E − 05 2.79E − 05 − 4.86293 Down CD34 molecule
TRAF3 − 0.46214 2.87E − 05 2.87E − 05 − 4.85429 Down TNF receptor associated factor 3
CTLA4 − 0.53577 3E − 05 3E − 05 − 4.83886 Down Cytotoxic T-Lymphocyte Associated Protein 4
HAMP − 0.61205 3E − 05 3E − 05 − 4.83856 Down Hepcidin antimicrobial peptide
EGR2 − 0.78873 3.15E − 05 3.15E − 05 − 4.82228 Down Early growth response 2
ICAM5 − 0.53214 3.22E − 05 3.22E − 05 − 4.81493 Down Intercellular adhesion molecule 5
CSF1R − 0.70273 3.45E − 05 3.45E − 05 − 4.79056 Down Colony stimulating factor 1 receptor
NT5E − 0.85836 3.68E − 05 3.68E − 05 − 4.76884 Down 5′-nucleotidase ecto
IL7 − 0.74464 4.3E − 05 4.3E − 05 − 4.71548 Down Interleukin 7
CTSS − 0.62991 4.34E − 05 4.34E − 05 − 4.71277 Down Cathepsin S
IL17B − 0.55268 4.82E − 05 4.82E − 05 − 4.6769 Down Interleukin 17B
CR2 − 1.00786 4.86E − 05 4.86E − 05 − 4.67369 Down Complement C3d receptor 2
CD44 − 0.35164 5.25E − 05 5.25E − 05 − 4.64701 Down CD44 molecule (Indian blood group)
PLA2G2A − 0.53655 5.77E − 05 5.77E − 05 − 4.61492 Down Phospholipase A2 group IIA
BTK − 0.45495 5.87E − 05 5.87E − 05 − 4.60896 Down Bruton tyrosine kinase
C6 − 0.65964 5.95E − 05 5.95E − 05 − 4.60439 Down Complement C6
IRGM − 0.62291 6.21E − 05 6.21E − 05 − 4.58953 Down Immunity related GTPase M
IL22 − 0.65314 7.15E − 05 7.15E − 05 − 4.54121 Down Interleukin 22
CEBPB − 0.88709 7.69E − 05 7.69E − 05 − 4.51625 Down CCAAT enhancer binding protein beta
IL6 − 0.69105 7.91E − 05 7.91E − 05 − 4.50639 Down Interleukin 6
IFNA2 − 0.77586 8.23E − 05 8.23E − 05 − 4.49296 Down Interferon alpha 2
TGFBR1 − 0.40336 8.66E − 05 8.66E − 05 − 4.47511 Down Transforming growth factor beta receptor 1
IL17F − 0.54009 8.83E − 05 8.83E − 05 − 4.4686 Down Interleukin 17F
IL28A/B − 0.55282 0.000163 0.000163 − 4.25674 Down Interleukin 28A/B
IL17A − 0.53723 0.00018 0.00018 − 4.22236 Down Interleukin 17A
LILRA2 − 0.68495 0.000195 0.000195 − 4.194 Down Leukocyte immunoglobulin like receptor A2
LILRA3 − 2.33691 0.000203 0.000203 − 4.18055 Down Leukocyte immunoglobulin like receptor A3
VCAM1 − 0.60605 0.000219 0.000219 − 4.15259 Down Vascular cell adhesion molecule 1
SPP1 − 0.6555 0.000221 0.000221 − 4.1496 Down Secreted phosphoprotein 1
CARD9 − 0.55227 0.000269 0.000269 − 4.0818 Down Caspase recruitment domain family member 9
LCK − 0.40364 0.000299 0.000299 − 4.04398 Down LCK proto-oncogene, Src family tyrosine kinase
SELE − 0.52332 0.000306 0.000306 − 4.03551 Down selectin E
SLC2A1 − 0.44118 0.00036 0.00036 − 3.97865 Down solute carrier family 2 member 1
LIF − 0.50555 0.000368 0.000368 − 3.97037 Down LIF interleukin 6 family cytokine
IDO1 − 0.95541 0.000417 0.000417 − 3.92685 Down Indoleamine 2,3-dioxygenase 1
TNFRSF10C − 0.88564 0.000471 0.000471 − 3.88294 Down TNF receptor superfamily member 10c
IL23A − 0.87541 0.000557 0.000557 − 3.82374 Down interleukin 23 subunit alpha
CD80 − 0.58964 0.000567 0.000567 − 3.81702 Down CD80 molecule
GPR183 − 1.088 0.00057 0.00057 − 3.81527 Down G protein-coupled receptor 183
C1R − 0.41727 0.000592 0.000592 − 3.8018 Down Complement C1r
CCL11 − 0.55055 0.000611 0.000611 − 3.79064 Down C–C motif chemokine ligand 11
HLA-DPA1 − 0.6385 0.000637 0.000637 − 3.77577 Down major histocompatibility complex, class II, DP alpha 1
IFNG − 0.877 0.00073 0.00073 − 3.72658 Down Interferon gamma
DUSP4 − 0.70741 0.000789 0.000789 − 3.69861 Down Dual specificity phosphatase 4
IL27 − 0.44905 0.000852 0.000852 − 3.67089 Down Interleukin 27
CD48 − 1.15805 0.000953 0.000953 − 3.6304 Down CD48 molecule
FN1 − 0.56177 0.001005 0.001005 − 3.61111 Down fibronectin 1
CD244 − 0.39427 0.001018 0.001018 − 3.60646 Down CD244 molecule
PPBP − 1.35464 0.001091 0.001091 − 3.58105 Down pro-platelet basic protein
IL13 − 0.599 0.001204 0.001204 − 3.54515 Down interleukin 13
CCL24 − 0.45395 0.001221 0.001221 − 3.53987 Down C–C motif chemokine ligand 24
GATA3 − 0.55041 0.001228 0.001228 − 3.53797 Down GATA binding protein 3
BID − 0.46636 0.001281 0.001281 − 3.52243 Down BH3 interacting domain death agonist
BCL2L11 − 0.40091 0.001565 0.001565 − 3.44881 Down BCL2 like 11
KIT − 0.52868 0.001589 0.001589 − 3.44316 Down KIT proto-oncogene, receptor tyrosine kinase
MME − 1.00591 0.001596 0.001596 − 3.44151 Down Membrane metalloendopeptidase
ZEB1 − 0.38082 0.001667 0.001667 − 3.42548 Down Zinc finger E-box binding homeobox 1
C4A/B − 0.62314 0.001738 0.001738 − 3.40994 Down Complement C4A/B
FCAR − 0.50423 0.00198 0.00198 − 3.36169 Down Fc fragment of IgA receptor
BTLA − 0.45623 0.002033 0.002033 − 3.35183 Down B and T lymphocyte associated
TAGAP − 0.38886 0.002261 0.002261 − 3.31206 Down T cell activation RhoGTPase activating protein
CD83 − 0.39914 0.002292 0.002292 − 3.307 Down CD83 molecule
SELPLG − 0.37564 0.002362 0.002362 -3.29575 Down Selectin P ligand
B3GAT1 − 0.66791 0.002423 0.002423 − 3.28614 Down Beta-1,3-glucuronyltransferase 1
CCRL1 − 0.39195 0.002543 0.002543 − 3.26788 Down C–C chemokine receptor type 11
TNFRSF14 − 0.29986 0.002557 0.002557 − 3.26588 Down TNF receptor superfamily member 14
CSF3R − 0.65318 0.003003 0.003003 − 3.20507 Down Colony stimulating factor 3 receptor
CD9 − 0.87091 0.003004 0.003004 − 3.20497 Down CD9 molecule
C1S − 0.52059 0.003211 0.003211 − 3.17969 Down complement C1s
PECAM1 − 0.30873 0.003251 0.003251 − 3.17496 Down platelet and endothelial cell adhesion molecule 1
DEFB103B − 0.4315 0.003466 0.003466 − 3.15055 Down Defensin beta 103B
ITLN1 − 1.17682 0.003488 0.003488 − 3.14815 Down Intelectin 1
CXCL13 − 0.46586 0.003554 0.003554 − 3.14101 Down C-X-C motif chemokine ligand 13
RAG1 − 0.47836 0.003917 0.003917 − 3.10376 Down Recombination activating 1
TNFRSF4 − 0.55123 0.004154 0.004154 − 3.08112 Down TNF receptor superfamily member 4
C14orf166 − 0.35727 0.004255 0.004255 − 3.07189 Down Chromosome 14 open reading frame 166
IL10RA − 0.26059 0.004423 0.004423 − 3.0569 Down Interleukin 10 receptor subunit alpha
POU2F2 − 0.292 0.004614 0.004614 − 3.04059 Down POU class 2 homeobox 2
C7 − 0.41223 0.004688 0.004688 − 3.03441 Down complement C7
RORC − 0.52768 0.005006 0.005006 − 3.00891 Down RAR related orphan receptor C
CXCL11 − 0.83891 0.005151 0.005151 − 2.99784 Down C-X-C motif chemokine ligand 11
MASP1 − 0.50677 0.005182 0.005182 − 2.99543 Down Mannan binding lectin serine peptidase 1
MAP4K4 − 0.37777 0.005449 0.005449 − 2.97583 Down Mitogen-activated protein kinase kinasekinasekinase 4
CX3CL1 − 0.50445 0.005597 0.005597 − 2.96535 Down C-X3-C motif chemokine ligand 1
BATF3 − 0.62586 0.005862 0.005862 − 2.94725 Down Basic leucine zipper ATF-like transcription factor 3
CCR8 − 0.51627 0.005946 0.005946 − 2.94164 Down C–C motif chemokine receptor 8
TAL1 − 1.01455 0.006016 0.006016 − 2.93707 Down TAL bHLH transcription factor 1, erythroid differentiation factor
NFIL3 − 0.723 0.007 0.007 − 2.87725 Down Nuclear factor, interleukin 3 regulated
CD8A − 0.50595 0.007337 0.007337 − 2.85858 Down CD8a molecule
CLEC6A − 0.62323 0.007445 0.007445 − 2.85274 Down C-type lectin domain containing 6A
TCF4 − 0.37827 0.007904 0.007904 − 2.8289 Down Transcription factor 4
FCGR2A − 0.664 0.009089 0.009089 − 2.77283 Down Fc fragment of IgG receptor IIa
HLA-B − 0.31677 0.00918 0.00918 − 2.76877 Down major histocompatibility complex, class I, B
IRF8 − 0.39477 0.009346 0.009346 − 2.76157 Down Interferon regulatory factor 8
MAPK11 − 0.60427 0.010152 0.010152 − 2.72804 Down Mitogen-activated protein kinase 11
ILF3 − 0.17055 0.010366 0.010366 − 2.71958 Down Interleukin enhancer binding factor 3
XCR1 − 0.34541 0.01065 0.01065 − 2.70856 Down X–C motif chemokine receptor 1
ITGAE − 0.33509 0.011424 0.011424 − 2.67988 Down Integrin subunit alpha E
IL4R − 0.69064 0.012538 0.012538 − 2.64162 Down Interleukin 4 receptor
CTSC − 0.16718 0.012619 0.012619 − 2.63897 Down Cathepsin C
ETS1 − 0.39405 0.013255 0.013255 − 2.61865 Down ETS proto-oncogene 1, transcription factor
CFI − 0.30082 0.013335 0.013335 − 2.61614 Down Complement factor I
STAT5A − 0.27168 0.014802 0.014802 − 2.57273 Down Signal transducer and activator of transcription 5A
C8A − 0.37964 0.016204 0.016204 − 2.53478 Down Complement C8 alpha chain
DEFB4A − 0.36691 0.017835 0.017835 − 2.49428 Down Defensin beta 4A
RELB − 0.45095 0.019351 0.019351 − 2.45958 Down RELB proto-oncogene, NF-kB subunit
ATG7 − 0.32859 0.01984 0.01984 − 2.4489 Down Autophagy related 7
DPP4 − 0.38823 0.01999 0.01999 − 2.44568 Down Dipeptidyl peptidase 4
GPI − 0.21382 0.020424 0.020424 − 2.43646 Down Glucose-6-phosphate isomerase
CD59 − 0.24032 0.020561 0.020561 − 2.43359 Down CD59 molecule (CD59 blood group)
CASP3 − 0.40573 0.025629 0.025629 − 2.33807 Down Caspase 3
TIGIT − 0.3615 0.025963 0.025963 − 2.33239 Down T cell immunoreceptor with Ig and ITIM domains
CFD − 0.36627 0.026073 0.026073 − 2.33053 Down Complement factor D
CCL18 − 0.42077 0.026944 0.026944 − 2.3161 Down C–C motif chemokine ligand 18
PLAU − 0.34086 0.028132 0.028132 − 2.29706 Down Plasminogen activator, urokinase
PTPN22 − 0.20086 0.028829 0.028829 − 2.28623 Down Protein tyrosine phosphatase non-receptor type 22
TOLLIP − 0.27377 0.028911 0.028911 − 2.28497 Down Toll interacting protein
CXCR2 − 0.49195 0.029438 0.029438 − 2.27696 Down C-X-C motif chemokine receptor 2
CCL20 − 0.34555 0.029871 0.029871 − 2.27048 Down C–C motif chemokine ligand 20
IL12A − 0.40759 0.03046 0.03046 − 2.26179 Down Interleukin 12A
IL10 − 0.33555 0.03205 0.03205 − 2.23904 Down Interleukin 10
LILRA1 − 0.26991 0.033542 0.033542 − 2.21862 Down leukocyte immunoglobulin like receptor A1
PTPN6 − 0.16109 0.034722 0.034722 − 2.20304 Down protein tyrosine phosphatase non-receptor type 6
CCL19 − 0.37718 0.035605 0.035605 − 2.19168 Down C–C motif chemokine ligand 19
IKBKAP − 0.15505 0.035624 0.035624 − 2.19144 Down IκB kinase complex-associated protein
TNFRSF9 − 0.50786 0.036235 0.036235 − 2.18372 Down TNF receptor superfamily member 9
TCF7 − 0.60091 0.036564 0.036564 − 2.17963 Down Transcription factor 7
HLA-DMA − 0.30777 0.036925 0.036925 − 2.17516 Down Major histocompatibility complex, class II, DM alpha
CXCL12 − 0.69291 0.037168 0.037168 − 2.17218 Down C-X-C motif chemokine ligand 12
MBL2 − 0.37009 0.037623 0.037623 − 2.16664 Down Mannose binding lectin 2
IKZF2 − 0.46655 0.039489 0.039489 − 2.14452 Down IKAROS family zinc finger 2
BCAP31 − 0.10632 0.04075 0.04075 − 2.13009 Down B cell receptor associated protein 31
HLA-DRB1 − 1.39495 0.041403 0.041403 − 2.12278 Down Major histocompatibility complex, class II, DR beta 1
IRAK4 − 0.23727 0.041428 0.041428 − 2.12251 Down Interleukin 1 receptor associated kinase 4
CXCR1 − 0.49741 0.041833 0.041833 − 2.11802 Down C-X-C motif chemokine receptor 1
PTK2 − 0.33609 0.043242 0.043242 − 2.10272 Down Protein tyrosine kinase 2
CD45R0 − 0.46514 0.043373 0.043373 − 2.10132 Down A member of leucocyte common antigen family

Pathway enrichment analysis for DEGs

Pathway enrichment analysis of integrated DEGs showed the up-regulated genes were mainly involved in measles, herpes simplex infection, IL12-mediated signaling events, IL2-mediated signaling events, cytokine signaling in immune system, innate immune system, IL22 soluble receptor signaling pathway, bioactive peptide-induced signaling pathway, JAK/STAT signaling pathway, Inflammation mediated by chemokine and cytokine signaling pathway, G protein signaling, platelet-derived growth factor signaling, intracellular signalling through adenosine receptor A2a and adenosine, insulin signalling and other pathways (Table 2); the down-regulated genes were mainly involved in citrulline–nitric oxide cycle, phospholipases, cytokine–cytokine receptor interaction, hematopoietic cell lineage, IL4-mediated signaling events, IL12-mediated signaling events, cytokine signaling in immune system, signaling by interleukins, phenylalanine tyrosine and tryptophan biosynthesis, MAP kinase activity, genes encoding secreted soluble factors, cytokine network, interleukin signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway, intrinsic apoptotic, interleukin-10 signaling, sulindac pathway, glycolysis and other pathways (Table 3).

Table 2.

The enriched pathway terms of the up regulated differentially expressed genes

KEGG
Pathway ID Pathway Name P-value FDR B&H FDR B&Y Bonferroni Gene Count Gene
213306 Measles 3.21E − 17 4.46E − 15 2.46E − 14 4.46E − 15 16 CCND3, JAK1, JAK2, IFIH1, TRAF6, IKBKE, TLR2, IRF7, FYN, IL2RG, STAT1, TP53, STAT3, MX1, STAT5B, IFNAR2
377873 Herpes simplex infection 1.19E − 13 8.24E − 12 4.54E − 11 1.65E − 11 15 JAK1, JAK2, IFIH1, TRAF2, TRAF6, HLA-A, IKBKE, TLR2, C1QBP, CCL5, IRF7, IKBKB, STAT1, TP53, IFNAR2
83079 Natural killer cell mediated cytotoxicity 5.40E − 13 2.50E − 11 1.38E − 10 7.51E − 11 13 KLRK1, CD247, HLA-A, GZMB, HRAS, LCP2, ITGAL, FYN, ITGB2, KLRC1, ZAP70, KLRD1, IFNAR2
193147 Osteoclast differentiation 1.85E − 10 3.32E − 09 1.83E − 08 2.57E − 08 11 JAK1, TRAF2, TRAF6, LILRB2, LILRA6, SOCS1, IKBKB, LCP2, FYN, STAT1, IFNAR2
83077 Jak-STAT signaling pathway 1.31E − 09 1.83E − 08 1.01E − 07 1.83E − 07 11 CCND3, JAK1, JAK2, HRAS, SOCS1, IL2RG, STAT1, STAT3, STAT4, STAT5B, IFNAR2
217173 Influenza A 3.94E − 09 4.56E − 08 2.51E − 07 5.47E − 07 11 JAK1, JAK2, IFIH1, IKBKE, CCL5, IRF7, IKBKB, STAT1, NLRP3, MX1, IFNAR2
373901 HTLV-I infection 2.27E − 08 2.11E − 07 1.16E − 06 3.16E − 06 12 CCND3, JAK1, HLA-A, HRAS, XBP1, CTNNB1, IKBKB, ITGAL, ITGB2, IL2RG, TP53, STAT5B
658418 Viral carcinogenesis 2.16E − 07 1.67E − 06 9.20E − 06 3.00E − 05 10 CCND3, JAK1, TRAF2, HLA-A, HRAS, IRF7, CCR5, TP53, STAT3, STAT5B
83080 T cell receptor signaling pathway 2.05E − 06 1.36E − 05 7.47E − 05 2.85E − 04 7 PDCD1, CD247, HRAS, IKBKB, LCP2, FYN, ZAP70
125138 Viral myocarditis 2.21E − 05 1.18E − 04 6.51E − 04 3.07E − 03 5 ABL1, HLA-A, ITGAL, FYN, ITGB2
213780 Tuberculosis 7.57E − 05 3.63E − 04 2.00E − 03 1.05E − 02 7 JAK1, JAK2, TRAF6, TLR2, CLEC7A, ITGB2, STAT1
83051 Cytokine-cytokine receptor interaction 1.59E − 04 6.69E − 04 3.69E − 03 2.21E − 02 8 CCR1, CCL5, CCR5, IL18RAP, IL2RG, IL18R1, CX3CR1, IFNAR2
152665 Malaria 1.79E − 04 7.32E − 04 4.04E − 03 2.49E − 02 4 KLRK1, TLR2, ITGAL, ITGB2
Pathway interaction database
137922 IL12-mediated signaling events 1.37E − 17 1.56E − 15 8.29E − 15 1.56E − 15 13 JAK2, CD247, HLA-A, TBX21, GZMB, SOCS1, CCR5, IL18RAP, IL2RG, IL18R1, STAT1, STAT3, STAT4
137976 IL2-mediated signaling events 5.15E − 10 2.94E − 08 1.56E − 07 5.88E − 08 8 JAK1, IKZF3, SOCS1, FYN, IL2RG, STAT1, STAT3, STAT5B
138055 TCR signaling in naive CD8 + T cells 9.79E − 09 2.35E − 07 1.25E − 06 1.12E − 06 7 TRAF6, CD247, HLA-A, IKBKB, LCP2, FYN, ZAP70
138071 PDGFR-beta signaling pathway 6.28E − 07 7.16E − 06 3.81E − 05 7.16E − 05 6 ABL1, HRAS, FYN, STAT1, STAT3, STAT5B
137988 IL2 signaling events mediated by STAT5 2.52E − 05 2.21E − 04 1.17E − 03 2.87E − 03 4 CCND3, JAK1, IL2RG, STAT5B
138019 p75(NTR)-mediated signaling 5.25E − 03 2.32E − 02 1.23E − 01 5.99E − 01 3 TRAF6, IKBKB, TP53
138021 Paxillin-dependent events mediated by a4b1 5.29E − 03 2.32E − 02 1.23E − 01 6.03E − 01 2 ITGAL, ITGB2
137940 Signaling events mediated by VEGFR1 and VEGFR2 5.75E − 03 2.43E − 02 1.29E − 01 6.55E − 01 3 HRAS, CTNNB1, FYN
137983 ALK2 signaling events 6.18E − 02 1.22E − 01 6.47E − 01 1.00E + 00 1 SMAD5
138046 Syndecan-1-mediated signaling events 9.40E − 02 1.70E − 01 9.04E − 01 1.00E + 00 1 CCL5
REACTOME
1269310 Cytokine Signaling in Immune system 3.94E − 16 2.05E − 13 1.40E − 12 2.05E − 13 28 JAK1, JAK2, TRAF2, TRAF6, HLA-A, BST2, HRAS, PSMB9, GBP1, SOCS1, CCR1, IRF5, CCL5, IRF7, CCR5, IKBKB, FYN, IFI35, IL18RAP, ITGB2, IL2RG, IL18R1, STAT1, TP53, STAT3, MX1, STAT5B, IFNAR2
1269203 Innate Immune System 1.61E − 13 4.19E − 11 2.86E − 10 8.38E − 11 32 KLRK1, ATG5, JAK1, JAK2, IFIH1, TRAF2, TRAF6, CD247, ABL1, HLA-A, IKBKE, BST2, LILRB2, TLR2, HRAS, PSMB9, CLEC7A, SOCS1, C2, IRF7, GNLY, CTNNB1, IKBKB, LCP2, ITGAL, FYN, ITGB2, IL2RG, KLRD1, TP53, NLRP3, CEACAM1
1269318 Signaling by Interleukins 9.69E − 11 1.06E − 08 7.24E − 08 5.04E − 08 19 JAK1, JAK2, TRAF6, HRAS, PSMB9, SOCS1, CCR1, CCL5, CCR5, IKBKB, FYN, IL18RAP, ITGB2, IL2RG, IL18R1, STAT1, TP53, STAT3, STAT5B
1269171 Adaptive Immune System 1.02E − 10 1.06E − 08 7.24E − 08 5.30E − 08 23 KLRK1, PDCD1, TRAF6, CD247, ZBTB16, HLA-A, LILRB2, TLR2, LAG3, HRAS, LILRA6, PSMB9, SOCS1, SLAMF7, IKBKB, LCP2, ITGAL, FYN, ITGB2, KLRC1, ZAP70, KLRD1, TP53
1269340 Hemostasis 5.49E − 07 2.20E − 05 1.50E − 04 2.86E − 04 16 JAK1, JAK2, ABL1, CD99, HRAS, C1QBP, SERPING1, IRF7, LCP2, ITGAL, FYN, ITGB2, IL2RG, TP53, CEACAM1, GP1BB
1269260 TRAF3-dependent IRF activation pathway 9.84E − 05 1.55E − 03 1.06E − 02 5.12E − 02 3 IFIH1, IKBKE, IRF7
1268854 Disease 1.26E − 03 1.24E − 02 8.44E − 02 6.55E − 01 13 JAK2, CD247, HLA-A, TLR2, HRAS, PSMB9, CCR5, CTNNB1, IKBKB, FYN, STAT1, STAT3, STAT5B
1268855 Diseases of signal transduction 1.35E − 03 1.30E − 02 8.90E − 02 7.03E − 01 8 JAK2, HRAS, PSMB9, CTNNB1, FYN, STAT1, STAT3, STAT5B
1269562 Leukotriene receptors 2.86E − 02 8.96E − 02 6.12E − 01 1.00E + 00 1 LTB4R
1269248 Activation of C3 and C5 3.98E − 02 1.18E − 01 8.08E − 01 1.00E + 00 1 C2
MSigDB C2 BIOCARTA (v6.0)
M8066 IL22 Soluble Receptor Signaling Pathway 2.31E − 10 3.56E − 08 2.00E − 07 3.56E − 08 6 JAK1, JAK2, STAT1, STAT3, STAT4, STAT5B
M13494 Bioactive Peptide Induced Signaling Pathway 4.38E − 09 3.38E − 07 1.90E − 06 6.75E − 07 7 JAK2, HRAS, FYN, STAT1, STAT3, STAT4, STAT5B
M1462 CTL mediated immune response against target cells 1.61E − 08 7.50E − 07 4.21E − 06 2.48E − 06 5 CD247, HLA-A, GZMB, ITGAL, ITGB2
M6231 NO2-dependent IL 12 Pathway in NK cells 2.31E − 06 3.24E − 05 1.82E − 04 3.56E − 04 4 JAK2, CD247, CCR5, STAT4
M13863 MAPKinaseSignaling Pathway 1.06E − 05 1.08E − 04 6.09E − 04 1.63E − 03 6 TRAF2, MAP4K1, HRAS, IKBKB, MAP4K2, STAT1
M6427 T Helper Cell Surface Molecules 6.45E − 05 4.73E − 04 2.66E − 03 9.93E − 03 3 CD247, ITGAL, ITGB2
M4047 Selective expression of chemokine receptors during T-cell polarization 6.08E − 04 3.12E − 03 1.75E − 02 9.37E − 02 3 CCR1, CCR5, IL18R1
M11358 Tumor Suppressor Arf Inhibits Ribosomal Biogenesis 4.24E − 03 1.28E − 02 7.19E − 02 6.53E − 01 2 ABL1, TP53
M17400 ALK in cardiac myocytes 1.93E − 02 4.37E − 02 2.45E − 01 1.00E + 00 2 CTNNB1, SMAD5
M5885 Ensemble of genes encoding ECM-associated proteins including ECM-affilaited proteins, ECM regulators and secreted factors 8.19E − 01 8.30E − 01 1.00E + 00 1.00E + 00 3 CLEC7A, SERPING1, CCL5
Panther DB
P00038 JAK/STAT signaling pathway 1.76E − 12 5.64E − 11 2.29E − 10 5.64E − 11 7 JAK1, JAK2, SOCS1, STAT1, STAT3, STAT4, STAT5B
P00031 Inflammation mediated by chemokine and cytokine signaling pathway 1.44E − 06 2.31E − 05 9.37E − 05 4.62E − 05 9 JAK2, CCRL2, CCR1, CCL5, CCR5, IKBKB, ITGAL, CX3CR1, STAT3
P00054 Toll receptor signaling pathway 1.94E − 04 1.03E − 03 4.19E − 03 6.20E − 03 4 TRAF6, IKBKE, TLR2, IKBKB
P00006 Apoptosis signaling pathway 3.03E − 04 1.39E − 03 5.62E − 03 9.69E − 03 5 TRAF2, GZMB, IKBKB, MAP4K2, TP53
P00010 B cell activation 4.43E − 02 9.45E − 02 3.83E − 01 1.00E + 00 2 HRAS, IKBKB
P00052 TGF-beta signaling pathway 9.73E − 02 1.67E − 01 6.78E − 01 1.00E + 00 2 HRAS, SMAD5
P00011 Blood coagulation 2.07E − 01 2.89E − 01 1.00E + 00 1.00E + 00 1 GP1BB
P00012 Cadherin signaling pathway 2.34E − 01 3.00E − 01 1.00E + 00 1.00E + 00 2 CTNNB1, FYN
P00057 Wntsignaling pathway 2.59E − 01 3.07E − 01 1.00E + 00 1.00E + 00 3 CTNNB1, TP53, SMAD5
P00056 VEGF signaling pathway 2.86E − 01 3.27E − 01 1.00E + 00 1.00E + 00 1 HRAS
Pathway Ontology
PW:0000125 G protein signaling 5.82E − 03 3.10E − 02 1.26E − 01 1.86E − 01 1 LTB4R
PW:0000297 platelet-derived growth factor signaling 5.82E − 03 3.10E − 02 1.26E − 01 1.86E − 01 1 JAK2
PW:0000143 insulin signaling 1.05E − 02 3.36E − 02 1.36E − 01 3.37E − 01 2 SOCS1, STAT5B
PW:0000330 Bone morphogenetic proteins signaling 2.86E − 02 6.53E − 02 2.65E − 01 9.15E − 01 1 SMAD5
PW:0000599 altered canonical Wntsignaling 2.86E − 02 6.53E − 02 2.65E − 01 9.15E − 01 1 CTNNB1
PW:0000508 platelet aggregation 3.42E − 02 6.84E − 02 2.78E − 01 1.00E + 00 1 GP1BB
PW:0000234 innate immune response 6.18E − 02 1.10E − 01 4.46E − 01 1.00E + 00 1 TLR2
PW:0000278 autophagy 1.04E − 01 1.39E − 01 5.65E − 01 1.00E + 00 1 ATG10
PW:0000243 vascular endothelial growth factor signaling 1.30E − 01 1.49E − 01 6.03E − 01 1.00E + 00 1 FYN
PW:0000490 transforming growth factor-beta Smad dependent signaling 1.40E − 01 1.55E − 01 6.28E − 01 1.00E + 00 1 RUNX1
SMPDB
SMP00320 Intracellular Signalling Through Adenosine Receptor A2a and Adenosine 1.55E − 02 2.46E − 02 4.52E − 02 4.65E − 02 2 HRAS, IKBKB
SMP00391 Insulin Signalling 1.89E − 01 1.89E − 01 3.46E − 01 5.66E − 01 1 HRAS

Table 3.

The enriched pathway terms of the down regulated differentially expressed genes

BIOCYC
Pathway ID Pathway Name P-value FDR B&H FDR B&Y Bonferroni Gene Count Gene
703092 Citrulline-nitric oxide cycle 8.83E − 02 2.53E − 01 8.24E − 01 1.00E + 00 1 NOS2
142419 Phospholipases 9.82E − 02 2.53E − 01 8.24E − 01 1.00E + 00 1 PLA2G2E, PLA2G2A
545273 Glycoaminoglycan-protein linkage region biosynthesis 1.05E − 01 2.53E − 01 8.24E − 01 1.00E + 00 1 B3GAT1
545323 Urate biosynthesis/inosine 5′-phosphate degradation 1.05E − 01 2.53E − 01 8.24E − 01 1.00E + 00 1 NT5E
142383 Tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde 1.21E − 01 2.53E − 01 8.24E − 01 1.00E + 00 1 IDO1
KEGG
83051 Cytokine-cytokine receptor interaction 3.05E − 61 5.54E − 59 3.21E − 58 5.54E − 59 69 IL10, IL10RA, IL12A, IL12B, IL13, IL13RA1, TNFRSF9, IL17A, PDGFB, TNFSF12, IL17B, TNFRSF14, TNFRSF10C, CCL26,IL17F, TNFRSF4, IL22RA2, IL21, CCL7, CCR6, CCL11, CCL13, CCR8, CCL15, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, KIT, CX3CL1, CXCL12, IL19, CCR10, XCR1, CXCL13, PPBP, IL23A, IFNA2, IFNAR1, IFNB1, IFNG, TGFBR1, LIF, CSF1R, CSF2, CSF2RB, CSF3R, IL20, IL22,, CD40, TNFRSF13C, LTA, IL1RAP, IL2, IL3, IL4, IL4R, IL5, IL6, IL6R, IL7, IL26, CXCR1, IL9, CXCR2
83078 Hematopoietic cell lineage 4.22E − 35 3.84E − 33 2.22E − 32 7.67E − 33 34 HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, CD55, MME, KIT, CR2, TFRC, CD1A, CD3E, CSF1R, CSF2, CD8A, CD9, CSF3R, CD19, MS4A1, CD22, CD34, CD44, CD59, IL3, IL4, IL4R, IL5, IL6, IL6R, IL7
842771 Inflammatory bowel disease (IBD) 4.58E − 32 2.78E − 30 1.61E − 29 8.34E − 30 28 IL10, IL12A, IL12B, IL13, IL17A, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, GATA3, IL17F, STAT6, IL21, RELA, IL23A, IFNG, IL22, RORC, IL2, IL4, IL4R, IL5, IL6
83077 Jak-STAT signaling pathway 4.56E − 26 1.19E − 24 6.86E − 24 8.30E − 24 33 IL10, IL10RA, IL12A, IL12B, IL13, IL13RA1, BCL2, STAT5A, STAT6, PTPN6, IL22RA2, IL21, IL19, IL23A, IFNA2, IFNAR1, IFNB1, IFNG, LIF, CSF2, CSF2RB, CSF3R, IL20, IL22, IL2, IL3, IL4, IL4R, IL5, IL6, IL6R, IL7, IL9
213780 Tuberculosis 3.41E − 25 6.89E − 24 3.99E − 23 6.20E − 23 34 IL10, IL10RA, IL12A, IL12B, CEBPB, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, BCL2, CD209, BID, FCGR2A, FCGR2B, CARD9, NOS2, CASP3, RELA, TLR9, IL23A, IFNA2, IFNB1, IFNG, TIRAP, IRAK4, CD74, MAPK11, CTSS, IL6
83120 Asthma 4.56E − 24 8.30E − 23 4.80E − 22 8.30E − 22 18 IL10, IL13, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, FCER1A, CCL11, CD40, IL3, IL4, IL5, IL9
125138 Viral myocarditis 2.26E − 16 2.06E − 15 1.19E − 14 4.12E − 14 17 HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, CD55, BID, CASP3, CD80, CD86, CD40
373901 HTLV-I infection 2.85E − 15 2.35E − 14 1.36E − 13 5.18E − 13 29 HLA-B, PDGFB, HLA-C, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, ETS1, STAT5A, VCAM1, RELA, RELB, LCK, SLC2A1, TGFBR1, CD3E, CSF2, EGR1, EGR2, CD40, TNFRSF13C, LTA, IL2, IL6
213306 Measles 4.04E − 12 2.53E − 11 1.47E − 10 7.35E − 10 19 IL12A, IL12B, IL13, CD46, TNFRSF10C, CD209, STAT5A, FCGR2B, RELA, TLR9, IFNA2, IFNAR1, IFNB1, IFNG, CD3E, IRAK4, IL2, IL4, IL6
83074 Antigen processing and presentation 7.12E − 12 4.32E − 11 2.50E − 10 1.30E − 09 15 HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, IFNG, CD8A, CD74, CTSS
217173 Influenza A 4.98E − 11 2.75E − 10 1.59E − 09 9.07E − 09 20 IL12A, IL12B, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1,HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, TNFRSF10C, RELA, IFNA2, IFNAR1, IFNB1, IFNG, IRAK4, MAPK11, IL6
Pathway interaction database
137933 IL4-mediated signaling events 7.74E − 16 8.36E − 14 4.40E − 13 8.36E − 14 17 IL10, IL13RA1, CEBPB, AICDA, ETS1, CCL26, STAT5A, STAT6, PTPN6, PIGR, CCL11, THY1, EGR2, LTA, IL4, IL4R, IL5
137922 IL12-mediated signaling events 9.23E − 15 4.99E − 13 2.62E − 12 9.97E − 13 16 IL12A, IL12B, HLA-DRA, HLA-DRB1, STAT5A, STAT6, EOMES, NOS2, RELA, RELB, LCK, IFNG, CD3E, CD8A, IL2, IL4
138000 IL23-mediated signaling events 1.32E − 12 4.75E − 11 2.50E − 10 1.42E − 10 12 IL12B, IL17A, IL17F, STAT5A, NOS2, IL19, RELA, IL23A, IFNG, CD3E, IL2, IL6
137929 IL27-mediated signaling events 1.43E − 11 3.87E − 10 2.04E − 09 1.55E − 09 10 IL12A, IL12B, IL17A, GATA3, STAT5A, IFNG, EBI3, IL2, IL6, IL27
138058 BCR signaling pathway 3.00E − 07 4.05E − 06 2.13E − 05 3.24E − 05 10 ETS1, PTPN6, FCGR2B, BTK, POU2F2, RELA, CD19, CD22, CD79A, CD79B
138055 TCR signaling in naive CD8 + T cells 2.28E − 04 1.30E − 03 6.82E − 03 2.46E − 02 6 PTPN6, LCK, CD3E, CD8A, CD80, CD86
137939 Direct p53 effectors 2.95E − 03 1.33E − 02 7.00E − 02 3.18E − 01 8 SPP1, BCL2, TNFRSF10C, BID, CD82, MAP4K4, CX3CL1, LIF
138081 FAS (CD95) signaling pathway 3.67E − 03 1.42E − 02 7.46E − 02 3.97E − 01 4 BID, BTK, CASP3, MAPK11
137995 HIV-1 Nef: Negative effector of Fas and TNF-alpha 3.67E − 03 1.42E − 02 7.46E − 02 3.97E − 01 4 BCL2, BID, CASP3, RELA
137944 IL1-mediated signaling events 2.58E − 02 6.45E − 02 3.40E − 01 1.00E + 00 3 TOLLIP, RELA, IRAK4
REACTOME
1269310 Cytokine Signaling in Immune system 3.81E − 46 2.02E − 43 1.39E − 42 2.02E − 43 86 IL10, IL10RA, IL12A, IL12B, IL13, IL13RA1, IL16, TRAF3, TNFRSF9, IL17A, HLA-B, PDGFB, HLA-C, TNFSF12, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, TNFRSF14, GATA3, PSMB10, BCL2, PTAFR, IL1RL2, IL17F, PTK2, STAT5A, STAT6, TNFRSF4, PTPN6, IL22RA2, TOLLIP, CCL11, CCL19, CCL20, CCL22, KIT, NOS2, VCAM1, IL19, RAG1, RAG2, ZEB1, FN1, DUSP4, IRF8, CASP3, RELA, RELB, LCK, IL23A, S1PR1, IFNA2, IFNAR1, IFNB1, IFNG, LIF, CSF1R, CSF2, CSF2RB, CSF3R, EBI3, EGR1, IL20, CD80, CD86, IL22, CD40, IRAK4, CD44, TNFRSF13C, LTA, RORC, IL1RAP, IL2, IL3, IL4, IL4R, IL5, IL6, IL6R, IL7, IL27, IL9
1269318 Signaling by Interleukins 2.98E − 33 7.91E − 31 5.42E − 30 1.58E − 30 62 IL10, IL10RA, IL12A, IL12B, IL13, IL13RA1, IL16, IL17A, PDGFB, GATA3, PSMB10, BCL2, PTAFR, IL1RL2, IL17F, PTK2, STAT5A, STAT6, PTPN6, IL22RA2, TOLLIP, CCL11, CCL19, CCL20, CCL22, KIT,NOS2, VCAM1, IL19, RAG1, RAG2, ZEB1, FN1, DUSP4, CASP3, RELA, LCK, IL23A, S1PR1, LIF, CSF1R, CSF2, CSF2RB, CSF3R, EBI3, IL20, CD80, CD86, IL22, IRAK4, RORC, IL1RAP, IL2, IL3, IL4, IL4R, IL5, IL6, IL6R,IL7, IL27, IL9
1269203 Innate Immune System 4.93E − 25 8.72E − 23 5.98E − 22 2.62E − 22 82 MASP1, TRAF3, HLA-B, PDGFB, HLA-C, MAPKAPK2, CTSC, PECAM1, MBL2, PSMB10, CD55, CD46, BCL2, DEFB103B, PTAFR, CD209, PTK2, STAT6, DEFB1, DEFB4A, CFD, PTPN6, FCAR, FCER1A, PIGR, FCGR2A, CARD9, BTK, MIF, PLA2G2A, TOLLIP, C1R, C1S, C4A, PLAU, C4BPA, CCR6, MME, C6, C7, C8A, C8B, C9, KIT, NOS2, GPI, LILRA3, VTN, CLEC6A, FN1, ATG7, ITLN1, DUSP4, ICAM2, ICAM3, RELA, RELB, TLR9, LCK, PPBP, CFI, IFNA2, LGALS3, IFNB1, CSF2, CSF2RB, CD19, SIGIRR, CD80, CD86, TIRAP, IRAK4, CD44, CD59, MAPK11, IL2, IL3, IL5, CTSS, CXCR1, MASP2, CXCR2
1269171 Adaptive Immune System 1.51E − 15 1.15E − 13 7.86E − 13 8.03E − 13 52 HLA-B, PDGFB, HLA-C, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, CTSC, HLA-DRB1, TNFRSF14, PSMB10, PTPN22, CD209, PTPN6, SLAMF6, FCGR2B, BTK, KIT, KLRB1, LILRB5, VCAM1, ICOSLG, LILRA1, LILRA3, LILRA2, ATG7, ICAM2, ICAM3, ICAM4, RELA, BTLA, LCK, CD1A, CD3E, CD8A, CD19, CD22, CD80, CD86, ICAM5, TIRAP, CD34, CD40, CD74, CD79A, CD79B, CTLA4, CTSS
1269201 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 5.01E − 14 2.66E − 12 1.82E − 11 2.66E − 11 21 HLA-B, HLA-C, SLAMF6, FCGR2B, KLRB1, LILRB5, VCAM1, LILRA1, LILRA3, LILRA2, ICAM2, ICAM3, ICAM4, CD1A, CD3E, CD8A, CD19, CD22, ICAM5, CD34, CD40
1269546 Peptide ligand-binding receptors 6.17E − 08 1.82E − 06 1.25E − 05 3.27E − 05 17 CCR6, CCL13, CCR8, CCL16, CCL19, CCL20, CXCL11, XCL1, CX3CL1, CXCL12, CCR10, XCR1, CXCL13, PPBP, EDNRB, CXCR1, CXCR2
1269545 Class A/1 (Rhodopsin-like receptors) 4.71E − 07 1.14E − 05 7.79E − 05 2.50E − 04 21 PTAFR, PTGER4, CCR6, CCL13,CCR8,CCL16, CCL19, CCL20, CXCL11, XCL1, CX3CL1, CXCL12, CCR10, XCR1, CXCL13, GPR183, PPBP, S1PR1, EDNRB, CXCR1, CXCR2
1269340 Hemostasis 1.15E − 04 1.47E − 03 1.01E − 02 6.09E − 02 26 CD244, PDGFB, PECAM1, GATA3, PTK2, CFD, PTPN6, MIF, PLAU, NOS2, SELE, SELPLG, FN1, LCK, PPBP, IFNA2, IFNB1, CSF2, CSF2RB, CD9, CD44, CD48, CD74, IL2, IL3, IL5
1269501 MAPK family signaling cascades 3.27E − 04 3.40E − 03 2.33E − 02 1.74E − 01 15 PDGFB, PSMB10, PTK2, KIT, RAG1, RAG2, FN1, DUSP4, CSF2, CSF2RB, IL2, IL3, IL5, IL6, IL6R
1269240 Toll Like Receptor TLR6:TLR2 Cascade 3.46E − 04 3.40E − 03 2.33E − 02 1.84E − 01 8 MAPKAPK2, BTK, DUSP4, RELA, SIGIRR, TIRAP, IRAK4, MAPK11
Gen MAPP
MAP00400 Phenylalanine tyrosine and tryptophan biosynthesis 1.38E − 01 5.02E − 01 1.00E + 00 1.00E + 00 1 BID
MAP_kinase_activity MAP kinase activity 1.38E − 01 5.02E − 01 1.00E + 00 1.00E + 00 1 MAPK11
MAP00010 Glycolysis Gluconeogenesis 2.47E − 01 5.02E − 01 1.00E + 00 1.00E + 00 2 BID, GPI
MAP00030 Pentose phosphate 2.70E − 01 5.02E − 01 1.00E + 00 1.00E + 00 1 GPI
MAP00590 Prostaglandin and leukotriene metabolism 2.96E − 01 5.02E − 01 1.00E + 00 1.00E + 00 1 PLA2G2A
MAP00500 Starch and sucrose metabolism 3.34E − 01 5.02E − 01 1.00E + 00 1.00E + 00 1 GPI
MAP00330 Arginine and proline metabolism 5.05E − 01 5.81E − 01 1.00E + 00 1.00E + 00 1 NOS2
MAP00380 Tryptophan metabolism 5.73E − 01 5.81E − 01 1.00E + 00 1.00E + 00 1 IDO1
MAP00561 Glycerolipid metabolism 5.81E − 01 5.81E − 01 1.00E + 00 1.00E + 00 1 PLA2G2A
MSigDB C2 BIOCARTA (v6.0)
M5883 Genes encoding secreted soluble factors 4.86E − 27 7.82E − 25 4.43E − 24 7.82E − 25 46 IL10, IL12A, IL12B, IL13, IL16, IL17A, PDGFB, TNFSF12, IL17B, CCL26, IL17F, CCL7, CCL11, CCL13, CCL15, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, CX3CL1, CXCL12, IL19, CXCL13, PPBP, IL23A, IFNA2, IFNB1, IFNG, LIF, CSF2, EBI3, IL20, IL22, LTA, IL2, IL3, IL4, IL5, IL6, IL7, IL26, IL9
M17406 Cytokine Network 2.71E − 22 2.18E − 20 1.24E − 19 4.36E − 20 15 IL10, IL12A, IL12B, IL13, IL16, IL17A, IFNB1, IFNG, LTA, IL2, IL3, IL4, IL5, IL6, IL9
M6910 Cytokines and Inflammatory Response 5.19E − 21 2.78E − 19 1.58E − 18 8.35E − 19 16 IL10, IL12A, IL12B, IL13, HLA-DRA, HLA-DRB1, IFNB1, IFNG, CSF2, LTA, IL2, IL3, IL4, IL5, IL6, IL7
M5885 Ensemble of genes encoding ECM-associated proteins including ECM-affilaited proteins, ECM regulators and secreted factors 7.80E − 21 3.14E − 19 1.78E − 18 1.26E − 18 57 IL10, IL12A, IL12B, IL13, MASP1, IL16, IL17A, PDGFB, TNFSF12, CTSC, IL17B, MBL2, CCL26, IL17F, CD209, PLAU, CCL7, CCL11, CCL13, CCL15, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, CX3CL1, CXCL12, IL19, CLEC6A, ITLN1, CXCL13, ITLN2, PPBP, IL23A, IFNA2, LGALS3, IFNB1, IFNG, LIF, CSF2, EBI3, IL20, IL22, LTA, IL2, IL3, IL4, IL5, CTSS, IL6, IL7, IL26, IL9, MASP2
M5889 Ensemble of genes encoding extracellular matrix and extracellular matrix-associated proteins 4.62E − 17 1.49E − 15 8.43E − 15 7.44E − 15 61 IL10, IL12A, IL12B, IL13, MASP1, IL16, IL17A, PDGFB, TNFSF12, SPP1, CTSC,IL17B, MBL2, CCL26, IL17F, CD209, PLAU, CCL7,CCL11, CCL13, CCL15,CCL16, CCL18, CCL19, CCL20,CCL22, CCL24, CXCL11,XCL1, CX3CL1, CXCL12, IL19, VTN,CLEC6A, FN1, ITLN1, CXCL13,ITLN2, PPBP, IL23A,IFNA2, LGALS3, IFNB1, IFNG, TGFBI, LIF, CSF2, EBI3, IL20, IL22, LTA, IL2, IL3, IL4, IL5, CTSS, IL6, IL7, IL26, IL9, MASP2
M1467 The Co-Stimulatory Signal During T-cell Activation 4.81E − 11 7.03E − 10 3.98E − 09 7.74E − 09 9 HLA-DRA, HLA-DRB1, ICOSLG, LCK, CD3E, CD80, CD86, CTLA4, IL2
M3952 Cells and Molecules involved in local acute inflammatory response 1.02E − 05 7.46E − 05 4.22E − 04 1.64E − 03 5 C6, C7, VCAM1, SELPLG,IL6
M18215 Role of Tob in T-cell activation 3.16E − 05 2.21E − 04 1.25E − 03 5.08E − 03 5 IFNG, TGFBR1, CD3E, IL2, IL4
M13968 HIV-I Nef: negative effector of Fas and TNF 6.46E − 04 3.15E − 03 1.78E − 02 1.04E − 01 6 BCL2,PTK2, BID, CASP3, RELA, ARHGDIB
M13247 T Cytotoxic Cell Surface Molecules 1.90E − 03 6.80E − 03 3.85E − 02 3.06E − 01 3 CD3E, CD8A, THY1
Panther DB
P00036 Interleukin signaling pathway 6.51E − 19 2.47E − 17 1.05E − 16 2.47E − 17 22 IL10,IL10RA, IL12A,IL13, IL13RA1, IL17A, MAPKAPK2, IL17F, STAT5A, STAT6, IL21, IL23A, IL2, IL4, IL4R, IL5, IL6, IL6R, IL7, CXCR1, IL9, CXCR2
P00031 Inflammation mediated by chemokine and cytokine signaling pathway 4.36E − 07 8.28E − 06 3.50E − 05 1.66E − 05 16 CCL26, CCL7, CCR6, CCL11, CCL13, CCR8, CCL18, CCL20, CCL22, CX3CL1, CCR10, XCR1, IFNAR1, IFNG, CXCR1, CXCR2
P00053 T cell activation 7.23E − 05 8.13E − 04 3.44E − 03 2.75E − 03 8 HLA-DPA1, HLA-DQA1, HLA-DRA, LCK, CD3E, CD80, CD86, CD74
P00010 B cell activation 8.56E − 05 8.13E − 04 3.44E − 03 3.25E − 03 7 PTPN6, BTK, CD19, CD22, CD79A, CD79B, MAPK11
P00054 Toll receptor signaling pathway 2.14E − 03 1.62E − 02 6.86E − 02 8.12E − 02 5 TOLLIP, RELA, TLR9, IFNB1, IRAK4
P00006 Apoptosis signaling pathway 2.67E − 03 1.69E − 02 7.14E − 02 1.01E − 01 7 BCL2, BID, BCL2L11, CASP3, RELA, RELB, LTA
P00035 Interferon-gamma signalingpathway 1.42E − 02 7.69E − 02 3.25E − 01 5.39E − 01 3 PTPN6, IFNG, MAPK11
P00046 Oxidative stress response 5.17E − 02 1.86E − 01 7.88E − 01 1.00E + 00 3 BCL2, DUSP4, MAPK11
P00047 PDGF signaling pathway 8.39E − 02 2.44E − 01 1.00E + 00 1.00E + 00 5 PDGFB, MAPKAPK2, ETS1, STAT5A, STAT6
P00034 Integrin signalling pathway 5.94E − 01 7.28E − 01 1.00E + 00 1.00E + 00 3 ITGAE, PTK2, FN1
Pathway Ontology
PW:0000104 intrinsic apoptotic 1.82E − 03 7.63E − 02 3.30E − 01 7.63E − 02 4 BCL2, BID, BCL2L11, CASP3
PW:0000515 Interleukin-10 signaling 7.84E − 01 1.57E − 01 6.78E − 01 6.78E − 01 1 IL10
PW:0000516 Interleukin-6 signaling 7.84E − 01 1.57E − 01 6.78E − 01 6.78E − 01 1 IL6
PW:0000499 Nuclear Factor Kappa B signaling 9.58E − 01 1.60E − 01 6.91E − 01 6.91E − 01 2 RELA, RELB
PW:0000009 programmed cell death 1.00E + 00 1.80E − 01 7.78E − 01 7.78E − 01 2 BCL2, CASP3
PW:0000102 The extracellular signal-regulated RAF/MEK/ERK signaling 8.14E − 02 2.18E − 01 9.44E − 01 1.00E + 00 2 SPP1, S1PR1
PW:0000529 angiotensin (1-7) signaling 8.83E − 02 2.18E − 01 9.44E − 01 1.00E + 00 1 MME
PW:0000106 extrinsic apoptotic 1.05E − 01 2.45E − 01 1.00E + 00 1.00E + 00 1 CASP3
PW:0000559 hexosamine biosynthetic 1.21E − 01 2.55E − 01 1.00E + 00 1.00E + 00 1 GPI
PW:0000228 G protein signaling via Galphai family 1.53E − 01 2.80E − 01 1.00E + 00 1.00E + 00 1 S1PR1
SMPDB
SMP00094 Sulindac Pathway 1.21E − 01 4.52E − 01 1.00E + 00 1.00E + 00 1 PLA2G2A
SMP00040 Glycolysis 2.14E − 01 4.52E − 01 1.00E + 00 1.00E + 00 1 GPI
SMP00063 Tryptophan Metabolism 2.70E − 01 4.52E − 01 1.00E + 00 1.00E + 00 1 IDO1
SMP00379 NifedipinePathway 2.83E − 01 4.52E − 01 1.00E + 00 1.00E + 00 1 EDNRB
SMP00006 Tyrosine Metabolism 3.59E − 01 4.84E − 01 1.00E + 00 1.00E + 00 1 MIF
SMP00320 Intracellular Signalling Through Adenosine Receptor A2a and Adenosine 4.57E − 01 4.84E − 01 1.00E + 00 1.00E + 00 1 MAPK11

Gene ontology (GO) enrichment analysis for DEGs

The GO enrichment analysis of up- and down-regulated genes can be split into three groups: BP, CC, and MF are listed in Tables 4, 5. In terms of BP, the up-regulated genes were mainly involved in regulation of immune system process, response to biotic stimulus and other functions; the down-regulated genes were mainly associated in regulation of immune system process, cytokine-mediated signaling pathway and other functions. As far as CC is concerned, the up-regulated genes were mainly involved in the side of membrane, receptor complex and other functions; the down-regulated genes were mainly located in the cell surface, leaflet of membrane layers and other functions. As for MF, the up-regulated genes mainly participated in kinase binding, signaling receptor binding and other functions; the down-regulated genes mainly participated in cytokine receptor binding, signaling receptor binding and other functions (Tables 4, 5).

Table 4.

The enriched GO terms of the up regulated differentially expressed genes

GO ID CATEGORY GO Name P Value FDR B&H FDR B&Y Bonferroni Gene Count Gene
GO:0002682 BP Regulation of immune system process 1.53E − 44 5.68E − 41 5.00E − 40 5.68E − 41 56 KLRK1, ATG5, JAK1, JAK2, IFIH1, PDCD1, TRAF2, TRAF6, IKZF3, CD247, ZBTB16, ABL1, HLA-A, IKBKE, CD99, BST2, LILRB2, TBX21, TLR2, LAG3, HRAS, PSMB9, C1QBP, CLEC7A, SERPING1, XBP1, GBP1, SOCS1, C2, CCR1, IKZF1, CCL5, IRF7, CTNNB1, RUNX1, SLAMF7, IKBKB, LCP2, ITGAL, FYN, IL18RAP, ITGB2, IL2RG, IL18R1, KLRC1, ZAP70, GFI1, KLRD1, CX3CR1, STAT1, TP53, NLRP3, STAT3, STAT5B, CEACAM1, IFNAR2
GO:0009607 BP Response to biotic stimulus 6.86E − 35 6.36E − 32 5.59E − 31 2.54E − 31 48 KLRK1, ATG5, JAK1, JAK2, IFIH1, TRAF6, IKZF3, ATG10, ABL1, HLA-A, IKBKE, BST2, LILRB2, TBX21, TLR2, GZMB, LAG3, HRAS, PSMB9, C1QBP, CLEC7A, SERPING1, XBP1, GBP1, SOCS1, C2, IRF5, CCL5, IRF7, CCR5, GNLY, SLAMF7, IKBKB, FYN, IFI35, IL18RAP, ITGB2, MAP4K2, GFI1, KLRD1, CX3CR1, STAT1, TP53, NLRP3, MX1, STAT5B, CEACAM1, IFNAR2
GO:0006952 BP Defense response 1.12E − 33 5.92E − 31 5.21E − 30 4.14E − 30 49 KLRK1, JAK1, JAK2, IFIH1, TRAF6, HLA-A, IKBKE, BST2, LILRB2, TLR2, GZMB, LAG3, HRAS, PSMB9, C1QBP, CLEC7A, SERPING1, GBP1, CCRL2, SOCS1, C2, CCR1, IRF5, CCL5, IRF7, CCR5, GNLY, LTB4R, SLAMF7, IKBKB, ITGAL, FYN, IFI35, IL18RAP, ITGB2, IL18R1, MAP4K2, GFI1, KLRD1, CX3CR1, STAT1, TP53, NLRP3, STAT3, STAT4, MX1, STAT5B, CEACAM1, IFNAR2
GO:0001816 BP Cytokine production 3.84E − 27 1.29E − 24 1.14E − 23 1.42E − 23 34 KLRK1, ATG5, JAK2, IFIH1, TRAF2, TRAF6, CD247, ABL1, IKBKE, BST2, LILRB2, TBX21, TLR2, LAG3, HRAS, C1QBP, CLEC7A, XBP1, GBP1, SOCS1, IRF5, CCL5, IRF7, CTNNB1, RUNX1, LCP2, IL18RAP, IL18R1, CX3CR1, STAT1, NLRP3, STAT3, STAT5B, CEACAM1
GO:0034097 BP Response to cytokine 2.23E − 26 6.90E − 24 6.07E − 23 8.28E − 23 38 JAK1, JAK2, IFIH1, TRAF2, TRAF6, HLA-A, IKBKE, BST2, TLR2, PSMB9, XBP1, GBP1, CCRL2, SOCS1, CCR1, IRF5, CCL5, IRF7, CCR5, CTNNB1, RUNX1, IKBKB, FYN, IFI35, IL18RAP, ITGB2, IL2RG, IL18R1, GFI1, CX3CR1, STAT1, TP53, STAT3, STAT4, MX1, STAT5B, CEACAM1, IFNAR2
GO:0042110 BP T cell activation 1.68E − 25 4.43E − 23 3.90E − 22 6.21E − 22 28 CCND3, KLRK1, ATG5, PDCD1, TRAF6, ZBTB16, ABL1, LILRB2, TBX21, LAG3, CLEC7A, XBP1, SOCS1, IKZF1, CCL5, CTNNB1, RUNX1, ITGAL, FYN, ITGB2, IL2RG, IL18R1, ZAP70, TP53, NLRP3, STAT3, STAT5B, CEACAM1
GO:0045321 BP Leukocyte activation 6.65E − 23 1.30E − 20 1.14E − 19 2.47E − 19 36 CCND3, KLRK1, ATG5, JAK2, PDCD1, TRAF6, IKZF3, ZBTB16, ABL1, BST2, LILRB2, TBX21, TLR2, LAG3, CLEC7A, XBP1, SOCS1, IKZF1, CCL5, CTNNB1, RUNX1, SLAMF7, LCP2, ITGAL, FYN, IL18RAP, ITGB2, IL2RG, IL18R1,ZAP70, CX3CR1,TP53, NLRP3, STAT3, STAT5B, CEACAM1
GO:0001775 BP Cell activation 2.83E − 22 5.00E − 20 4.40E − 19 1.05E − 18 37 CCND3, KLRK1, ATG5, JAK2, PDCD1, TRAF6, IKZF3, ZBTB16, ABL1, BST2, LILRB2, TBX21, TLR2, LAG3, CLEC7A, XBP1, SOCS1, IKZF1, CCL5, CTNNB1, RUNX1, SLAMF7, LCP2, ITGAL, FYN, IL18RAP, ITGB2, IL2RG, IL18R1, ZAP70, CX3CR1, TP53, NLRP3, STAT3, STAT5B, CEACAM1, GP1BB
GO:0080134 BP Regulation of response to stress 3.88E − 18 3.59E − 16 3.16E − 15 1.44E − 14 34 KLRK1, JAK1, JAK2, IFIH1, TRAF2, TRAF6, ABL1, IKBKE, MAP4K1, TLR2, LAG3, HRAS, PSMB9, C1QBP, CLEC7A, SERPING1, XBP1, SOCS1, CCL5, IRF7, CTNNB1, IKBKB, FYN, IL18RAP, ITGB2, MAP4K2, GFI1, CX3CR1, STAT1, TP53, NLRP3, STAT5B, CEACAM1, IFNAR2
GO:0051094 BP Positive regulation of developmental process 1.52E − 15 1.00E − 13 8.79E − 13 5.64E − 12 31 JAK1, JAK2, TRAF6, ZBTB16, ABL1, LILRB2, TBX21, TLR2, C1QBP, CLEC7A, XBP1, SOCS1, CCR1, IKZF1, CCL5, CTNNB1, RUNX1, IKBKB, FYN, ITGB2, IL2RG, ZAP70, GFI1, CX3CR1, STAT1, TP53, NLRP3, STAT3, STAT5B, SMAD5, CEACAM1
GO:0098552 CC Side of membrane 1.17E − 11 1.54E − 09 9.47E − 09 3.08E − 09 18 KLRK1, PDCD1, TRAF2, TRAF6, HLA-A, TLR2, LAG3, CCRL2, CCR1, CCR5, SLAMF7, IKBKB, ITGAL, FYN, ITGB2, IL2RG, KLRD1, CX3CR1
GO:0043235 CC Receptor complex 3.20E − 10 2.81E − 08 1.73E − 07 8.44E − 08 15 TRAF2, TRAF6, CD247, TLR2, IKBKB, LCP2, ITGAL, IL18RAP, ITGB2, IL2RG, IL18R1, KLRC1, ZAP70, KLRD1, CEACAM1
GO:0009986 CC Cell surface 2.20E − 09 9.68E − 08 5.96E − 07 5.81E − 07 19 KLRK1, PDCD1, HLA-A, BST2, LILRB2, TLR2, LAG3, C1QBP, CLEC7A, CCRL2, CCR1, CCR5, SLAMF7, ITGAL, ITGB2, IL2RG, KLRD1, CX3CR1, CEACAM1
GO:0005887 CC Integral component of plasma membrane 2.88E − 07 6.90E − 06 4.25E − 05 7.59E − 05 21 KLRK1, TRAF2, TRAF6, CD99, LILRB2, TLR2, CCRL2, CCR1, CCR5, LTB4R, IKBKB, ITGAL, IL18RAP, ITGB2, IL2RG, IL18R1, KLRC1, CX3CR1, CEACAM1, GP1BB, IFNAR2
GO:0098805 CC Whole membrane 8.24E − 06 1.55E − 04 9.56E − 04 2.18E − 03 19 ATG5, JAK2, TRAF2, TRAF6, HLA-A, IKBKE, BST2, LILRB2, TLR2, IRF7, LTB4R, CTNNB1, IKBKB, LCP2, ITGAL, FYN, ITGB2, ZAP70, CEACAM1
GO:0044194 CC cytolytic granule 1.84E − 04 2.70E − 03 1.66E − 02 4.87E − 02 2 GZMB, GNLY
GO:0000790 CC Nuclear chromatin 9.72E − 04 1.17E − 02 7.18E − 02 2.57E − 01 16 IKZF3, ZBTB16, TBX21, XBP1, IRF5, IKZF1, IRF7, CTNNB1, RUNX1, GFI1, STAT1, TP53, STAT3, STAT4, STAT5B, SMAD5
GO:0090575 CC RNA polymerase II transcription factor complex 5.30E − 03 4.21E − 02 2.59E − 01 1.00E + 00 4 CTNNB1, RUNX1, TP53, STAT3
GO:0005667 CC Transcription factor complex 5.46E − 03 4.21E − 02 2.59E − 01 1.00E + 00 6 IKZF1, CTNNB1, RUNX1, TP53, STAT3, SMAD5
GO:0048471 CC Perinuclear region of cytoplasm 8.69E − 03 4.78E − 02 2.94E − 01 1.00E + 00 8 TRAF6, ABL1, HRAS, CTNNB1, FYN, CX3CR1, STAT1, MX1
GO:0019900 MF Kinase binding 6.20E − 10 1.90E − 07 1.27E − 06 2.82E − 07 19 CCND3, KLRK1, JAK2, TRAF2, TRAF6, CD247, ABL1, C1QBP, XBP1, SOCS1, CCL5, CTNNB1, IKBKB, ITGB2, MAP4K2, TP53, STAT3, CEACAM1, IFNAR2
GO:0005102 MF Signaling receptor binding 7.06E − 08 3.57E − 06 2.39E − 05 3.21E − 05 23 KLRK1, JAK1, JAK2, TRAF2, TRAF6, ABL1, HLA-A, LILRB2, TLR2, LAG3, C1QBP, CLEC7A, CCRL2, SOCS1, CCL5, CTNNB1, FYN, ITGB2, KLRD1, STAT1, TP53, STAT3, STAT5B
GO:0044212 MF Transcription regulatory region DNA binding 1.45E − 07 5.42E − 06 3.63E − 05 6.57E − 05 17 TRAF6, IKZF3, ZBTB16, TBX21, XBP1, IRF5, IKZF1, IRF7, CTNNB1, RUNX1, GFI1, STAT1, TP53, STAT3, STAT4, STAT5B, SMAD5
GO:0038023 MF Signaling receptor activity 3.46E − 07 1.13E − 05 7.54E − 05 1.58E − 04 21 KLRK1, CD247, LILRB2, TLR2, LAG3, CLEC7A, CCRL2, CCR1, CCL5, CCR5, LTB4R, ITGAL, IL18RAP, ITGB2, IL2RG, IL18R1, KLRC1, KLRD1, CX3CR1, GP1BB, IFNAR2
GO:0043565 MF Sequence-specific double-stranded DNA binding 5.76E − 06 9.35E − 05 6.27E − 04 2.62E − 03 16 IKZF3, ZBTB16, ABL1, TBX21, XBP1, IRF5, IKZF1, IRF7, RUNX1, STAT1, TP53, NLRP3, STAT3, STAT4, STAT5B, SMAD5
GO:0016772 MF Transferase activity, transferring phosphorus-containing groups 8.11E − 06 1.19E − 04 7.98E − 04 3.69E − 03 20 CCND3, JAK1, JAK2, TRAF2, TRAF6, ABL1, IKBKE, MAP4K1, HRAS, SOCS1, CCL5, CTNNB1, IKBKB, LCP2, FYN, ZAP70, MAP4K2, TP53, STAT3, CEACAM1
GO:0070011 MF Peptidase activity, acting on L-amino acid peptides 1.03E − 05 1.38E − 04 9.27E − 04 4.66E − 03 16 ATG5, JAK2, IFIH1, TRAF2, TRAF6, BST2, GZMB, PSMB9, CLEC7A, SERPING1, C2, FYN, STAT1, TP53, NLRP3, STAT3
GO:0000977 MF RNA polymerase II regulatory region sequence-specific DNA binding 1.25E − 05 1.58E − 04 1.06E − 03 5.67E − 03 13 IKZF3, ZBTB16, TBX21, XBP1, IKZF1, IRF7, RUNX1, STAT1, TP53, STAT3, STAT4, STAT5B, SMAD5
GO:0035639 MF Purine ribonucleoside triphosphate binding 3.00E − 04 1.75E − 03 1.17E − 02 1.37E − 01 17 JAK1, JAK2, IFIH1, ABL1, IKBKE, MAP4K1, HRAS, CUL9, GBP1, RUNX1, IKBKB, FYN, ZAP70, MAP4K2, TP53, NLRP3, MX1
GO:0032559 MF Adenylribonucleotide binding 1.44E − 03 6.51E − 03 4.36E − 02 6.57E − 01 14 JAK1, JAK2, IFIH1, ABL1, IKBKE, MAP4K1, CUL9, RUNX1, IKBKB, FYN, ZAP70, MAP4K2, TP53, NLRP3

BP biological process, CC cellular component, MF molecular functions

Table 5.

The enriched GO terms of the down regulated differentially expressed genes

GO ID Category GO Name P Value FDR B&H FDR B&Y Bonferroni Gene Count Gene
GO:0002682 BP Regulation of immune system process 1.87E − 103 9.66E − 100 8.82E − 99 9.66E − 100 153 IL10, IL12A, IL12B, IL13, IRGM, MASP1, TRAF3, IL17A, CEBPB, CD244, HLA-B, HLA-C, IDO1, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, MAPKAPK2, HLA-DQB1, HLA-DRA, CTSC, HLA-DRB1, PECAM1, MBL2, TNFRSF14, GATA3, ETS1, PSMB10, CD55, PTPN22, CD46, BCL2, PTAFR, CD83, PTGER4, IL1RL2, CD209, PTK2, STAT5A, STAT6, TNFRSF4, CFD, PTPN6, SLAMF6, FCER1A, PIGR, FCGR2A, FCGR2B, CARD9, BTK, MIF, IL21, C1R, C1S, C4A, C4BPA, CCL7, CCR6, C6, C7, C8A, CCL19, C8B, CCL20, C9, CCL24, TAL1, XCL1, KIT, CX3CL1, KLRB1, CXCL12, VCAM1, SELE, GPI, RAG1, DPP4, ICOSLG, LILRA1, LILRA2, ZEB1, VTN, CLEC6A, ATG7, ICAM2, ICAM3, ICAM4, CXCL13, CASP3, AIRE, RELA, BTLA, RELB, GPR183, TLR9, LCK, CFI, CR2, IL23A, IFNA2, LGALS3, TFRC,IFNB1, IFNG, LIF, CD1A, CD3E, CSF1R, CSF2, CD8A, THY1, CD9, CSF3R, CD19, TIGIT, MS4A1, EBI3, CD22, IL20, CD80, CD86, ICAM5, TIRAP, CD34, CD40, IRAK4, CD44, CD48, TNFRSF13C, CD59, CD74, CD79A, CD79B, LTA, RORC, CTLA4, PAX5, HAMP, MAPK11, IL2, IL3, IL4, IL4R, IL5, CTSS, IL6, IL6R, IL7, IL27, MASP2, CXCR2
GO:0019221 BP Cytokine-mediated signaling pathway 1.05E − 84 1.35E − 81 1.23E − 80 5.40E − 81 131 IL10, IL10RA, IL12A, IL12B, IL13, IRGM, MASP1, TRAF3, IL17A, ILF3, CEBPB, CD244, HLA-B, AICDA, HLA-C, IDO1, TAGAP, HLA-DPA1, HLA-DPB1, HLA-DQA1, MAPKAPK2, HLA-DQB1, HLA-DRA, HLA-DRB1, MBL2, TNFRSF14, GATA3, PSMB10, CD55, PTPN22, CD46, BCL2, DEFB103B, PTAFR, PTGER4, IL1RL2, CCL26, CD209, STAT5A, BID, DEFB1, DEFB4A, CFD, PTPN6, SLAMF6, FCGR2B, CARD9, BTK, KLRF2, MIF, IL21, PLA2G2A, TOLLIP, C1R, C1S, C4A, C4BPA, CCL7, CCL11, CCL13, BATF3, CCL15, CCL16, C6, C7, CCL18, C8A, CCL19, C8B, CCL20, CCL22, C9, CCL24, CXCL11, XCL1, CX3CL1, NOS2, CXCL12, VCAM1, SELE, RAG2, LILRA2, CLEC6A, BCL2L11, ATG7, ITLN1, ICAM2, ICAM3, IRF8, CXCL13, CASP3, RELA, RELB, TLR9, PPBP, CFI, CR2, IL23A, IFNA2, EDNRB, LGALS3, IFNAR1, IFNB1, IFNG, CSF1R, CSF2, CD8A, CSF2RB, MS4A1, EGR1, SIGIRR, CD80, CD86, TIRAP, CD40, IRAK4, CD44, CD74, CD79B, LTA, HAMP, MAPK11, IL1RAP, IL2, IL4, IL4R, CTSS, IL6, IL6R, IL27, MASP2
GO:0009607 BP RESPONSE to biotic stimulus 7.42E − 81 7.65E − 78 6.99E − 77 3.83E − 77 120 IL10, IL10RA, IL12A, IL12B, IL13, IL13RA1, IRGM, IL16, TRAF3, TNFRSF9, IL17A, CEBPB, HLA-B, PDGFB, HLA-C, TNFSF12, SPP1, HLA-DPA1, HLA-DPB1, HLA-DQA1, MAPKAPK2, HLA-DQB1, HLA-DRA, HLA-DRB1, TNFRSF14, GATA3, ETS1, PSMB10, BCL2, PTAFR, IL1RL2, CCL26, IL17F,STAT5A, STAT6, TNFRSF4, PTPN6, IL22RA2, NFIL3, BTK, MIF, IL21, TOLLIP, CCL7, CCR6, CCL11, CCL13, CCR8, CCL15, MME, CCL16, CCL18, CCL19, CCL20, CCL22,CCL24, CXCL11, XCL1, KIT, CX3CL1, NOS2, CXCL12, VCAM1, IL19, SELE, SELPLG, CCR10, XCR1, TCF7, ZEB1, FN1, IRF8, CXCL13, CASP3, RELA, RELB, PPBP, IL23A, S1PR1, IFNA2, TFRC, IFNAR1, IFNB1, IFNG, LIF, CSF1R, CSF2, CSF2RB, CSF3R, EBI3, EGR1, SIGIRR, IL20, CD80, CD86, TIRAP, IL22, CD40, IRAK4, CD44, TNFRSF13C, CD74, LTA, RORC, HAMP, MAPK11, IL1RAP, IL2, IL3, IL4, IL4R, IL5, IL6, IL6R, IL7, IL26, IL27, CXCR1, IL9, CXCR2
GO:0009607 BP Response to biotic stimulus 7.42E − 81 7.65E − 78 6.99E − 77 3.83E − 77 131 IL10, IL10RA, IL12A, IL12B, IL13, IRGM, MASP1, TRAF3, IL17A, ILF3, CEBPB, CD244, HLA-B, AICDA, HLA-C, IDO1, TAGAP, HLA-DPA1, HLA-DPB1, HLA-DQA1, MAPKAPK2, HLA-DQB1, HLA-DRA, HLA-DRB1, MBL2, TNFRSF14, GATA3, PSMB10, CD55, PTPN22, CD46, BCL2, DEFB103B, PTAFR, PTGER4, IL1RL2, CCL26, CD209, STAT5A, BID, DEFB1, DEFB4A, CFD, PTPN6, SLAMF6, FCGR2B, CARD9, BTK, KLRF2, MIF, IL21, PLA2G2A, TOLLIP, C1R, C1S, C4A, C4BPA, CCL7, CCL11, CCL13, BATF3, CCL15, CCL16, C6, C7, CCL18, C8A, CCL19, C8B, CCL20, CCL22, C9, CCL24, CXCL11, XCL1, CX3CL1, NOS2, CXCL12, VCAM1, SELE, RAG2, LILRA2, CLEC6A, BCL2L11, ATG7, ITLN1, ICAM2, ICAM3, IRF8, CXCL13, CASP3, RELA, RELB, TLR9, PPBP, CFI, CR2, IL23A, IFNA2, EDNRB, LGALS3, IFNAR1, IFNB1, IFNG, CSF1R, CSF2, CD8A, CSF2RB, MS4A1, EGR1, SIGIRR, CD80, CD86, TIRAP, CD40, IRAK4, CD44, CD74, CD79B, LTA, HAMP, MAPK11, IL1RAP, IL2, IL4, IL4R, CTSS, IL6, IL6R, IL27, MASP2
GO:0034097 BP Response to cytokine 3.04E − 80 2.61E − 77 2.39E − 76 1.57E − 76 120 IL10, IL10RA, IL12A, IL12B, IL13, IL13RA1, IRGM, IL16, TRAF3, TNFRSF9, IL17A, CEBPB, HLA-B, PDGFB, HLA-C, TNFSF12, SPP1, HLA-DPA1, HLA-DPB1, HLA-DQA1, MAPKAPK2, HLA-DQB1, HLA-DRA, HLA-DRB1, TNFRSF14, GATA3, ETS1, PSMB10, BCL2, PTAFR, IL1RL2, CCL26, IL17F, STAT5A, STAT6, TNFRSF4, PTPN6, IL22RA2, NFIL3, BTK, MIF, IL21, TOLLIP, CCL7, CCR6, CCL11, CCL13, CCR8, CCL15, MME, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, KIT, CX3CL1, NOS2, CXCL12, VCAM1, IL19, SELE, SELPLG, CCR10, XCR1, TCF7, ZEB1, FN1, IRF8, CXCL13, CASP3, RELA, RELB, PPBP, IL23A, S1PR1, IFNA2, TFRC, IFNAR1, IFNB1, IFNG, LIF, CSF1R, CSF2, CSF2RB, CSF3R, EBI3, EGR1, SIGIRR, IL20, CD80, CD86, TIRAP, IL22, CD40, IRAK4, CD44, TNFRSF13C, CD74, LTA, RORC, HAMP, MAPK11, IL1RAP, IL2, IL3, IL4, IL4R, IL5, IL6, IL6R, IL7, IL26, IL27, CXCR1, IL9, CXCR2
GO:0042110 BP T cell activation 8.30E − 63 2.25E − 60 2.06E − 59 4.28E − 59 77 IL10, IL12A, IL12B, CEBPB, CD244, IDO1, HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DQA1, TNFRSF14, GATA3, PSMB10, CD55, PTPN22, CD46, BCL2, CD83, PTGER4, IL1RL2, CD209, STAT5A, STAT6, TNFRSF4, EOMES, PTPN6, SLAMF6, FCGR2B, IL21, CCR6, CCL19, CCL20, XCL1, KIT, CXCL12, VCAM1, RAG1, RAG2, DPP4, ICOSLG, TCF7, ZEB1, CASP3, AIRE, BTLA, RELB, GPR183, LCK, IL23A, IFNA2, LGALS3, TFRC, IFNAR1, IFNB1, IFNG, CD3E, CD8A, THY1, TIGIT, EBI3, EGR1, CD80, CD86, CD44, CD48, TNFRSF13C, CD74, RORC, CTLA4, IL2, IL4, IL4R, IL6, IL6R, IL7, IL27
GO:0001816 BP Cytokine production 8.07E − 58 1.81E − 55 1.65E − 54 4.16E − 54 87 IL10, IL12A, IL12B, IL13, TRAF3, TNFRSF9, IL17A, CEBPB, CD244, IDO1, HLA-DPA1, HLA-DPB1, MAPKAPK2, IL17B, MBP, TNFRSF14, GATA3, CD55, PTPN22, CD46, PTAFR, CD83, PTGER4, IL1RL2, IL17F, STAT5A, STAT6, TNFRSF4, EOMES, PTPN6, SLAMF6, FCER1A, FCGR2B, CARD9, BTK, KLRF2, MIF, IL21, CCL19, CCL20, XCL1, KIT, CX3CL1, NOS2, IL19, ICOSLG, LILRA2, CLEC6A, FN1, IRF8, AIRE, RELA, RELB, TLR9, IL23A, IFNA2, IFNAR1, IFNB1, IFNG, CD3E, CSF1R, CSF2, TIGIT, EBI3, EGR1,SIGIRR, CD80, CD86, TIRAP, CD34, CD40, IRAK4, TNFRSF13C, CD74,LTA, RORC, MAPK11, IL1RAP, IL2, IL4, IL4R, IL6, IL6R, IL7, IL26, IL27, IL9
GO:0002694 BP Regulation of leukocyte activation 7.07E − 57 1.52E − 54 1.39E − 53 3.65E − 53 77 IL10, IL12A, IL12B, IL13, CEBPB, CD244, IDO1, HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DQA1, CTSC, TNFRSF14, GATA3, CD55, PTPN22, CD46, BCL2, PTAFR, CD83, IL1RL2, CD209, STAT5A, STAT6, TNFRSF4, PTPN6, FCER1A, FCGR2B, BTK, MIF, IL21, CCR6, CCL19, CCL20, XCL1, CX3CL1, VCAM1, RAG1, DPP4, ICOSLG, ZEB1, CASP3, BTLA, GPR183, TLR9, LCK, IL23A, IFNA2, LGALS3, TFRC, IFNB1, IFNG, CD3E, THY1, CD19, TIGIT, EBI3, CD22, CD80, CD86, TIRAP, CD40, CD44, TNFRSF13C, CD74, RORC, CTLA4, HAMP, IL2, IL4, IL4R, IL5, IL6, IL6R, IL7, IL27
GO:0006954 BP Inflammatory response 5.64E − 55 1.12E − 52 1.02E − 51 2.91E − 51 82 IL10, IL12B, IL13, IRGM, IL17A, CEBPB, IDO1, SPP1, MAPKAPK2, CTSC, IL17B, MBL2, GATA3, ETS1, PTAFR, PLA2G2E, PTGER4, IL1RL2, CCL26, IL17F, STAT5A, TNFRSF4, IL22RA2, FCER1A, FCGR2B, BTK,MIF, IL21, PLA2G2A, TOLLIP, C4A, CCL7, CCR6,CCL11, CCL13, CCL15, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, KIT, CX3CL1, NOS2, VCAM1, SELE, XCR1, FN1, NT5E, CXCL13, RELA, RELB, TLR9, PPBP, IL23A, IFNA2, EDNRB, IFNG, CSF1R, SIGIRR, IL20, TIRAP, IL22, CD40, CD44, LTA, HAMP, IL1RAP, IL2, CDH5, IL4, IL4R, IL5, CTSS, IL6, IL6R, IL27, IL9, CXCR2
GO:0007155 BP Cell adhesion 3.87E − 42 3.50E − 40 3.20E − 39 2.00E − 38 91 IL10, IL12A, IL12B, CEBPB,CD244, IDO1, HLA-DMA, HLA-DMB, SPP1, HLA-DPA1, HLA-DPB1, HLA-DQA1, PECAM1, MBP, TNFRSF14, GATA3, ETS1, CD55, PTPN22, CD46, BCL2, PTAFR, CD83, ITGAE, PTGER4, IL1RL2, CD209, PTK2, STAT5A, PTPN6, FCGR2B, IL21, PLAU, CCL11, CCR8, CCL19, XCL1, KIT, MAP4K4, CX3CL1, CXCL12, VCAM1, SELE, SELPLG, RAG1, DPP4, ICOSLG, VTN, FN1, BCL2L11, NT5E, ICAM2, ICAM3, ICAM4, CXCL13, CASP3, RELA, BTLA, LCK, IL23A, S1PR1, IFNA2, LGALS3, TFRC, IFNB1, IFNG, TGFBI, ARHGDIB, CD3E, THY1, CD9, CSF3R, TIGIT, EBI3, CD22, CD80, CD86, ICAM5, CD34, CD44, TNFRSF13C, CD74, CTLA4,IL1RAP, IL2, CDH5, IL4, IL4R, IL6, IL6R, IL7
GO:0009986 CC Cell surface 8.40E − 48 1.04E − 45 6.72E − 45 3.09E − 45 83 IL12A, IL12B, IL13, IL13RA1, TNFRSF9, IL17A, CD244, HLA-B, PDGFB, HLA-C, HLA-DMA, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DRA, HLA-DRB1, PECAM1, MBL2, MBP, TNFRSF14, CD55, CD46, TNFRSF10C, CD83, ITGAE, CD209, TNFRSF4, FCER1A, FCGR2B, FCGRT, MIF, PLAU, CCR6, CCR8, MME, KIT, CX3CL1, CXCL12, VCAM1, CCR10, DPP4, ICOSLG, XCR1, NT5E, BTLA, CR2, S1PR1, LGALS3, TFRC, IFNG, TGFBR1, CD1A, CD3E, CSF1R, CD8A, THY1, CD9, CSF3R, CD19, TIGIT, MS4A1, EBI3, CD22, CD80, CD86, CD34, CD40, CD44, CD48, TNFRSF13C, CD59, CD74, CD79A, CD79B, RORC, CTLA4, CDH5, IL4, CTSS, IL6, IL6R, CXCR1, CXCR2
GO:0097478 CC Leaflet of membrane bilayer 8.80E − 48 1.04E − 45 6.72E − 45 3.24E − 45 70 IL12B, IL13, IL13RA1, TRAF3, TNFRSF9, IL17A, CD244, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, PECAM1, TNFRSF14, PTPN22, CD83, ITGAE, CD209, TNFRSF4, FCER1A, FCGR2B, FCGRT, CCR6, CCR8, KIT, CXCL12, VCAM1, CCR10, ICOSLG, XCR1, BTLA, LCK, CR2, S1PR1, LGALS3, TFRC, IFNG, CD1A, CD3E, BCAP31, CD8A, THY1, CD9, CSF3R, CD19, MS4A1, EBI3, CD22, CD80, CD86, CD34,CD40, CD44, CD48, TNFRSF13C, CD59,CD74, CD79A, CD79B, RORC, CTLA4, CDH5, IL4, IL6, IL6R, CXCR1, CXCR2
GO:0031226 CC Intrinsic component of plasma membrane 4.10E − 24 3.01E − 22 1.96E − 21 1.51E − 21 75 IL13RA1, TRAF3, TNFRSF9,TNFSF12, HLA-DPA1, HLA-DQA1, HLA-DRA, CD46,PTAFR, CD83, ITGAE, IL1RL2, TNFRSF4, CD82, SLAMF6,FCAR, FCER1A, PIGR, FCGR2B, KLRF2, TOLLIP, CCR6, CCR8, MME, C6, C7, C8A, C8B, C9, KIT, VCAM1, SELE, SELPLG, CCR10, ICOSLG, XCR1, LILRA2, ICAM2, ICAM3, ICAM4, BTLA, GPR183, S1PR1, SLC2A1, EDNRB, TFRC, IFNAR1, TGFBR1,CD1A, CD3E, BCAP31, CSF1R, CD8A, THY1, CSF2RB, CD9, CSF3R, CD19, MS4A1, EBI3, CD22, ICAM5, CD34, CD40, CD44, CD48, CD59, CD74, CD79B, CTLA4, IL1RAP, IL4R, IL6, IL6R, CXCR2
GO:0098589 CC Membrane region 7.35E − 11 1.93E − 09 1.25E − 08 2.70E − 08 24 PECAM1, CD55, CD46, STAT6, FCER1A, BTK, MME, SELE, SELPLG, DPP4, ITLN1, CASP3, LCK, S1PR1, SLC2A1, EDNRB, TGFBR1, CD1A, CD8A, THY1, CD19, MS4A1, CD48, CD79A
GO:0043235 CC Receptor complex 3.10E − 10 6.71E − 09 4.35E − 08 1.14E − 07 26 IL12B, IL13RA1, TRAF3, ITGAE, PTPN6, PIGR, TOLLIP, KIT, ITLN1, CR2, TFRC, TGFBR1, CD3E, CSF1R, CD8A, CSF2RB, CSF3R, EBI3, CD40, CD44, CD74, CD79A, CD79B, IL4R, IL6, IL6R
GO:0030141 CC Secretory granule 3.67E − 07 5.20E − 06 3.37E − 05 1.35E − 04 29 PDGFB, CTSC, PECAM1, CD55, CD46, PTAFR, CFD, PTPN6, FCAR, PIGR, FCGR2A, MIF, PLA2G2A, TOLLIP, PLAU, MME, KIT, GPI, LILRA3, FN1, ATG7, PPBP, LGALS3, CD9, CD44, CD59, CTSS, CXCR1, CXCR2
GO:0005764 CC Lysosome 1.31E − 06 1.49E − 05 9.69E − 05 4.81E − 04 25 IL13, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, CTSC, HLA-DRB1, FCER1A, PIGR, BTK, TOLLIP,KIT, DPP4, TLR9, IFNAR1, CD34, CD74, IL4, IL4R, CTSS, CXCR2
GO:0005794 CC Golgi apparatus 4.18E − 03 2.00E − 02 1.30E − 01 1.00E + 00 31 IRGM, HLA-B, PDGFB, HLA-C,SPP1, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, CTSC, HLA-DRB1, CD55, CD46, DEFB103B, DEFB1,DEFB4A, MME, VCAM1, DPP4, VTN, TLR9, SLC2A1, TGFBI, BCAP31, CD44, CD59, CD74, CD79B, B3GAT1, CTLA4
GO:0048471 CC Perinuclear region of cytoplasm 2.87E − 02 8.46E − 02 5.49E − 01 1.00E + 00 16 TNFSF12, SPP1, PTPN22, BCL2, BTK, PLA2G2A, TOLLIP, CX3CL1, NOS2, SELE, ATG7,TFRC, TRAF4, BCAP31, CD34, CTLA4
GO:0044297 CC Cell body 9.03E − 02 2.08E − 01 1.00E + 00 1.00E + 00 14 PDGFB, MBP, PTGER4, FCGR2B, C4A, MME, CX3CL1, CASP3,IFNG, CD3E, THY1, CD22, CD40, IL6R
GO:0030054 CC Cell junction 9.70E − 02 2.20E − 01 1.00E + 00 1.00E + 00 21 PECAM1, CD46, PTK2, PTPN6, C4A, PLAU, MME, KIT, MAP4K4, DPP4, LCK, SLC2A1, TGFBR1, TRAF4, CD3E, THY1, CD9, CD44,CD59, HAMP, CDH5
GO:0005126 MF Cytokine receptor binding 8.37E − 54 6.01E − 51 4.30E − 50 6.01E − 51 59 IL10, IL12A, IL12B, IL13, TRAF3, TNFSF12, GATA3, DEFB103B, CCL26, IL17F, BID, DEFB1, DEFB4A, MIF, IL21, TOLLIP, CCL7, CCL11, CCL13, CCL15, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, CX3CL1, CXCL12, CXCL13, CASP3, TLR9, PPBP, IL23A, IFNA2, IFNB1, IFNG, TGFBR1, LIF, TRAF4, CSF2, EBI3, IL20, IL22,IRAK4, CD44, LTA, IL1RAP, IL2,IL3, CDH5,IL4, IL5, IL6, IL6R, IL7, IL27, IL9
GO:0005102 MF Signaling receptor binding 3.78E − 49 9.05E − 47 6.48E − 46 2.72E − 46 108 IL10, IL12A, IL12B, IL13, IL16, TRAF3, IL17A, CEBPB, CD244, HLA-B, PDGFB, HLA-C, TNFSF12, HLA-DOB, SPP1, HLA-DPA1, HLA-DQA1, HLA-DQB1, HLA-DRA, IL17B, MBL2, GATA3, DEFB103B, CCL26, IL17F, PTK2, BID, DEFB1, DEFB4A, PTPN6, PIGR, MIF, IL21, TOLLIP, CCL7, CCL11, CCL13, CCL15, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, CX3CL1, CXCL12, VCAM1, IL19, SELPLG, GPI, DPP4, ICOSLG, VTN, FN1, ATG7, ICAM2, ICAM3, ICAM4, CXCL13, CASP3, TLR9, LCK, PPBP, IL23A, S1PR1, IFNA2, EDNRB, LGALS3, IFNB1, IFNG, TGFBI, TGFBR1, LIF, TRAF4, CD3E,BCAP31, CSF2, CD8A, THY1, CD9, TIGIT, MS4A1, EBI3, CD22, IL20, CD86, ICAM5, TIRAP, IL22, IRAK4, CD44, CD74, LTA, HAMP, IL1RAP, IL2, IL3, CDH5, IL4, IL5, IL6, IL6R, IL7, IL26, IL27, IL9
GO:0030545 MF Chemokine receptor binding 2.63E − 22 2.36E − 20 1.69E − 19 1.89E − 19 20 DEFB103B, CCL26, DEFB1, DEFB4A, CCL7, CCL11,CCL13, CCL15, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, CX3CL1, CXCL12, CXCL13, PPBP
GO:0098772 MF Molecular function regulator 1.42E − 18 6.80E − 17 4.86E − 16 1.02E − 15 71 IL10, IL12A, IL12B, IL13, IRGM, IL16, IL17A, PDGFB, TNFSF12, SPP1, TAGAP, CTSC, IL17B, CD46, BCL2, DEFB103B, CCL26, IL17F, EOMES, DEFB4A, MIF, IL21, C4A, CCL7, CCL11, CCL13, CCL15, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, CX3CL1, NOS2, CXCL12, IL19, GPI, FN1, CXCL13, CASP3, SKI, PPBP, IL23A, IFNA2, LGALS3, IFNB1, IFNG, LIF, ARHGDIB, TRAF4, CSF2, THY1, EBI3, IL20, TIRAP, IL22, LTA, HAMP, IL2, IL3, IL4, IL5, IL6, IL6R, IL7, IL26,IL27, IL9
GO:0004888 MF Transmembranesignaling receptor activity 2.09E − 12 8.81E − 11 6.31E − 10 1.50E − 09 50 IL10RA, IL12B, IL13RA1, HLA-DOB, HLA-DPA1, HLA-DQA1, HLA-DQB1, HLA-DRA, TNFRSF14, TNFRSF10C, PTAFR, PTGER4, IL1RL2, TNFRSF4, PTPN6, IL22RA2, FCER1A, PIGR, FCGR2B, CCR6, CCR8, KIT, KLRB1, LILRB5, SELE, CCR10, XCR1, LILRA1, GPR183, TLR9, CR2, S1PR1, EDNRB, IFNAR1, IFNG, TGFBR1, CD3E, CSF1R, CSF2RB, CSF3R, EBI3, CD44, CD74, CD79A, CD79B, IL1RAP, IL4R, IL6R, CXCR1, CXCR2
GO:0001664 MF G protein-coupled receptor binding 3.80E − 12 1.52E − 10 1.08E − 09 2.73E − 09 23 DEFB103B, CCL26, DEFB1, DEFB4A, CCL7, CCL11, CCL13, CCL15, CCL16, CCL18, CCL19, CCL20, CCL22, CCL24, CXCL11, XCL1, CX3CL1, CXCL12, CXCL13, PPBP, S1PR1, EDNRB, IL2
GO:0044877 MF Protein-containing complex binding 1.24E − 11 4.46E − 10 3.19E − 09 8.92E − 09 48 PDGFB, HLA-DMA, HLA-DMB, HLA-DOB, SPP1, HLA-DRA, HLA-DRB1, PTK2, FCAR, FCER1A, PIGR, FCGR2A, FCGR2B, FCGRT, MIF, C8A, C8B, CX3CL1, CXCL12, VCAM1, DPP4, LILRA2, VTN, FN1, BCL2L11, ICAM2, ICAM3, ICAM4, CASP3, RELA, LCK, IFNA2, LGALS3, IFNB1, TGFBI, TGFBR1, CD3E, BCAP31, CD8A, THY1, CD9, MS4A1, CD22, ICAM5, CD44, CD74, CDH5, CTSS
GO:0042802 MF IDENTICAL protein binding 1.81E − 07 3.93E − 06 2.81E − 05 1.30E − 04 51 IL12B, MASP1, CEBPB, AICDA, PDGFB, CTSC, PECAM1, ETS1, BCL2, IL17F, PTK2, STAT6, DEFB1, CARD9, BTK, KLRF2, MIF, C1S, MME, XCL1, KIT, NOS2, RAG1, DPP4, ICOSLG, TCF4, IKZF2, VTN, FN1, ATG7, ITLN1, AIRE, RELA, RELB, TLR9, LCK, CR2, SLC2A1, LGALS3, TFRC, TRAF4, CD3E, CSF1R, CD8A, TIGIT, TIRAP, CD74, CD79A, CD79B, CDH5, IL6R
GO:0046983 MF Protein dimerization activity 6.79E − 07 1.19E − 05 8.51E − 05 4.88E − 04 42 IL10, IL12A, IL12B, MASP1, CEBPB, PDGFB, HLA-DQA1, PECAM1, GATA3, BCL2, IL17F, BID, CARD9, KLRF2, CCL11, MME, TAL1, XCL1, KIT, NOS2, RAG1, DPP4, TCF4, IKZF2, BCL2L11, ATG7, CXCL13, RELA, TLR9, CR2, LGALS3, TFRC, TGFBR1, TRAF4, CD3E, CSF1R, CD8A, TIRAP, CD79A, CD79B, CDH5, IL6R
GO:0016301 MF Kinase activity 1.16E − 05 1.54E − 04 1.10E − 03 8.29E − 03 40 IL12B, IRGM, PDGFB, MAPKAPK2, PTPN22, PTK2, TNFRSF4, PTPN6, FCER1A, BTK, MIF, CCL19, TAL1, KIT, MAP4K4, NOS2, GPI, DUSP4, CASP3, TLR9, LCK, IL23A, IFNG, TGFBR1, TRAF4, CSF1R, THY1, CD19, EGR1, TIRAP, CD40, IRAK4, CD44, CD74, MAPK11, IL2, IL3, IL4, IL6, IL6R

BP biological process, CC cellular component, MF molecular functions

PPI network construction and module analysis

To determine the expression relationships among up- and down-regulated genes, we inputted the up- and down-regulated genes to STRING PPI database. Then, PPI networks were visualized using the cytoscape software. As a result, a PPI network for up-regulated genes had 2912 nodes and 5967 edges (Fig. 6). Among these nodes, TP53, HRAS, CTNNB1, FYN, ABL1, STAT3, STAT1, JAK2, C1QBP, XBP1, BST2, CD99 and IFI35 were identified as hub genes with highest node degree distribution, betweenness centrality, stress centrality, closeness centrality and lowest clustering coefficient are listed in Table 6. The scatter plots for this network are shown in Fig. 7a–e. Enrichment analysis showed that the genes were mainly associated with measles, natural killer cell mediated cytotoxicity, HTLV-I infection, regulation of immune system process, viral myocarditis, Jak-STAT signaling pathway, herpes simplex infection, hemostasis, response to biotic stimulus, cytokine signaling in immune system, integral component of plasma membrane and response to biotic stimulus. A PPI network for down-regulated genes had 3083 nodes and 6491 edges (Fig. 8). Among these nodes, MAPK11, RELA, LCK, KIT, EGR1, IL20, ILF3, CASP3, IL19, ATG7, GPI and S1PR1 were identified as hub genes with highest node degree distribution, betweenness centrality, stress centrality, closeness centrality and lowest clustering coefficient are listed in Table 6. The scatter plots for this network are shown in Fig. 9a–e. Enrichment analysis showed that the genes were mainly associated with tuberculosis, inflammatory bowel disease (IBD), HTLV-I infection, cytokine–cytokine receptor interaction, cytokine-mediated signaling pathway, regulation of immune system process, response to biotic stimulus, response to cytokine, cytokine production, innate immune system, glycolysis, gluconeogenesis and the extracellular signal-regulated RAF/MEK/ERK signaling.

Fig. 6.

Fig. 6

Protein–protein interaction network of up regulated genes. Green nodes (Inline graphic ) denotes up regulated genes; Blue lines (Inline graphic ) denotes edges (Interactions)

Table 6.

Topology table for up and down regulated genes

Regulation Node Degree Betweenness Stress Closeness Clustering Coefficient
Up TP53 682 0.308256 69419762 0.44613 0.001042
Up HRAS 543 0.243425 36147274 0.454702 0.003568
Up CTNNB1 454 0.17049 60805652 0.403018 0.002042
Up FYN 396 0.117564 12570856 0.436236 0.010907
Up ABL1 362 0.118179 7631538 0.470883 0.015228
Up JAK2 258 0.054758 7164820 0.434802 0.021748
Up STAT3 253 0.05294 16470742 0.398767 0.02108
Up JAK1 223 0.032981 6336566 0.40235 0.019876
Up TRAF6 216 0.074546 12176648 0.395301 0.010207
Up STAT1 213 0.045072 12845532 0.387307 0.023031
Up TRAF2 171 0.047572 11238720 0.357837 0.007981
Up ZAP70 153 0.018814 3346658 0.375226 0.028294
Up IKBKB 140 0.040639 5153454 0.403521 0.017575
Up MX1 125 0.057134 6475242 0.352549 0.002194
Up STAT5B 118 0.012758 2934924 0.377415 0.057801
Up ZBTB16 105 0.029011 4339392 0.371064 0.00696
Up GP1BB 104 0.024662 2308816 0.350596 0.009335
Up RUNX1 95 0.021204 3579930 0.370309 0.010526
Up C1QBP 89 0.043687 7011558 0.334675 0
Up TLR2 85 0.019615 2401022 0.374839 0.034734
Up SOCS1 85 0.019595 1846156 0.398713 0.072829
Up SMAD5 82 0.024208 4462604 0.336687 0.003011
Up ITGB2 72 0.025976 3349086 0.351061 0.008607
Up IKZF1 72 0.011714 1722502 0.373157 0.034038
Up CCND3 71 0.025956 2361424 0.357661 0.008048
Up ATG5 60 0.020131 2294688 0.333219 0.00678
Up IFIH1 59 0.023459 2059722 0.333945 0.001753
Up STAT4 58 0.002561 797810 0.366902 0.082275
Up PSMB9 55 0.0248 2740768 0.310739 0
Up IKZF3 47 0.005026 756292 0.361346 0.053654
Up GFI1 46 0.007563 811180 0.357266 0.013527
Up IRF7 44 0.010411 1198488 0.338804 0.008457
Up MAP4K1 44 0.006432 851692 0.348957 0.046512
Up CD247 43 0.00724 710792 0.349292 0.058693
Up LCP2 41 0.003353 442356 0.338331 0.07439
Up CCR5 39 0.010719 942222 0.343359 0.043185
Up IRF5 34 0.006222 736764 0.339277 0.012478
Up GZMB 29 0.01009 1297184 0.313584 0
Up IL2RG 27 0.005284 347620 0.3463 0.071225
Up TBX21 23 0.003781 493896 0.328704 0.023715
Up XBP1 21 0.004344 440004 0.329933 0
Up HLA-A 19 0.007447 822622 0.311637 0
Up MAP4K2 18 0.002038 190802 0.334636 0.045752
Up CCR1 18 0.004542 722956 0.323912 0.019608
Up IFNAR2 17 0.003686 214358 0.335872 0.169118
Up ITGAL 17 0.004258 302784 0.285588 0.058824
Up ATG10 16 0.00303 204222 0.278618 0.075
Up CEACAM1 15 0.003567 815206 0.308991 0
Up CLEC7A 13 0.006223 422114 0.302253 0
Up CUL9 10 0.001917 66468 0.352806 0.111111
Up SERPING1 10 0.004857 805696 0.203225 0
Up NLRP3 10 0.002325 208526 0.304371 0
Up LTB4R 9 0.002812 970594 0.242059 0
Up GBP1 9 0.001571 66852 0.307489 0
Up LILRB2 9 0.004803 191694 0.287677 0
Up CD99 8 0.002792 99752 0.324129 0
Up KLRK1 7 0.003445 544176 0.26256 0
Up BST2 7 1.93E − 04 36836 0.324273 0
Up KLRD1 7 0.001389 97132 0.22517 0.047619
Up KLRC1 5 0.003221 307724 0.286234 0.1
Up IL18R1 4 0.00118 348338 0.245924 0
Up PDCD1 4 0.001374 55018 0.303894 0.166667
Up SLAMF7 4 0.00206 191070 0.233272 0
Up C2 4 0.001446 96444 0.245447 0
Up IFI35 3 6.93E − 04 23710 0.323301 0
Up LAG3 2 4.23E − 06 1074 0.245695 0
Up IL18RAP 2 1.95E − 04 52194 0.233609 0
Down MAPK11 421 0.179413 26118522 0.388195 0.003744
Down RELA 285 0.126824 20931198 0.37804 0.004645
Down LCK 267 0.108492 11305268 0.405534 0.014108
Down KIT 221 0.051071 10158794 0.36783 0.015014
Down EGR1 195 0.060886 6334914 0.384414 0.016178
Down ILF3 179 0.093546 7805892 0.330116 3.14E − 04
Down CASP3 175 0.070326 10842834 0.355181 0.005123
Down PTK2 153 0.049652 8738870 0.356704 0.005246
Down PTPN6 150 0.044684 5323296 0.365645 0.021477
Down BCL2 150 0.062256 5772430 0.365862 0.009128
Down BTK 137 0.022999 3449618 0.35359 0.019429
Down STAT5A 126 0.024378 5096524 0.35745 0.027429
Down TGFBR1 123 0.048955 6050368 0.349257 0.007464
Down CSF1R 117 0.01327 3411424 0.344835 0.005894
Down FN1 116 0.052141 5201654 0.335331 0.003148
Down TCF4 115 0.044569 5794596 0.333586 0.005492
Down TRAF3 113 0.038869 4088284 0.341886 0.010588
Down STAT6 102 0.026319 3212830 0.363486 0.039216
Down GATA3 97 0.03064 3006348 0.350689 0.018471
Down IRAK4 90 0.015953 2526624 0.344064 0.010986
Down TCF7 90 0.029254 4190222 0.323796 9.99E − 04
Down ATG7 88 0.032475 4557368 0.323761 0
Down PSMB10 86 0.037084 3948650 0.316536 0
Down EGR2 78 0.014472 2942228 0.323966 0.002331
Down CEBPB 77 0.01563 2080316 0.347208 0.028708
Down TLR9 75 0.01613 2504516 0.335623 0.017658
Down ETS1 74 0.015119 2229504 0.345493 0.023695
Down MBP 69 0.02034 1946892 0.33211 0.008099
Down CD40 63 0.012367 1565636 0.343144 0.030722
Down PTPN22 63 0.005103 648768 0.333009 0.039939
Down CXCL13 62 0.033409 4616616 0.255924 0.002644
Down CD44 61 0.027234 2621678 0.352941 0.016393
Down DUSP4 56 0.005964 877004 0.343106 0.046753
Down TOLLIP 55 0.020841 1681614 0.32948 0.011448
Down TRAF4 54 0.017367 1322968 0.327447 0.012579
Down TFRC 51 0.020865 2030850 0.323932 7.84E − 04
Down TAL1 49 0.012074 1294452 0.327273 0.02551
Down BATF3 48 0.009925 1237560 0.309471 0.011525
Down SKI 47 0.009912 1441494 0.325026 0.010176
Down MAP4K4 46 0.00723 923942 0.334966 0.025121
Down ARHGDIB 43 0.008007 998356 0.325267 0.00443
Down BID 40 0.007734 665116 0.336026 0.046154
Down BCL2L11 39 0.006742 718322 0.327935 0.032389
Down NOS2 39 0.012743 915032 0.332218 0.010796
Down AICDA 38 0.016444 2864544 0.288094 0
Down GPI 37 0.009895 1400722 0.322202 0
Down CSF2RB 37 0.005071 681430 0.345571 0.100601
Down TIRAP 37 0.009595 1070880 0.324 0.033033
Down CD9 36 0.01001 838100 0.302685 0.019048
Down CDH5 35 0.00845 737334 0.306177 0.013445
Down AIRE 35 0.010893 2140272 0.292753 0
Down CD82 32 0.008605 911074 0.323659 0.020161
Down IFNAR1 31 0.006943 536824 0.340902 0.062366
Down CD3E 30 0.006779 602042 0.338614 0.078161
Down LGALS3 30 0.009645 633882 0.302536 0
Down VTN 30 0.009755 750034 0.299445 0.006897
Down CD8A 29 0.008368 709958 0.334638 0.029557
Down CSF3R 28 0.008229 711320 0.334093 0.029101
Down EOMES 28 0.005201 513270 0.277597 0.018519
Down VCAM1 28 0.008841 718322 0.31732 0.010582
Down ZEB1 27 0.006122 1257304 0.288851 0
Down MME 27 0.009061 1835908 0.290624 0.014245
Down MIF 27 0.00826 611016 0.321596 0.005698
Down IKZF2 26 0.003358 390862 0.3129 0
Down MAPKAPK2 26 0.004801 451358 0.310909 0.024615
Down PLAU 25 0.008975 593824 0.317844 0.01
Down DPP4 25 0.010538 1418468 0.265231 0.006667
Down RORC 25 0.00722 1661398 0.278729 0.013333
Down CD55 24 0.010279 705586 0.303102 0
Down IL4R 24 0.00238 270352 0.331181 0.083333
Down CD19 23 0.001702 211728 0.304301 0.090909
Down IRF8 23 0.005195 372574 0.329904 0.019763
Down IL4 23 0.004905 441962 0.296246 0.019763
Down RELB 23 0.003464 286340 0.326336 0.055336
Down PAX5 22 0.002896 300204 0.291726 0.021645
Down CXCR2 22 0.006344 1097670 0.26098 0.047619
Down IL16 22 0.008141 455702 0.300821 0
Down SPP1 21 0.005095 320668 0.307124 0.014286
Down THY1 21 0.008614 468640 0.309285 0.004762
Down SLC2A1 20 0.00547 544898 0.316244 0
Down EDNRB 20 0.006473 488214 0.313729 0
Down SELE 20 0.005852 411150 0.300615 0.031579
Down HLA-DRA 18 0.004735 398954 0.319992 0.052288
Down CD79A 18 0.00478 297512 0.338726 0.176471
Down HLA-B 17 0.006176 428434 0.315111 0.022059
Down BCAP31 17 0.005172 568664 0.289476 0.058824
Down IL1RAP 17 0.003059 257852 0.322101 0.088235
Down PDGFB 16 0.003308 533330 0.27399 0
Down S1PR1 16 0.002256 404754 0.320025 0
Down CD46 15 0.004006 360234 0.31814 0.047619
Down RAG1 15 0.002698 229148 0.267304 0.019048
Down CD22 15 0.003395 414458 0.289123 0.07619
Down POU2F2 14 0.00252 256428 0.313506 0
Down TNFRSF14 14 0.002863 205148 0.290131 0.054945
Down FCGR2B 14 0.001419 233096 0.299854 0.087912
Down CSF2 14 0.001964 189924 0.271764 0.076923
Down SELPLG 14 0.004641 618406 0.266933 0.010989
Down IL10 13 0.001286 131502 0.275387 0.025641
Down CCL7 13 0.002891 346838 0.240789 0
Down CD79B 13 3.06E − 04 78608 0.337796 0.423077
Down HLA-C 13 0.003625 407006 0.310407 0.025641
Down IL6R 13 0.004275 289876 0.288689 0.051282
Down IL17A 13 0.002334 388710 0.280328 0.025641
Down FCGR2A 13 0.002143 252800 0.318403 0
Down LTA 12 0.002886 476206 0.257315 0
Down CXCL12 12 0.005496 372448 0.27655 0.030303
Down CTSS 12 0.00407 451030 0.260472 0
Down CD59 12 0.004363 207460 0.290405 0.030303
Down CXCR1 12 8.07E − 04 176404 0.242095 0.166667
Down IL2 12 0.002493 217616 0.290487 0.030303
Down C6 12 9.26E − 04 133246 0.24911 0
Down CD74 12 0.003192 267306 0.315369 0.121212
Down CR2 11 0.001319 143504 0.267072 0.036364
Down CCR10 11 0.003702 303034 0.222963 0.072727
Down CTSC 11 0.004925 257558 0.302268 0
Down TGFBI 10 7.77E − 04 51700 0.253167 0.155556
Down CD209 10 4.47E − 04 37928 0.243628 0.044444
Down NT5E 10 0.003249 169846 0.314627 0.022222
Down IL10RA 10 0.001722 123836 0.32116 0.155556
Down MBL2 9 0.002733 247190 0.248106 0.027778
Down TNFRSF9 9 0.001065 77604 0.309005 0.305556
Down HLA-DQA1 9 8.50E − 04 84902 0.306147 0.194444
Down NFIL3 9 0.002148 269802 0.253063 0
Down MS4A1 9 6.53E − 04 54246 0.308664 0.083333
Down PTAFR 9 0.001839 146258 0.315401 0.055556
Down MASP1 9 0.002137 326806 0.225528 0.083333
Down PLA2G2A 8 0.002039 625578 0.228338 0
Down TNFRSF4 8 7.20E − 04 87330 0.26198 0.321429
Down IL13RA1 8 6.92E − 04 54632 0.3129 0.214286
Down CD48 8 0.001004 75166 0.297881 0.142857
Down CD244 8 0.001314 270208 0.265574 0.071429
Down HLA-DRB1 8 0.001343 119046 0.273066 0.142857
Down IL12A 8 0.003272 296440 0.241412 0.071429
Down ICAM3 8 6.74E − 04 94610 0.255118 0.035714
Down ICAM2 7 7.74E − 04 115578 0.242687 0.047619
Down CD86 7 0.00143 76566 0.302417 0.190476
Down IL6 7 0.001988 115352 0.260582 0.095238
Down CD80 7 0.001335 74000 0.254317 0.190476
Down CCL13 7 3.79E − 04 117758 0.239347 0
Down CARD9 6 0.001358 152030 0.262583 0
Down MASP2 6 8.34E − 04 73116 0.210649 0.2
Down HLA-DMA 6 0.001965 186844 0.252792 0.2
Down FCER1A 6 0.001958 462984 0.26283 0
Down IL13 6 9.18E − 04 81904 0.260164 0.2
Down PIGR 6 0.001383 46460 0.267211 0
Down ICAM4 6 7.08E − 04 122662 0.244131 0
Down CCL11 6 4.36E − 04 106892 0.239682 0
Down FCAR 6 0.001325 60556 0.281404 0.066667
Down PTGER4 6 0.001594 111600 0.311981 0
Down RAG2 6 0.002235 108180 0.302893 0.133333
Down PPBP 6 0.00149 101978 0.25057 0.066667
Down IL3 6 1.42E − 05 4398 0.276848 0.133333
Down HLA-DQB1 5 1.37E − 04 32052 0.304361 0.5
Down IDO1 5 0.002598 124836 0.300263 0
Down TNFRSF10C 5 6.74E − 04 112660 0.252006 0
Down TNFRSF13C 5 6.50E − 04 58590 0.256308 0.3
Down IL17F 5 2.32E − 04 81308 0.256031 0.2
Down CFD 5 0.001535 135276 0.301765 0
Down CCL19 5 8.76E − 05 9268 0.219387 0.4
Down CD34 5 0.001329 226272 0.243224 0
Down IFNG 5 0.001405 110736 0.270285 0
Down IL23A 5 0.00132 310874 0.180846 0.1
Down EBI3 5 0.001288 90012 0.222769 0.1
Down C8B 4 2.59E − 04 21386 0.208212 0.166667
Down CCL20 4 0.001697 215266 0.242974 0
Down C4BPA 4 0.001305 202342 0.207217 0
Down C8A 4 5.17E − 04 27442 0.225528 0.333333
Down SLAMF6 4 6.38E − 06 766 0.274209 0.333333
Down CCR6 4 0.001956 273648 0.209231 0
Down BTLA 4 6.84E − 04 61880 0.275584 0.333333
Down CCR8 4 6.64E − 04 48144 0.196954 0
Down CXCL11 4 8.55E − 05 11782 0.220629 0
Down SIGIRR 4 3.08E − 06 666 0.277147 0.333333
Down ITLN1 4 0.001313 85710 0.272679 0
Down ICAM5 4 3.97E − 05 5052 0.242936 0
Down FCGRT 4 0.001307 236680 0.210779 0
Down CCL22 4 5.04E − 04 43848 0.247169 0
Down IL12B 4 1.64E − 04 39054 0.194859 0.5
Down IL27 3 2.87E − 04 26194 0.215697 0.333333
Down IL22 3 6.54E − 04 37474 0.199417 0
Down C7 3 1.54E − 04 29126 0.226657 0
Down TIGIT 3 0.001299 79710 0.18742 0
Down DEFB4A 3 0.002265 309432 0.250917 0
Down IL22RA2 3 8.49E − 04 82918 0.216806 0
Down IL21 3 2.06E − 05 882 0.21301 0
Down C9 3 1.97E − 05 976 0.229359 0.333333
Down LIF 3 1.35E − 05 994 0.252689 0
Down ITGAE 3 6.54E − 04 122018 0.226607 0
Down IL5 3 2.60E − 05 1936 0.26283 0.333333
Down HLA-DPB1 2 0 0 0.240356 1
Down CFI 2 6.50E − 04 65960 0.196527 0
Down IFNB1 2 0 0 0.254275 1
Down IFNA2 2 0 0 0.254275 1
Down XCL1 2 0.001299 97076 0.208706 0
Down CD1A 2 6.50E − 04 79654 0.20475 0
Down XCR1 2 6.50E − 04 48540 0.172698 0
Down DEFB103B 2 6.50E − 04 91060 0.173057 0
Down IL7 2 6.20E − 07 68 0.219497 0
Down KLRB1 2 6.50E − 04 58078 0.267815 0
Down IL20 2 0.666667 4 0.75 0
Down HLA-DMB 1 0 0 0.201796 0
Down HLA-DOB 1 0 0 0.16794 0
Down ICOSLG 1 0 0 0.200469 0
Down CD83 1 0 0 0.300029 0
Down GPR183 1 0 0 0.300029 0
Down IKBKAP 1 0 0 0.250938 0
Down DEFB1 1 0 0 0.173038 0
Down IL1RL2 1 0 0 0.20772 0
Down IL19 1 0 0 0.5 0

Fig. 7.

Fig. 7

Scatter plot for up regulated genes. (A—Node degree; B—Betweenness centrality; C—Stress centrality; D—Closeness centrality; E—Clustering coefficient)

Fig. 8.

Fig. 8

Protein–protein interaction network of down regulated genes. Red nodes (Inline graphic ) denotes down regulated genes; Pink lines (Inline graphic ) denotes edges (Interactions)

Fig. 9.

Fig. 9

Scatter plot for down regulated genes. (A—Node degree; B—Betweenness centrality; C—Stress centrality; D—Closeness centrality; E—Clustering coefficient)

Based on STRING database, plug-ins PEWCC1 was used to carry out module analysis in Cytoscape software. We identified total 566 and 548 modules from the PPI network of up- and down-regulated genes according to the degree of importance and further analyzed with the plug-in PEWCC1. The top four significant modules of up-regulated were selected for further analysis (Fig. 10). Module 48 had 10 nodes and 34 edges, module 50 had 10 nodes and 33 edges, Module 64 had 10 nodes and 17 edges and module 65 had 10 nodes and 17 edges, respectively. Enrichment analysis showed that the genes in these modules were mainly involved in natural killer cell-mediated cytotoxicity, measles, Jak-STAT signaling pathway, viral myocarditis, herpes simplex infection, influenza A, osteoclast differentiation, HTLV-I infection, IL12-mediated signaling events, IL2-mediated signaling events, tuberculosis, malaria, paxillin-dependent events mediated by a4b1, TCR signaling in naive CD8 + T cells and cytokine signaling in Immune system. The top four significant modules of down-regulated were selected for further analysis (Fig. 11). Module 18 had 17 nodes and 44 edges, module 23 had 15 nodes and 20 edges, module 58 had 9 nodes and 22 edges and module 104 had 7 nodes and 12 edges, respectively. Enrichment analysis showed that the genes in these modules were mainly involved in apoptosis signaling pathway, tuberculosis, viral myocarditis, Jak-STAT signaling pathway, cytokine signaling in immune system, measles, innate immune system, cytokine–cytokine receptor interaction, influenza A, hematopoietic cell lineage, HTLV-I infection, signaling by interleukins, adaptive immune system, IL12-mediated signaling events, interleukin signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway, inflammatory bowel disease (IBD), FAS (CD95) signaling pathway, cytokine-mediated signaling pathway, response to biotic stimulus, IL4-mediated signaling events, MAPK family signaling cascades and regulation of immune system process.

Fig. 10.

Fig. 10

Modules in PPI network. The green nodes denote the up regulated genes. Green nodes (Inline graphic ) denotes up regulated genes; Blue lines (Inline graphic ) denotes edges (Interactions)

Fig. 11.

Fig. 11

Modules in PPI network. The red nodes denote the down regulated genes. Red nodes (Inline graphic ) denotes down regulated genes; Pink lines (Inline graphic ) denotes edges (Interactions)

Construction of target gene–miRNA regulatory network

Using the miRNet database, target gene–miRNA regulatory network for up-regulated genes had 1008 nodes and 1613 interactions (Fig. 12). The network marked that each target genes have interactions with miRNAs. IKZF3 regulates 134 miRNAs (ex, hsa-mir-6860), TP53 regulates 130 miRNAs (ex, hsa-mir-5703), IFNAR2 regulates 109 miRNAs (ex, hsa-mir − 4510), SMAD5 regulates 83 miRNAs (ex, hsa-mir-6086) and STAT3 regulates by 80 miRNAs (ex, hsa-mir − 4270) are listed in Table 8. Enrichment analysis showed that the target genes in this network were mainly involved in IL2-mediated signaling events, measles, herpes simplex infection, ALK2 signaling events and cytokine signaling in immune system. Similarly, target gene–miRNA regulatory network for down-regulated genes had 1791 nodes and 3951 interactions (Fig. 13). SKI regulates 210 miRNAs (ex, hsa-mir-5100), TNFRSF13C regulates 136 miRNAs (ex, hsa-mir-3197), BCL2L11 regulates 122 miRNAs (ex, hsa-mir-8064), ICOSLG regulates 119 miRNAs (ex, hsa-mir-3672) and IL6R regulates 94 miRNAs (ex, hsa-mir-7641) are listed in Table 7. Enrichment analysis showed that the target genes in this network were mainly involved in molecular function regulator, cytokine–cytokine receptor interaction, apoptosis signaling pathway, adaptive immune system and cytokine–cytokine receptor interaction.

Fig. 12.

Fig. 12

The network of up regulated genes and their related miRNAs. The green circles nodes (Inline graphic ) are the up regulated genes; yellow diamond nodes (Inline graphic ) are the miRNAs; Pink lines (Inline graphic ) denotes edges (Interactions)

Table 8.

TF—target gene interaction table

Regulation TF Degree Target Gene Regulation TF Degree Target Gene
Up FOXC1 46 JAK1 Down FOXC1 127 KLRF2
Up GATA2 31 TRAF6 Down GATA2 102 CD1A
Up YY1 25 CLEC7A Down YY1 75 TNFRSF4
Up CREB1 22 STAT1 Down FOXL1 63 MME
Up TFAP2A 21 IKZF1 Down NFKB1 61 CXCL12
Up PPARG 20 IRF7 Down USF2 48 DEFB1
Up NFKB1 20 TRAF2 Down SRF 48 STAT5A
Up E2F1 19 PSMB9 Down CREB1 46 TNFRSF10C
Up RELA 18 IFI35 Down TP53 45 C1S
Up USF2 17 LTB4R Down STAT3 45 IL26
Up SREBF1 16 CCND3 Down PPARG 43 ICAM4
Up HINFP 15 GP1BB Down JUN 42 FCGRT
Up JUN 15 TLR2 Down E2F1 42 GATA3
Up FOXL1 12 LCP2 Down HINFP 40 BCL2L11
Up BRCA1 11 CD99 Down TFAP2A 38 EOMES
Up NFIC 11 FYN Down NFIC 38 IFNA2
Up SRF 11 IL18RAP Down MEF2A 31 CTSS
Up GATA3 9 CX3CR1 Down NFYA 29 GPI
Up PRDM1 9 GNLY Down TEAD1 28 LTA
Up POU2F2 9 SLAMF7 Down HOXA5 28 PPBP
Up USF1 8 ATG5 Down MAX 27 IL12B
Up FOS 8 CCL5 Down SREBF2 26 CD80
Up TEAD1 8 CCR1 Down SREBF1 26 DEFB4A
Up TFAP2C 8 CEACAM1 Down JUND 26 HLA-DPB1
Up ELK4 8 GBP1 Down TFAP2C 26 HLA-DQA1
Up HOXA5 8 GZMB Down RUNX2 25 C1R
Up E2F6 8 HRAS Down ARID3A 24 SKI
Up HNF4A 8 IFNAR2 Down HNF4A 23 CR2
Up RUNX2 8 KLRK1 Down ZNF354C 22 C8A
Up NFYA 7 ATG10 Down NR3C1 22 FCGR2B
Up SREBF2 7 C1QBP Down IRF2 22 XCR1
Up MAX 7 CCRL2 Down PRDM1 21 IL13
Up CEBPB 7 CD247 Down FOS 20 CCL15
Up PRRX2 7 CTNNB1 Down USF1 20 IRAK4
Up ZNF354C 7 GFI1 Down FOXA1 19 ITLN1
Up MEF2A 7 IL18R1 Down PRRX2 19 TLR9
Up ARID3A 6 ABL1 Down STAT1 18 LCK
Up ESR1 6 C2 Down SP1 16 CD82
Up PDX1 6 HLA-A Down ELK4 16 PAX5
Up NR3C1 6 ITGAL Down NKX3-2 16 PLA2G2E
Up KLF5 6 ITGB2 Down KLF5 15 ICOSLG
Up ELK1 6 JAK2 Down ELK1 15 IDO1
Up SP1 6 MAP4K2 Down BRCA1 15 LGALS3
Up EGR1 6 MX1 Down ESR1 15 MASP2
Up EN1 6 SMAD5 Down TP63 12 CD19
Up IRF2 5 RUNX1 Down PAX2 12 CD48
Up PAX2 5 STAT5B Down NR2F1 12 CEBPB
Up NR2F1 4 CUL9 Down E2F6 11 CD8A
Up FOXF2 4 IKBKE Down EN1 11 IL22
Up TP63 4 IKZF3 Down SPIB 11 PTAFR
Up FOXA1 4 IL2RG Down FOXF2 10 SELE
Up NRF1 4 MAP4K1 Down SOX10 9 POU2F2
Up JUND 4 NLRP3 Down SRY 8 EDNRB
Up SPIB 4 ZBTB16 Down NRF1 8 IFNAR1
Up REL 3 IKZF3 Down SOX17 7 TNFRSF14
Up NKX3-1 3 IRF5 Down SOX5 6 BTK
Up SOX5 3 KLRD1 Down NKX2-5 6 PIGR
Up SOX10 3 STAT3 Down ELF5 5 BATF3
Up MYB 3 JAK2 Down NFATC2 5 IL4
Up SRY 2 KLRK1 Down PDX1 5 ITGAE
Up ELF5 2 TLR2 Down NFYB 3 PTPN6
Up NFIL3 1 CX3CR1 Down ZFX 3 THY1
Up NR4A2 1 C2 Down NR4A2 2 CSF2
Up FEV 1 ATG5 Down FEV 2 IL23A
Up FOXI1 1 CCL5 Down MYB 2 MIF
Up NKX3-2 1 GZMB Down HNF1B 2 SPP1
Up E2F4 1 IKZF1 Down REL 2 STAT6
Up TFCP2L1 1 LCP2 Down ESR2 1 CCL22
Up NR2E3 1 HLA-A Down FOXI1 1 CD209
Up GATA1 1 HLA-A Down FOXD1 1 HLA-DOB
Up HNF1B 1 IL18R1 Down ESRRB 1 ICAM2
Up SOX17 1 LILRA6 Down NR2E3 1 IL2
Down E2F4 1 S1PR1
Down GATA1 1 PDGFB

Degree—No of TF interact with target gene. We taken any one TF in table

Fig. 13.

Fig. 13

The network of down regulated genes and their related miRNAs. The red circles nodes (Inline graphic ) are the down regulated genes; blue diamond nodes (Inline graphic ) are the miRNAs; Sku blue lines (Inline graphic ) denotes edges (Interactions)

Table 7.

miRNA - target gene interaction table

Regulation Target Genes Degree MicroRNA Regulation Target Genes Degree MicroRNA
Up IKZF3 134 hsa-mir-6860 Down SKI 210 hsa-mir-5100
Up TP53 130 hsa-mir-5703 Down TNFRSF13C 136 hsa-mir-3197
Up IFNAR2 109 hsa-mir − 4510 Down BCL2L11 122 hsa-mir-8064
Up SMAD5 83 hsa-mir-6086 Down ICOSLG 119 hsa-mir-3672
Up STAT3 80 hsa-mir − 4270 Down IL6R 94 hsa-mir-7641
Up TRAF6 71 hsa-mir-6745 Down VCAM1 86 hsa-mir − 4270
Up RUNX1 67 hsa-mir − 4467 Down LILRA2 83 hsa-mir − 4780
Up ABL1 64 hsa-mir − 4511 Down IRAK4 78 hsa-mir-520e
Up KLRD1 60 hsa-mir-5094 Down BTLA 72 hsa-mir-3133
Up CCL5 49 hsa-mir − 4775 Down CD55 71 hsa-mir-6124
Up CTNNB1 48 hsa-mir − 4255 Down CCL22 71 hsa-mir-5190
Up MAP4K2 47 hsa-mir-6131 Down CD44 70 hsa-mir-5696
Up PSMB9 44 hsa-mir-3658 Down PDGFB 69 hsa-mir-6132
Up ZBTB16 43 hsa-mir − 4287 Down BCL2 68 hsa-mir-184
Up SOCS1 42 hsa-mir − 4495 Down TFRC 67 hsa-mir-6070
Up HLA-A 39 hsa-mir-6129 Down PIGR 66 hsa-mir − 4486
Up SERPING1 38 hsa-mir-1262 Down CCL16 63 hsa-mir-7703
Up CCR5 33 hsa-mir-3183 Down IFNAR1 61 hsa-mir − 4430
Up CLEC7A 33 hsa-mir − 4792 Down TIRAP 61 hsa-mir − 4325
Up CD99 32 hsa-mir-3199 Down ETS1 58 hsa-mir-3972
Up LILRB2 30 hsa-mir-3941 Down CD59 56 hsa-mir-3919
Up ATG10 29 hsa-mir − 4309 Down IKZF2 55 hsa-mir-5096
Up CCND3 29 hsa-mir-1321 Down CEBPB 54 hsa-mir − 4510
Up STAT5B 25 hsa-mir-8485 Down CD209 54 hsa-mir-3188
Up TRAF2 21 hsa-mir-6165 Down HLA-C 53 hsa-mir − 4660
Up HRAS 21 hsa-mir-1268a Down DUSP4 53 hsa-mir-6089
Up STAT1 19 hsa-mir-1183 Down CCR6 52 hsa-mir − 4539
Up JAK1 17 hsa-mir-107 Down TGFBR1 51 hsa-mir-8083
Up CCRL2 16 hsa-mir − 4469 Down MAPKAPK2 50 hsa-mir − 4468
Up ITGAL 14 hsa-mir-764 Down SLC2A1 50 hsa-mir − 4448
Up FYN 14 hsa-mir-3924 Down POU2F2 49 hsa-mir − 4307
Up JAK2 14 hsa-mir-5692a Down LIF 47 hsa-mir-3655
Up PDCD1 13 hsa-mir-922 Down MBL2 47 hsa-mir-3689c
Up C1QBP 11 hsa-mir − 484 Down HLA-B 44 hsa-mir-5047
Up IKBKB 10 hsa-mir − 451a Down ZEB1 43 hsa-mir-2113
Up TLR2 10 hsa-mir-105-5p Down RELA 41 hsa-mir-7515
Up XBP1 10 hsa-mir-320c Down CD46 39 hsa-mir − 4780
Up TMEM173 9 hsa-mir-5093 Down PAX5 37 hsa-mir-6127
Up ATG5 9 hsa-mir-299-5p Down CASP3 36 hsa-mir − 4666b
Up ZAP70 4 hsa-mir-631 Down STAT5A 34 hsa-mir − 4457
Up IFIH1 4 hsa-mir − 424-5p Down PTAFR 33 hsa-mir − 4301
Up KLRC1 4 hsa-mir-9-5p Down THY1 32 hsa-mir − 4269
Up IKZF1 4 hsa-mir-19a-3p Down ATG7 29 hsa-mir − 4518
Up KLRK1 3 hsa-mir-148b-3p Down S1PR1 29 hsa-mir-7977
Up IKBKE 3 hsa-mir-296-5p Down C8A 29 hsa-mir-1299
Up GFI1 3 hsa-mir-142-3p Down CDH5 28 hsa-mir-544a
Up NLRP3 3 hsa-mir-223-3p Down GPI 27 hsa-mir-760
Up ITGB2 3 hsa-mir-146a-5p Down ILF3 27 hsa-mir − 4314
Up IL18RAP 2 hsa-mir − 4677-3p Down KIT 25 hsa-mir − 4490
Up IRF7 2 hsa-mir-762 Down GPR183 24 hsa-mir-1303
Up C2 2 hsa-mir-335-5p Down TRAF3 24 hsa-mir-8085
Up MX1 2 hsa-mir-211-5p Down PTPN6 24 hsa-mir − 4525
Up CCR1 2 hsa-mir-181d-3p Down SELPLG 23 hsa-mir-1470
Up CUL9 1 hsa-mir-335-5p Down RAG1 23 hsa-mir-3666
Up IL18R1 1 hsa-mir-124-3p Down HLA-DRB1 23 hsa-mir-3978
Up GBP1 1 hsa-mir-124-3p Down TAL1 23 hsa-mir − 4719
Up TBX21 1 hsa-mir-29b-3p Down CCL11 23 hsa-mir-6077
Up GP1BB 1 hsa-mir-26b-5p Down IL6 22 hsa-mir − 451a
Up IRF5 1 hsa-mir-22-3p Down TGFBI 22 hsa-mir-1322
Down CTSS 22 hsa-mir-8066
Down CXCL12 20 hsa-mir-886-3p
Down BID 20 hsa-mir-623
Down TOLLIP 20 hsa-mir-6078
Down CD86 20 hsa-mir-8056
Down TIGIT 20 hsa-mir-3941
Down CD3E 20 hsa-mir − 4510
Down TNFRSF9 19 hsa-mir-1305
Down CXCR2 18 hsa-mir-588
Down C6 18 hsa-mir − 4310
Down IL5 17 hsa-mir-604
Down EBI3 17 hsa-mir-6069
Down TCF4 15 hsa-let-7e-5p
Down BCAP31 15 hsa-mir − 4514
Down CD82 15 hsa-mir-1470
Down FCAR 15 hsa-mir-1976
Down SELE 14 hsa-mir-630
Down HLA-DRA 14 hsa-mir-3915
Down IFNB1 13 hsa-mir-6080
Down CD9 13 hsa-mir-5688
Down IL10RA 12 hsa-mir-8064
Down IL1RL2 12 hsa-mir − 4301
Down IL1RAP 11 hsa-mir − 4635
Down IL7 11 hsa-mir-203a-3p
Down CD19 11 hsa-mir − 466
Down IFNG 10 hsa-mir-15b-5p
Down EGR2 10 hsa-mir-100-5p
Down PTGER4 10 hsa-mir-101-3p
Down C1S 10 hsa-mir-548 s
Down CX3CL1 10 hsa-mir-5093
Down CD244 10 hsa-mir-5702
Down C7 10 hsa-mir-1827
Down PTK2 9 hsa-mir-543
Down MS4A1 9 hsa-mir-644a
Down AIRE 9 hsa-mir − 4770
Down HLA-DOB 9 hsa-mir-1260a
Down MAP4K4 8 hsa-mir-520e
Down TRAF4 8 hsa-mir − 4284
Down FN1 8 hsa-mir-200b-3p
Down STAT6 8 hsa-mir-361-5p
Down CXCL11 8 hsa-mir − 4511
Down EGR1 8 hsa-mir-377-3p
Down C1R 8 hsa-mir-326
Down IL10 7 hsa-mir-106a-5p
Down IL12B 7 hsa-mir-103b
Down PLAU 7 hsa-mir-23b-3p
Down GATA3 7 hsa-mir-10b-5p
Down FCGR2A 7 hsa-mir − 4275
Down AICDA 7 hsa-mir-6873-3p
Down NT5E 6 hsa-mir − 422a
Down CTLA4 6 hsa-mir-3924
Down SPP1 6 hsa-mir-299-5p
Down BTK 6 hsa-mir-1253
Down MIF 6 hsa-mir-320a
Down IL13 5 hsa-let-7i-5p
Down CD34 5 hsa-mir-106b-5p
Down IL4 5 hsa-mir − 429
Down RORC 5 hsa-mir-148b-3p
Down CTSC 5 hsa-mir-199a-5p
Down CD40 5 hsa-mir-503-5p
Down IL2 5 hsa-mir-181c-5p
Down TCF7 4 hsa-mir-22-3p
Down ICAM5 4 hsa-mir − 4707-5p
Down CD83 4 hsa-mir-122-5p
Down HLA-DQA1 4 hsa-mir − 4673
Down IL4R 4 hsa-mir-331-3p
Down MAPK11 3 hsa-let-7a-5p
Down TNFSF12 3 hsa-mir-17-5p
Down CCL7 3 hsa-mir-135b-3p
Down IL12A 3 hsa-mir-10a-5p
Down CSF1R 3 hsa-mir-155-5p
Down CFI 3 hsa-mir-181a-5p
Down IL3 3 hsa-mir − 452-5p
Down NFIL3 3 hsa-mir-183-5p
Down ICAM3 3 hsa-mir-3943
Down EOMES 3 hsa-mir-7855-5p
Down PTPN22 3 hsa-mir-624-3p
Down LGALS3 3 hsa-mir-744-5p
Down CCL19 3 hsa-mir-148b-3p
Down IL17A 3 hsa-mir-16-1-3p
Down CD22 2 hsa-mir-19a-3p
Down CCL20 2 hsa-mir-21-5p
Down CCL26 2 hsa-mir-25-3p
Down DEFB4A 2 hsa-mir-26b-5p
Down CXCR1 2 hsa-mir-335-5p
Down MME 2 hsa-mir-1-3p
Down VTN 2 hsa-mir-26b-5p
Down LILRB5 2 hsa-mir-128-3p
Down IL13RA1 2 hsa-mir-143-3p
Down SIGIRR 2 hsa-mir-149-5p
Down C14orf166 2 hsa-mir-331-3p
Down CD8A 2 hsa-mir-196b-5p
Down IRF8 2 hsa-mir-646
Down FCGR2B 1 hsa-mir-18a-5p
Down NOS2 1 hsa-mir-26a-5p
Down RELB 1 hsa-mir-26b-5p
Down CXCL13 1 hsa-mir-26b-5p
Down BATF3 1 hsa-mir-26b-5p
Down ICAM4 1 hsa-mir-93-5p
Down IL23A 1 hsa-mir-10a-5p
Down ARHGDIB 1 hsa-mir-34a-5p
Down LTA 1 hsa-mir-34a-5p
Down ICAM2 1 hsa-mir-125b-5p
Down CR2 1 hsa-mir-132-3p
Down B3GAT1 1 hsa-mir-132-3p
Down IDO1 1 hsa-mir-153-3p
Down MASP1 1 hsa-mir-153-3p
Down CD80 1 hsa-mir-146a-5p
Down HLA-DPA1 1 hsa-mir-155-5p
Down TAGAP 1 hsa-mir-374a-5p
Down CD79A 1 hsa-mir-335-5p
Down FCGRT 1 hsa-mir-335-5p
Down HLA-DMA 1 hsa-mir-335-5p
Down KLRB1 1 hsa-mir-335-5p
Down LCK 1 hsa-mir-335-5p
Down PPBP 1 hsa-mir-335-5p
Down CCL15 1 hsa-mir-335-5p
Down CCL24 1 hsa-mir-335-5p
Down LILRA1 1 hsa-mir-335-5p
Down LILRA3 1 hsa-mir-335-5p
Down PLA2G2E 1 hsa-mir-335-5p
Down IL22 1 hsa-mir-335-5p
Down IL27 1 hsa-mir-335-5p
Down MBP 1 hsa-mir-127-5p
Down IL20 1 hsa-mir-624-3p

Degree – No of miRNA interact with target gene. We taken any one miRNA in table

Construction of target gene–TF regulatory network

Using the NetworkAnalyst database, target gene–TF regulatory network for up-regulated genes had 145 nodes and 634 interactions (Fig. 14). The network marked that each target genes have interactions with transcription factors (TFs). JAK1 regulates 46 TFs (ex, FOXC1), TRAF6 regulates 31 TFs (ex, GATA2), CLEC7A regulates 25 TFs (ex, YY1), STAT1 regulates 22 TFs (ex, CREB1) and IKZF1 regulates 22 TFs (ex, TFAP2A) are listed in Table 8. Enrichment analysis showed that the target genes in this network were mainly involved in measles, herpes simplex infection, tuberculosis, osteoclast differentiation and regulation of immune system process. Similarly, target gene–TF regulatory network of down-regulated genes had 1788 nodes and 235 interactions (Fig. 15). KLRF2 regulates 127 TFs (ex, FOXC1), CD1A regulates 102 TFs (ex, GATA2), TNFRSF4 regulates 75 TFs (ex, YY1), MME regulates 63 TFs (ex, FOXL1) and CXCL12 regulates 63 TFs (ex, FOXL1) are listed in Table 7. Enrichment analysis showed that the target genes in this network were mainly involved in cytokine-mediated signaling pathway, hematopoietic cell lineage, cytokine–cytokine receptor interaction, innate immune system and peptide ligand-binding receptors.

Fig. 14.

Fig. 14

The network of up regulated genes and their related TFs. The green circles nodes (Inline graphic ) are the up regulated genes; Blue triangle nodes (Inline graphic ) are the TFs; Purple line (Inline graphic ) denotes edges (Interactions)

Fig. 15.

Fig. 15

The network of down regulated genes and their related TFs. The Red circles nodes (Inline graphic ) are the down regulated genes; Blue triangle nodes (Inline graphic ) are the TFs; Yelow line (Inline graphic ) denotes edges (Interactions)

Validation of hub genes

The ROC curve analysis was accomplished to assess the diagnostic values of hub genes. Our finding revealed that CCL5 (AUC = 0.784), IFNAR2 (AUC = 0.750), JAK2 (AUC = 0.859), MX1 (AUC = 0.773), STAT1 (AUC = 0.873), BID (AUC = 0.848), CD55 (AUC = 0.973), CD80 (AUC = 0.870), HAL-B (AUC = 0.816) and HLA-DMA (AUC = 0.730) had significant diagnostic values for discriminating SARS-CoV-2 samples and normal controls (Fig. 16).

Fig. 16.

Fig. 16

ROC curve validated the sensitivity, specificity of hub genes as a predictive biomarker for SARS-CoV-2 diagnosis. a CCL5 b IFNAR2 c JAK2 d MX1 e STAT1 f BID g CD55 h CD80 i HAL-B j HLA-DMA

Discussion

Currently, genetic and genomic-related exploration progress speedily and provide new prospect to illuminate the molecular pathogenesis of SARS-CoV-2 infections. And bioinformatics analysis also has developed phenomenally and is committed to search for candidate biomarkers to implement more correct screening, prompt diagnosis for SARS-CoV-2-infected patients based on enormous genetic and genomics data.

In the current investigation, a bioinformatics approach was used to identify candidate biomarker and therapeutic targets of SARS-CoV-2 infection. Following the analysis, 324 DEGs, including 76 up-regulated genes and 248 down-regulated genes were identified. Shi et al. (2007) found that expression of JAK1 was responsible for progression of adenovirus infection, but this gene may be linked with advancement of SARS-CoV-2 infection. Previously reported genes such as ZAP70 (Guntermann et al. 1997), CD22 (Ma et al. 2013) and MAPKAPK2 (Yang et al. 2012) are expressed and responsible for progression various viral infections, but our study found that these genes may important for development of SARS-CoV-2 infection. Previously reported genes such as CCR5 (Dawson et al. 2000) and TRAF6 (Tian et al. 2018) were highly expressed and involved in progression of influenza A viral infections, but these genes may be liable for advancement of SARS-CoV-2 infection. Zhivaki et al. (2017) noticed that expression of CX3CR1 is associated in progression of respiratory syncytial virus infection, but this gene may be linked with development of SARS-CoV-2 infection. Previous studies had reported that expression of CD45RB was key for progression of sendai virus infection (Hou and Doherty 1993), but this gene may liable for advancement of SARS-CoV-2 infection. Corominas et al. (2020) showed the possible involvement of IL6R in the development of SARS-CoV-2 infection. Evidence from Chi et al. (2013) study indicated that the HLA-DQB1 expression level is down-regulated in varicella-zoster virus infection, but low expression of this gene may be associated in progression of SARS-CoV-2 infection.

Pathway enrichment analysis results for up- and down-regulated gene might play important roles in the SARS-CoV-2 infection. Studies have found that over expression of enriched genes such as CCND3 (Fan et al. 2017), IRF7 (Rosenberger et al. 2017), MX1 (Pillai et al. 2016) and STAT4 (Bot et al. 2003) in influenza viral infection, but these genes may be important for progression of SARS-CoV-2 infection. JAK2 is a protein-coding gene which was first reported aberrantly expressed and plays important roles in SARS-CoV-2 infection (Wu and Yang 2020). After that, enriched up-regulated genes such as IFIH1 (Asgari et al. 2017), FYN (FYN proto-oncogene, Src family tyrosine kinase) (Kenney and Meng 2015), STAT1 (Patel et al. 2010), GZMB (granzyme B) (Loebbermann et al. 2012a, b), TRAF2 (Liu et al. 2019) and BST2 (Wang et al. 2019) were found to be involved in development of severe viral respiratory infections. Rice et al. (2016) suggested that TLR2 activity was involved in progression of pneumovirus infection, but this gene may be involved in development of SARS-CoV-2 infection. IL2RG has been shown to have an important role in adeno-associated viral infection (Hiramoto et al. 2018), but this gene may be involved in progression of SARS-CoV-2 infection. Reported enriched up-regulated genes such as STAT3 (Mizutani et al. 2004) and HLA-A (Ohno et al. 2009) contributes to the progression of SARS coronavirus infection, but this gene may be involved in SARS-CoV-2 infection. Several studies have reported that enriched genes such as STAT5B (Mukherjee et al. 2014), SOCS1 (Zheng et al. 2015), CCR1 (Miller et al. 2006) and CCL5 (Sali mi et al. 2017) were highly expressed in respiratory syncytial virus infection, but elevated expression these genes may be involved in development of SARS-CoV-2 infection. Increasing evidence shows that the enriched genes such as IFNAR2 (Romporn et al. 2013), TBX21 (Zhu et al. 2015), GBP1 (Anderson et al. 1999), IRF5 (Vandenbroeck et al. 2011) and IFI35 (Estrabaud et al. 2015) were over expressed in various viral infections, but high expression of these genes may be involved in infection of SARS-CoV-2 infection. Novel biomarkers such as IKBKE (inhibitor of nuclear factor kappa B kinase subunit epsilon), TP53, CD247, IL18RAP, IL18R1, HRAS (HRas proto-oncogene, GTPase), PSMB9, IKBKB (inhibitor of nuclear factor kappa B kinase subunit beta), ITGB2 and LTB4R were highly expressed and might be involved in progression of SARS-CoV-2 infection. Sanders et al. (2001) revealed that NOS2 was down-regulated in rhinovirus infection, but this gene may be involved in development of SARS-CoV-2 infection. The enriched down-regulated genes found in this study include IL10 (Loebbermann et al. 2012a, b), IL13 (Castilow et al. 2008), IL21 (Antunes et al. 2019), CCR6 (Shi et al. 2017), CXCL13 (Alturaiki et al. 2018), CCL20 (Shi et al. 2017), IL19 (Ermers et al. 2011), IL20 (Ermers et al. 2011), CD40 (Harcourt et al. 2003a, b), IL2 (Noma et al. 1996), IL3 (Bertrand et al. 2015), IL4 (Puthothu et al. 2006), IL9 (Dodd et al. 2009) and STAT6 (Srinivasa et al. 2016) were responsible for progression of respiratory syncytial virus infection, but these genes may be linked with progression of SARS-CoV-2 infection. Many previous studies have confirmed the roles of enriched down-regulated genes such as IL12B (Mueller et al. 2004), TNFRSF9 (Rodriguez et al. 2019), TNFRSF14 (Soroosh et al. 2014), IL17F (Wang et al. 2016), CCR8 (Calado et al. 2010), CCL18 (Malhotra et al. 2019), CCL22 (Yang et al. 2012), CXCL11 (Pineda-Tenor et al. 2014), CX3CL1 (Bertin et al. 2014), CXCL12 (Durrant et al. 2014), CCR10 (Nakayama et al. 2002), IFNA2 (Chen et al. 2017), IFNB1 (Gagné et al. 2017), IL7 (Golden‐Mason et al. 2006), IL26 (Miot et al. 2015), CXCR1 (Xu et al. 2016), CEBPB (CCAAT enhancer binding protein beta) (Liu et al. 2009), ETS1 (Posada et al. 2000), STAT5A (Warby et al. 2003), THY1 (Lu et al. 2011), IL16 (Caufour et al. 2001), HLA-B (Martin et al. 2007), HLA-C (Apps et al. 2013), HLA-DPA1 (Wasityastuti et al. 2016), HLA-DPB1 (Lambert et al. 2015), HLA-DQA1 (Tibbs et al. 1996), HLA-DRB1 (Chi et al. 2013), PSMB10 (Deng et al. 2019), BCL2 (Zuckerman et al. 2001), TOLLIP (toll interacting protein) (Li et al. 2016a, b), VCAM1 (Koraka et al. 2004), RAG1 (Winkler et al. 2017), IRF8 (Terry et al. 2015), EBI3 (Gehlert et al. 2004), EGR1 (Baer et al. 2016), IL27 (Swaminathan et al. 2013) and BID (BH3 interacting domain death agonist) (Hsu et al. 2003) were linked with development of various viral infections, but these genes may be associated with advancement of SARS-CoV-2 infection. Previous investigation demonstrated that enriched down-regulated genes such as IL17A (Wang et al. 2016), CCL11 (Suryadevara et al. 2013), CCL19 (Fleming-Canepa et al. 2011), XCR1 (Fossum et al. 2015), IFNAR1 (Lin et al. 2014), IL22 (Kumar et al. 2013), LTA (lymphotoxin alpha) (Morales-García et al. 2012), IL5 (Gorski et al. 2013), EGR2 (Du et al. 2014), RAG2 (Wu et al. 2010), CASP3 (Takahashi et al. 2013), S1PR1 (Zhao et al. 2019), CD80 (Lumsden et al. 2000), CD86 (Lumsden et al. 2000) and CD44 (Liu et al. 2014) were key for advancement of influenza virus infection, but these genes may be involved in progression of SARS-CoV-2 infection. Enriched down-regulated genes such as CCL7 (Girkin et al. 2015) and CXCR2 (Nagarkar et al. 2009) have been reported to be associated with rhinovirus 1B infection, but these genes may be responsible for infection of SARS-CoV-2. Accumulating evidence shows that enriched genes such as IFNG (interferon gamma) (Sainz et al. 2004) and TRAF3 (Siu et al. 2009) were low expressed in SARS-CoV, but decreased expression of these genes may be key for progression of SARS-CoV-2 infection. Conti et al. (2020) showed that IL6 was liable for progression of SARS-CoV-2 infection. Novel biomarkers such as IL10RA, IL12A, IL13RA1, PDGFB (platelet-derived growth factor subunit B), TNFSF12, IL17B, TNFRSF10C, CCL26, TNFRSF4, IL22RA2, CCL15, CCL16, CCL24, XCL1, KIT (KIT proto-oncogene, receptor tyrosine kinase), CCL13, PPBP (pro-platelet basic protein), IL23A, TGFBR1, LIF (LIF interleukin 6 family cytokine), CSF1R, CSF2, CSF2RB, CSF3R, TNFRSF13C, IL1RAP, IL4R, AICDA (activation-induced cytidinedeaminase), PTPN6, PIGR (polymeric immunoglobulin receptor), GATA3, PTAFR (platelet activating factor receptor), IL1RL2, PTK2, FN1, DUSP4, RELA (RELA proto-oncogene, NF-kA subunit), RELB (RELB proto-oncogene, NF-kB subunit), LCK (LCK proto-oncogene, Src family tyrosine kinase), IRAK4, RORC (RAR-related orphan receptor C), BCL2L11 and PLA2G2A were low expressed and might be involved in progression of SARS-CoV-2 infection.

GO enrichment analysis results for up- and down-regulated gene might play important roles in the SARS-CoV-2 infection. Enriched up-regulated genes such as ATG5 (Guévin et al. 2010), PDCD1 (Nasi et al. 2013), ABL1 (García et al. 2012), CD99 (Tochikura et al. 2003), LILRB2 (Alaoui et al. 2018), LAG3 (Tian et al. 2015), SERPING1 (Sanfilippo et al. 2017), XBP1 (Sharma et al. 2017), CTNNB1 (Tucci et al. 2013), RUNX1 (Zhao et al. 2016), SLAMF7 (O’Connell et al. 2019), ITGAL (integrin subunit alpha L) (Xu et al. 2018) and CEACAM1 (Hirai et al. 2010) appeared to be related in various types of viral infections, but these genes may be responsible for progression of SARS-CoV-2 infection. Hu et al. (2017) observed that high expression of C1QBP was liable for progression of respiratory syncytial viral infection, but elevated expression this gene may be associated with advancement of SARS-CoV-2 infection. Evidence demonstrated that high expression of enriched genes such as KLRD1 (Bongen et al. 2018) and NLRP3 (Pothlichet et al. 2013) were important for progression of influenza virus infection, but increased expression of these genes may be involved in advancement of SARS-CoV-2 infection. Novel biomarkers such as KLRK1, IKZF3, ZBTB16, CLEC7A, C2 (complement C2), IKZF1, LCP2, KLRC1, GFI1, CCRL2 and MAP4K2 were highly expressed and might be involved in progression of SARS-CoV-2 infection. Studies have reported that low expression of enriched genes such as IRGM (immunity-related GTPase M) (Hansen et al. 2017), MASP1 (El Saadany et al. 2011), CD244 (Raziorrouh et al. 2010), MBL2 (Spector et al. 2010), CD46 (Gaggar et al. 2003), C4A (Imakiire et al. 2012), C9 (Kim et al. 2013), ZEB1 (Lacher et al. 2011), ICAM2 (Wang et al. 2009), BTLA (B and T lymphocyte associated) (Cai et al. 2013), CD1A (Sacchi et al. 2007), CD19 (Zehender et al. 1997), ICAM5 (Wei et al. 2016), CD34 (Fahrbach et al. 2007), CD48 (Ezinne et al. 2014), CD59 (Amet et al. 2012), CD74 (Le Noury et al. 2015) and DEFB1 (Estrada-Aguirre et al. 2014) were linked with development of various viral infections, but low expression of these genes may be liable for progression of SARS-CoV-2 infection. Recent studies reported that enriched genes such as IDO1 (Fox et al. 2015), CD55 (Li et al. 2016), PTPN22 (Crabtree et al. 2016), FCGR2A (Maestri et al. 2016), CARD9 (Uematsu et al. 2015), MIF (macrophage migration inhibitory factor) (Arndt et al. 2002) and PLAU (plasminogen activator, urokinase) (Sidenius et al. 2000) were low expressed in influenza virus infection, but decrease expression of these genes may be key for progression of SARS-CoV-2 infection. Low expression of genes such as PECAM1 (Wang et al. 1998), TLR9 (Shafique et al. 2012) and CTLA4 (Ayukawa et al. 2004) were observed in respiratory syncytial virus infection, but decrease expression these genes may be associated with progression of SARS-CoV-2 infection. Chen et al. (2017) demonstrated CD83 was important for progression of respiratory syndrome virus, but decrease expression of this gene may be linked with advancement of SARS-CoV-2 infection. Many studies have reported the enriched down-regulated gene such as CD209 (Chan et al. 2010), DPP4 (Letko et al. 2018), ICAM3 (Chan et al. 2007), CD9 (Earnest et al. 2017) and MASP2 (Wang et al. 2009) were liable for advancement of SARS-CoV, but these genes may be linked with progression of SARS-CoV-2 infection. Treon et al. (2020) indicated that low expression of BTK (Bruton tyrosine kinase) was key for progression of SARS-CoV-2 infection. Novel biomarkers such as HLA-DMA, HLA-DMB, HLA-DOB, HLA-DRA, CTSC (cathepsin C), PTGER4, CFD (complement factor D), SLAMF6, FCER1A, FCGR2B, C1R, C1S, C4BPA, C6, C7, C8A, C8B, TAL1, KLRB1, SELE (selectin E), GPI (glucose-6-phosphate isomerase), ICOSLG (inducible T cell costimulator ligand), LILRA1, LILRA2, VTN (vitronectin), CLEC6A, ATG7, ICAM4, AIRE (autoimmune regulator), GPR183, CFI, CR2, LGALS3, TFRC (transferrin receptor), CD3E, CD8A, TIGIT (T cell immunoreceptor with Ig and ITIM domains), MS4A1, TIRAP (TIR domain containing adaptor protein), CD79A, CD79B, PAX5, HAMP (hepcidin antimicrobial peptide), MAPK11, CTSS (cathepsin S), MBP (myelin basic protein), ITGAE (integrin subunit alpha E), FCGRT (Fc fragment of IgG receptor and transporter), MME (membrane metalloendopeptidase), NT5E, CDH5, DEFB103B, DEFB4A and TRAF4 were low expressed and might be involved in progression of SARS-CoV-2 infection.

Construction of PPI network of up- and down-regulated genes might be helpful for understanding the relationship of developmental SARS-CoV-2 infection. Desai et al. (2018) showed that BATF3 was involved in progression of respiratory poxvirus infection, but this gene may be key for development of SARS-CoV-2 infection. Novel biomarker ILF3 was low expressed and might be involved in progression of SARS-CoV-2 infection.

A target gene–miRNA regulatory and target gene–TF regulatory network for up- and down-regulated genes were generated to determine the key target genes and provide valuable information for the analysis of cellular functions and biological processes in SARS-CoV-2 infection. SMAD5 was highly expressed in SARS-CoV-2 infection and might be consider as novel biomarker. Novel biomarkers such as SKI (SKI proto-oncogene) and KLRF2 were low expressed and might be involved in progression of SARS-CoV-2 infection.

Conclusion

It in earnestly hoped that this research will help in enhancing attempts to further understand the molecular characteristics of SARS-CoV-2 infection progression. CCL5, IFNAR2, JAK2, MX1, STAT1, BID, CD55, CD80, HAL-B and HLA-DMA may be used as biomarkers and therapeutic targets in patients with SARS-CoV-2 infection. This research, it is hoped promote ultimate molecularly targeted therapies for SARS-CoV-2 infection and provide acceptable local control and survival.

Acknowledgements

We thank Eugenia Ong, Experimental Therapeutics Centre, Agency for Science, Technology and Research, Singapore, Singapore, very much, the author who deposited their microarray dataset, E-MTAB-8871, into the public ArrayExpress database.

Author contributions

Basavaraj Vastrad participated in writing original draft and investigation, Chanabasayya Vastrad performed software, supervision, formal analysis and validation. Anandkumar Tengli performed editing and reviewing the manuscript.

Availability of data and materials

The datasets supporting the conclusions of this article are available in the ArrayExpress (https://www.ebi.ac.uk/arrayexpress) repository. [(E-MTAB-8871) (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8871/)].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent, because this study does not contain human or animals participants.

Consent for publication

Not applicable.

References

  1. Alaoui L, Palomino G, Zurawski S, Zurawski G, Coindre S, Dereuddre-Bosquet N, Lecuroux C, Goujard C, Vaslin B, Bourgeois C, et al. Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs. Cell Mol Life Sci. 2018;75(10):1871–1887. doi: 10.1007/s00018-017-2712-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alturaiki W, McFarlane AJ, Rose K, Corkhill R, McNamara PS, Schwarze J, Flanagan BF. Expression of the B cell differentiation factor BAFF and chemokine CXCL13 in a murine model of respiratory syncytial virus infection. Cytokine. 2018;110:267–271. doi: 10.1016/j.cyto.2018.01.014. [DOI] [PubMed] [Google Scholar]
  3. Amet T, Ghabril M, Chalasani N, Byrd D, Hu N, Grantham A, Liu Z, Qin X, He JJ, Yu Q. CD59 incorporation protects hepatitis C virus against complement-mediated destruction. Hepatology. 2012;55(2):354–363. doi: 10.1002/hep.24686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson SL, Carton JM, Lou J, Xing L, Rubin BY. Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology. 1999;256(1):8–14. doi: 10.1006/viro.1999.9614. [DOI] [PubMed] [Google Scholar]
  5. Antunes KH, Becker A, Franceschina C, de Freitas DD, Lape I, da Cunha MD, Leitão L, Rigo MM, Pinto LA, Stein RT, et al. Respiratory syncytial virus reduces STAT3 phosphorylation in human memory CD8 T cells stimulated with IL-21. Sci Rep. 2019;9(1):17766. doi: 10.1038/s41598-019-54240-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Apps R, Qi Y, Carlson JM, Chen H, Gao X, Thomas R, Yuki Y, Del Prete GQ, Goulder P, Brumme ZL, et al. Influence of HLA-C expression level on HIV control. Science. 2013;340(6128):87–91. doi: 10.1126/science.1232685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Arndt U, Wennemuth G, Barth P, Nain M, Al-Abed Y, Meinhardt A, Gemsa D, Bacher M. Release of macrophage migration inhibitory factor and CXCL8/interleukin-8 from lung epithelial cells rendered necrotic by influenza A virus infection. J Virol. 2002;76(18):9298–9306. doi: 10.1128/jvi.76.18.9298-9306.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Asgari S, Schlapbach LJ, Anchisi S, Hammer C, Bartha I, Junier T, Mottet-Osman G, Posfay-Barbe KM, Longchamp D, Stocker M, et al. Severe viral respiratory infections in children with IFIH1 loss-of-function mutations. Proc Natl Acad Sci USA. 2017;114(31):8342–8347. doi: 10.1073/pnas.1704259114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ayukawa H, Matsubara T, Kaneko M, Hasegawa M, Ichiyama T, Furukawa S. Expression of CTLA − 4 (CD152) in peripheral blood T cells of children with influenza virus infection including encephalopathy in comparison with respiratory syncytial virus infection. Clin Exp Immunol. 2004;137(1):151–155. doi: 10.1111/j.1365-2249.2004.02502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Baer A, Lundberg L, Swales D, Waybright N, Pinkham C, Dinman JD, Jacobs JL, Kehn-Hall K. Venezuelan equine encephalitis virus induces apoptosis through the unfolded protein response activation of EGR1. J Virol. 2016;90(7):3558–3572. doi: 10.1128/jvi.02827-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bertin J, Jalaguier P, Barat C, Roy MA, Tremblay MJ. Exposure of human astrocytes to leukotriene C4 promotes a CX3CL1/fractalkine-mediated transmigration of HIV-1-infected CD4+ T cells across an in vitro blood-brain barrier model. Virology. 2014;454–455:128–138. doi: 10.1016/j.virol.2014.02.007. [DOI] [PubMed] [Google Scholar]
  12. Bertrand P, Lay MK, Piedimonte G, Brockmann PE, Palavecino CE, Hernández J, León MA, Kalergis AM, Bueno SM. Elevated IL-3 and IL-12p40 levels in the lower airway of infants with RSV-induced bronchiolitis correlate with recurrent wheezing. Cytokine. 2015;76(2):417–423. doi: 10.1016/j.cyto.2015.07.017. [DOI] [PubMed] [Google Scholar]
  13. Bongen E, Vallania F, Utz PJ, Khatri P. KLRD1-expressing natural killer cells predict influenza susceptibility. Genome Med. 2018;10(1):45. doi: 10.1186/s13073-018-0554-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bot A, Rodrigo E, Wolfe T, Bot S, Von Herrath MG. Infection-triggered regulatory mechanisms override the role of STAT 4 in control of the immune response to influenza virus antigens. J Virol. 2003;77(10):5794–5800. doi: 10.1128/jvi.77.10.5794-5800.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cai G, Nie X, Li L, Hu L, Wu B, Lin J, Jiang C, Wang H, Wang X, Shen Q. B and T lymphocyte attenuator is highly expressed on intrahepatic T cells during chronic HBV infection and regulates their function. J Gastroenterol. 2013;48(12):1362–1372. doi: 10.1007/s00535-013-0762-9. [DOI] [PubMed] [Google Scholar]
  16. Calado M, Matoso P, Santos-Costa Q, Espirito-Santo M, Machado J, Rosado L, Antunes F, Mansinho K, Lopes MM, Maltez F, et al. Coreceptor usage by HIV-1 and HIV-2 primary isolates: the relevance of CCR8 chemokine receptor as an alternative coreceptor. Virology. 2010;408(2):174–182. doi: 10.1016/j.virol.2010.09.020. [DOI] [PubMed] [Google Scholar]
  17. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44(D1):D471–D480. doi: 10.1093/nar/gkv1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Castilow EM, Meyerholz DK, Varga SM. IL-13 is required for eosinophil entry into the lung during respiratory syncytial virus vaccine-enhanced disease. J Immunol. 2008;180(4):2376–2384. doi: 10.4049/jimmunol.180.4.2376. [DOI] [PubMed] [Google Scholar]
  19. Caufour P, Le Grand R, Chéret A, Neildez O, Thiébot H, Théodoro F, Boson B, Vaslin B, Venet A, Dormont D. Longitudinal analysis of CD8(+) T-cell phenotype and IL-7, IL-15 and IL-16 mRNA expression in different tissues during primary simian immunodeficiency virus infection. Microbes Infect. 2001;3(3):181–191. doi: 10.1016/s1286-4579(01)01370-3. [DOI] [PubMed] [Google Scholar]
  20. Chan KY, Ching JC, Xu MS, Cheung AN, Yip SP, Yam LY, Lai ST, Chu CM, Wong AT, Song YQ, et al. Association of ICAM3 genetic variant with severe acute respiratory syndrome. J Infect Dis. 2007;196(2):271–280. doi: 10.1086/518892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Chan KY, Xu MS, Ching JC, So TM, Lai ST, Chu CM, Yam LY, Wong AT, Chung PH, Chan VS, et al. CD209 (DC-SIGN) -336A > G promoter polymorphism and severe acute respiratory syndrome in Hong Kong Chinese. Hum Immunol. 2010;71(7):702–707. doi: 10.1016/j.humimm.2010.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305–W311. doi: 10.1093/nar/gkp427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chen C, Zhu X, Xu W, Yang F, Zhang G, Wu L, Zheng Y, Gao Z, Xie C, Peng L. IFNA2 p.Ala120Thr impairs the inhibitory activity of Interferon-α2 against the hepatitis B virus through altering its binding to the receptor. Antiviral Res. 2017;147:11–18. doi: 10.1016/j.antiviral.2017.09.015. [DOI] [PubMed] [Google Scholar]
  24. Chen X, Zhang Q, Bai J, Zhao Y, Wang X, Wang H, Jiang P. The nucleocapsid protein and nonstructural protein 10 of highly pathogenic porcine reproductive and respiratory syndrome virus enhance CD83 production via NF-κB and Sp1 signaling pathways. J Virol. 2017;91(18):e00986. doi: 10.1128/jvi.00986-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Chi CY, Chu CC, Liu JP, Lin CH, Ho MW, Lo WJ, Lin PC, Chen HJ, Chou CH, Feng JY, et al. Anti-IFN-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood. 2013;121(8):1357–1366. doi: 10.1182/blood-2012-08-452482. [DOI] [PubMed] [Google Scholar]
  26. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–D302. doi: 10.1093/nar/gkx1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):1. doi: 10.23812/CONTI-E. [DOI] [PubMed] [Google Scholar]
  28. Corominas H, Castellví I, Domingo P, Casademont J. Facing the SARS-CoV-2 (COVID-19) outbreak with IL-6R antagonists. Eur J Rheumatol. 2020 doi: 10.5152/eurjrheum.2020.20061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Crabtree JN, He W, Guan W, Flage M, Miller MS, Peterson EJ. Autoimmune Variant PTPN22 C1858T Is Associated With Impaired Responses to Influenza Vaccination. J Infect Dis. 2016;214(2):248–257. doi: 10.1093/infdis/jiw126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002;31(1):19–20. doi: 10.1038/ng0502-19. [DOI] [PubMed] [Google Scholar]
  31. Dai E, Yu X, Zhang Y, Meng F, Wang S, Liu X, Liu D, Wang J, Li X, Jiang W. EpimiR: a database of curated mutual regulation between miRNAs and epigenetic modifications. Database (Oxford). 2014;2014:bau023. doi: 10.1093/database/bau023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol. 2000;156(6):1951–1959. doi: 10.1016/s0002-9440(10)65068-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Deng S, Yang C, Nie K, Fan S, Zhu M, Zhu J, Chen Y, Yuan J, Zhang J, Xu H, et al. Host cell protein PSMB10 interacts with viral NS3 protein and inhibits the growth of classical swine fever virus. Virology. 2019;537:74–83. doi: 10.1016/j.virol.2019.05.017. [DOI] [PubMed] [Google Scholar]
  34. Desai P, Tahiliani V, Abboud G, Stanfield J, Salek-Ardakani S. Batf3-dependent dendritic cells promote optimal CD8 T cell responses against respiratory poxvirus infection. J Virol. 2018;92(16):e00495. doi: 10.1128/jvi.00495-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Dodd JS, Lum E, Goulding J, Muir R, Van Snick J, Openshaw PJ. IL-9 regulates pathology during primary and memory responses to respiratory syncytial virus infection. J Immunol. 2009;183(11):7006–7013. doi: 10.4049/jimmunol.0900085. [DOI] [PubMed] [Google Scholar]
  36. Du N, Kwon H, Li P, West EE, Oh J, Liao W, Yu Z, Ren M, Leonard WJ. EGR2 is critical for peripheral naïve T-cell differentiation and the T-cell response to influenza. Proc Natl Acad Sci USA. 2014;111(46):16484–16489. doi: 10.1073/pnas.1417215111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Durrant DM, Daniels BP, Klein RS. IL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis. J Immunol. 2014;193(8):4095–4106. doi: 10.4049/jimmunol.1401192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Earnest JT, Hantak MP, Li K, McCray PB, Jr, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog. 2017;13(7):e1006546. doi: 10.1371/journal.ppat.1006546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. El Saadany SA, Ziada DH, Farrag W, Hazaa S. Fibrosis severity and mannan-binding lectin (MBL)/MBL-associated serine protease 1 (MASP-1) complex in HCV-infected patients. Arab J Gastroenterol. 2011;12(2):68–73. doi: 10.1016/j.ajg.2011.04.005. [DOI] [PubMed] [Google Scholar]
  40. Ermers MJ, Janssen R, Onland-Moret NC, Hodemaekers HM, Rovers MM, Houben ML, Kimpen JL, Bont LJ. IL10 family member genes IL19 and IL20 are associated with recurrent wheeze after respiratory syncytial virus bronchiolitis. Pediatr Res. 2011;70(5):518–523. doi: 10.1203/pdr.0b013e31822f5863. [DOI] [PubMed] [Google Scholar]
  41. Estrabaud E, Appourchaux K, Bieche I, Carrat F, Lapalus M, Lada O, Martinot-Peignoux M, Boyer N, Marcellin P, Vidaud M, et al. IFI35, mir-99a and HCV genotype to predict sustained virological response to pegylated-interferon plus ribavirin in chronic hepatitis C. PLoS ONE. 2015;10(4):e0121395. doi: 10.1371/journal.pone.0121395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Estrada-Aguirre JA, Osuna-Ramírez I, Montes Prado, de Oca E, Ochoa-Ramirez LA, Ramirez M, Magallon-Zazueta LG, Gonzalez-Beltran MS, Cazarez-Salazar SG, Rangel-Villalobos H, Velarde-Felix JS. DEFB1 5′UTR polymorphisms modulate the risk of HIV-1 infection in Mexican women. Curr HIV Res. 2014;12(3):220–226. doi: 10.2174/1570162x12666140708102722. [DOI] [PubMed] [Google Scholar]
  43. Ezinne CC, Yoshimitsu M, White Y, Arima N. HTLV-1 specific CD8 + T cell function augmented by blockade of 2B4/CD48 interaction in HTLV-1 infection. PLoS ONE. 2014;9(2):e87631. doi: 10.1371/journal.pone.0087631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–D655. doi: 10.1093/nar/gkx1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Fahrbach KM, Barry SM, Ayehunie S, Lamore S, Klausner M, Hope TJ. Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J Virol. 2007;81(13):6858–6868. doi: 10.1128/jvi.02472-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Fan Y, Xia J. miRNet-functional analysis and visual exploration of mirna-target interactions in a network context. Methods Mol Biol. 2018;1819:215–233. doi: 10.1007/978-1-4939-8618-7_10. [DOI] [PubMed] [Google Scholar]
  47. Fan Y, Mok CK, Chan MC, Zhang Y, Nal B, Kien F, Bruzzone R, Sanyal S. Cell cycle-independent role of cyclin D3 in host restriction of influenza virus infection. J Biol Chem. 2017;292(12):5070–5088. doi: 10.1074/jbc.m117.776112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Fleming-Canepa X, Brusnyk C, Aldridge JR, Ross KL, Moon D, Wang D, Xia J, Barber MR, Webster RG, Magor KE. Expression of duck CCL19 and CCL21 and CCR7 receptor in lymphoid and influenza-infected tissues. Mol Immunol. 2011;48(15–16):1950–1957. doi: 10.1016/j.molimm.2011.05.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Fossum E, Grødeland G, Terhorst D, Tveita AA, Vikse E, Mjaaland S, Henri S, Malissen B, Bogen B. Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8 + T-cell responses against influenza virus. Eur J Immunol. 2015;45(2):624–635. doi: 10.1002/eji.201445080. [DOI] [PubMed] [Google Scholar]
  50. Fox JM, Crabtree JM, Sage LK, Tompkins SM, Tripp RA. Interferon lambda upregulates IDO1 expression in respiratory epithelial cells after influenza virus infection. J Interferon Cytokine Res. 2015;35(7):554–562. doi: 10.1089/jir.2014.0052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020 doi: 10.1007/s12250-020-00207-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Gaggar A, Shayakhmetov DM, Lieber A. CD46 is a cellular receptor for group B adenoviruses. Nat Med. 2003;9(11):1408–1412. doi: 10.1038/nm952. [DOI] [PubMed] [Google Scholar]
  53. Gagné B, Tremblay N, Park AY, Baril M, Lamarre D. Importin β1 targeting by hepatitis C virus NS3/4A protein restricts IRF3 and NF-κB signaling of IFNB1 antiviral response. Traffic. 2017;18(6):362–377. doi: 10.1111/tra.12480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. García M, Cooper A, Shi W, Bornmann W, Carrion R, Kalman D, Nabel GJ. Productive replication of Ebola virus is regulated by the c-Abl1 tyrosine kinase. Sci Transl Med. 2012;4(123):123ra24. doi: 10.1126/scitranslmed.3003500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Gehlert T, Devergne O, Niedobitek G. Epstein-Barr virus (EBV) infection and expression of the interleukin-12 family member EBV-induced gene 3 (EBI3) in chronic inflammatory bowel disease. J Med Virol. 2004;73(3):432–438. doi: 10.1002/jmv.20109. [DOI] [PubMed] [Google Scholar]
  56. Girkin J, Hatchwell L, Foster P, Johnston SL, Bartlett N, Collison A, Mattes J. CCL7 and IRF-7 Mediate Hallmark Inflammatory and IFN Responses following Rhinovirus 1B Infection. J Immunol. 2015;194(10):4924–4930. doi: 10.4049/jimmunol.1401362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Golden-Mason L, Burton JR, Jr, Castelblanco N, Klarquist J, Benlloch S, Wang C, Rosen HR. Loss of IL-7 receptor alpha-chain (CD127) expression in acute HCV infection associated with viral persistence. Hepatology. 2006;44(5):1098–1109. doi: 10.1002/hep.21365. [DOI] [PubMed] [Google Scholar]
  58. Gorski SA, Hahn YS, Braciale TJ. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog. 2013;9(9):e1003615. doi: 10.1371/journal.ppat.1003615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Guévin C, Manna D, Bélanger C, Konan KV, Mak P, Labonté P. Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology. 2010;405(1):1–7. doi: 10.1016/j.virol.2010.05.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Guntermann C, Dye J, Nye KE. Human immunodeficiency virus infection abolishes CD4-dependent activation of ZAP-70 by inhibition of p56lck. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;14(3):204–212. doi: 10.1097/00042560-199703010-00002. [DOI] [PubMed] [Google Scholar]
  61. Hansen MD, Johnsen IB, Stiberg KA, Sherstova T, Wakita T, Richard GM, Kandasamy RK, Meurs EF, Anthonsen MW. Hepatitis C virus triggers Golgi fragmentation and autophagy through the immunity-related GTPase M. Proc Natl Acad Sci USA. 2017;114(17):E3462–E3471. doi: 10.1073/pnas.1616683114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Harcourt JL, Brown MP, Anderson LJ, Tripp RA. CD40 ligand (CD154) improves the durability of respiratory syncytial virus DNA vaccination in BALB/c mice. Vaccine. 2003;21(21–22):2964–2979. doi: 10.1016/s0264-410x(03)00119-1. [DOI] [PubMed] [Google Scholar]
  63. Hirai A, Ohtsuka N, Ikeda T, Taniguchi R, Blau D, Nakagaki K, Miura HS, Ami Y, Yamada YK, Itohara S, et al. Role of mouse hepatitis virus (MHV) receptor murine CEACAM1 in the resistance of mice to MHV infection: studies of mice with chimeric mCEACAM1a and mCEACAM1b. J Virol. 2010;84(13):6654–6666. doi: 10.1128/jvi.02680-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Hiramoto T, Li LB, Funk SE, Hirata RK, Russell DW. Nuclease-free adeno-associated virus-mediated Il2rg gene editing in X-SCID mice. Mol Ther. 2018;26(5):1255–1265. doi: 10.1016/j.ymthe.2018.02.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hou S, Doherty PC. Partitioning of responder CD8 + T cells in lymph node and lung of mice with Sendai virus pneumonia by LECAM-1 and CD45RB phenotype. J Immunol. 1993;150(12):5494–5500. [PubMed] [Google Scholar]
  67. Hsu EC, Hsi B, Hirota-Tsuchihara M, Ruland J, Iorio C, Sarangi F, Diao J, Migliaccio G, Tyrrell DL, Kneteman N, et al. Modified apoptotic molecule (BID) reduces hepatitis C virus infection in mice with chimeric human livers. Nat Biotechnol. 2003;21(5):519–525. doi: 10.1038/nbt817. [DOI] [PubMed] [Google Scholar]
  68. Hu M, Li HM, Bogoyevitch MA, Jans DA. Mitochondrial protein p32/HAPB1/gC1qR/C1qbp is required for efficient respiratory syncytial virus production. Biochem Biophys Res Commun. 2017;489(4):460–465. doi: 10.1016/j.bbrc.2017.05.171. [DOI] [PubMed] [Google Scholar]
  69. Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y, Cui Q. HMDD v.30: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2019;47(D1):D1013–D1017. doi: 10.1093/nar/gky1010z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Imakiire K, Uto H, Sato Y, Sasaki F, Mawatari S, Ido A, Shimoda K, Hayashi K, Stuver SO, Ito Y, et al. Difference in serum complement component C4a levels between hepatitis C virus carriers with persistently normal alanine aminotransferase levels or chronic hepatitis C. Mol Med Rep. 2012;6(2):259–264. doi: 10.3892/mmr.2012.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D, et al. SMPDB 2.0: big improvements to the Small Molecule Pathway Database. Nucleic Acids Res. 2014;42(Database issue):D478–D484. doi: 10.1093/nar/gkt1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(Database issue):D98–D104. doi: 10.1093/nar/gkn714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47(D1):D590–D595. doi: 10.1093/nar/gky962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Kenney SP, Meng XJ. An SH3 binding motif within the nucleocapsid protein of porcine reproductive and respiratory syndrome virus interacts with the host cellular signaling proteins STAMI, TXK, Fyn, Hck, and cortactin. Virus Res. 2015;204:31–39. doi: 10.1016/j.virusres.2015.04.004. [DOI] [PubMed] [Google Scholar]
  75. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46(D1):D260–D266. doi: 10.1093/nar/gkx1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Kim H, Meyer K, Di Bisceglie AM, Ray R. Hepatitis C virus suppresses C9 complement synthesis and impairs membrane attack complex function. J Virol. 2013;87(10):5858–5867. doi: 10.1128/jvi.00174-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T, Megy K. Arrayexpress update–simplifying data submissions. Nucleic Acids Res. 2015;43(Database issue):D1113–D1116. doi: 10.1093/nar/gku1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Koraka P, Murgue B, Deparis X, van Gorp EC, Setiati TE, Osterhaus AD, Groen J. Elevation of soluble VCAM-1 plasma levels in children with acute dengue virus infection of varying severity. J Med Virol. 2004;72(3):445–450. doi: 10.1002/jmv.20007. [DOI] [PubMed] [Google Scholar]
  79. Kumar P, Thakar MS, Ouyang W, Malarkannan S. IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. Mucosal Immunol. 2013;6(1):69–82. doi: 10.1038/mi.2012.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Lacher MD, Shiina M, Chang P, Keller D, Tiirikainen MI, Korn WM. ZEB1 limits adenoviral infectability by transcriptionally repressing the coxsackie virus and adenovirus receptor. Mol Cancer. 2011;10:91. doi: 10.1186/1476-4598-10-91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Lambert ND, Haralambieva IH, Kennedy RB, Ovsyannikova IG, Pankratz VS, Poland GA. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination. J Infect Dis. 2015;211(6):898–905. doi: 10.1093/infdis/jiu553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Le Noury DA, Mosebi S, Papathanasopoulos MA, Hewer R. Functional roles of HIV-1 Vpu and CD74: details and implications of the Vpu-CD74 interaction. Cell Immunol. 2015;298(1–2):25–32. doi: 10.1016/j.cellimm.2015.08.005. [DOI] [PubMed] [Google Scholar]
  83. Letko M, Miazgowicz K, McMinn R, Seifert SN, Sola I, Enjuanes L, Carmody A, Van Doremalen N, Munster V. Adaptive evolution of MERS-CoV to Species Variation in DPP4. Cell Rep. 2018;24(7):1730–1737. doi: 10.1016/j.celrep.2018.07.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Lewis SE. The vision and challenges of the gene ontology. Methods Mol Biol. 2017;1446:291–302. doi: 10.1007/978-1-4939-3743-1_21. [DOI] [PubMed] [Google Scholar]
  85. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v20: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Databse Issue):D92–D97. doi: 10.1093/nar/gkt1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Li C, Kuang WD, Qu D, Wang JH. Toll-interacting protein inhibits HIV-1 infection and regulates viral latency. Biochem Biophys Res Commun. 2016;475(2):161–168. doi: 10.1016/j.bbrc.2016.05.065. [DOI] [PubMed] [Google Scholar]
  87. Li Y, Johnson JB, Parks GD. Parainfluenza virus 5 upregulates CD55 expression to produce virions with enhanced resistance to complement-mediated neutralization. Virology. 2016;497:305–313. doi: 10.1016/j.virol.2016.07.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Li YK, Peng S, Li LQ, Wang Q, Ping W, Zhang N, Fu XN. Clinical and transmission characteristics of Covid-19—a retrospective study of 25 cases from a single thoracic surgery department. Curr Med Sci. 2020;40(2):295–300. doi: 10.1007/s11596-020-2176-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Lin SJ, Lo M, Kuo RL, Shih SR, Ojcius DM, Lu J, Lee CK, Chen HC, Lin MY, Leu CM, et al. The pathological effects of CCR2 + inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection. J Biomed Sci. 2014;21(1):99. doi: 10.1186/s12929-014-0099-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Liu Y, Nonnemacher MR, Wigdahl B. CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol. 2009;4(3):299–321. doi: 10.2217/fmb.09.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, Yu X, Li X, Jiang W. SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics. 2013;29(3):409–411. doi: 10.1093/bioinformatics/bts698. [DOI] [PubMed] [Google Scholar]
  92. Liu B, Zhang X, Deng W, Liu J, Li H, Wen M, Bao L, Qu J, Liu Y, Li F, et al. Severe influenza A(H1N1)pdm09 infection induces thymic atrophy through activating innate CD8(+)CD44(hi) T cells by upregulating IFN-γ. Cell Death Dis. 2014;5(10):e1440. doi: 10.1038/cddis.2014.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Liu X, Bi J, Zhao Q, Li M, Zuo Q, Wang X, Lan R, Li X, Yang G, Liu J, et al. Overexpression of RACK1 enhanced the replication of porcine reproductive and respiratory syndrome virus in Marc-145 cells and promoted the NF-κB activation via upregulating the expression and phosphorylation of TRAF2. Gene. 2019;709:75–83. doi: 10.1016/j.gene.2019.05.046. [DOI] [PubMed] [Google Scholar]
  94. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney NP, Schuijs M, O’Garra A, Johansson C, Openshaw PJ. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7(2):e32371. doi: 10.1371/journal.pone.0032371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster KE, Sprent J, Culley FJ, Johansson C, Openshaw PJ. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 2012;5(2):161–172. doi: 10.1038/mi.2011.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Lu JW, Chang JG, Yeh KT, Chen RM, Tsai JJ, Hu RM. Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis. Acta Histochem. 2011;113(8):833–838. doi: 10.1016/j.acthis.2011.01.001. [DOI] [PubMed] [Google Scholar]
  97. Lumsden JM, Roberts JM, Harris NL, Peach RJ, Ronchese F. Differential requirement for CD80 and CD80/CD86-dependent costimulation in the lung immune response to an influenza virus infection. J Immunol. 2000;164(1):79–85. doi: 10.4049/jimmunol.164.1.79. [DOI] [PubMed] [Google Scholar]
  98. Ma DY, Suthar MS, Kasahara S, Gale M, Jr, Clark EA. CD22 is required for protection against West Nile virus Infection. J Virol. 2013;87(6):3361–3375. doi: 10.1128/jvi.02368-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Madurai Elavarasan R, Pugazhendhi R. Restructured society and environment: a review on potential technological strategies to control the COVID-19 pandemic. Sci Total Environ. 2020;725:138858. doi: 10.1016/j.scitotenv.2020.138858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Maestri A, Sortica VA, Ferreira DL, de Almeida Ferreira J, Amador MA, de Mello WA, Santos SE, Sousa RC. The His131Arg substitution in the FCGR2A gene (rs1801274) is not associated with the severity of influenza A(H1N1)pdm09 infection. BMC Res Notes. 2016;9:296. doi: 10.1186/s13104-016-2096-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Malhotra P, Haslett P, Sherry B, Shepp DH, Barber P, Abshier J, Roy U, Schmidtmayerova H. Increased plasma levels of the TH2 chemokine CCL18 associated with low CD4 + T cell counts in HIV-1-infected patients with a suppressed viral load. Sci Rep. 2019;9(1):5963. doi: 10.1038/s41598-019-41588-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Martin MP, Qi Y, Gao X, Yamada E, Martin JN, Pereyra F, Colombo S, Brown EE, Shupert WL, Phair J, et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet. 2007;39(6):733–740. doi: 10.1038/ng2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45(D1):D183–D189. doi: 10.1093/nar/gkw1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Miller AL, Gerard C, Schaller M, Gruber AD, Humbles AA, Lukacs NW. Deletion of CCR1 attenuates pathophysiologic responses during respiratory syncytial virus infection. J Immunol. 2006;176(4):2562–2567. doi: 10.4049/jimmunol.176.4.2562. [DOI] [PubMed] [Google Scholar]
  105. Miot C, Beaumont E, Duluc D, Le Guillou-Guillemette H, Preisser L, Garo E, Blanchard S, Fouchard IH, Créminon C, Lamourette P, et al. IL-26 is overexpressed in chronically HCV-infected patients and enhances TRAIL-mediated cytotoxicity and interferon production by human NK cells. Gut. 2015;64(9):1466–1475. doi: 10.1136/gutjnl-2013-306604. [DOI] [PubMed] [Google Scholar]
  106. Mizutani T, Fukushi S, Murakami M, Hirano T, Saijo M, Kurane I, Morikawa S. Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells. FEBS Lett. 2004;577(1–2):187–192. doi: 10.1016/j.febslet.2004.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Morales-García G, Falfán-Valencia R, García-Ramírez RA, Camarena Á, Ramirez-Venegas A, Castillejos-López M, Pérez-Rodríguez M, González-Bonilla C, Grajales-Muñíz C, Borja-Aburto V, et al. Pandemic influenza A/H1N1 virus infection and TNF, LTA, IL1B, IL6, IL8, and CCL polymorphisms in Mexican population: a case-control study. BMC Infect Dis. 2012;12:299. doi: 10.1186/1471-2334-12-299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Mueller T, Mas-Marques A, Sarrazin C, Wiese M, Halangk J, Witt H, Ahlenstiel G, Spengler U, Goebel U, Wiedenmann B, et al. Influence of interleukin 12B (IL12B) polymorphisms on spontaneous and treatment-induced recovery from hepatitis C virus infection. J Hepatol. 2004;41(4):652–658. doi: 10.1016/j.jhep.2004.06.021. [DOI] [PubMed] [Google Scholar]
  109. Mukherjee S, Rasky AJ, Lundy PA, Kittan NA, Kunkel SL, Maillard IP, Kowalski PE, Kousis PC, Guidos CJ, Lukacs NW. STAT5-induced lunatic fringe during Th2 development alters delta-like 4-mediated Th2 cytokine production in respiratory syncytial virus-exacerbated airway allergic disease. J Immunol. 2014;192(3):996–1003. doi: 10.4049/jimmunol.1301991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Nagarkar DR, Wang Q, Shim J, Zhao Y, Tsai WC, Lukacs NW, Sajjan U, Hershenson MB. CXCR2 is required for neutrophilic airway inflammation and hyperresponsiveness in a mouse model of human rhinovirus infection. J Immunol. 2009;183(10):6698–6707. doi: 10.4049/jimmunol.0900298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Nakayama T, Fujisawa R, Izawa D, Hieshima K, Takada K, Yoshie O. Human B cells immortalized with Epstein-Barr virus upregulate CCR6 and CCR10 and downregulate CXCR4 and CXCR5. J Virol. 2002;76(6):3072–3077. doi: 10.1128/jvi.76.6.3072-3077.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Nasi M, Riva A, Borghi V, D’Amico R, Del Giovane C, Casoli C, Galli M, Vicenzi E, Gibellini L, De Biasi S, et al. Novel genetic association of TNF-α-238 and PDCD1-7209 polymorphisms with long-term non-progressive HIV-1 infection. Int J Infect Dis. 2013;17(10):e845–e850. doi: 10.1016/j.ijid.2013.01.003. [DOI] [PubMed] [Google Scholar]
  113. Nguyen TP, Liu WC, Jordán F. Inferring pleiotropy by network analysis: linked diseases in the human PPI network. BMC Syst Biol. 2011;5:179. doi: 10.1186/1752-0509-5-179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Noma T, Mori A, Yoshizawa I. Induction of allergen-specific IL-2 responsiveness of lymphocytes after respiratory syncytial virus infection and prediction of onset of recurrent wheezing and bronchial asthma. J Allergy Clin Immunol. 1996;98(4):816–826. doi: 10.1016/s0091-6749(96)70131-8. [DOI] [PubMed] [Google Scholar]
  115. O’Connell P, Pepelyayeva Y, Blake MK, Hyslop S, Crawford RB, Rizzo MD, Pereira-Hicks C, Godbehere S, Dale L, Gulick P, et al. SLAMF7 is a critical negative regulator of IFN-α-mediated CXCL10 production in chronic HIV infection. J Immunol. 2019;202(1):228–238. doi: 10.4049/jimmunol.1800847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Ohno S, Kohyama S, Taneichi M, Moriya O, Hayashi H, Oda H, Mori M, Kobayashi A, Akatsuka T, Uchida T, et al. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice. Vaccine. 2009;27(29):3912–3920. doi: 10.1016/j.vaccine.2009.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Patel D, Nan Y, Shen M, Ritthipichai K, Zhu X, Zhang YJ. Porcine reproductive and respiratory syndrome virus inhibits type I interferon signaling by blocking STAT1/STAT2 nuclear translocation. J Virol. 2010;84(21):11045–11055. doi: 10.1128/jvi.00655-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Petri V, Jayaraman P, Tutaj M, Hayman GT, Smith JR, De Pons J, Laulederkind SJ, Lowry TF, Nigam R, Wang SJ. The pathway ontology - updates and applications. J Biomed Semant. 2014;5(1):7. doi: 10.1186/2041-1480-5-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Pillai PS, Molony RD, Martinod K, Dong H, Pang IK, Tal MC, Solis AG, Bielecki P, Mohanty S, Trentalange M, et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science. 2016;352(6284):463–466. doi: 10.1126/science.aaf3926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Pineda-Tenor D, Berenguer J, Jiménez-Sousa MA, Guzmán-Fulgencio M, Aldámiz-Echevarria T, Carrero A, García-Álvarez M, Diez C, Tejerina F, Briz V, et al. CXCL9, CXCL10 and CXCL11 polymorphisms are associated with sustained virologic response in HIV/HCV-coinfected patients. J Clin Virol. 2014;61(3):423–429. doi: 10.1016/j.jcv.2014.08.020. [DOI] [PubMed] [Google Scholar]
  121. Posada R, Pettoello-Mantovani M, Sieweke M, Graf T, Goldstein H. Suppression of HIV type 1 replication by a dominant-negative Ets-1 mutant. AIDS Res Hum Retroviruses. 2000;16(18):1981–1989. doi: 10.1089/088922200750054710. [DOI] [PubMed] [Google Scholar]
  122. Pothlichet J, Meunier I, Davis BK, Ting JP, Skamene E, von Messling V, Vidal SM. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog. 2013;9(4):e1003256. doi: 10.1371/journal.ppat.1003256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Przulj N, Wigle DA, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics. 2004;20(3):340–348. doi: 10.1093/bioinformatics/btg415. [DOI] [PubMed] [Google Scholar]
  124. Puthothu B, Krueger M, Forster J, Heinzmann A. Association between severe respiratory syncytial virus infection and IL13/IL4 haplotypes. J Infect Dis. 2006;193(3):438–441. doi: 10.1086/499316. [DOI] [PubMed] [Google Scholar]
  125. Raziorrouh B, Schraut W, Gerlach T, Nowack D, Grüner NH, Ulsenheimer A, Zachoval R, Wächtler M, Spannagl M, Haas J, et al. The immunoregulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8 + T-cell function. Hepatology. 2010;52(6):1934–1947. doi: 10.1002/hep.23936. [DOI] [PubMed] [Google Scholar]
  126. Rice TA, Brenner TA, Percopo CM, Ma M, Keicher JD, Domachowske JB, Rosenberg HF. Signaling via pattern recognition receptors NOD2 and TLR2 contributes to immunomodulatory control of lethal pneumovirus infection. Antiviral Res. 2016;132:131–140. doi: 10.1016/j.antiviral.2016.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi: 10.1186/1471-2105-12-77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Rodriguez R, Fournier B, Cordeiro DJ, Winter S, Izawa K, Martin E, Boutboul D, Lenoir C, Fraitag S, Kracker S, et al. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med. 2019;216(12):2800–2818. doi: 10.1084/jem.20190678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Romporn S, Hirankarn N, Tangkijvanich P, Kimkong I. Association of IFNAR2 and IL10RB genes in chronic hepatitis B virus infection. Tissue Antigens. 2013;82(1):21–25. doi: 10.1111/tan.12133. [DOI] [PubMed] [Google Scholar]
  131. Rosenberger CM, Podyminogin RL, Diercks AH, Treuting PM, Peschon JJ, Rodriguez D, Gundapuneni M, Weiss MJ, Aderem A. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathog. 2017;13(4):e1006305. doi: 10.1371/journal.ppat.1006305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. 2010;11(1):R6. doi: 10.1186/gb-2010-11-1-r6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Rukov JL, Wilentzik R, Jaffe I, Vinther J, Shomron N. Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform. 2014;15(4):648–659. doi: 10.1093/bib/bbs082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Sacchi A, Cappelli G, Cairo C, Martino A, Sanarico N, D’Offizi G, Pupillo LP, Chenal H, De Libero G, Colizzi V, et al. Differentiation of monocytes into CD1a- dendritic cells correlates with disease progression in HIV-infected patients. J Acquir Immune Defic Syndr. 2007;46(5):519–528. doi: 10.1097/qai.0b013e31815b1278. [DOI] [PubMed] [Google Scholar]
  135. Sainz B, Jr, Mossel EC, Peters CJ, Garry RF. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) Virology. 2004;329(1):11–17. doi: 10.1016/j.virol.2004.08.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Salimi V, Ramezani A, Mirzaei H, Tahamtan A, Faghihloo E, Rezaei F, Naseri M, Bont L, Mokhtari-Azad T, Tavakoli-Yaraki M. Evaluation of the expression level of 12/15 lipoxygenase and the related inflammatory factors (CCL5, CCL3) in respiratory syncytial virus infection in mice model. Microb Pathog. 2017;109:209–213. doi: 10.1016/j.micpath.2017.05.045. [DOI] [PubMed] [Google Scholar]
  137. Sanders SP, Siekierski ES, Richards SM, Porter JD, Imani F, Proud D. Rhinovirus infection induces expression of type 2 nitric oxide synthase in human respiratory epithelial cells in vitro and in vivo. J Allergy Clin Immunol. 2001;107(2):235–243. doi: 10.1067/mai.2001.112028. [DOI] [PubMed] [Google Scholar]
  138. Sanfilippo C, Cambria D, Longo A, Palumbo M, Avola R, Pinzone M, Nunnari G, Condorelli F, Musumeci G, Imbesi R. SERPING1 mRNA overexpression in monocytes from HIV + patients. Inflamm Res. 2017;66(12):1107–1116. doi: 10.1007/s00011-017-1091-x. [DOI] [PubMed] [Google Scholar]
  139. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the pathway interaction database. Nucleic Acids Res. 2009;37(1):D674–D679. doi: 10.1093/nar/gkn653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Shafique M, Wilschut J, de Haan A. Induction of mucosal and systemic immunity against respiratory syncytial virus by inactivated virus supplemented with TLR9 and NOD2 ligands. Vaccine. 2012;30(3):597–606. doi: 10.1016/j.vaccine.2011.11.054. [DOI] [PubMed] [Google Scholar]
  141. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Sharma M, Bhattacharyya S, Sharma KB, Chauhan S, Asthana S, Abdin MZ, Vrati S, Kalia M. Japanese encephalitis virus activates autophagy through XBP1 and ATF6 ER stress sensors in neuronal cells. J Gen Virol. 2017;98(5):1027–1039. doi: 10.1099/jgv.0.000792. [DOI] [PubMed] [Google Scholar]
  143. Shi Z, Zhang B. Fast network centrality analysis using GPUs. BMC Bioinformatics. 2011;12:149. doi: 10.1186/1471-2105-12-149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Shi L, Ramaswamy M, Manzel LJ, Look DC. Inhibition of Jak1-dependent signal transduction in airway epithelial cells infected with adenovirus. Am J Respir Cell Mol Biol. 2007;37(6):720–728. doi: 10.1165/rcmb.2007-0158oc. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Shi T, He Y, Sun W, Wu Y, Li L, Jie Z, Su X. Respiratory Syncytial virus infection compromises asthma tolerance by recruiting interleukin-17A-producing cells via CCR6-CCL20 signaling. Mol Immunol. 2017;88:45–57. doi: 10.1016/j.molimm.2017.05.017. [DOI] [PubMed] [Google Scholar]
  146. Sidenius N, Sier CF, Ullum H, Pedersen BK, Lepri AC, Blasi F, Eugen-Olsen J. Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection. Blood. 2000;96(13):4091–4095. doi: 10.1182/blood.V96.13.4091. [DOI] [PubMed] [Google Scholar]
  147. Siu KL, Kok KH, Ng MH, Poon VK, Yuen KY, Zheng BJ, Jin DY. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem. 2009;284(24):16202–16209. doi: 10.1074/jbc.m109.008227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Soroosh P, Doherty TA, So T, Mehta AK, Khorram N, Norris PS, Scheu S, Pfeffer K, Ware C, Croft M. Interactions between herpesvirus entry mediator (TNFRSF14) and latency-associated transcript during herpes simplex virus 1 latency. J Virol. 2014;88(4):1961–1971. doi: 10.1128/jvi.02467-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Spector SA, Singh KK, Gupta S, Cystique LA, Jin H, Letendre S, Schrier R, Wu Z, Hong KX, Yu X, et al. APOE epsilon4 and MBL-2 O/O genotypes are associated with neurocognitive impairment in HIV-infected plasma donors. AIDS. 2010;24(10):1471–1479. doi: 10.1097/qad.0b013e328339e25c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Srinivasa BT, Restori KH, Shan J, Cyr L, Xing L, Lee S, Ward BJ, Fixman ED. STAT6 inhibitory peptide given during RSV infection of neonatal mice reduces exacerbated airway responses upon adult reinfection. J Leukoc Biol. 2017;101(2):519–529. doi: 10.1189/jlb.4a0215-062rr. [DOI] [PubMed] [Google Scholar]
  151. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020 doi: 10.1038/s41591-020-0868-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Suryadevara M, Bonville CA, Rosenberg HF, Domachowske JB. Local production of CCL3, CCL11, and IFN-γ correlates with disease severity in murine parainfluenza virus infection. Virol J. 2013;10:357. doi: 10.1186/1743-422x-10-357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Swaminathan S, Dai L, Lane HC, Imamichi T. Evaluating the potential of IL-27 as a novel therapeutic agent in HIV-1 infection. Cytokine Growth Factor Rev. 2013;24(6):571–577. doi: 10.1016/j.cytogfr.2013.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi: 10.1093/nar/gky1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Takahashi T, Takaguchi M, Kawakami T, Suzuki T. Sulfatide regulates caspase-3-independent apoptosis of influenza A virus through viral PB1-F2 protein. PLoS ONE. 2013;8(4):e61092. doi: 10.1371/journal.pone.0061092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Terry RL, Deffrasnes C, Getts DR, Minten C, Van Vreden C, Ashhurst TM, Getts MT, Xie RD, Campbell IL, King NJ. Defective inflammatory monocyte development in IRF8-deficient mice abrogates migration to the West Nile virus-infected brain. J Innate Immun. 2015;7(1):102–112. doi: 10.1159/000365972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Tian X, Zhang A, Qiu C, Wang W, Yang Y, Qiu C, Liu A, Zhu L, Yuan S, Hu H, et al. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. J Immunol. 2015;194(8):3873–3882. doi: 10.4049/jimmunol.1402176. [DOI] [PubMed] [Google Scholar]
  159. Tian J, Jiao X, Wang X, Geng J, Wang R, Liu N, Gao X, Griffin N, Shan F. Novel effect of methionine enkephalin against influenza A virus infection through inhibiting TLR7-MyD88-TRAF6-NF-κB p65 signaling pathway. Int Immunopharmacol. 2018;55:38–48. doi: 10.1016/j.intimp.2017.12.001. [DOI] [PubMed] [Google Scholar]
  160. Tibbs C, Donaldson P, Underhill J, Thomson L, Manabe K, Williams R. Evidence that the HLA DQA1*03 allele confers protection from chronic HCV-infection in Northern European Caucasoids. Hepatology. 1996;24(6):1342–1345. doi: 10.1053/jhep.1996.v24.pm0008938158. [DOI] [PubMed] [Google Scholar]
  161. Tochikura TS, Xiao S, Ego T, Sagara J, Kawai A. Further characterization of a CD99-related 21-kDa transmembrane protein (VAP21) expressed in Syrian hamster cells and its possible involvement in vesicular stomatitis virus production. Microbiol Immunol. 2003;47(10):745–757. doi: 10.1111/j.1348-0421.2003.tb03444.x. [DOI] [PubMed] [Google Scholar]
  162. Treon SP, Castillo J, Skarbnik AP, Soumerai JD, Ghobrial IM, Guerrera ML, Meid KE, Yang G. The BTK-inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. Blood. 2020 doi: 10.1182/blood.2020006288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Tucci FA, Broering R, Johansson P, Schlaak JF, Küppers R. B cells in chronically hepatitis C virus-infected individuals lack a virus-induced mutation signature in the TP53, CTNNB1, and BCL6 genes. J Virol. 2013;87(5):2956–2962. doi: 10.1128/jvi.03081-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Uematsu T, Iizasa E, Kobayashi N, Yoshida H, Hara H. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity. Sci Rep. 2015;5:17577. doi: 10.1038/srep17577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Vandenbroeck K, Alloza I, Swaminathan B, Antigüedad A, Otaegui D, Olascoaga J, Barcina MG, De Las Heras V, Bartolomé M, Fernández-Arquero M, et al. Validation of IRF5 as multiple sclerosis risk gene: putative role in interferon beta therapy and human herpes virus-6 infection. Genes Immun. 2011;12(1):40–45. doi: 10.1038/gene.2010.46. [DOI] [PubMed] [Google Scholar]
  166. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015;43(1):D153–D159. doi: 10.1093/nar/gku1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Wang SZ, Smith PK, Lovejoy M, Bowden JJ, Alpers JH, Forsyth KD. Shedding of L-selectin and PECAM-1 and upregulation of Mac-1 and ICAM-1 on neutrophils in RSV bronchiolitis. Am J Physiol. 1998;275(5):L983–L989. doi: 10.1152/ajplung.1998.275.5.l983. [DOI] [PubMed] [Google Scholar]
  168. Wang JH, Kwas C, Wu L. Intercellular adhesion molecule 1 (ICAM-1), but not ICAM-2 and -3, is important for dendritic cell-mediated human immunodeficiency virus type 1 transmission. J Virol. 2009;83(9):4195–4204. doi: 10.1128/jvi.00006-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Wang Y, Yan J, Shi Y, Li P, Liu C, Ma Q, Yang R, Wang X, Yang X, Cao C. Lack of association between polymorphisms of MASP2 and susceptibility to SARS coronavirus infection. BMC Infect Dis. 2009;9:51. doi: 10.1186/1471-2334-9-51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Wang J, Li M, Wang H, Pan Y. Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(4):1070–1080. doi: 10.1109/tcbb.2011.147. [DOI] [PubMed] [Google Scholar]
  171. Wang J, Liu Y, Xie L, Li S, Qin X. Association of IL-17A and IL-17F gene polymorphisms with chronic hepatitis B and hepatitis B virus-related liver cirrhosis in a Chinese population: a case-control study. Clin Res Hepatol Gastroenterol. 2016;40(3):288–296. doi: 10.1016/j.clinre.2015.10.004. [DOI] [PubMed] [Google Scholar]
  172. Wang X, Ma K, Chen M, Ko KH, Zheng BJ, Lu L. IL-17A promotes pulmonary B-1a cell differentiation via induction of blimp-1 expression during influenza virus infection. PLoS Pathog. 2016;12(1):e1005367. doi: 10.1371/journal.ppat.1005367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Wang SM, Huang KJ, Wang CT. Severe acute respiratory syndrome coronavirus spike protein counteracts BST2-mediated restriction of virus-like particle release. J Med Virol. 2019;91(10):1743–1750. doi: 10.1002/jmv.25518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Warby TJ, Crowe SM, Jaworowski A. Human immunodeficiency virus type 1 infection inhibits granulocyte-macrophage colony-stimulating factor-induced activation of STAT5A in human monocyte-derived macrophages. J Virol. 2003;77(23):12630–12638. doi: 10.1128/jvi.77.23.12630-12638.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Wasityastuti W, Yano Y, Ratnasari N, Triyono T, Triwikatmani C, Indrarti F, Heriyanto DS, Yamani LN, Liang Y, Utsumi T, et al. Protective effects of HLA-DPA1/DPB1 variants against Hepatitis B virus infection in an Indonesian population. Infect Genet Evol. 2016;41:177–184. doi: 10.1016/j.meegid.2016.03.034. [DOI] [PubMed] [Google Scholar]
  176. Wei W, Guo H, Chang J, Yu Y, Liu G, Zhang N, Willard SH, Zheng S, Yu XF. ICAM-5/telencephalin is a functional entry receptor for enterovirus D68. Cell Host Microbe. 2016;20(5):631–641. doi: 10.1016/j.chom.2016.09.013. [DOI] [PubMed] [Google Scholar]
  177. Winkler CW, Woods TA, Rosenke R, Scott DP, Best SM, Peterson KE. Sexual and Vertical Transmission of Zika Virus in anti-interferon receptor-treated Rag1-deficient mice. Sci Rep. 2017;7(1):7176. doi: 10.1038/s41598-017-07099-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;S1684–1182(20):30065–30067. doi: 10.1016/j.jmii.2020.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Wu H, Haist V, Baumgärtner W, Schughart K. Sustained viral load and late death in Rag2-/- mice after influenza A virus infection. Virol J. 2010;7:172. doi: 10.1186/1743-422x-7-172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37(Database Issue):D105–D110. doi: 10.1093/nar/gkn851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Xu R, Bao C, Huang H, Lin F, Yuan Y, Wang S, Jin L, Yang T, Shi M, Zhang Z, et al. Low expression of CXCR1/2 on neutrophils predicts poor survival in patients with hepatitis B virus-related acute-on-chronic liver failure. Sci Rep. 2016;6:38714. doi: 10.1038/srep38714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Xu X, Li Y, Liang Y, Yin M, Zhang Y, Huang L, Yu Z, Ni J. Low responsiveness to a hepatitis B virus vaccine in a Chinese population lacks association with ITGAL, CD58, TNFSF15, CCL15, TGFB3, and BCL6 gene variants. Infect Genet Evol. 2018;64:126–130. doi: 10.1016/j.meegid.2018.06.010. [DOI] [PubMed] [Google Scholar]
  183. Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, Deng Y, Zhao J, Jiang S, Yuan Y, et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell. 2012;22(3):291–303. doi: 10.1016/j.ccr.2012.07.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Zaki N, Efimov D, Berengueres J. Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics. 2013;14:163. doi: 10.1186/1471-2105-14-163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Zehender G, Meroni L, De Maddalena C, Varchetta S, Monti G, Galli M. Detection of hepatitis C virus RNA in CD19 peripheral blood mononuclear cells of chronically infected patients. J Infect Dis. 1997;176(5):1209–1214. doi: 10.1086/514114. [DOI] [PubMed] [Google Scholar]
  186. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–590. doi: 10.1007/s00134-020-05985-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Zhao X, Song X, Bai X, Fei N, Huang Y, Zhao Z, Du Q, Zhang H, Zhang L, Tong D. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV) infection via targeting runt-related transcription factor 1 (RUNX1) PeerJ. 2016;4:e1635. doi: 10.7717/peerj.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Zhao J, Zhu M, Jiang H, Shen S, Su X, Shi Y. Combination of sphingosinE − 1-phosphate receptor 1 (S1PR1) agonist and antiviral drug: a potential therapy against pathogenic influenza virus. Sci Rep. 2019;9(1):5272. doi: 10.1038/s41598-019-41760-7. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  189. Zheng J, Yang P, Tang Y, Zhao D. A respiratory syncytial virus persistent-infected cell line system reveals the involvement of SOCS1 in the innate antiviral response. Virol Sin. 2015;30(3):190–199. doi: 10.1007/s12250-015-3597-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Zhivaki D, Lemoine S, Lim A, Morva A, Vidalain PO, Schandene L, Casartelli N, Rameix-Welti MA, Hervé PL, Dériaud E, et al. Respiratory syncytial virus infects regulatory B cells in human neonates via chemokine receptor CX3CR1 and promotes lung disease severity. Immunity. 2017;46(2):301–314. doi: 10.1016/j.immuni.2017.01.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019 doi: 10.1093/nar/gkz240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Zhu DY, Jiang LF, Deng XZ, Xiao W, Pei JP, Li BJ, Wang CJ, Zhang JH, Zhang Q, Zhou ZX, et al. TBX21 polymorphisms are associated with virus persistence in hepatitis C virus infection patients from a high-risk Chinese population. Eur J Clin Microbiol Infect Dis. 2015;34(7):1309–1318. doi: 10.1007/s10096-015-2337-6. [DOI] [PubMed] [Google Scholar]
  193. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177–1179. doi: 10.1056/nejmc2001737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Zuckerman E, Zuckerman T, Sahar D, Streichman S, Attias D, Sabo E, Yeshurun D, Rowe JM. bcl-2 and immunoglobulin gene rearrangement in patients with hepatitis C virus infection. Br J Haematol. 2001;112(2):364–369. doi: 10.1046/j.1365-2141.2001.02573.x. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets supporting the conclusions of this article are available in the ArrayExpress (https://www.ebi.ac.uk/arrayexpress) repository. [(E-MTAB-8871) (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8871/)].


Articles from 3 Biotech are provided here courtesy of Springer

RESOURCES