Abstract
Objetivos
Detectar la prevalencia del síndrome metabólico (SM), sus componentes y la resistencia a la insulina (RI) en la población adulta de Yecla. Estudiar la concordancia de 3 definiciones del SM entre sí y con la RI. Identificar variables que puedan predecir la presencia de RI y comprobar la validez diagnóstica de varias estrategias para predecirla.
Diseño
Estudio descriptivo, transversal.
Emplazamiento
Población de Yecla (Murcia). Ámbito de atención primaria.
Participantes
Estudiamos a 317 personas (292 aportaron analítica) de 424 seleccionadas mediante muestreo aleatorio estratificado (edad y sexo) de 18.059 con tarjeta sanitaria y edad ≥ 30 años.
Mediciones principales
Utilizamos los criterios NCEP III, OMS-98 y EGIR (Grupo Europeo de Estudio de la Resistencia a la Insulina) para diagnosticar el SM y OMS-99 para definir la diabetes mellitus no insulinodependiente, la glucemia basal alterada y la tolerancia alterada a la glucosa.
Recogimos variables sociodemográficas y antropométricas, y determinamos la presencia de lípidos, microalbuminuria, HbA1c e insulinemia; definimos RI si el índice HOMA ≥ 3,8 o como cuartil más alto de insulinemia basal en normoglucémicos.
Resultados
La prevalencia del SM fue, según los criterios NCEP, del 20,2% (intervalo de confianza [IC] del 95%, 15,6-24,8), OMS del 35,3% (IC del 95%, 29,8-40,8), EGIR del 24% (IC del 95%, 19,1-28,9) y RI del 27,7% (IC del 95%, 22,6- 32,8).
La sensibilidad y la especificidad de NCEP, OMS y EGIR para detectar RI fueron del 46 y el 90%, del 78 y el 81% y del 73 y el 95%, respectivamente. La edad, la glucemia basal, los triglicéridos y el perímetro de la cintura se asocian significativamente con RI.
Conclusiones
Hay una alta prevalencia de SM en el área (mayor en los varones). Hay diferencias entre los diferentes criterios diagnósticos del síndrome, y los de NCEP son menos sensible para determinar la RI. Es necesario establecer una definición universalmente aceptada del SM.
Palabras clave: Síndrome metabólico, Prevalencia, Definiciones
Abstract
Objectives
To determine the prevalence of metabolic syndrome (MS), its components and insulin resistance (IR) in the adult population of Yecla.To study the variability between 3 definitions of the syndrome and IR.To identify the variables that predict the presence of IR and to verify the diagnostic validity of several strategies for predicting it.
Design
Descriptive, cross-sectional study.
Setting
Primary care, Yecla (Murcia), Spain.
Participants
We studied 317 persons (292 with analysis) out of 424 selected by stratified (age and sex) random sampling from 18 059 people ≥30 years old and possessing a health card.
Main measurements
We used WHO-98, NCEP III, and EGIR criteria for diagnosing MS, and WHO-99 for defining DM2, impaired basal glucose and impaired glucose tolerance. The following variables were collected: social, demographic and personal details, plasma lipid, glycosylated haemoglobin, microalbuminuria, and insulin levels. IR was defined by the HOMA method at ≥3.8 or as the highest quartile of basal insulinemia in normoglycaemic persons.
Results
MS prevalence was NCEP 20.2% (95% CI, 15.6-24.8), WHO 35.3% (95% CI, 29.8-40.8), EGIR 24% (95% CI, 19.1-28.9), and IR was 27.7% (95% CI, 22.6-32.8). The sensitivity and specificity of NCEP,WHO, and EGIR criteria for detecting IR were (46% and 90%), (78% and 81%), and (73% and 95%), respectively. Insulin resistance was associated significantly with age, basal glycaemia, triglycerides, and waist circumference.
Conclusions
Metabolic syndrome is common in Yecla (more so in men). There is disagreement between several diagnostic criteria for the syndrome, with NCEP criteria less sensitive in determining IR. A generally accepted definition is needed.
Key words: Metabolic syndrome, Prevalence, Definitions
Bibliografía
- 1.Reaven G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–1607. doi: 10.2337/diab.37.12.1595. [DOI] [PubMed] [Google Scholar]
- 2.De Fronzo R.A., Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–194. doi: 10.2337/diacare.14.3.173. [DOI] [PubMed] [Google Scholar]
- 3.Haffner S.M., Valdez R.A., Hazuda H.P., Mitchell B.D., Morales P.A., Stern M.P. Prospective analysis of the insulin-resistance syndrome (syndrome X) Diabetes. 1992;41:715–722. doi: 10.2337/diab.41.6.715. [DOI] [PubMed] [Google Scholar]
- 4.Alberti KGMM, Zimmet PZ and Working group members. World Health Organization: definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO Consultation. Part 1: Diagnosis and classification of Diabetes Mellitus. Geneva:World Health Organization; 1999.
- 5.Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143-421. [PubMed]
- 6.Balkau B., Charles M.A., Drivsholm T., Borch-Johnsen K., Wareham N., Yudkin J.S., European Group For The Study Of Insulin Resistance (EGIR) Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab. 2002;28:364–376. [PubMed] [Google Scholar]
- 7.Cheal K.L., Abbasi F., Lamendola C., McLaughlin T., Reaven G.M., Ford E.S. Relationship to insulin resistance of the Adult Treatment Panel III Diagnostic Criteria for identification of the metabolic syndrome. Diabetes. 2004;53:1195–1200. doi: 10.2337/diabetes.53.5.1195. [DOI] [PubMed] [Google Scholar]
- 8.Ford E.S., Giles W.H. A Comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care. 2003;26:575–581. doi: 10.2337/diacare.26.3.575. [DOI] [PubMed] [Google Scholar]
- 9.Balkau B., Vernay M., Mhamdi L., Novak M., Arondel D., Vol S., DESIR Study Group The incidence and persistence of the NCEP (National Cholesterol Education Program) metabolic syndrome. The French DESIR study. Diabetes Metab. 2003;29:526–532. doi: 10.1016/s1262-3636(07)70067-8. [DOI] [PubMed] [Google Scholar]
- 10.Ozsahin A.K., Gokcel A., Sezgin N., Akbaba M., Guvener N., Ozisik L. Prevalence of the metabolic syndrome in a Turkish adult population (abstract) Diabetes Nutr Metab. 2004;17:230–234. [PubMed] [Google Scholar]
- 11.Ascaso J., Gabriel R., Franch J., Goday A., Fernández de Bobadilla J., Ortega R. Grado de concordancia de los distintos criterios que definen el síndrome metabólico en el estudio DESIRE. Avances en Diabetologia. 2004;20(Supl 1):23. [Google Scholar]
- 12.Álvarez León E.E., Ribas Barba L., Serra Majem L.l. Prevalencia del síndrome metabólico en la población de la Comunidad Canaria. Med Clin (Barc) 2003;120:172–174. doi: 10.1016/s0025-7753(03)73639-2. [DOI] [PubMed] [Google Scholar]
- 13.Serrano Ríos M., Grupo de Trabajo Resistencia a la insulina de la Sociedad Española de Diabetes Resistencia a la insulina y su implicación en múltiples factores de riesgo asociados a diabetes tipo 2. Med Clin (Barc) 2002;119:458–463. doi: 10.1016/s0025-7753(02)73455-6. [DOI] [PubMed] [Google Scholar]
- 14.Isomaa B., Almgren P., Tuomi T. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–689. doi: 10.2337/diacare.24.4.683. [DOI] [PubMed] [Google Scholar]
- 15.Lakka H.M., Laaksonen D.E., Lakka T.A., Niskanen L.K., Kumpusalo E., Tuomilehto J. The metabolic syndrome and total and cardiovascular disease mortality in middle-age men. JAMA. 2002;288:2709–2716. doi: 10.1001/jama.288.21.2709. [DOI] [PubMed] [Google Scholar]
- 16.Foz M., Barbany M., Remesar K., Carrillo M., Aranceta J., García-Luna P.P. Comisión de redacción del documento «Consenso SEEDO’2000 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica». Med Clin (Barc) 2000;115:587–597. [Google Scholar]
- 17.Chalmers J., MacMahon S., Mancia G., Whitworth J., Beilin L., Hansson L. 1999 World Health Organization-International Society of Hypertension Guidelines for the management of hypertension. Guidelines sub-committes of the Word Health Organization. Clin Exp Hypertension. 1999;(5-6):1009–1060. doi: 10.3109/10641969909061028. [DOI] [PubMed] [Google Scholar]
- 18.Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883. [DOI] [PubMed] [Google Scholar]
- 19.Ascaso J.F., Romero P., Real J.T., Priego A., Valdecabres C., Carmena R. Cuantificación de la insulinorresistencia con los valores de insulina basal e índice HOMA en una población no diabética. Med Clin (Barc) 2001;117:530–533. doi: 10.1016/s0025-7753(01)72168-9. [DOI] [PubMed] [Google Scholar]
- 20.Ascaso J.F., Romero P., Real J.T., Lorente R.I., Martínez-Valls J., Carmena R. Abdominal obesity, insulin resistance, and metabolic syndrome in a southern European population. Eur J Intern Med. 2003;14:101–106. doi: 10.1016/S0953-6205(03)00022-0. [DOI] [PubMed] [Google Scholar]
- 21.Jenicek M., Cléroux R. Salvat; Barcelona: 1987. Epidemiología. Principios, técnicas, aplicaciones. [Google Scholar]
- 22.Lemieux I., Pascot A., Couillard C., Lamarche B., Tchernof A., Almeras N. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia, hyperapolipoprotein B, small, dense LDL) in men? Circulation. 2000;102:179–184. doi: 10.1161/01.cir.102.2.179. [DOI] [PubMed] [Google Scholar]
- 23.Lorenzo C., Serrano-Rios M., Martinez-Larrad M.T., Gabriel R., Williams K., Gomez-Gerique J.A. Central adiposity determines prevalence differences of the metabolic syndrome. Obes Res. 2003;11:1480–1487. doi: 10.1038/oby.2003.198. [DOI] [PubMed] [Google Scholar]
- 24.Ford E.S., Giles W.H., Mokdad A.H. Increasing prevalence of the metabolic syndrome among US adults. Diabetes Care. 2004;27:2444–2449. doi: 10.2337/diacare.27.10.2444. [DOI] [PubMed] [Google Scholar]
- 25.Ilanne-Parikka P., Eriksson J.G., Lindstrom J., Hamalainen H., Keinanen-Kiukaanniemi S., Laakso M., Finnish Diabetes Prevention Study Group Prevalence of the metabolic syndrome and its components: findings from a Finnish general population sample and the Diabetes Prevention Study cohort. Diabetes Care. 2004;27:2135–2140. doi: 10.2337/diacare.27.9.2135. [DOI] [PubMed] [Google Scholar]
- 26.Meigs J.B., Wilson P.W., Nathan D.M., D’Agostino R.B., Jr, Williams K., Haffner S.M. Prevalence and characteristics of the metabolic syndrome in the San Antonio Heart and Framingham Offspring Studies. Diabetes. 2003;52:2160–2167. doi: 10.2337/diabetes.52.8.2160. [DOI] [PubMed] [Google Scholar]
- 27.Martínez Candela J., Gallardo Martín A., Franch Nadal J., Romero Ortiz J., Cánovas Domínguez C., Gómez Marco R. Análisis de las alteraciones del metabolismo hidrocarbonado en la población adulta de Yecla (Murcia) Aten Primaria. 2004;34:345–352. doi: 10.1016/S0212-6567(04)79514-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Jorgensen M.E., Bjerregaard P., Gyntelberg F., Borch-Johnsen K., Greenland Population Study Prevalence of the metabolic syndrome among the Inuit in Greenland. A comparison between two proposed definitions (abstract) Diabet Med. 2004;21:1237–1242. doi: 10.1111/j.1464-5491.2004.01294.x. [DOI] [PubMed] [Google Scholar]
- 29.Navarro Pérez J., Navarro Adam A., García Sánchez L., Navarro Quesada J.M. Manejo integral del síndrome metabólico. FMC. 2005;12:293–302. [Google Scholar]