Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2020 Nov 18:2020.11.17.387555. [Version 1] doi: 10.1101/2020.11.17.387555

Replicating bacterium-vectored vaccine expressing SARS-CoV-2 Membrane and Nucleocapsid proteins protects against severe COVID-19 disease in hamsters

Qingmei Jia, Helle Bielefeldt-Ohmann, Rachel Maison, Saša Masleša-Galić, Richard Bowen, Marcus A Horwitz
PMCID: PMC7685323  PMID: 33236013

Abstract

An inexpensive readily manufactured COVID-19 vaccine that protects against severe disease is needed to combat the pandemic. We have employed the LVS Δ capB vector platform, previously used successfully to generate potent vaccines against the Select Agents of tularemia, anthrax, plague, and melioidosis, to generate a COVID-19 vaccine. The LVS Δ capB vector, a replicating intracellular bacterium, is a highly attenuated derivative of a tularemia vaccine (LVS) previously administered to millions of people. We generated vaccines expressing SARS-CoV-2 structural proteins and evaluated them for efficacy in the golden Syrian hamster, which develops severe COVID-19 disease. Hamsters immunized intradermally or intranasally with a vaccine co-expressing the Membrane (M) and Nucleocapsid (N) proteins, then challenged 5-weeks later with a high dose of SARS-CoV-2, were protected against severe weight loss and lung pathology and had reduced viral loads in the oropharynx and lungs. Protection by the vaccine, which induces murine N-specific interferon-gamma secreting T cells, was highly correlated with pre-challenge serum anti-N TH1-biased IgG. This potent vaccine against severe COVID-19 should be safe and easily manufactured, stored, and distributed, and given the high homology between MN proteins of SARS-CoV and SARS-CoV-2, has potential as a universal vaccine against the SARS subset of pandemic causing β-coronaviruses.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES