Abstract
The 2019 coronavirus disease (COVID-19) has affected more than 200 countries. Wearing masks can effectively cut off the virus spreading route since the coronavirus is mainly spreading by respiratory droplets. However, the common surgical masks cannot be reused, resulting in the increasing economic and resource consumption around the world. Herein, we report a superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film, with high-density edges of standing structured graphene nanosheets. The GNEC mask exhibits an excellent hydrophobic ability (water contact angle: 157.9°) and an outstanding filtration efficiency with 100% bacterial filtration efficiency (BFE). In addition, the GNEC mask shows the prominent photo-sterilize performance, heating up to 110 °C quickly under the solar illumination. These high performances may facilitate the combat against the COVID-19 outbreaks, while the reusable masks help reducing the economic and resource consumption.
Electronic Supplementary Material
Supplementary material (further details of electron cyclotron resonance (ECR) sputtering system, deposition of GNEC film, fabrication of GNEC mask, and characterization of the GNEC mask) is available in the online version of this article at 10.1007/s12274-020-3158-1.
Keywords: COVID-19, graphene nanosheet, superhydrophobic, photo-sterilize
Electronic Supplementary Material
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 51605306) and Shenzhen Overseas High-Level Talents Innovation and Entrepreneurship Plan (No. KQJSCX20180328094853770). The authors would like to thank the Electron Microscopy Center (EMC) of Shenzhen University for their technical supports in TEM and FIB.
References
- [1].Andersen K G, Rambaut A, Lipkin W I, Holmes E C, Garry R F. The proximal origin of SARS-CoV-2. Nat. Med. 2020;26:450–452. doi: 10.1038/s41591-020-0820-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Wang, H. W.; Wang, Z. Z.; Dong, Y. Q.; Chang, R. J.; Xu, C.; Yu, X. Y.; Zhang, S. X.; Tsamlag, L.; Shang, M. L.; Huang, J. Y. et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov.2020, 6, 10. [DOI] [PMC free article] [PubMed]
- [3].WHO. Coronavirus disease (COVID-19)[Online]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200928-weekly-epi-update.pdf?sfvrsn=9e354665_2.
- [4].Zou L R, Ruan F, Huang M X, Liang L J, Huang H T, Hong Z S, Yu J X, Kang M, Song Y C, Xia J Y, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. New Engl. J. Med. 2020;382:1177–1179. doi: 10.1056/NEJMc2001737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Peiris J S M, Lai S T, Poon L L M, Guan Y, Yam L Y C, Lim W, Nicholls J, Yee W K S, Yan W W, Cheung M T, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–1325. doi: 10.1016/S0140-6736(03)13077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [6].Karimi S, Arabi A, Shahraki T, Safi S. Detection of severe acute respiratory syndrome Coronavirus-2 in the tears of patients with Coronavirus disease 2019. Eye. 2020;34:1220–1223. doi: 10.1038/s41433-020-0965-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Leung C C, Lam T H, Cheng K K. Mass masking in the COVID-19 epidemic: People need guidance. Lancet. 2020;395:945. doi: 10.1016/S0140-6736(20)30520-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [8].Leung N H L, Chu D K W, Shiu E Y C, Chan K H, McDevitt J J, Hau B J P, Yen H L, Li Y, Ip D K M, Peiris J S M, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020;26:676–680. doi: 10.1038/s41591-020-0843-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].El-Atab N, Qaiser N, Badghaish H, Shaikh S F, Hussain M M. Flexible nanoporous template for the design and development of reusable Anti-COVID-19 hydrophobic face masks. ACS Nano. 2020;14:7659–7665. doi: 10.1021/acsnano.0c03976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Majchrzycka K, Okrasa M, Szulc J, Jachowicz A, Gutarowska B. Survival of microorganisms on nonwovens used for the construction of filtering facepiece respirators. Int. J. Environ. Res. Public Health. 2019;16:1154. doi: 10.3390/ijerph16071154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].Konda A, Prakash A, Moss G A, Schmoldt M, Grant G D, Guha S. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano. 2020;14:6339–6347. doi: 10.1021/acsnano.0c03252. [DOI] [PubMed] [Google Scholar]
- [12].Zhong H, Zhu Z R, Lin J, Cheung C F, Lu V L, Yan F, Chan C Y, Li G. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano. 2020;14:6213–6221. doi: 10.1021/acsnano.0c02250. [DOI] [PubMed] [Google Scholar]
- [13].Ullah S, Ullah A, Lee J, Jeong Y, Hashmi M, Zhu C H, Joo K I, Cha H J, Kim I S. Reusability comparison of melt-blown vs nanofiber face mask filters for use in the coronavirus pandemic. ACS Appl. Nano Mat. 2020;3:7231–7241. doi: 10.1021/acsanm.0c01562. [DOI] [PubMed] [Google Scholar]
- [14].Marmur A. Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification. Soft Matter. 2012;8:6867–6870. doi: 10.1039/c2sm25443c. [DOI] [Google Scholar]
- [15].Zhu H, Guo Z G, Liu W N. Adhesion behaviors on super-hydrophobic surfaces. Chem. Commun. 2014;50:3900–3913. doi: 10.1039/c3cc47818a. [DOI] [PubMed] [Google Scholar]
- [16].Song L J, Sun L W, Zhao J, Wang X H, Yin J H, Luan S F, Ming W H. Synergistic superhydrophobic and photodynamic cotton textiles with remarkable antibacterial activities. ACS Appl. Bio Mater. 2019;2:2756–2765. doi: 10.1021/acsabm.9b00149. [DOI] [PubMed] [Google Scholar]
- [17].Hong D J, Ryu I, Kwon H, Lee J J, Yim S. Preparation of superhydrophobic, long-neck vase-like polymer surfaces. Phys. Chem. Chem. Phys. 2013;15:11862–11867. doi: 10.1039/c3cp51833g. [DOI] [PubMed] [Google Scholar]
- [18].Huovinen E, Takkunen L, Korpela T, Suvanto M, Pakkanen T T, Pakkanen T A. Mechanically robust superhydrophobic polymer surfaces based on protective micropillars. Langmuir. 2014;30:1435–1443. doi: 10.1021/la404248d. [DOI] [PubMed] [Google Scholar]
- [19].Liu M L, Luo Y F, Jia D M. Polydimethylsiloxane-based superhydrophobic membranes: Fabrication, durability, repairability, and applications. Polym. Chem. 2020;11:2370–2380. doi: 10.1039/C9PY01861A. [DOI] [Google Scholar]
- [20].Ding G M, Jiao W C, Wang R G, Yan M L, Chu Z M, He X D. Superhydrophobic heterogeneous graphene networks with controllable adhesion behavior for detecting multiple underwater motions. J. Mater. Chem. A. 2019;7:17766–17774. doi: 10.1039/C9TA04648H. [DOI] [Google Scholar]
- [21].Si Y F, Guo Z G. Superhydrophobic nanocoatings: From materials to fabrications and to applications. Nanoscale. 2015;7:5922–5946. doi: 10.1039/C4NR07554D. [DOI] [PubMed] [Google Scholar]
- [22].Zhong H, Zhu Z R, You P, Lin J, Cheung C F, Lu V L, Yan F, Chan C Y, Li G J. Plasmonic and Superhydrophobic Self-Decontaminating N95 Respirators. ACS Nano. 2020;14:8846–8854. doi: 10.1021/acsnano.0c03504. [DOI] [PubMed] [Google Scholar]
- [23].Zhang X, Lin Z Z, Peng D, Ye L, Zang J F, Diao D. Edge-state-enhanced ultrahigh photoresponsivity of graphene nanosheet-embedded carbon film/silicon heterojunction. Adv. Mater. Interfaces. 2019;6:1802062. doi: 10.1002/admi.201802062. [DOI] [Google Scholar]
- [24].Wang C, Zhang X, Diao D F. Nanosized graphene crystallite induced strong magnetism in pure carbon films. Nanoscale. 2015;7:4475–4481. doi: 10.1039/C4NR06711H. [DOI] [PubMed] [Google Scholar]
- [25].Zhang X, Peng D, Lin Z Z, Chen W C, Diao D F. Edge effect on the photodetection ability of the graphene nanocrystallites embedded carbon film coated on p-silicon. Phys. Status Solidi RRL. 2019;13:1800511. [Google Scholar]
- [26].Lee Y, Wadsworth L C. Structure and filtration properties of melt blown polypropylene webs. Polymer Eng. Sci. 1990;30:1413–1419. doi: 10.1002/pen.760302202. [DOI] [Google Scholar]
- [27].Wang Z G, Li P J, Chen Y F, Liu J B, Zhang W L, Guo Z, Dong M D, Li Y R. Synthesis, characterization and electrical properties of silicon-doped graphene films. J. Mater. Chem. C. 2015;3:6301–6306. doi: 10.1039/C5TC00563A. [DOI] [Google Scholar]
- [28].Zhang X, Nie Y G, Zheng W T, Kuo J L, Sun C Q. Discriminative generation and hydrogen modulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies. Carbon. 2011;49:3615–3621. doi: 10.1016/j.carbon.2011.04.064. [DOI] [Google Scholar]
- [29].Zhang X, Wang C, Sun C Q, Diao D F. Magnetism induced by excess electrons trapped at diamagnetic edge-quantum well in multi-layer graphene. Appl. Phys. Lett. 2014;105:042402. doi: 10.1063/1.4891558. [DOI] [Google Scholar]
- [30].Enoki T, Kobayashi Y, Fukui K I. Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 2007;26:609–645. doi: 10.1080/01442350701611991. [DOI] [Google Scholar]
- [31].Ding D, Dai X Z, Wang C, Diao D F. Temperature dependent crossover between positive and negative magnetoresistance in graphene nanocrystallines embedded carbon film. Carbon. 2020;163:19–25. doi: 10.1016/j.carbon.2020.03.022. [DOI] [Google Scholar]
- [32].Pimenta M A, Dresselhaus G, Dresselhaus M S, Cançado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007;9:1276–1291. doi: 10.1039/B613962K. [DOI] [PubMed] [Google Scholar]
- [33].Liu X J, Zhang X, Bo M L, Li L, Tian H W, Nie Y G, Sun Y, Xu S Q, Wang Y, Zheng W T, et al. Coordination-resolved electron spectrometrics. Chem. Rev. 2015;115:6746–6810. doi: 10.1021/cr500651m. [DOI] [PubMed] [Google Scholar]
- [34].Zhu H, Wu L Z, Meng X, Wang Y G, Huang Y, Lin M H, Xia F. An anti-UV superhydrophobic material with photocatalysis, self-cleaning, self-healing and oil/water separation functions. Nanoscale. 2020;12:11455–11459. doi: 10.1039/D0NR01038C. [DOI] [PubMed] [Google Scholar]
- [35].Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras R H A. Mechanically durable superhydrophobic surfaces. Adv. Mater. 2011;23:673–678. doi: 10.1002/adma.201003129. [DOI] [PubMed] [Google Scholar]
- [36].Morawska L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air. 2006;16:335–347. doi: 10.1111/j.1600-0668.2006.00432.x. [DOI] [PubMed] [Google Scholar]
- [37].Cho H W, Yoon C S, Lee J H, Lee S J, Viner A, Johnson E W. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride. Ann. Occup. Hyg. 2011;55:666–680. doi: 10.1093/annhyg/mer032. [DOI] [PubMed] [Google Scholar]
- [38].Li F. Structure, function, and evolution of coronavirus spike proteins. Ann. Rev. Virol. 2016;3:237–261. doi: 10.1146/annurev-virology-110615-042301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [39].Lazar P, Zhang S, Šafářová K, Li Q, Froning J P, Granatier J, Hobza P, Zbořil R, Besenbacher F, Dong M D, et al. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions. ACS Nano. 2013;7:1646–1651. doi: 10.1021/nn305608a. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.