Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Nov 23;14(5):1244–1259. doi: 10.1007/s12274-020-3179-9

Bioengineering of nano metal-organic frameworks for cancer immunotherapy

Gaowei Chong 1,2, Jie Zang 1, Yi Han 1, Runping Su 1, Nopphon Weeranoppanant 3,4,, Haiqing Dong 1,2,, Yongyong Li 1,
PMCID: PMC7686557  PMID: 33250971

Abstract

Immunotherapy techniques, such as immune checkpoint inhibitors, chimeric antigen receptor (CAR) T cell therapies and cancer vaccines, have been burgeoning with great success, particularly for specific cancer types. However, side effects with fatal risks, dysfunction in tumor microenvironment and low immune response rates remain the bottlenecks in immunotherapy. Nano metal-organic frameworks (nMOFs), with an accurate structure and a narrow size distribution, are emerging as a solution to these problems. In addition to their function of temporospatial delivery, a large library of their compositions, together with flexibility in chemical interaction and inherent immune efficacy, offers opportunities for various designs of nMOFs for immunotherapy. In this review, we overview state-of-the-art research on nMOFs-based immunotherapies as well as their combination with other therapies. We demonstrate that nMOFs are predominantly customized for vaccine delivery or tumor-microenvironment modulation. Finally, a prospect of nMOFs in cancer immunotherapy will be discussed.

graphic file with name 12274_2020_3179_Fig1_HTML.jpg

Keywords: cancer immunotherapy, nano metal-organic frameworks (nMOFs), bioengineering, vaccine delivery, tumor-microenvironment modulation

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51773154, 31771090, 31971323 and 81871315), and Shanghai Science and Technology Innovation (18JC1414500). N. W. would like to acknowledge supports from both Burapha and VISTEC.

Contributor Information

Nopphon Weeranoppanant, Email: nopphon.we@eng.buu.ac.th.

Haiqing Dong, Email: inano_donghq@tongji.edu.cn.

Yongyong Li, Email: yongyong_li@tongji.edu.cn.

References

  • [1].Shields I C W, Wang L L W, Evans M A, Mitragotri S. Materials for immunotherapy. Adv. Mater. 2020;32:1901633. doi: 10.1002/adma.201901633. [DOI] [PubMed] [Google Scholar]
  • [2].Sharma P, Hu-Lieskovan S, Wargo J A, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–723. doi: 10.1016/j.cell.2017.01.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Sharma P, Allison J P. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi: 10.1126/science.aaa8172. [DOI] [PubMed] [Google Scholar]
  • [4].Riley R S, June C H, Langer R, Mitchell M J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019;18:175–196. doi: 10.1038/s41573-018-0006-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer. 2012;12:237–251. doi: 10.1038/nrc3237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Tumeh P C, Harview C L, Yearley J H, Shintaku I P, Taylor E J M, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. doi: 10.1038/nature13954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Michot J M, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer. 2016;54:139–148. doi: 10.1016/j.ejca.2015.11.016. [DOI] [PubMed] [Google Scholar]
  • [8].Cho N H, Cheong T C, Min J H, Wu J H, Lee S J, Kim D, Yang J S, Kim S, Kim Y K, Seong S Y. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011;6:675–682. doi: 10.1038/nnano.2011.149. [DOI] [PubMed] [Google Scholar]
  • [9].Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen J S, Nejadnik H, Goodman S, Moseley M, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 2016;11:986–994. doi: 10.1038/nnano.2016.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Yang G B, Xu L G, Chao Y, Xu J, Sun X Q, Wu Y F, Peng R, Liu Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017;8:902. doi: 10.1038/s41467-017-01050-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Chen Q, Wang C, Zhang X D, Chen G J, Hu Q Y, Li H J, Wang J Q, Wen D, Zhang Y Q, Lu Y F, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019;14:89–97. doi: 10.1038/s41565-018-0319-4. [DOI] [PubMed] [Google Scholar]
  • [12].Sang W, Zhang Z, Dai Y L, Chen X Y. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev. 2019;48:3771–3810. doi: 10.1039/c8cs00896e. [DOI] [PubMed] [Google Scholar]
  • [13].Zhou J R, Tian G, Zeng L J, Song X E, Bian X W. Nanoscaled metal-organic frameworks for Biosensing, imaging, and cancer therapy. Adv. Healthc. Mater. 2018;7:e1800022. doi: 10.1002/adhm.201800022. [DOI] [PubMed] [Google Scholar]
  • [14].Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010;9:172–178. doi: 10.1038/nmat2608. [DOI] [PubMed] [Google Scholar]
  • [15].Abucafy M P, Caetano B L, Chiari-Andréo B G, Fonseca-Santos B, do Santos A M, Chorilli M, Chiavacci L A. Supramolecular cyclodextrin-based metal-organic frameworks as efficient carrier for anti-inflammatory drugs. Eur. J. Pharm. Biopharm. 2018;127:112–119. doi: 10.1016/j.ejpb.2018.02.009. [DOI] [PubMed] [Google Scholar]
  • [16].Unamuno X, Imbuluzqueta E, Salles F, Horcajada P, Blanco-Prieto M J. Biocompatible porous metal-organic framework nanoparticles based on Fe or Zr for gentamicin vectorization. Eur. J. Pharm. Biopharm. 2018;132:11–18. doi: 10.1016/j.ejpb.2018.08.013. [DOI] [PubMed] [Google Scholar]
  • [17].Wan S S, Cheng Q, Zeng X, Zhang X Z. A Mn(III)-sealed metal-organic framework Nanosystem for redox-unlocked tumor Theranostics. ACS Nano. 2019;13:6561–6571. doi: 10.1021/acsnano.9b00300. [DOI] [PubMed] [Google Scholar]
  • [18].Lyu F, Zhang Y F, Zare R N, Ge J, Liu Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett. 2014;14:5761–5765. doi: 10.1021/nl5026419. [DOI] [PubMed] [Google Scholar]
  • [19].Wang S Z, McGuirk C M, Ross M B, Wang S Y, Chen P C, Xing H, Liu Y, Mirkin C A. General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles. J. Am. Chem. Soc. 2017;139:9827–9830. doi: 10.1021/jacs.7b05633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Duan F, Feng X C, Yang X J, Sun W T, Jin Y, Liu H F, Ge K, Li Z H, Zhang J C. A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials. 2017;122:23–33. doi: 10.1016/j.biomaterials.2017.01.017. [DOI] [PubMed] [Google Scholar]
  • [21].Xiang J, Xu L G, Gong H, Zhu W W, Wang C, Xu J, Feng L Z, Cheng L, Peng R, Liu Z. Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano. 2015;9:6401–6411. doi: 10.1021/acsnano.5b02014. [DOI] [PubMed] [Google Scholar]
  • [22].Liu T L, Liu H Y, Fu C H, Li L L, Chen D, Zhang Y Q, Tang F Q. Silica nanorattle with enhanced protein loading: A potential vaccine adjuvant. J. Colloid Interface Sci. 2013;400:168–174. doi: 10.1016/j.jcis.2013.03.005. [DOI] [PubMed] [Google Scholar]
  • [23].Liu L X, Ma P C, Wang H, Zhang C, Sun H F, Wang C, Song C X, Leng X G, Kong D L, Ma G L. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles. J. Control. Release. 2016;225:230–239. doi: 10.1016/j.jconrel.2016.01.050. [DOI] [PubMed] [Google Scholar]
  • [24].Feng Y F, Wang H R, Zhang S N, Zhao Y, Gao J, Zheng Y Y, Zhao P, Zhang Z J, Zaworotko M J, Cheng P, et al. Antibodies@MOFs: An in vitro protective coating for preparation and storage of biopharmaceuticals. Adv. Mater. 2019;31:1805148. doi: 10.1002/adma.201805148. [DOI] [PubMed] [Google Scholar]
  • [25].Wang K, Wen S M, He L H, Li A, Li Y, Dong H Q, Li W, Ren T B, Shi D L, Li Y Y. “Minimalist” Nanovaccine constituted from near whole antigen for cancer immunotherapy. ACS Nano. 2018;12:6398–6409. doi: 10.1021/acsnano.8b00558. [DOI] [PubMed] [Google Scholar]
  • [26].Chen W, Wu C S. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine. Dalton Trans. 2018;47:2114–2133. doi: 10.1039/c7dt04116k. [DOI] [PubMed] [Google Scholar]
  • [27].Lu K D, Aung T, Guo N N, Weichselbaum R, Lin W B. Nanoscale Metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018;30:e1707634. doi: 10.1002/adma.201707634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Lan G X, Ni K Y, Xu Z W, Veroneau S S, Song Y, Lin W B. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018;140:5670–5673. doi: 10.1021/jacs.8b01072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Ploetz E, Zimpel A, Cauda V, Bauer D, Lamb D C, Haisch C, Zahler S, Vollmar A M, Wuttke S, Engelke H. Metal-organic framework nanoparticles induce Pyroptosis in cells controlled by the extracellular pH. Adv. Mater. 2020;32:1907267. doi: 10.1002/adma.201907267. [DOI] [PubMed] [Google Scholar]
  • [30].Park J, Jiang Q, Feng D W, Mao L Q, Zhou H C. Size-controlled synthesis of Porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016;138:3518–3525. doi: 10.1021/jacs.6b00007. [DOI] [PubMed] [Google Scholar]
  • [31].Cheng H, Jiang X Y, Zheng R R, Zuo S J, Zhao L P, Fan G L, Xie B R, Yu X Y, Li S Y, Zhang X Z. A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials. 2019;195:75–85. doi: 10.1016/j.biomaterials.2019.01.003. [DOI] [PubMed] [Google Scholar]
  • [32].Della Rocca J, Liu D M, Lin W B. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem. Res. 2011;44:957–968. doi: 10.1021/ar200028a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Cai W, Chu C C, Liu G, Wáng Y X J. Metal-organic frameworkbased Nanomedicine platforms for drug delivery and molecular imaging. Small. 2015;11:4806–4822. doi: 10.1002/smll.201500802. [DOI] [PubMed] [Google Scholar]
  • [34].Giménez-Marqués M, Hidalgo T, Serre C, Horcajada P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev. 2016;307:342–360. [Google Scholar]
  • [35].Wu M X, Yang Y W. Metal-Organic Framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017;29:1606134. doi: 10.1002/adma.201606134. [DOI] [PubMed] [Google Scholar]
  • [36].Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Férey G, Morris R E, Serre C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012;112:1232–1268. doi: 10.1021/cr200256v. [DOI] [PubMed] [Google Scholar]
  • [37].Liu R, Yu T, Shi Z, Wang Z Y. The preparation of metal-organic frameworks and their biomedical application. Int. J. Nanomedicine. 2016;11:1187–1200. doi: 10.2147/IJN.S100877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].McKinlay A C, Morris R E, Horcajada P, Férey G, Gref R, Couvreur P, Serre C. BioMOFs: Metal-organic frameworks for biological and medical applications. Angew. Chem., Int. Ed. 2010;49:6260–6266. doi: 10.1002/anie.201000048. [DOI] [PubMed] [Google Scholar]
  • [39].He L C, Liu Y, Lau J, Fan W P, Li Q Y, Zhang C, Huang P T, Chen X Y. Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. Nanomedicine. 2019;14:1343–1365. doi: 10.2217/nnm-2018-0347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Davis M E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharmaceutics. 2009;6:659–668. doi: 10.1021/mp900015y. [DOI] [PubMed] [Google Scholar]
  • [41].Tyrrell Z L, Shen Y Q, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog. Polym. Sci. 2010;35:1128–1143. [Google Scholar]
  • [42].Boles M A, Engel M, Talapin D V. Self-assembly of colloidal Nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016;116:11220–11289. doi: 10.1021/acs.chemrev.6b00196. [DOI] [PubMed] [Google Scholar]
  • [43].Rösler A, Vandermeulen G W M, Klok H A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliver Rev. 2012;64:270–279. doi: 10.1016/s0169-409x(01)00222-8. [DOI] [PubMed] [Google Scholar]
  • [44].Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012;112:933–969. doi: 10.1021/cr200304e. [DOI] [PubMed] [Google Scholar]
  • [45].Jiao L, Seow J Y R, Skinner W S, Wang Z U, Jiang H L. Metal-organic frameworks: Structures and functional applications. Mater Today. 2019;27:43–68. [Google Scholar]
  • [46].Moghadam P Z, Li A, Wiggin S B, Tao A D, Maloney A G P, Wood P A, Ward S C, Fairen-Jimenez D. Development of a cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future. Chem. Mater. 2017;29:2618–2625. [Google Scholar]
  • [47].Lu W G, Wei Z W, Gu Z Y, Liu T F, Park J, Park J, Tian J, Zhang M W, Zhang Q, Gentle T, III, et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014;43:5561–5593. doi: 10.1039/c4cs00003j. [DOI] [PubMed] [Google Scholar]
  • [48].Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444. doi: 10.1126/science.1230444. [DOI] [PubMed] [Google Scholar]
  • [49].Rocio-Bautista P, Taima-Mancera I, Pasán J, Pino V. Metalorganic frameworks in green analytical chemistry. Separations. 2019;6:33. [Google Scholar]
  • [50].Zhang Y, Wang F M, Ju E G, Liu Z, Chen Z W, Ren J S, Qu X G. Metal-organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater. 2016;26:6454–6461. [Google Scholar]
  • [51].Liu F, Lin L, Zhang Y, Wang Y B, Sheng S, Xu C N, Tian H Y, Chen X S. A tumor-microenvironment-activated nanozymemediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv. Mater. 2019;31:e1902885. doi: 10.1002/adma.201902885. [DOI] [PubMed] [Google Scholar]
  • [52].Zhang Y, Liu C Q, Wang F M, Liu Z, Ren J S, Qu X G. Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging. Chem. Commun. 2017;53:1840–1843. doi: 10.1039/c6cc09280b. [DOI] [PubMed] [Google Scholar]
  • [53].Yang Y, Chen Q Q, Wu J P, Kirk T B, Xu J K, Liu Z H, Xue W. Reduction-responsive Codelivery system based on a metalorganic framework for eliciting potent cellular immune response. ACS Appl. Mater. Interfaces. 2018;10:12463–12473. doi: 10.1021/acsami.8b01680. [DOI] [PubMed] [Google Scholar]
  • [54].Liu Y, Zhao Y L, Chen X Y. Bioengineering of metal-organic frameworks for Nanomedicine. Theranostics. 2019;9:3122–3133. doi: 10.7150/thno.31918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [55].Wang Z J, Fu Y, Kang Z Z, Liu X G, Chen N, Wang Q, Tu Y Q, Wang L H, Song S P, Ling D S, et al. Organelle-specific triggered release of Immunostimulatory oligonucleotides from intrinsically coordinated DNA-metal-organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 2017;139:15784–15791. doi: 10.1021/jacs.7b07895. [DOI] [PubMed] [Google Scholar]
  • [56].Lu K D, He C B, Guo N N, Chan C, Ni K Y, Lan G X, Tang H D, Pelizzari C, Fu Y X, Spiotto M T, et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018;2:600–610. doi: 10.1038/s41551-018-0203-4. [DOI] [PubMed] [Google Scholar]
  • [57].Lu K D, He C B, Guo N N, Chan C, Ni K Y, Weichselbaum R R, Lin W B. Chlorin-based Nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc. 2016;138:12502–12510. doi: 10.1021/jacs.6b06663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [58].Zhu W J, Yang Y, Jin Q T, Chao Y, Tian L L, Liu J J, Dong Z L, Liu Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019;12:1307–1312. [Google Scholar]
  • [59].Kim K, Lee S, Jin E, Palanikumar L, Lee J H, Kim J C, Nam J S, Jana B, Kwon T H, Kwak S K, et al. MOF X biopolymer: Collaborative combination of metal-organic framework and biopolymer for advanced anticancer therapy. ACS Appl. Mater. Interfaces. 2019;11:27512–27520. doi: 10.1021/acsami.9b05736. [DOI] [PubMed] [Google Scholar]
  • [60].Miao Y B, Pan W Y, Chen K H, Wei H J, Mi F L, Lu M Y, Chang Y, Sung H W. Engineering a Nanoscale Al-MOF-armored antigen carried by a “Trojan Horse”-like platform for oral vaccination to induce potent and long-lasting immunity. Adv. Funct. Mater. 2019;29:1904828. [Google Scholar]
  • [61].Liu F Y, He X X, Chen H D, Zhang J P, Zhang H M, Wang Z X. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun. 2015;6:8003. doi: 10.1038/ncomms9003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [62].Dong Z L, Feng L Z, Chao Y, Hao Y, Chen M C, Gong F, Han X, Zhang R, Cheng L, Liu Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2019;19:805–815. doi: 10.1021/acs.nanolett.8b03905. [DOI] [PubMed] [Google Scholar]
  • [63].Chen W S, Zeng K, Liu H, Ouyang J, Wang L Q, Liu Y, Wang H, Deng L, Liu Y N. Cell membrane camouflaged hollow prussian blue nanoparticles for synergistic Photothermal-/chemotherapy of cancer. Adv. Funct. Mater. 2017;27:1605795. [Google Scholar]
  • [64].Rojas S, Devic T, Horcajada P. Metal organic frameworks based on bioactive components. J. Mater. Chem. B. 2017;5:2560–2573. doi: 10.1039/c6tb03217f. [DOI] [PubMed] [Google Scholar]
  • [65].An J, Farha O K, Hupp J T, Pohl E, Yeh J I, Rosi N L. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun. 2012;3:604. doi: 10.1038/ncomms1618. [DOI] [PubMed] [Google Scholar]
  • [66].Zhong X F, Sun X. Nanomedicines based on nanoscale metalorganic frameworks for cancer immunotherapy. Acta Pharmacol. Sin. 2020;41:928–935. doi: 10.1038/s41401-020-0414-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [67].Li S X, Wang K K, Shi Y J, Cui Y N, Chen B L, He B, Dai W B, Zhang H, Wang X Q, Zhong C L, et al. Novel biological functions of ZIF-NP as a delivery vehicle: High pulmonary accumulation, favorable biocompatibility, and improved therapeutic outcome. Adv. Funct. Mater. 2016;26:2715–2727. [Google Scholar]
  • [68].Hoop M, Walde C F, Riccò R, Mushtaq F, Terzopoulou A, Chen X Z d, Mello A J, Doonan C J, Falcaro P, Nelson B J, et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl. Mater. Today. 2018;11:13–21. [Google Scholar]
  • [69].Simon-Yarza T, Baati T, Neffati F, Njim L, Couvreur P, Serre C, Gref R, Najjar M F, Zakhama A, Horcajada P. In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration. Int. J. Pharm. 2016;511:1042–1047. doi: 10.1016/j.ijpharm.2016.08.010. [DOI] [PubMed] [Google Scholar]
  • [70].Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018;30:e1707365. doi: 10.1002/adma.201707365. [DOI] [PubMed] [Google Scholar]
  • [71].Shi J J, Kantoff P W, Wooster R, Farokhzad O C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20–37. doi: 10.1038/nrc.2016.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [72].Agostoni V, Horcajada P, Noiray M, Malanga M, Aykaç A, Jicsinszky L, Vargas-Berenguel A, Semiramoth N, Daoud-Mahammed S, Nicolas V, et al. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci. Rep. 2015;5:7925. doi: 10.1038/srep07925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [73].Abánades Lázaro I, Haddad S, Sacca S, Orellana-Tavra C, Fairen-Jimenez D, Forgan R S. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem. 2017;2:561–578. doi: 10.1016/j.chempr.2017.02.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [74].Wuttke S, Braig S, Preiß T, Zimpel A, Sicklinger J, Bellomo C, Rädler J O, Vollmar A M, Bein T. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chem. Commun. 2015;51:15752–15755. doi: 10.1039/c5cc06767g. [DOI] [PubMed] [Google Scholar]
  • [75].Illes B, Hirschle P, Barnert S, Cauda V, Wuttke S, Engelke H. Exosome-coated metal–organic framework nanoparticles: An efficient drug delivery platform. Chem. Mater. 2017;29:8042–8046. [Google Scholar]
  • [76].Hay K A, Hanafi L A, Li D, Gust J, Liles W C, Wurfel M M, López J A, Chen J M, Chung D, Harju-Baker S, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130:2295–2306. doi: 10.1182/blood-2017-06-793141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [77].Au K M, Satterlee A, Min Y Z, Tian X, Kim Y S, Caster J M, Zhang L Z, Zhang T, Huang L, Wang A Z. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials. 2016;82:178–193. doi: 10.1016/j.biomaterials.2015.12.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [78].Fang R H, Kroll A V, Gao W W, Zhang L F. Cell membrane coating nanotechnology. Adv. Mater. 2018;30:e1706759. doi: 10.1002/adma.201706759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79].Zhang L, Wang Z Z, Zhang Y, Cao F F, Dong K, Ren J S, Qu X G. Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic Nanoreactor for starvation-activated colon cancer therapy. ACS Nano. 2018;12:10201–10211. doi: 10.1021/acsnano.8b05200. [DOI] [PubMed] [Google Scholar]
  • [80].Li S Y, Cheng H, Qiu W X, Zhang L, Wan S S, Zeng J Y, Zhang X Z. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials. 2017;142:149–161. doi: 10.1016/j.biomaterials.2017.07.026. [DOI] [PubMed] [Google Scholar]
  • [81].Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6:1306–1323. doi: 10.7150/thno.14858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [82].Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 2010;141:52–67. doi: 10.1016/j.cell.2010.03.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [83].Cai W, Wang J Q, Chu C C, Chen W, Wu C S, Liu G. Metalorganic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 2019;6:1801526. doi: 10.1002/advs.201801526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [84].Qiao Y T, Wan J Q, Zhou L Q, Ma W, Yang Y Y, Luo W X, Yu Z Q, Wang H X. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wires Nanomed. Nanobi. 2019;11:e1527. doi: 10.1002/wnan.1527. [DOI] [PubMed] [Google Scholar]
  • [85].Cutrone G, Qiu J W, Menendez-Miranda M, Casas-Solvas J M, Aykac A, Li X, Foulkes D, Moreira-Alvarez B, Encinar J R, Ladaviere C, et al. Comb-like dextran copolymers: A versatile strategy to coat highly porous MOF nanoparticles with a PEG shell. Carbohyd. Polym. 2019;223:115085. doi: 10.1016/j.carbpol.2019.115085. [DOI] [PubMed] [Google Scholar]
  • [86].SK M, Banesh S, Trivedi V, Biswas S. Selective and sensitive sensing of hydrogen peroxide by a Boronic acid functionalized metal-organic framework and its application in live-cell imaging. Inorg. Chem. 2018;57:14574–14581. doi: 10.1021/acs.inorgchem.8b02240. [DOI] [PubMed] [Google Scholar]
  • [87].Dekrafft K E, Boyle W S, Burk L M, Zhou O Z, Lin W B. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. J. Mater. Chem. 2012;22:18139–18144. doi: 10.1039/C2JM32299D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [88].Hidalgo T, Giménez-Marqués M, Bellido E, Avila J, Asensio M C, Salles F, Lozano M V, Guillevic M, Simón-Vázquez R, González-Fernández A, et al. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci. Rep. 2017;7:43099. doi: 10.1038/srep43099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [89].Wang W Q, Wang L, Li Y, Liu S, Xie Z G, Jing X B. Nanoscale polymer metal-organic framework hybrids for effective Photothermal therapy of colon cancers. Adv. Mater. 2016;28:9320–9325. doi: 10.1002/adma.201602997. [DOI] [PubMed] [Google Scholar]
  • [90].Wang D D, Wu H H, Zhou J J, Xu P P, Wang C L, Shi R H, Wang H B, Wang H, Guo Z, Chen Q W. In situ one-pot synthesis of MOF-Polydopamine hybrid Nanogels with enhanced Photothermal effect for targeted cancer therapy. Adv. Sci. 2018;5:1800287. doi: 10.1002/advs.201800287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [91].Bellido E, Hidalgo T, Lozano M V, Guillevic M, Simón-Vázquez R, Santander-Ortega M J, González-Fernández, Serre C, Alonso M J, Horcajada P. Heparin-engineered mesoporous iron metal-organic framework nanoparticles: Toward stealth drug nanocarriers. Adv. Healthc. Mater. 2015;4:1246–1257. doi: 10.1002/adhm.201400755. [DOI] [PubMed] [Google Scholar]
  • [92].Cheng G, Li W Q, Ha L, Han X H, Hao S J, Wan Y, Wang Z G, Dong F P, Zou X, Mao Y W, et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of Biofunctional proteins. J. Am. Chem. Soc. 2018;140:7282–7291. doi: 10.1021/jacs.8b03584. [DOI] [PubMed] [Google Scholar]
  • [93].Liu W L, Zou M Z, Liu T, Zeng J Y, Li X, Yu W Y, Li C X, Ye J J, Song W, Feng J, et al. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nat. Commun. 2019;10:3199. doi: 10.1038/s41467-019-11157-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [94].Zhong X F, Zhang Y T, Tan L, Zheng T, Hou Y Y, Hong X Y, Du G S, Chen X Y, Zhang Y D, Sun X. An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses. J. Control. Release. 2019;300:81–92. doi: 10.1016/j.jconrel.2019.02.035. [DOI] [PubMed] [Google Scholar]
  • [95].Liu W L, Zou M Z, Liu T, Zeng J Y, Li X, Yu W Y, Li C X, Ye J J, Song W, Feng J, et al. Expandable immunotherapeutic Nanoplatforms engineered from Cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv. Mater. 2019;31:e1900499. doi: 10.1002/adma.201900499. [DOI] [PubMed] [Google Scholar]
  • [96].Zou M Z, Liu W L, Li C X, Zheng D W, Zeng J Y, Gao F, Ye J J, Zhang X Z. A multifunctional biomimetic Nanoplatform for relieving hypoxia to enhance chemotherapy and inhibit the PD-1/PD-L1 axis. Small. 2018;14:1801120. doi: 10.1002/smll.201801120. [DOI] [PubMed] [Google Scholar]
  • [97].Ni K Y, Aung T, Li S Y, Fatuzzo N, Liang X J, Lin W B. Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy. Chem. 2019;5:1892–1913. doi: 10.1016/j.chempr.2019.05.013. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • [98].Yang J C, Shang Y, Li Y H, Cui Y, Yin X B. An “all-in-one” antitumor and anti-recurrence/metastasis nanomedicine with multidrug co-loading and burst drug release for multi-modality therapy. Chem. Sci. 2018;9:7210–7217. doi: 10.1039/c8sc02305k. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [99].Le Q V, Choi J, Oh Y K. Nano delivery systems and cancer immunotherapy. J. Pharm. Investig. 2018;48:527–539. [Google Scholar]
  • [100].Coffman R L, Sher A, Seder R A. Vaccine adjuvants: Putting innate immunity to work. Immunity. 2010;33:492–503. doi: 10.1016/j.immuni.2010.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [101].Hanagata N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int. J. Nanomed. 2017;12:515–531. doi: 10.2147/IJN.S114477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [102].Qian H Q, Liu B R, Jiang X Q. Application of nanomaterials in cancer immunotherapy. Mater Today Chem. 2018;7:53–64. [Google Scholar]
  • [103].Zhang H J, Chen W, Gong K, Chen J H. Nanoscale Zeolitic Imidazolate framework-8 as efficient vehicles for enhanced delivery of CpG Oligodeoxynucleotides. ACS Appl. Mater. Interfaces. 2017;9:31519–31525. doi: 10.1021/acsami.7b09583. [DOI] [PubMed] [Google Scholar]
  • [104].Tao Y, Ju E G, Li Z H, Ren J S, Qu X G. Engineered CpGantigen conjugates protected gold Nanoclusters as smart selfvaccines for enhanced immune response and cell imaging. Adv. Funct. Mater. 2014;24:1004–1010. [Google Scholar]
  • [105].Krishnamachari Y, Salem A K. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev. 2009;61:205–217. doi: 10.1016/j.addr.2008.12.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [106].Reed S G, Bertholet S, Coler R N, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol. 2009;30:23–32. doi: 10.1016/j.it.2008.09.006. [DOI] [PubMed] [Google Scholar]
  • [107].Pardoll D M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. doi: 10.1038/nrc3239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [108].Zahm C D, Johnson L E, McNeel D G. Increased indoleamine 2, 3-dioxygenase activity and expression in prostate cancer following targeted immunotherapy. Cancer Immunol. Immun. 2019;68:1661–1669. doi: 10.1007/s00262-019-02394-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [109].Sun Z C, Fu Y X, Peng H. Targeting tumor cells with antibodies enhances anti-tumor immunity. Biophys. Rep. 2018;4:243–253. doi: 10.1007/s41048-018-0070-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [110].Roberts C J. Therapeutic protein aggregation: Mechanisms, design, and control. Trends Biotechnol. 2014;32:372–380. doi: 10.1016/j.tibtech.2014.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [111].Hansel T T, Kropshofer H, Singer T, Mitchell J A, George A J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010;9:325–338. doi: 10.1038/nrd3003. [DOI] [PubMed] [Google Scholar]
  • [112].Binnewies M, Roberts E W, Kersten K, Chan V, Fearon D F, Merad M, Coussens L M, Gabrilovich D I, Ostrand-Rosenberg S, Hedrick C C, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018;24:541–550. doi: 10.1038/s41591-018-0014-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [113].Xu J, Saklatvala R, Mittal S, Deshmukh S, Procopio A. Recent progress of potentiating immune checkpoint blockade with external stimuli-an industry perspective. Adv. Sci. 2020;7:1903394. doi: 10.1002/advs.201903394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [114].Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019;18:197–218. doi: 10.1038/s41573-018-0007-y. [DOI] [PubMed] [Google Scholar]
  • [115].Li W, Yang J, Luo L H, Jiang M S, Qin B, Yin H, Zhu C Q, Yuan X L, Zhang J L, Luo Z Y, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019;10:3349. doi: 10.1038/s41467-019-11269-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [116].Zhang Y, Wang F M, Liu C Q, Wang Z Z, Kang L H, Huang Y Y, Dong K, Ren J S, Qu X G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano. 2018;12:651–661. doi: 10.1021/acsnano.7b07746. [DOI] [PubMed] [Google Scholar]
  • [117].Ma X Y, Ren X L, Guo X D, Fu C H, Wu Q, Tan L F, Li H B, Zhang W, Chen X D, Zhong H S, et al. Multifunctional iron-based Metal-Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials. 2019;214:119223. doi: 10.1016/j.biomaterials.2019.119223. [DOI] [PubMed] [Google Scholar]
  • [118].Casares N, Pequignot M O, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 2005;202:1691–1701. doi: 10.1084/jem.20050915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [119].Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala A Q, Menger L, Zitvogel L, Kroemer G. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metast. Rev. 2011;30:61–69. doi: 10.1007/s10555-011-9273-4. [DOI] [PubMed] [Google Scholar]
  • [120].Hallek M, Fischer K, Fingerle-Rowson G, Fink A M, Busch R, Mayer J, Hensel M, Hopfinger G, Hess G, von Grunhagen U, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: A randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–1174. doi: 10.1016/S0140-6736(10)61381-5. [DOI] [PubMed] [Google Scholar]
  • [121].Lu J Q, Liu X S, Liao Y P, Salazar F, Sun B B, Jiang W, Chang C H, Jiang J H, Wang X, Wu A M, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 2017;8:1811. doi: 10.1038/s41467-017-01651-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [122].Yang W, Bai Y B, Xiong Y, Zhang J, Chen S K, Zheng X J, Meng X B, Li L Y, Wang J, Xu C G, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature. 2016;531:651–655. doi: 10.1038/nature17412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [123].Lei J, Wang H J, Zhu D M, Wan Y B, Yin L. Combined effects of avasimibe immunotherapy, doxorubicin chemotherapy, and metal-organic frameworks nanoparticles on breast cancer. J. Cell. Physiol. 2020;235:4814–4823. doi: 10.1002/jcp.29358. [DOI] [PubMed] [Google Scholar]
  • [124].Schaue D. A century of radiation therapy and adaptive immunity. Front. Immunol. 2017;8:431. doi: 10.3389/fimmu.2017.00431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [125].Chen Q, Chen J W, Yang Z J, Xu J, Xu L G, Liang C, Han X, Liu Z. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019;31:e1802228. doi: 10.1002/adma.201802228. [DOI] [PubMed] [Google Scholar]
  • [126].Twyman-Saint V C, Rech A J, Maity A, Rengan R, Pauken K E, Stelekati E, Benci J L, Xu B H, Dada H, Odorizzi P M, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–377. doi: 10.1038/nature14292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [127].Ni K Y, Lan G X, Chan C, Quigley B, Lu K D, Aung T, Guo N N, La Riviere P, Weichselbaum R R, Lin W B. Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 2018;9:2351. doi: 10.1038/s41467-018-04703-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [128].Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T, Barberi-Heyob M. Nanoparticles for radiation therapy enhancement: The key parameters. Theranostics. 2015;5:1030–1044. doi: 10.7150/thno.11642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [129].Paszko E, Ehrhardt C, Senge M O, Kelleher D P, Reynolds J V. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther. 2011;8:14–29. doi: 10.1016/j.pdpdt.2010.12.001. [DOI] [PubMed] [Google Scholar]
  • [130].Lu K D, He C B, Lin W B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014;136:16712–16715. doi: 10.1021/ja508679h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [131].Lu K D, He C B, Lin W B. A Chlorin-based Nanoscale metalorganic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 2015;137:7600–7603. doi: 10.1021/jacs.5b04069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [132].Lismont M, Dreesen L, Wuttke S. Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Adv. Funct. Mater. 2017;27:1606314. [Google Scholar]
  • [133].Zeng J Y, Zou M Z, Zhang M K, Wang X S, Zeng X, Cong H J, Zhang X Z. p-extended Benzoporphyrin-based metalorganic framework for inhibition of tumor metastasis. ACS Nano. 2018;12:4630–4640. doi: 10.1021/acsnano.8b01186. [DOI] [PubMed] [Google Scholar]
  • [134].Guo L R, Yan D D, Yang D F, Li Y J, Wang X D, Zalewski O, Yan B F, Lu W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano. 2014;8:5670–5681. doi: 10.1021/nn5002112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [135].Chen Q, Xu L G, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016;7:13193. doi: 10.1038/ncomms13193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [136].Wang C, Xu L G, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014;26:8154–8162. doi: 10.1002/adma.201402996. [DOI] [PubMed] [Google Scholar]
  • [137].Cai X C, Liu B, Pang M L, Lin J. Interfacially synthesized Fe-soc-MOF nanoparticles combined with ICG for photothermal/ photodynamic therapy. Dalton Trans. 2018;47:16329–16336. doi: 10.1039/c8dt02941e. [DOI] [PubMed] [Google Scholar]
  • [138].Li Y W, Xu N, Zhou J L, Zhu W H, Li L T, Dong M X, Yu H T, Wang L, Liu W S, Xie Z G. Facile synthesis of a metal-organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomater. Sci. 2018;6:2918–2924. doi: 10.1039/c8bm00830b. [DOI] [PubMed] [Google Scholar]
  • [139].Zhu Y D, Chen S P, Zhao H, Yang Y, Chen X Q, Sun J, Fan H S, Zhang X D. PPy@MIL-100 nanoparticles as a pHand near-IR-irradiation-responsive drug carrier for simultaneous Photothermal therapy and chemotherapy of cancer cells. ACS Appl. Mater. Interfaces. 2016;8:34209–34217. doi: 10.1021/acsami.6b11378. [DOI] [PubMed] [Google Scholar]
  • [140].Wang Y Q, Zhang J, Zhang C Y, Li B J, Wang J J, Zhang X J, Li D, Sun S K. Functional-protein-assisted fabrication of Fe–gallic acid coordination polymer Nanonetworks for localized Photothermal therapy. ACS Sustainable Chem. Eng. 2018;7:994–1005. [Google Scholar]
  • [141].Zhang H Y, Zhang J, Li Q, Song A X, Tian H L, Wang J Q, Li Z H, Luan Y X. Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials. 2020;245:119983. doi: 10.1016/j.biomaterials.2020.119983. [DOI] [PubMed] [Google Scholar]
  • [142].Mu J, He L C, Huang P, Chen X Y. Engineering of nanoscale coordination polymers with biomolecules for advanced applications. Coordin. Chem. Rev. 2019;399:213039. doi: 10.1016/j.ccr.2019.213039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [143].Wang C G, Zhang R, Wei X M, Lv M Z, Jiang Z F. Metalloimmunology: The metal ion-controlled immunity. Adv. Immunol. 2020;145:187–241. doi: 10.1016/bs.ai.2019.11.007. [DOI] [PubMed] [Google Scholar]
  • [144].Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol C R, Keppler B K, Berger W. Metal drugs and the anticancer immune response. Chem. Rev. 2019;119:1519–1624. doi: 10.1021/acs.chemrev.8b00396. [DOI] [PubMed] [Google Scholar]

Articles from Nano Research are provided here courtesy of Nature Publishing Group

RESOURCES