Skip to main content
Mitochondrial DNA. Part B, Resources logoLink to Mitochondrial DNA. Part B, Resources
. 2019 Jul 12;4(2):2438–2440. doi: 10.1080/23802359.2019.1637294

Sequencing and analysis of the complete mitochondrial genome of Chodsigoa hoffmanni from China and its phylogenetic analysis

Liu Zhu 1,, Bai Yang 1, Sheng Yi 1, Zhang Qi 1, Cai He 1, Zhang Sheng 1, Li Jin-Xun 1, Wang Zhu 1
PMCID: PMC7687604  PMID: 33365576

Abstract

The complete mitogenome sequence of Chodsigoa hoffmanni was determined using long PCR. The genome was 17,138 bp in length and contained 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, one origin of L strand replication, and one control region. The overall base composition of the heavy strand is A (32.8%), C (24.4%), T (29.8%), and G (13.0%). The base compositions present clearly the A–T skew, which is most obviously in the control region and protein-coding genes. Mitochondrial genome analyses based on MP, ML, NJ, and Bayesian analyses yielded identical phylogenetic trees. Chodsigoa hoffmanni is the first species to have been reported on the mitochondrial genome in Chodsigoa genus. This study verifies the evolutionary status of C. hoffmanni in Soricidae at the molecular level. The mitochondrial genome would be a significant supplement for the C. hoffmanni genetic background.

Keywords: Control region, mitogenome, phylogenetic trees, Chodsigoa hoffmanni


In this paper, the complete mitochondrial genome of Chodsigoa hoffmanni was sequenced for the first time on ABI 3730XL using a primer walking strategy and the long and accurate PCR, with five pairs of long PCR primers and with 14 pairs of sub-PCR primers. A muscle sample was obtained from a female C. hoffmanni captured from Bijie regions of Wumeng Mountains in Guizhou Province, China (26°24′22″ N, 105°44′04″ E). The muscle tissue was preserved in 95% ethanol and stored at −75 °C before use. The specimen and its DNA are stored in Animal and Plant Herbarium of Mudanjiang Normal University. The voucher number is GZ201903.

The mitochondrial genome is a circular double-stranded DNA sequence that is 17,138 bp long, including 13 protein-coding genes, two rRNA genes, 22 tRNA genes, one origin of L strand replication, and one control region. The accurate annotated mitochondrial genome sequence was submitted to GenBank with accession number MK940327. The arrangement of the multiple genes is in line with other Talpidae species (Mouchaty et al. 2000; Nikaido et al. 2003; Cabria et al. 2006; Hou et al. 2016; Xu et al. 2016; Gutiérrez et al. 2018; Jia et al. 2018) and most mammals (Nikaido et al. 2001; Fontanillas et al. 2005; Meganathan et al. 2012; Yoon et al. 2013; Xu et al. 2012, 2013; Kim et al. 2013, 2017; Huang et al. 2014, 2016; Xu et al. 2016; Liu et al. 2016; Liu, Tian, Jin, Jin, et al. 2017; Liu, Tian, Jin, Dong, et al. 2017; Liu, Wang, et al. 2017; Liu et al. 2018; Liu, Dang, et al. 2019; Liu, Qin, et al. 2019; Jin et al. 2017).

The control region of C. hoffmanni mitochondrial genome was located between the tRNA-Pro and tRNA-Phe genes and contains only promoters and regulatory sequences for replication and transcription, but no structural genes. Three domains were defined in the large mole mitochondrial genome control region (Zhang et al. 2009): the extended termination-associated sequence (ETAS) domain, the central conserved domain (CD) and the conserved sequence block (CSB) domain.

The total length of the protein-coding gene sequences was 11,421 bp. Most protein-coding genes initiate with ATG except for ND2, ND3, and ND5, which began with ATA or ATT. Seven protein-coding genes terminated with TAA whereas the Cyt b gene terminated with AGA. The incomplete stop codons (T–– or TA–) were used in ND1, COX3, ATP6, and ND4. A strong bias against A at the third codon position was observed in the protein-coding genes. The frequencies of CTA (Leu), ATT (Ile), TTA (Leu), and ATA (Met) were higher than those of other codons. The length of tRNA genes varied from 59 to 75 bp.

Most C. hoffmanni mitochondrial genes were encoded on the H strand, except for the ND6 gene and eight tRNA genes, which were encoded on the L strand. Some reading frame intervals and overlaps were found. One of the most typical was between ATP8 and ATP6. The L-strand replication origin (OL) was located within the WANCY region containing five tRNA genes (tRNATrp, tRNA-Ala, tRNA-Asn, tRNA-Cys, tRNA-Tyr). This region was 36 bp long and had the potential to fold into a stable stem-loop secondary structure. The total base composition of C. hoffmanni mitochondrial genome was A (32.8%), C (24.4%), T (29.8%), and G (13.0%). The base compositions clearly present the A-T skew, which was most obviously in the control region and protein-coding genes.

In order to explore the evolution of Insectivora shrews which include Soricidae and Talpidae, especially the evolution of genus Chodsigoa from China, here, we investigate the molecular phylogenetics of Chinese C. hoffmanni using complete mitochondrial genome sequence of 35 species. All sequences generated in this study have been deposited in the GenBank (Figure 1).

Figure 1.

Figure 1.

Phylogenetic tree generated using the Maximum Parsimony method based on complete mitochondrial genomes. Chodsigoa hoffmanni (MK940327), Crocidura lasiura (KR007669), Crocidura shantungensis (JX968507), Crocidura attenuata (KP120863), Crocidura russula (AY769264), Episoriculus macrurus (KU246040), Episoriculus caudatus (KM503097), Neomys fodiens (KM092492), Nectogale elegans (KC503902), Anourosorex squamipes (KJ545899), Blarinella quadraticauda (KJ131179), Suncus murinus (KJ920198), Soriculus fumidus (AF348081), Sorex araneus (KT210896), Sorex cylindricauda (KF696672), Sorex unguiculatus (AB061527), Sorex tundrensis (KM067275), Sorex caecutiens (MF374796), Sorex roboratus (KY930906), Sorex isodon (MG983792), Sorex gracillimus (MF426913), Sorex mirabilis (MF438265), Sorex daphaenodon (MK110676), Sorex minutissimus (MH823669), Talpa europaea (Y19192), Urotrichus talpoides (AB099483), Uropsilus soricipes (JQ658979), Uropsilus gracilis (KM379136), Mogera wogura (AB099482), Mogera robusta (MK431828), Condylura cristata (KU144678), Galemys pyrenaicus (AY833419), Scapanulus oweni (KM506754), Talpa occidentalis (MF958963), Uropsilus andersoni (MF280389), and Erinaceus europaeus (NC002080).

Mitochondrial genome analyses based on MP, ML, NJ, and Bayesian analyses yielded identical phylogenetic trees, indicating a close phylogenetic affinity of shrews. The phylogram obtained from Maximum Parsimony method is shown in Figure 1. It shows that two major phyletic lineages were present in Insectivora: Soricidae and Talpidae. Soricidae comprised C. hoffmanni, Crocidura lasiura, Crocidura shantungensis, Crocidura attenuata, Crocidura russula, Episoriculus macrurus, Episoriculus caudatus, Neomys fodiens, Nectogale elegans, Anourosorex squamipes, Blarinella quadraticauda, Soriculus fumidus, Suncus murinus, Sorex araneus, Sorex tundrensis, Sorex caecutiens, Sorex roboratus, Sorex isodon, Sorex gracillimus, Sorex mirabilis, Sorex cylindricauda, Sorex unguiculatus, Sorex daphaenodon and Sorex minutissimus was supported by bootstrap values of 100%. Talpidae comprised Talpa europaea, Urotrichus talpoides, Mogera wogura, Condylura cristata, Uropsilus soricipes, Mogera robusta, Galemys pyrenaicus, Uropsilus gracilis, Talpa occidentalis, Uropsilus andersoni and Scapanulus oweni was supported by bootstrap values of 100%. Chodsigoa hoffmanni is the first species to have been reported on the mitochondrial genome in Chodsigoa genus. This study verifies the evolutionary status of C. hoffmanni in Soricidae at the molecular level. The mitochondrial genome would be a significant supplement for the C. hoffmanni genetic background.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

  1. Cabria MT, Rubines J, Gómez-Moliner B, Zardoya R. 2006. On the phylogenetic position of a rare Iberian endemic mammal, the Pyrenean desman (Galemys pyrenaicus). Gene. 375:1–13. [DOI] [PubMed] [Google Scholar]
  2. Fontanillas P, Depraz A, Giorgi MS, Perrin N. 2005. Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white-toothed shrew, Crocidura russula. Mol Ecol. 14:661–670. [DOI] [PubMed] [Google Scholar]
  3. Gutiérrez J, Lamelas L, Aleix-Mata G, Arroyo M, Marchal JA, Palomeque T, Lorite P, Sánchez A. 2018. Complete mitochondrial genome of the Iberian Mole Talpa occidentalis (Talpidae, Insectivora) and comparison with Talpa europaea. Genetica. 146:415–423. [DOI] [PubMed] [Google Scholar]
  4. Hou Q, Tu F, Liu Y, Liu S. 2016. Characterization of the mitogenome of Uropsilus gracilis and species delimitation. Mitochondrial DNA A. 27:1836–1837. [DOI] [PubMed] [Google Scholar]
  5. Huang T, Dang X, An M, Chen L, Zhang J. 2016. The complete mitochondrial genome of the Sorex araneus. Mitochondrial DNA. 27:3655–3656. [DOI] [PubMed] [Google Scholar]
  6. Huang T, Yan CC, Tan Z, Tu FY, Yue BS, Zhang XY. 2014. Complete mitochondrial genome sequence of Nectogale elegans. Mitochondrial DNA. 25:253. [DOI] [PubMed] [Google Scholar]
  7. Jia X, Yang L, Shi H. 2018. The complete mitochondrial genome of Anderson’s shrew mole, Uropsilus andersoni (Talpidae). Conserv Genet Resour. 10:583–585. [Google Scholar]
  8. Jin Z-M, Zhu L, Ma J-Z. 2017. Sequencing and analysis of the complete mitochondrial genome of the masked shrew (Sorex caecutiens) from China. Mitochondrial DNA B. 2:486–488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kim TW, Kim YK, Oh DJ, Park JH, Kim D, Adhikari P, Kim G, Park SM, Lee JW, Jung YH, et al. 2017. Complete mitochondrial genome of the Ussuri white-toothed shrew Crocidura lasiura (Insectivora, Soricidae). Mitochondrial DNA A. 28:216–217. [DOI] [PubMed] [Google Scholar]
  10. Kim HR, Park JK, Cho JY, Chul Park Y. 2013. Complete mitochondrial genome of an Asian Lesser White-toothed Shrew, Crocidura shantungensis (Soricidae). Mitochondrial DNA. 24:202–204. [DOI] [PubMed] [Google Scholar]
  11. Liu Z, Bai W, Wang AN, Tian XM, Li DW. 2018. Sequencing and analysis of the complete mitochondrial genome of the taiga shrew (Sorex isodon) from China. Mitochondrial DNA B. 3:466–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liu Z, Dang YQ, Li JJ. 2019. Sequencing and analysis of the complete mitochondrial genome of the Eurasian least shrew (Sorex minutissimus) from China. Mitochondrial DNA B. 4:178–180. [Google Scholar]
  13. Liu Z, Qin KS, Li JJ, Dong M. 2019. Sequencing and analysis of the complete mitochondrial genome of the Siberian large-toothed shrew (Sorex daphaenodon) from China. Mitochondrial DNA B. 4:542–544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu Z, Tian XM, Jin ZM, Dong M, Zhang JS. 2017. Sequencing and analysis of the complete mitochondrial genome of the Ussuri shrew (Sorex mirabilis) from China. Mitochondrial DNA B. 2:645–647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liu Z, Tian XM, Jin JL, Jin ZM, Li DW, Zhang JS. 2017. Sequencing and analysis of the complete mitochondrial genome of the slender shrew (Sorex gracillimus) from China. Mitochondrial DNA B. 2:642–644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu Z, Wang AN, Zhang JS, Yang X, Liu H. 2017. Sequencing and analysis of the complete mitochondrial genome of flat-skulled shrew (Sorex roboratus) from China. Mitochondrial DNA B. 2:369–371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu Z, Zhao W, Liu P, Li S, Xu C. 2016. The complete mitochondrial genome of Eurasian water shrew (Neomys fodiens). Mitochondrial DNA A. 27:2381–2382. [DOI] [PubMed] [Google Scholar]
  18. Meganathan PR, Pagan HJT, McCulloch ES, Stevens RD, Ray DA. 2012. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera. Gene. 492:121–129. [DOI] [PubMed] [Google Scholar]
  19. Mouchaty SK, Gullberg A, Janke A, Arnason U. 2000. The phylogenetic position of the Talpidae within Eutheria based on analysis of complete mitochondrial sequences. Mol Biol Evol. 17:60–67. [DOI] [PubMed] [Google Scholar]
  20. Nikaido M, Cao Y, Harada M, Okada N, Hasegawa M. 2003. Mitochondrial phylogeny of hedgehogs and monophyly of Eulipotyphla. Mol Phylogenet Evol. 28:276–284. [DOI] [PubMed] [Google Scholar]
  21. Nikaido M, Kawai K, Cao Y, Harada M, Tomita S, Okada N, Hasegawa M. 2001. Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. J Mol Evol. 53:508–506. [DOI] [PubMed] [Google Scholar]
  22. Xu Y, Huang X, Hu Y, Tu F. 2016. Description of the mitogenome of Gansu mole (Scapanulus oweni). Mitochondrial DNA A DNA Mapp Seq Anal. 27:2083–2084. [DOI] [PubMed] [Google Scholar]
  23. Xu CZ, Zhang HH, Ma JZ. 2013. The complete mitochondrial genome of sable, Martes flavigula. Mitochondrial DNA. 24:240–242. [DOI] [PubMed] [Google Scholar]
  24. Xu CZ, Zhang HH, Ma JZ, Liu ZH. 2012. The complete mitochondrial genome of sable, Martes zibellina. Mitochondrial DNA. 23:167–169. [DOI] [PubMed] [Google Scholar]
  25. Xu CZ, Zhao S, Wu HL, Wu SY, Zhang ZW, Wang B, Dou HS. 2016. Sequencing analysis of the complete mitochondrial genome of tundra shrew (Sorex tundrensis) from China. Mitochondrial DNA. 27:2354–2355. [DOI] [PubMed] [Google Scholar]
  26. Yoon KB, Kim HR, Kim JY, Jeon SH, Park YC. 2013. The complete mitochondrial genome of the Ussurian tube-nosed bat Murina ussuriensis (Chiroptera: Vespertilionidae) in Korea. Mitochondrial DNA. 24:397–399. [DOI] [PubMed] [Google Scholar]
  27. Zhang HH, Xu CZ, Ma JZ. 2009. Structure of the mtDNA control region and phylogeny of the Mustelidae species. Acta Ecol Sin. 29:3585–3592. [Google Scholar]

Articles from Mitochondrial DNA. Part B, Resources are provided here courtesy of Taylor & Francis

RESOURCES