Skip to main content
Lippincott Open Access logoLink to Lippincott Open Access
. 2020 Nov 19;14(13):e01350. doi: 10.1213/XAA.0000000000001350

Anesthetic Management of Living-Donor Renal Transplantation in a Patient With Epstein Syndrome Using Rotational Thromboelastometry: A Case Report

Midoriko Higashi *,, Keizo Kaku , Yasuhiro Okabe , Ken Yamaura *
PMCID: PMC7688077  PMID: 33236872

Abstract

Epstein syndrome is a myosin heavy chain 9 (MYH9)-related disorder characterized by hearing loss and macrothrombocytopenia with renal failure, which usually requires platelet transfusion during surgery. We report the case of a 22-year-old man who underwent living-donor renal transplantation without platelet transfusion using rotational thromboelastometry (ROTEM) monitoring. His intraoperative laboratory coagulation findings were a platelet count of 28–31 × 109/L based on microscopy and fibrinogen of 256 mg/dL. However, his extrinsic pathway evaluations by ROTEM were normal. The estimated blood loss during the operation was 150 mL, and the patient showed no bleeding complications without platelet transfusion.


Epstein syndrome is a hereditary myosin heavy chain 9 (MYH9)–related disorder, characterized by hearing loss and macrothrombocytopenia with renal failure, which often requires renal transplantation.13 Perioperative management for thrombocytopenia is important for these patients, with most undergoing platelet transfusion.3

Here, we report a case of a patient with Epstein syndrome undergoing living-donor renal transplantation without platelet transfusion under coagulation monitoring using rotational thromboelastometry (ROTEM; TEM International GmbH, Munich, Germany).

Written informed consent for publication was obtained from the patient. This article adheres to the applicable Enhancing the Quality and Transparency of Health Research (EQUATOR) guideline.

CASE DESCRIPTION

A 22-year-old man (height, 175 cm; weight, 65 kg) was scheduled to undergo living-donor renal transplantation. The patient had been diagnosed with Epstein syndrome at the age of 9 years. He had renal failure, macrothrombocytopenia, and hearing loss due to Epstein syndrome and had started hemodialysis when he was 19 years old. Peripheral blood examination revealed a platelet count of 37 × 109/L with giant platelets and neutrophils containing Döhle bodies.

Anesthesia was induced with fentanyl (2 µg/kg body weight) and propofol (2.5 mg/kg). Rocuronium was administered. Anesthesia was maintained with isoflurane (1%–1.5%) and remifentanil (0.2–0.3 µg/kg/min) with a 50% oxygen-air mixture. In addition to standard intraoperative monitoring, direct arterial and central venous pressures were monitored. Platelet counts, prothrombin time (PT), activated partial thromboplastin time (aPTT), and ROTEM findings were monitored.

Preoperatively, the white blood cell count was 5080/µL; hemoglobin concentration was 9.8 g/dL; platelet count was 17 × 109 /L based on automatic blood cell counting (MEK Nihon Kohden, Tokyo, Japan) and 37 × 109 /L based on microscopy; international normalized ratio (INR) was 1.06; aPTT was 30.4 seconds; and fibrinogen concentration was 359 mg/dL.

Intraoperative and postoperative laboratory coagulation and ROTEM findings are shown in the Table. Platelet counts were 0.0 (uncounted) to 17 × 109/L based on automatic blood cell counting and 28–31 × 109/L based on microscopy; INR was 0.9–1.0; fibrinogen concentration was 256 mg/dL. The α angle (α), clotting time, and maximum clot firmness (MCF) in the evaluations of the extrinsic pathways (EXTEMs; TEM International GmbH, Munich, Germany), and contribution of fibrinogen to clot formation (FIBTEM; TEM International GmbH, Munich, Germany) were normal.

Table.

Coagulation Laboratory Data and ROTEM Findings

Before surgery Pretransplant Posttransplant After surgery POD1
Laboratory test Platelets, ×109/L 37 33 28 59 48
PT, s 10.3 11.4 11.8 11.3 12.3
Fibrinogen, mg 256 261 256
EXTEM CT, s 42 44 43 39 45
CFT, s 106 138 155 117 103
α, ° 79 73 72 76 78
A10, mm 53 48 46 51 54
MCF, mm 64 59 59 62 64
ML, % 2 2 3 1 2
INTEM CT, s 146 139 137 129 146
CFT, s 89 105 118 80 78
α, ° 52 50 49 56 55
A10, mm 52 50 49 56 55
MCF, mm 64 63 62 66 66
ML, % 0 0 0 0 1
FIBTEM A10, mm 19 17 14 15 19
MCF, mm 19 18 15 16 21
ML, % 0 0 0 0 0

Abbreviations: α, α angle; A10, clot firmness measured at 10 min after start of clot formation; CFT, clot formation time; CT, clotting time; EXTEM, evaluation of the extrinsic pathway; FIBTEM, evaluation of the contribution of fibrinogen to clot formation; INTEM, evaluation of the intrinsic pathway; MCF, maximum clot firmness; ML, maximum lysis; POD, postoperative day; ROTEM, rotational thromboelastometry.

Operation time was 5 hours and 16 minutes, and anesthesia time was 6 hours and 47 minutes. Estimated blood loss was 150 mL during the operation with further bleeding on postoperative day (POD) 1. The patient received no blood transfusions and experienced no bleeding complications. The function of the transplanted kidney was stable, and the patient was discharged from the intensive care unit without complications except for ureteral reanastomosis surgery on POD 2.

DISCUSSION

Macrothrombocytopenia associated with Epstein syndrome is related to both bleeding and thromboembolic risk.1,4 Surgical interventions in patients with MYH9-related disorders may be associated with bleeding complications. However, it has been reported that a wide variety of surgeries, including dental extraction, tonsillectomy and adenoidectomy, cesarean delivery, orthopedic joint replacement, cardiopulmonary bypass surgery, and neurosurgical intervention, can be successfully conducted without severe hemorrhage.1 Apart from bleeding, however, there are also concerns regarding thrombosis, especially in the postoperative period.1

The recommended platelet count is >50 × 109/L for invasive procedures and 100 × 109/L for high-risk surgeries according to the old guidelines5; however, these values were based on minimal evidence. Currently, there is still no consensus for platelet count in perioperative settings.6 In critical care patients, there has been no reported benefit but increased complication and mortality rates due to liberal platelet transfusion.7 An increased mortality rate associated with platelet transfusion has been shown in patients undergoing liver transplantation with platelet counts both higher and lower than 50 × 109/L.8 There is also no consensus on what platelet count is safe for surgery in patients with MYH9-related disorders. Several reports have suggested safe platelet counts for renal transplantation in patients with MYH9-related disorders with macrothrombocytopenia. Renal transplantation was successfully performed when the platelet count was maintained >100 × 109/L with transfusions, but bleeding complications and intracranial hemorrhage occurred at platelet counts higher than 50 × 109/L.9 Intraperitoneal hemorrhage on POD 19 and POD 25 occurred at platelet counts of 27 and 36 × 109/L, but patients recovered when platelet counts were >50 × 109/L.10 These case reports and a recent case series suggest that a safe platelet count for living-donor renal transplantation is at least 100 × 109/L with platelet transfusion.3,10

Hemostasis coagulation monitoring, especially the monitoring of platelet function, is limited in operating rooms. Platelet counting, a standard coagulation test, is difficult to perform using automated blood cell counters and should therefore be conducted using a microscope. In our case, platelet counts based on microscopy were higher than those based on automated blood cell counting. Because automated blood cell counters measure pulse height values resulting from minute voltage changes, counts may be lower if large platelets are present. Platelet counts therefore need to be determined by visual inspection. In our case, we used ROTEM in addition to standard coagulation monitoring of platelet counts, fibrinogen concentration, PT, and aPTT. While ROTEM is a viscoelastic hemostatic assay that provides point-of-care monitoring using whole blood, it does not allow for the evaluation of platelet aggregation ability. For example, patients on an antiplatelet agent such as clopidogrel (P2Y12 purinergic receptor inhibitor) will often have normal tracings. Platelet aggregation ability can be evaluated at the point of care with ROTEM platelet or Multiplate (Roche, Switzerland) even in patients with a low platelet count and in the field of organ transplantation.11 These devices have been reported to be effective in determining platelet deficiency in clinical practice.12 It has been shown that clot firmness in ROTEM has a superior accuracy for predicting bleeding compared to platelet counts in thrombocytopenic children as well as in those undergoing liver transplantation.13 Despite low platelet counts, 70%–80% of patients can be managed safely without platelet transfusion, if guided by thromboelastometry.14 In the current case, the α, clotting time, and MCF in EXTEM and FIBTEM were normal, which suggests that the coagulation ability and function via activated platelets were normal. The MCF of FIBTEM was high, which may compensate for the relatively low platelet counts, a situation often observed in liver transplantation and reported in patients on dialysis who qualified for kidney transplantation.15 In addition, because we observed no excess bleeding in the surgical field, we did not transfuse platelets even when the count was 26–33 × 109/L during the perioperative period. We measured ROTEM up to POD 1 and observed no bleeding complications.

To summarize, we could manage the patient with Epstein syndrome characterized by macrothrombocytopenia undergoing living-donor renal transplantation without inappropriate platelet transfusion despite low platelet counts under careful coagulation monitoring using ROTEM.

ACKNOWLEDGMENTS

The authors thank Editage (www.editage.com) for the careful reading and editing of the manuscript.

DISCLOSURES

Name: Midoriko Higashi, MD, PhD.

Contribution: This author helped write the original draft and edit the later versions.

Name: Keizo Kaku, MD, PhD.

Contribution: This author helped conduct the data collection and review and edit the manuscript.

Name: Yasuhiro Okabe, MD.

Contribution: This author helped review and edit the manuscript for submission.

Name: Ken Yamaura, MD.

Contribution: This author helped prepare the figures, review and edit the manuscript, and supervise other stages of the preparation for submission.

This manuscript was handled by: BobbieJean Sweitzer, MD, FACP.

Footnotes

GLOSSARY

α =
α angle
A10 =
clot firmness measured at 10 minutes after start of clot formation
aPTT =
activated partial thromboplastin time
CFT =
clot formation time
CT =
clotting time
EQUATOR =
Enhancing the Quality and Transparency of Health Research
EXTEM =
evaluation of the extrinsic pathway
FIBTEM =
evaluation of the contribution of fibrinogen to clot formation
INR =
international normalized ratio
INTEM =
evaluation of the intrinsic pathway
MCF =
maximum clot firmness
ML =
maximum lysis
MYH9 =
myosin heavy chain 9
P2Y12 =
P2Y purinergic receptor 12
POD =
postoperative day
PT =
prothrombin time
ROTEM =
rotational thromboelastometry

Funding: None.

The authors declare no conflicts of interest.

REFERENCES

  • 1.Althaus K, Greinacher A. MYH9-related platelet disorders. Semin Thromb Hemost. 2009; 35:189–203 [DOI] [PubMed] [Google Scholar]
  • 2.Balwani MR, Engineer DP, Gumber MR, et al. An unusual cause of renal failure; Epstein syndrome. J Nephropharmacol. 2016; 5:63–65 [PMC free article] [PubMed] [Google Scholar]
  • 3.Hashimoto J, Hamasaki Y, Takahashi Y, et al. Management of patients with severe Epstein syndrome: review of four patients who received living-donor renal transplantation. Nephrology (Carlton). 2019; 24:450–455 [DOI] [PubMed] [Google Scholar]
  • 4.Balduini CL, Pecci A, Savoia A. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br J Haematol. 2011; 154:161–174 [DOI] [PubMed] [Google Scholar]
  • 5.Kaufman RM, Djulbegovic B, Gernsheimer T, et al. AABB. Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2015; 162:205–213 [DOI] [PubMed] [Google Scholar]
  • 6.Levy JH, Rossaint R, Zacharowski K, Spahn DR. What is the evidence for platelet transfusion in perioperative settings?. Vox Sang. 2017; 112:704–712 [DOI] [PubMed] [Google Scholar]
  • 7.Warner MA, Chandran A, Frank RD, Kor DJ. Prophylactic platelet transfusions for critically ill patients with thrombocytopenia: a single-institution propensity-matched cohort study. Anesth Analg. 2019; 128:288–295 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Pereboom IT, de Boer MT, Haagsma EB, Hendriks HG, Lisman T, Porte RJ. Platelet transfusion during liver transplantation is associated with increased postoperative mortality due to acute lung injury. Anesth Analg. 2009; 108:1083–1091 [DOI] [PubMed] [Google Scholar]
  • 9.Min SY, Ahn HJ, Park WS, Kim JW. Successful renal transplantation in MYH9-related disorder with severe macrothrombocytopenia: first report in Korea. Transplant Proc. 2014; 46:654–656 [DOI] [PubMed] [Google Scholar]
  • 10.Ogura M, Kikuchi E, Kaito H, et al. ABO-incompatible renal transplantation in Epstein syndrome. Clin Transplant. 2010; 24suppl 2231–34 [DOI] [PubMed] [Google Scholar]
  • 11.Soliman M, Hartmann M. Impedance aggregometry reveals increased platelet aggregation during liver transplantation. J Clin Med. 2019; 8:1803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Solomon C, Schöchl H, Ranucci M, Schlimp CJ. Can the viscoelastic parameter α-Angle distinguish fibrinogen from platelet deficiency and guide fibrinogen supplementation?. Anesth Analg. 2015; 121:289–301 [DOI] [PubMed] [Google Scholar]
  • 13.Fayed NA, Abdallah AR, Khalil MK, Marwan IK. Therapeutic rather than prophylactic platelet transfusion policy for severe thrombocytopenia during liver transplantation. Platelets. 2014; 25:576–586 [DOI] [PubMed] [Google Scholar]
  • 14.Kirchner C, Dirkmann D, Treckmann JW, et al. Coagulation management with factor concentrates in liver transplantation: a single-center experience. Transfusion. 2014; 54:2760–2768 [DOI] [PubMed] [Google Scholar]
  • 15.Velik-Salchner C, Haas T, Innerhofer P, et al. The effect of fibrinogen concentrate on thrombocytopenia. J Thromb Haemost. 2007; 5:1019–1025 [DOI] [PubMed] [Google Scholar]

Articles from A&a Practice are provided here courtesy of Wolters Kluwer Health

RESOURCES