Skip to main content
PLOS One logoLink to PLOS One
. 2020 Nov 30;15(11):e0242247. doi: 10.1371/journal.pone.0242247

High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds

Yalda Davoudpour 1,*, Matthias Schmidt 1, Federica Calabrese 1, Hans Hermann Richnow 1, Niculina Musat 1
Editor: Yi Cao2
PMCID: PMC7703986  PMID: 33253171

Abstract

Surface sterilization of seeds is a key step in providing microorganisms-free seeds for numerous applications like understanding the role of seed-borne microorganisms in plant development, studying microbial cells-plant interactions by inoculating model microorganisms in a simplified system or selective cultivation of seed endobionts. However applying efficient treatment for surface sterilization of seeds without affecting the plant growth is not an easy task. In this study we aimed to provide an efficient surface sterilization treatment for maize seeds using i) hydrogen peroxide (HP), ii) sodium hypochlorite (SH) and iii) ethanol-sodium hypochlorite (EtOH-SH) under stirring (st) and vacuum-stirring (va-st) conditions. We used fluorescence microscopy and ultra-high resolution Helium Ion Microscopy (HIM) as powerful imaging approaches in combination with macroscopic techniques to visualize, quantify and evaluate the efficiency of seed sterilization, quality of root germination, seedlings and root hair development as well as the presence or absence of microorganisms on the root surface. Our results showed a strong reduction in microbial cell numbers of 4 orders of magnitude after the EtOH-SH treatments. Moreover, seeds exposed to EtOH-SH treatments displayed the lowest percentage of microbial growth (50%) and the highest percentage of germinated seeds (100%) compared to other sterilization treatments. HIM imaging proved the absence of microbial cells on the roots grown from seeds exposed to EtOH-SH treatments. Moreover, root hair development seemed not to be affected by any of the sterilization treatments. Our findings demonstrated that EtOH-SH treatments are significantly reducing the abundance of microbial cells from the surface of maize seeds and can be used with high confidence in future studies.

Introduction

Seeds are the starting point of a growing plant and therefore seed-borne microorganisms are primary inoculum source of the plant associated microbial community [1]. However, the surface of seeds is normally colonized by microorganisms passed on from their mother plant (early colonizers) and via seed contact with fruit microorganisms (late colonizers) [1]. Another source of microorganisms colonizing seeds is soil in which the seeds are growing [2, 3].

To study the identity of microorganisms i.e. seed-borne vs non-seed borne, surface sterilization is commonly employed [4]. Removal of microorganisms from the surface of seeds is also important for the investigation of plant-microbe interactions in axenic and monoxenic model systems [5]. For selective cultivation of microbial endobionts of seeds an efficient surface sterilization might be also important. The surface sterilization is not an easy task because only microorganisms on the surface should be removed but plant cells must not be damaged by the procedure [6, 7]. In addition, the selection of sterilization agent and parameters are critical to obtain a proper plant growth, high germination rate with minimum microbial contamination and negative effect [8]. Various factors may affect the selection of sterilization procedure such as the type and the origin of the plant, and the level of microbial contamination, hence, it is not that one sterilization method fit all plants [9].

The widely applied chemicals for surface sterilization of seeds of various plants are hydrogen peroxide (H2O2), sodium hypochlorite (NaOCl), ethanol and mercuric chloride (HgCl2). In the case of Zea Mays (maize) seeds, sterilization by NaOCl in concentration between 0.024% and 20% [1015] up to 20 minutes have been reported. Surface sterilization of maize subjecting the seeds to 0.1% H2O2 [16] and 10% H2O2 [17] up to 30 minutes have also been proposed. An alternative treatment, with only 2 min exposure time of maize to 1% HgCl2 solution has been reported [18]. After all these treatments the maize seeds germinated within 10 days. In addition, combinations of ethanol (mostly 70%) with NaOCl [19, 20] and H2O2 [17] with up to 5 min exposure have been applied. A previous study showed that increasing the sterilization time of maize using NaOCl from 0.5 to 5 hours under shaking, decrease not only the number of infected seeds but also germination rate [21]. The application of 1 min suction (vacuum) and 2.5 hours sterilization with shaking resulted in lower numbers of infected seeds [21]. It was reported that shaking during the procedure will increase mixing of sterilization solution with maize grains and suction will help to remove air bubbles from seeds and improve wettability of the seed surface [21].

Understanding the positive and negative effects of various sterilization agents on the removal of surface associated microorganisms, germination and plant development will help to select the best suited sterilization procedure for a specific species. The strong oxidizing characteristic of hypochlorites such as NaOCl is very effective in killing bacteria and reducing bacterial populations [22]. The high reactivity of hypochlorites with amines, amino acids, amides and nucleic acids lead to formation of NH4Cl, aldehyde and CO2 [23]. They are the typical products of the reaction between NaOCl and amino acids [23]. Diluted hypochlorite solutions forms hypochlorous acid (HOCl) which reacts particularly with organic amines and NH4 [5]. It forms extremely toxic chloramines (a powerful oxidizing and very diffusible species), which can enter through cell membranes to react with components inside the cell for example DNA [5]. Ethanol is a strong sterilization agent which is very phytotoxic [22]. It is typically applied for only a few minutes or even seconds, generally at 70% concentration and prior to other sterilization agents (usually NaOCl) for increasing effectiveness [22, 24]. There are also some reports using Tween 20 as a surfactant in the sterilization solutions (usually together with NaOCl) to improve wettability of the seeds in order to increase efficiency of sterilization process [9, 24]. Since HgCl2 is a highly toxic chemical and difficult to dispose, it has not been utilized broadly for maize surface sterilization [25]. H2O2 is a reactive component with a dual role of signaling (beneficial) and damaging (deleterious) for physiological properties and development of plants [26]. At low concentration H2O2 possesses fungicidal and germicidal activities without affecting seed growth and germination [27]. Enzymes available in many plant cells such as catalases and peroxidases decompose H2O2 into oxygen and water and protect cells from damaging effects of peroxides [27]. It was reported that after sterilization using 10% H2O2 no damage on maize plants was found [17]. However, a reducing of germination of Rhododendron wardii seeds due to tissue damage by increasing the sterilization time from 10 to 20 min and H2O2 concentration from 20 to 30% was reported [27]. Hence, the damaging effect of H2O2 on plant tissues and growth after seed sterilization can be different from species to species and should be empirically determined [28].

For analyzing the efficiency of seed sterilization, the blotter technique (filter paper) and potato dextrose agar (PDA, agar plate) test have been widely used to detect seed-borne fungi and bacteria [6, 2931]. Agar plate is used as growth media for seed associated microorganisms and hence for the identification and discarding of seedlings showing microbial growth [6, 29]. For analyzing the root development of maize following sterilization, previous studies mainly utilized filter paper [10, 12, 15, 20] and only few applications of PDA have been reported [14, 17, 21].

Here, we used maize as model species to study the sterilization efficiency of different surface sterilization agents namely H2O2, NaOCl and ethanol-NaOCl using stirring and vacuum-stirring for the removal of the seeds’ surface associated microorganisms such as bacteria and fungi and to investigate the effect of these agents on germination and root growth. We evaluated the efficiency of sterilization processes quantitatively and qualitatively by a multi-scale approach combining macroscopic observations with microscopic approaches such as fluorescence microscopy and ultra-high resolution Helium Ion Microscopy (HIM). Our findings showed that ethanol-NaOCl based treatment is the best suited treatment for the surface sterilization of maize seeds.

Materials and methods

Maize seeds

Wild type (WT) maize seeds were provided by the Institute of Crop Science and Resource Conservation, University of Bonn. Stock solutions of 12% NaOCl, 30% H2O2, Tween 20 (Carl Roth GmbH, Germany) and 100% ethanol were applied to prepare sterilization agents. The whole procedure was conducted using sterilized containers and solutions under laminar flow hood. The experimental design is illustrated in Fig 1.

Fig 1. Experimental design and the applied methods.

Fig 1

Surface sterilization procedures

A total number of 72 seeds were surface sterilized using three treatments either by mild stirring (st) or using mild vacuum (800 mbars absolute pressure)-mild stirring (va-st). In the first treatment, surface sterilization of seeds was performed using 10% H2O2 for 10min. Then the solution was decanted and seeds were rinsed in water for 2min. The procedure was repeated 4 more times (HP treatment). In the second sterilization treatment, a similar procedure was conducted using 70 mL of 10% NaOCl solution which was mixed with 17 μl of Tween 20 (SH treatment). In the third sterilization treatment, seeds were pretreated first with 70% ethanol for 3min. The ethanol was decanted, and seeds were sterilized two times by a mixture of 10% NaOCl and 17 μl of Tween 20, each for 15min. Finally the seeds were washed five times using water, each for 2 min (EtOH-SH treatment). From now on we will apply these abbreviations (mentioned in Table 1) all over the manuscript for samples identification. Each experiment was conducted twice, independently and each treatment was applied on 2 individual seeds.

Table 1. Sterilization treatments and the corresponding abbreviations.

Sterilization treatment Abbreviation
H2O2 with vacuum and stirring HP-va-st
H2O2 with stirring HP-st
NaOCl with vacuum and stirring SH-va-st
NaOCl with stirring SH-st
Ethanol-NaOCl with vacuum and stirring EtOH-SH-va-st
Ethanol-NaOCl with stirring EtOH-SH-st
Untreated seeds Ref
Control medium Con. Med

Preparing sterilized seeds for germination and sterilization efficiency tests

In order to analyze the efficiency of sterilization, seeds were divided into three groups. 12 seeds were placed into petri dishes with 5ml of potato dextrose broth (PDB) [32] medium to evaluate the turbidity and microbial cell abundance, 12 seeds were placed in petri dishes with a moistened filter paper to study the germination of seeds after each sterilization procedure and 12 seeds were placed in PDA [32] plates to observe the microbial growth on seeds after each sterilization treatments. The petri dishes with PDB were incubated in an incubator in darkness at 28±2°C for up to 7 days. As control, the sterile PDB medium (Con. Med) was selected for turbidity visualization and comparison with the PDB medium of surface sterilized seeds. The petri dishes for germination test and PDA plates were rapped with sterile aluminum foil and placed in darkness at 26°C for up to 7 days. Similar procedures were performed for the preparation of untreated reference sample (Ref, seeds without sterilization).

Evaluating number of germinated seeds vs. number of seeds with microbial growth

The evaluation of germination after 3 and 7 days was performed by capturing image from the seeds and their roots in petri dishes. Similar approach was conducted for the comparison of seeds microbial growth in PDA plates. Additionally, we calculated the effect of various sterilizations on the number of seeds showing microbial growth and those that germinated after 7 days using the Eqs 1 and 2 [33].

Seedswithmicrobialgrowth(%)=(NumberofseedswithmicrobialgrowthTotalnumberofseeds)×100 (1)
Germinatedseeds(%)=(NumberofgrownseedsTotalnumberofseeds)×100 (2)

Analysis of PDB medium

To check the PDB medium where the sterilized seeds were deployed and to verify the sterilization efficiency, we applied two procedures. First, we compared the turbidity of liquid PDB medium macroscopically using a photo camera. Second, we sampled 700 μl of non-turbid PDB medium and 70 μl of turbid PDB medium after 2 and 7 days of incubation and filtered these volumes on Au/Pd (80/20) coated filters (GTTP type, 0.2 μm pore size PC membrane, 25 mm diameter, Merck Millipore, Germany) using a sterile multichannel filtering device (Millipore, Germany). Following filtration, filters were dehydrated by 30, 50, 70 and 80% ethanol and air dried. Filter pieces were stained with 50 μl DAPI solution (1 μg/mL) in dark for 10 min, washed with ultrapure Milli-Q (MQ) water, dipped in 80% ethanol and air dried. For microscopy, the filters were embedded in 20 μl of Citiflour (Science Services GmbH, Germany): Vectashield (L I N A R IS Biologische Produkte GmbH, Germany) (CV) mixture (1:4 vol/vol) on a glass slide covered by a glass cover slip and stored at –20°C prior to visualization. The filters were imaged using a fluorescent microscope (DAPI filter, 100X, numerical aperture N:A 1.4 oil objective, Imager. Z2, Zeiss, Germany) to count the microorganisms growing in the PDB medium after various sterilization treatments. Two independent filter pieces from two independent petri dishes of the same treatment were analyzed (imaged and counted). In order to determine the total DAPI stained cells per mL of PDB medium we applied the following steps: i) counting the DAPI stained cells per area of the field of view (image), average the counts obtained for all fields of view of the same filter piece and average counts from duplicate filter pieces belonging to the same sample to obtain a single value. The area of each picture was constant as we used always for imaging 100X objective and was equal to 6005.7 μm2; ii) calculating the counts for the total filter area (DAPI cells per picture * filter area)/picture area). Area of the filter was constant as we used 25 mm diameter filters where the r of the filtration zone was always 9.5 mm; iii) knowing the volume filtered on each filter (always constant for turbid samples 0.07 mL and for non-turbid samples 0.7 mL) we calculated DAPI stained cells per mL of PDB medium. We counted two replicate filters for each treatment. Cell counting was performed automatically using ImageJ-win64 software and manually for high confidence. In the case of samples with high number of microbial cells, 3–5 fields of view (each of 89.53 μm×67.08 μm) summing up to 1000 cells were randomly imaged and counted. For samples having lower cell numbers, 150 fields of view (each of 89.53×67.08 μm2) per filter (randomly selected) were imaged and counted. DAPI cell counts from different fields of view of the same sample were averaged and the final value was used to calculate total DAPI cells mL-1 for each treatments. For good counting statistics, DAPI counting was done on two duplicate filters from each replicate and each individual treatment.

Analysis of roots using fluorescence microscope

To analyze if after various sterilization procedures microorganisms are still present on the surface of the newly developed roots, we used DAPI staining and fluorescence microscopy. After 7 days of seeds incubation, roots were cut to the length of approximately 1 cm, fixed using 2% paraformaldehyde (PFA) in 1X phosphate-buffered saline (PBS) overnight at 4°C. After fixation, the roots were rinsed with sterile MQ water to remove fixative and air dried on a filter paper. 80 μl of DAPI (1 μgmL-1) was added on each root fragment to completely cover it and incubated for 30min in dark followed by gentle washing using MQ water, air drying, embedding in CV and imaging under fluorescence microscope.

Analysis of roots by Helium Ion Microscope (HIM)

High resolution imaging of microorganisms on the surface of roots was done using a Zeiss Orion NanoFab Helium Ion Microscope (HIM) (Carl Zeiss Microscopy, Peabody, MA). After 7 days of root growth, for all treatments, roots of 1 cm length developed on both PDA and filter paper, were cut, fixed by 2% PFA in 1X PBS overnight at 4°C and dehydrated using an ethanol series (from 30% to 100%, in 10% steps). Then the roots were dried using critical point drying (CPD) machine following the manufacturer recommendations (EM CPD 300, Leica, Austria). CPD was used to preserve the structure of root during drying. Among various drying methods, the application of CPD for the preparation of undamaged roots for scanning electron microscopy (SEM) analysis has been reported [34, 35]. For imaging, the roots were placed onto stubs as used in SEM, fixed using an epoxy glue and analyzed by HIM. 2 root fragments corresponding to PDA and filter paper, per treatment were randomly selected for HIM analysis. Initially, fields of view of 1100X1100 μm were scanned followed by imaging of randomly picked smaller fields of view of 20X20 μm within the selected large fields.

Results and discussion

Macroscopic investigation of surface sterilization treatments

The influence of various surface sterilization treatments on seed germination was investigated by growing the seeds, after sterilization, on watered filter paper (blotter method) [31]. After 3 days, we observed germination of all seeds from all different sterilization treatments (Fig 2A–2F) and the Ref sample (Fig 2G), however, not all replicates germinated properly (Fig 2A–2G). After 7 days, seedling development from all replicates and treatments was clearly observed (Fig 2H–2N). Over all, there was not a significant difference in seedling development between the untreated reference seeds and the treated ones after 7 days (Fig 2H–2N), suggesting that the applied sterilization treatments do not influence the germination and seedling development. No significant difference was observed between treatments using vacuum-stirring and only stirring on seed germination (3 days) and seedling development (7 days) (Fig 2).

Fig 2. Seeds germination and seedling development after exposure to different sterilization treatments.

Fig 2

Images depicting seeds exposed to different sterilization treatments and grown on filter paper for 3 days (a-f) and 7 days (h-m) as well as untreated seeds (g, n). Scale bar in (a) is applicable for (h, g, n). Scale bar in (b) is applicable for (c, d, e, f, i, j, k, l, m).

In order to check the removal of seed associated microorganisms after sterilization treatments we applied the PDA plate method [30]. After 3 days, first sign of microbial growth was clearly observed in the Ref sample (Fig 3G) and slightly in HP-va-st, HP-st and SH-st treated samples (Fig 3A, 3D and 3E, black arrows) while the others remained sterile (Fig 3B, 3C and 3F). After 7 days, the highest microbial growth was observed, as expected, in the Ref sample (Fig 3N). In the sterilization treatments the following trend was observed: HP-va-st and HP-st having the highest microbial growth followed by SH-va-st and SH-st with moderate growths and EtOH-SH-va-st and EtOH-SH-st treatments with very little microbial growth (Fig 3H–3M). An exception was observed by the EtOH-SH-st sample where only one germinated seed showed microbial growth while the other one remained sterile (Fig 3M). This result suggests that the EtOH-SH treatment is efficient in removing seed associated microorganisms. Microbial growth visually observed on PDA plates after SH and EtOH-SH surface sterilizations can be mainly attributed to seed-borne microorganisms because we did not observe the microbial growth after 3 days in these samples. Similar results have been reported about seed-borne fungi in maize after sterilization using SH [36] or EtOH-SH [6]. However, in the case of HP sample microbial growth was visibly faster, only after 3 days of incubation and it can be due to both inefficient sterilization and seed-borne microorganisms.

Fig 3. Microbial growth on seeds exposed to different sterilization treatments.

Fig 3

Macroscopic images showing microbial growth on seeds exposed to sterilization treatments and grown on PDA for 3 days (a-f) and 7 days (h-m) as well as untreated seeds (g, n). Black arrows show first sign of microbial growth after 3 days. Scale bar in (a) is applicable for all panels.

The effect of sterilization on germination and the efficiency of seeds sterilization in removing of surface-associated microorganisms were calculated for all 72 seeds (Fig 4). These results point out that the EtOH-SH and SH are more efficient treatments for seed sterilization and the EtOH-SH treatment led to the highest percentage of seed germination (100%). However none of the sterilization treatments could completely remove all seed associated microorganisms which is consistent with previously reported studies on maize seeds [36]. SH and EtOH-SH treatments could reduce the number of seeds showing microbial growth (to 50%) in comparison with other treatments (100%). A possible explanation, could be the formation of oxidizing chloramines from SH that can react with cell components via entering cell membrane [5] and prevent microbial growth. Previous studies have also reported a reduction of seeds’ with microbial growth when EtOH rinsing was used before SH treatment [6] or simply just by applying SH treatment [33] while HP treatment was ineffective for seeds sterilization [5]. The observed inefficient HP sterilization results is ascribed either to the elimination of HP by washing or readily diffusion of HP to cells and decomposition by catalase which in both scenarios it is not powerful for the sterilization [5].

Fig 4. Seeds germination vs microbial growth after sterilization treatments.

Fig 4

Germination (blue bars) and microbial growth (red line-dot) depicted as % and calculated after 7 days growth on filter paper (for germination) and on PDA (for microbial growth) of seeds sterilized by different treatments.

Qualitative and quantitative evaluation of sterilization efficiency

In order to investigate the sterilization efficiency qualitatively and quantitatively, treated seeds were incubated for 2 as well as 7 days into PDB liquid medium. Microbial growth and cell abundance were investigated macroscopically following turbidity development (Fig 5) and microscopically by DAPI staining and fluorescence microscopy (Figs 69). The turbidity of PDB liquid medium can be utilized as a quick and qualitative indicator for the growth of microorganisms [37, 38]. Visual comparison was done against PDB medium named control medium (Con. Med), and the PDB containing untreated seeds (fully turbid), which were incubated in the same conditions as treated samples (Fig 5).

Fig 5. Turbidity of the PDB medium as indicator for microbial growth over time.

Fig 5

Images show sterilized seeds by various treatments incubated in PDB medium for 2 days (a, b) and 7 days (c, d) as well as untreated seeds (e, g) and control medium (f, h). The corresponding turbidity development suggesting microbial growth. Scale bar in (a) is applicable for all panels.

Fig 6. Representative fluorescence microscopy images of DAPI stained PDB medium filtrate after 2 days of incubation.

Fig 6

Fluorescence microscopy micrographs showing high abundance of microbial cells after HP treatments (a, d) and very low number of microbial cells after SH (b, e) and EtOH-SH treatments (c, f). Scale bar represents 10μm for all images.

Fig 9. Graphical representation of total DAPI counts for various sterilization treatments.

Fig 9

After 2 days of seeds incubation, we observed turbid PDB medium in both replicates of HP-st (Fig 5B), one replicate of HP-va-st (Fig 5A) and the Ref sample (Fig 5E), while none of the replicates of SH and EtOH-SH treatments showed any turbidity (Fig 5A and 5B). However, turbidity was observed in both replicates of HP-va-st, SH-va-st and HP-st as well as one replicate of EtOH-SH-st sample after 7 days of seeds incubation suggesting microbial growth (Fig 5C and 5D). The rest of the treated samples (EtOH-SH-va-st and SH-st) (Fig 5C and 5D) and Con. Med (Fig 5H) showed no turbidity after 7 days. These findings are consistent with the results obtained from the comparison of sterilization efficiency test performed using PDA plate method (Fig 3). Various behavior of seeds from same batch to the same sterilization treatment has been previously reported [39]. A possible reason why only one seed replicate is efficiently sterilized while the other replicate is not, may be related to the different initial load of associated microorganisms prior to sterilization treatments [40]. These results also confirm the more efficient sterilization by SH and EtOH-SH treatments for removing of the surface associated microorganisms from maize seeds compared to HP treatment.

Microscopic investigation of filters containing PDB medium and seeds after 2 days of incubation showed the lowest abundance of DAPI cells in the range of 103 to 104 cells mL-1 for all SH and EtOH-SH treatments (Figs 6B, 6C, 6E, 6F and 9A). In contrast, the HP treatment and untreated seeds illustrated cell numbers in the range of 107 to 108 cells mL-1 (Figs 6A, 6D, 8A and 9A). After 7 days of incubation, only two treatments of SH-st and EtOH-SH-va-st kept low cell numbers in the range of 104 cells mL-1, comparable with those of 2 days incubation suggesting that the cells have lost their viability after these sterilization treatments (Figs 7C, 7E and 9B). The SH-va-st and EtOH-SH-st treatments showed an increase in cell numbers from 103 to 107 cells mL-1 either in one or in both replicates (Figs 7B, 7F and 9B). Regarding the HP treatments and the Ref sample the cell numbers stayed relatively similar with those recorded at 2 days incubation (Figs 7A, 7D, 8C and 9B). Based on DAPI cell counting alone, SH-st and EtOH-SH-va-st treatments seem to be the most efficient treatments for seeds surface sterilization. However, when combined with macroscopic analyses of microbial growth on PDA plates (Fig 3) and PDB turbidity evaluation (Fig 5), the most efficient sterilization treatment is EtOH-SH-va-st.

Fig 8. Representative fluorescence microscopy images of DAPI stained PDB medium of untreated seeds and control medium.

Fig 8

Fluorescence microscopy micrographs showing high abundance of microbial cells after 2 days (a) and 7 days (c) incubations of the untreated seeds and control medium without seeds (b, d) incubated in the same conditions. Scale bar represents 10μm for all images.

Fig 7. Representative fluorescence microscopy images of DAPI stained PDB medium filtrate after 7 days of incubation.

Fig 7

Fluorescence microscopy micrographs showing high abundance of microbial cells after HP treatments (a, d), SH-va-st (b) and EtOH-SH-st (f) and very low abundance of microbial cells after SH-st (e) and EtOH-SH-va-st (c) treatments. Scale bar represents 10μm for all images.

Analysis of roots using fluorescence and Helium Ion Microscopy

Imaging of DAPI stained root fragments emerged from seeds exposed to different sterilization treatments and grown for 7 days showed the presence of microbial cells on all analyzed roots (Fig 10). We cannot ascertain if the presence of microorganisms on the root fragments occurred due to inefficient sterilization of seeds or to the seed-borne microorganisms which migrated to the root during the germination [29, 41]. We further investigated the surface of newly emerged roots by HIM.

Fig 10. Selected fluorescence microscopy images of DAPI stained roots after 7 days of root development.

Fig 10

Root fragments developed from seeds exposed to HP, SH and EtOH-SH sterilization treatments showing the presence of microbial cells. Scale bar 50μm applies to all images.

Using HIM we were able to detect microorganisms on the root surface in all treatments except EtOH-SH-va-st and EtOH-SH-st. In these treatments, analyzed root surfaces seemed to be virtually free of microorganisms (Fig 11C and 11F). The HP-va-st, SH-va-st, HP-st and SH-st treated roots contained bacteria-like cells (mostly rod shaped) (Fig 11A, 11B, 11D and 11E). Bacteria-like cells were observed all over the surface of these samples and close to the junction of epidermal surface as single cells and in agglomerations. Furthermore, long filaments (up to 2 μm wide) similar to hyphae of fungi, were observed especially in HP-st and SH-st samples (Fig 11D and 11E). It has also been reported that generally diameter of root hairs (30μm) are larger than those of mycorrhizal fungal hyphae (10μm while 2μm for tip hyphae) [42]. The presence of fungi on the root surface has previously been observed by SEM imaging of Arabidopsis roots [43]. The diameter of the root hairs was measured in the HIM micrographs to about 8–18μm which is consistent with the reported diameter of root hair for maize [44, 45]. Moreover, according to HIM images of roots fragments it seems that the applied sterilization treatments had not a negative impact on the root hair development (Fig 12A–12G). Root hairs are formed from root epidermal cells and are very important for relatively immobile nutrients uptake by increasing the absorption surface area [46]. In maize any epidermal cell can create randomly a root hair [47]. A previously reported overview SEM image of maize root with root hairs developed from SH sterilized seeds [48] showed similar results to those obtained from SH treatment in this study.

Fig 11. Representative HIM images showing microbial cells on root surface after different sterilization treatments.

Fig 11

HIM micrographs show the presence of microorganisms (red arrows and circles) on roots grown from seeds exposed to HP (a, d) and SH (b, e) similar with the untreated seeds (g) while no microbial cells were observed after EtOH-SH treatments (c, f).

Fig 12. Representative HIM images showing root hair development after different sterilization treatments.

Fig 12

HIM images showing no apparent negative effect on root hair development after sterilization treatments. Scale bar 100μm applies to all images.

Conclusions

The quantitative and qualitative results of our study showed that EtOH-SH is the most efficient treatment for maize seed sterilization, drastically reducing the number of microbial cells on seeds surfaces, up to four orders of magnitude in comparison with HP and SH treatments. In addition, EtOH-SH seed sterilization treatment led to reduced microbial load or microorganisms-free surfaces of newly grown roots. Our data suggest that the EtOH-SH treatment, on one hand, lead to lysis of microbial cells hence strongly reducing their numbers and, on the other hand, the remaining cells seem not to be able to divide and grow anymore, even after 7 days of incubation time. None of the surface sterilization treatments seem to negatively influence the root hairs development when compared to the untreated seeds. Overall, our study provides an evidence for an efficient sterilization treatment of maize seeds which can be used with confidence by further studies.

Acknowledgments

The authors acknowledge the support of Deutsche Forschungsgemeinschaft (DFG) for the Integration of Refugee Scientists and Academics for Dr. Yalda Davoudpour. Seeds of the maize wild type (WT) were provided by Caroline Marcon and Frank Hochholdinger (University of Bonn) and authors are thankful for it. The authors would also like to thank Katja Nerlich for technical support.

Data Availability

All relevant data are within the manuscript.

Funding Statement

Hans Hermann Richnow (HHR) received the fund from Deutsche Forschungsgemeinschaft (DFG) (Project No. RI 903/7-1) (https://www.dfg.de/). This project was carried out in the framework of the priority program 2089 “Rhizosphere spatiotemporal organization—a key to rhizosphere functions” funded by DFG. This work was supported by ProVIS Centre for Chemical Microscopy (established with funds provided by Europäischer Fonds für regionale Entwicklung (EFRE) und dem Freistaat Sachsen Program) at Helmholtz Centre for Environmental Research – UFZ for all authors.

References

  • 1.Torres-Cortés G, Bonneau S, Bouchez O, Genthon C, Briand M, Jacques M-A, et al. Functional microbial features driving community assembly during seed germination and emergence. Frontiers in plant science. 2018;9:902 10.3389/fpls.2018.00902 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Mahmoud SN, Al-Ani NK. Effect of different sterilization methods on contamination and viability of nodal segments of Cestrum nocturnum L. International Journal of Research Studies in Biosciences (IJRSB). 2016;4(1):4–9. [Google Scholar]
  • 3.Sen MK, Jamal M, Nasrin S. Sterilization factors affect seed germination and proliferation of Achyranthes aspera cultured in vitro. Environmental and Experimental Biology. 2013;11:119–23. [Google Scholar]
  • 4.Schouten A. Endophyte Biotechnology: Potential for Agriculture and Pharmacology: CABI; 2019. [Google Scholar]
  • 5.Miché L, Balandreau J. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl Environ Microbiol. 2001;67(7):3046–52. 10.1128/AEM.67.7.3046-3052.2001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Sauer D, Burroughs R. Disinfection of seed surfaces with sodium hypochlorite. Phytopathology. 1986;76(7):745–9. [Google Scholar]
  • 7.Alam F, Uddin E, Amin R, Razzak A, Manik M, Khatu M. Studies on the effect of various sterilization procedure for in vitro seed germination and successful micropropagation of Cucumis sativus. Int J Pure App Biosci. 2016;4(1):75–81. [Google Scholar]
  • 8.Lindsey BE III, Rivero L, Calhoun CS, Grotewold E, Brkljacic J. Standardized method for high-throughput sterilization of Arabidopsis seeds. JoVE (Journal of Visualized Experiments). 2017(128):e56587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Mihaljević I, Dugalić K, Tomaš V, Viljevac M, Pranjić A, Čmelik Z, et al. In vitro sterilization procedures for micropropagation of ‘Oblačinska’sour cherry. Journal of Agricultural Sciences, Belgrade. 2013;58(2):117–26. [Google Scholar]
  • 10.Khatoon T, Hussain K, Majeed A, Nawaz K, Nisar MF. Morphological variations in maize (Zea mays L.) under different levels of NaCl at germinating stage. World Appl Sci J. 2010;8(10):1294–7. [Google Scholar]
  • 11.Noumavo PA, Kochoni E, Didagbé YO, Adjanohoun A, Allagbé M, Sikirou R, et al. Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. American Journal of Plant Sciences. 2013;4(5):1013. [Google Scholar]
  • 12.Kilic S, Duran RE, Coskun Y. Morphological and Physiological Responses of Maize (Zea mays L.) Seeds Grown under Increasing Concentrations of Chlorantraniliprole Insecticide. Polish Journal of Environmental Studies. 2015;24(3). [Google Scholar]
  • 13.Kifle MH, Laing MD. Effects of selected diazotrophs on maize growth. Frontiers in plant science. 2016;7:1429 10.3389/fpls.2016.01429 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Naveed M, Brown L, Raffan A, George TS, Bengough AG, Roose T, et al. Plant exudates may stabilize or weaken soil depending on species, origin and time. European Journal of Soil Science. 2017;68(6):806–16. 10.1111/ejss.12487 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Hao T, Chen S. Colonization of wheat, maize and cucumber by Paenibacillus polymyxa WLY78. PloS one. 2017;12(1). 10.1371/journal.pone.0169980 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Tian Y, Guan B, Zhou D, Yu J, Li G, Lou Y. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). The Scientific World Journal. 2014;2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Gaume A, Mächler F, De León C, Narro L, Frossard E. Low-P tolerance by maize (Zea mays L.) genotypes: significance of root growth, and organic acids and acid phosphatase root exudation. Plant and soil. 2001;228(2):253–64. [Google Scholar]
  • 18.Shafique S, Shafique S, Javaid A. Fungitoxicity of aqueous extracts of allelopathic plants against seed-borne mycoflora of maize. Mycopathologia. 2005;3:23–6. [Google Scholar]
  • 19.Liu Y, Zuo S, Zou Y, Wang J, Song W. Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Annals of microbiology. 2013;63(1):71–9. [Google Scholar]
  • 20.Planchamp C, Glauser G, Mauch-Mani B. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Frontiers in plant science. 2015;5:719 10.3389/fpls.2014.00719 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Girton RE. Sterilization of corn grains with sodium hypochlorite. Plant physiology. 1936;11(3):635 10.1104/pp.11.3.635 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Bello OA, Esan EB, Obembe OO, editors. Establishing surface sterilization protocol for nodal culture of Solanecio biafrae IOP Conference Series: Earth and Environmental Science; 2018: IOP Publishing. [Google Scholar]
  • 23.Abdul-Baki AA. Pitfalls in using sodium hypochlorite as a seed disinfectant in 14C incorporation studies. Plant physiology. 1974;53(5):768–71. 10.1104/pp.53.5.768 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Oyebanji O, Nweke O, Odebunmi O, Galadima N, Idris M, Nnodi U, et al. Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. African Journal of Biotechnology. 2009;8(20). [Google Scholar]
  • 25.Al Ghasheem N, STĂNICĂ F, PETICILĂ AG, Venat O. In vitro effect of various sterilization techniques on peach (Prunus persica (L.) Batsch) explants. Scientific Papers. 2018;227. [Google Scholar]
  • 26.Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M. Different modes of hydrogen peroxide action during seed germination. Frontiers in plant science. 2016;7:66 10.3389/fpls.2016.00066 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Amarasinghe R, Wang J, Xie W, Peng L, Li S, Li H. Seed-sterilization of Rhododendron wardii for micropropagation. Sri Lanka Journal of Food and Agriculture. 2018;4(1). [Google Scholar]
  • 28.Bhojwani SS, Dantu PK. Plant tissue culture: an introductory text: Springer; 2013. [Google Scholar]
  • 29.Caetano-Anolles G, Favelukes G, Bauer W. Optimization of surface sterilization for legume seed. Crop science. 1990;30(3):708–12. [Google Scholar]
  • 30.Dawar S, Syed F, Ghaffar A. Seed borne fungi associated with chickpea in Pakistan. Pakistan Journal of Botany. 2007;39(2):637. [Google Scholar]
  • 31.Ishtiaq M, Noreen M, Maqbool M, Hussain T, Azam S. Analysis of fungal diversity impacts on Pinus roxburghaii seeds from pine forest and plant nurseries of Azad Kashmir, Pakistan. Pak J Bot. 2015;47(4):14040–1414. [Google Scholar]
  • 32.Deora A, Hashidoko Y, Islam MT, Aoyama Y, Ito T, Tahara S. An antagonistic rhizoplane bacterium Pseudomonas sp. strain EC-S101 physiologically stresses a spinach root rot pathogen Aphanomyces cochlioides. Journal of General Plant Pathology. 2006;72(1):57–64. [Google Scholar]
  • 33.Ahmadi E, Nasr SMH, Jalilvand H, Savadkoohi SK. Contamination control of microbe Ziziphus spina [christti] seed in vitro culture. Trees. 2012;26(4):1299–304. [Google Scholar]
  • 34.Kim S-J, Kremer RJ. Scanning and transmission electron microscopy of root colonization of morningglory (Ipomoea spp.) seedlings by rhizobacteria. Symbiosis. 2005;39(3):117–24. [Google Scholar]
  • 35.Van der Meij A, Willemse J, Schneijderberg MA, Geurts R, Raaijmakers JM, van Wezel GP. Inter-and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity. Antonie Van Leeuwenhoek. 2018;111(5):679–90. 10.1007/s10482-018-1014-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Bressan W. Biological control of maize seed pathogenic fungi by use of actinomycetes. BioControl. 2003;48(2):233–40. [Google Scholar]
  • 37.Abu Bakar A, Mohd Rasol R, Yahaya N, Noor NM, bin Mohd Ali MKF, editors. Turbidity method to measure the growth of anaerobic bacteria related to microbiologically influenced corrosion. Solid State Phenomena; 2015: Trans Tech Publ. [Google Scholar]
  • 38.Maia MR, Marques S, Cabrita AR, Wallace RJ, Thompson G, Fonseca AJ, et al. Simple and versatile turbidimetric monitoring of bacterial growth in liquid cultures using a customized 3 D printed culture tube holder and a miniaturized spectrophotometer: application to facultative and strictly anaerobic bacteria. Frontiers in microbiology. 2016;7:1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Barampuram S, Allen G, Krasnyanski S. Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell, Tissue and Organ Culture (PCTOC). 2014;118(1):179–85. [Google Scholar]
  • 40.Shaik SP, Thomas P. In vitro activation of seed-transmitted cultivation-recalcitrant endophytic bacteria in tomato and host–endophyte mutualism. Microorganisms. 2019;7(5):132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Adorada D, Stodart B, Pangga I, Ash G. Implications of bacterial contaminated seed lots and endophytic colonization by Pseudomonas fuscovaginae on rice establishment. Plant pathology. 2015;64(1):43–50. [Google Scholar]
  • 42.Zou Y-N, Zhang D-J, Liu C-Y, Wu Q-S. Relationships between mycorrhizas and root hairs. Pak J Bot. 2019;51(2):727–33. [Google Scholar]
  • 43.Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6(1):58 10.1186/s40168-018-0445-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Yamaguchi J. Measurement of root diameter in field-grown crops under a microscope without washing. Soil science and plant nutrition. 2002;48(4):625–9. [Google Scholar]
  • 45.Reid J. Observations on root hair production by lucerne, maize and perennial ryegrass grown in a sandy loam. Plant and soil. 1981;62(2):319–22. [Google Scholar]
  • 46.Zhu J, Kaeppler SM, Lynch JP. Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant and Soil. 2005;270(1):299–310. [Google Scholar]
  • 47.Hey S, Baldauf J, Opitz N, Lithio A, Pasha A, Provart N, et al. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. Journal of experimental botany. 2017;68(9):2175–85. 10.1093/jxb/erx104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Xu Y, Zhang J, Shao J, Feng H, Zhang R, Shen Q. Extracellular proteins of Trichoderma guizhouense elicit an immune response in maize (Zea mays) plants. Plant and Soil. 2020:1–17. [Google Scholar]

Decision Letter 0

Yi Cao

19 Aug 2020

PONE-D-20-22883

High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds

PLOS ONE

Dear Dr. Yalda Davoudpour,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Please submit your revised manuscript by Oct 03 2020 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

We look forward to receiving your revised manuscript.

Kind regards,

Yi Cao

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. PLOS requires an ORCID iD for the corresponding author in Editorial Manager on papers submitted after December 6th, 2016. Please ensure that you have an ORCID iD and that it is validated in Editorial Manager. To do this, go to ‘Update my Information’ (in the upper left-hand corner of the main menu), and click on the Fetch/Validate link next to the ORCID field. This will take you to the ORCID site and allow you to create a new iD or authenticate a pre-existing iD in Editorial Manager. Please see the following video for instructions on linking an ORCID iD to your Editorial Manager account: https://www.youtube.com/watch?v=_xcclfuvtxQ

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Partly

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: N/A

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: This report compares a few different sterilization treatment methods of maize seeds. An effective method has been screened out in this report and convincing methodologies to evaluate the effect of sterilization methods on microbial cultivation and germination. Although the number of seeds is small, the results are consistent and promising. Thus, I recommend it to be published with a few minor revisions:

What is the volume of the NaOCl solution during the treatment? 17 uL of Tween 20 added to how much solution?

Explain the controlled medium in Table 1 or the text when mentioning the procedure on pages 6 and 7. The explanation shows up too late.

Fig. 4 labeling should be EtOH-SH-xxx missing SH in two labels.

Reviewer #2: The article, entitled “High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds,” by Yalda Davoudpour et al, for publication in POLS ONE, has some interesting results. Their approach, applying optical and scanning electron microscopic imaging as the major tools, has the potential to be developed into routine characterization protocol. There are several flaws and insufficiencies that need to be addressed properly.

Therefore, I recommend publication once those issues (details below) are addressed.

In the methods section, authors mentioned roots were cut to approximately 1 cm for optical microscopy. Also, they show images of grown roots in several images within Figs 2, 3, and 5. It will be helpful to readers if these authors give the diameter of those Petri dishes so one has a sense of actual length of those grown roots.

I am concerned with poor image quality in Figs 2, 3 and 5. It could be the result of a poor production of my copy only. Anyway, even with a cell phone one surely can obtain much higher quality images of this nature. Authors should make sure their original pictures do have adequate contrast to show clearly grown roots.

Fig. 8b needs improvement on how to present it. Its background at lower right quarter is too bright, overwhelming/dominating the lone fluorescent dot in the upper left quarter.

Images in Fig. 10 are very good.

Author’s comments about unable to determine whether microorganisms were on root surface with optical microscopy was a misconception. Optical microscopic imaging is capable do even 3-D sectional imaging, for example with confocal microscopy. Optical lenses form planar images of objects on a plane. At the resolution of their work, there is no doubt that images in Fig. 10 are features on root surface, not internal.

Fig. 11 is actually puzzling.

Those “dots,” deemed detected microorganisms, are not clear et all and are too small. The resolution of HIM should be far better. These authors should show enlarged section of those dots so that their 3-D structure can be elucidated. Images in Fig.11 do not support claims of any detected microorganism. Structures of root hairs are apparent. Red circles are very faint to almost invisible. I only saw a few random and very blurred red dots, no arrows at all.

These authors need to provide details on “cell counting,” both on methods and actual work. By imaging, readers understand how to literally count fluorescent dots in an image. This direct method gives numbers (of cells/microorganisms or else) per unit area. How to convert it to numbers per unit volume is not clear at all. These authors need to have one paragraph on methods. If literally counting “cells” on images, it is more scientific to provide the total number before a conversion to the unit number. In terms of counting, if it is manual, these authors should state so and report on how time-consuming the process actually is.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

Attachment

Submitted filename: POLS_article_Rev(0820).pdf

PLoS One. 2020 Nov 30;15(11):e0242247. doi: 10.1371/journal.pone.0242247.r002

Author response to Decision Letter 0


23 Sep 2020

Dear Dr. Yi Cao,

We would like to thank you and the reviewers for the valuable comments and suggestions to improve the quality of our manuscript, the time and effort dedicated as well as for the opportunity to submit the revised version. We incorporated the insightful suggestions and comments in the revised version. The changes are marked in the manuscript by yellow highlight. Please find our detailed response to the reviewer’s comments below. One of the critical point in comments of reviewer 2 was concerning the poor image quality/resolution. We have checked all images and find out that during exporting particularly of the multi-panel figures, the resolution of individual images decreased considerably. We have therefore used for the revised version a different software to export final images and keep the initial resolution of the individual images.

Reviewer’s comments for the manuscript:

Reviewer ≠1:

1. What is the volume of the NaOCl solution during the treatment? 17 uL of Tween 20 added to how much solution?

Author’s response: Thanks for your completely correct point. We added the missing information in the text. Materials and Methods section, Surface sterilization procedures (page 6, line 136).

2. Explain the controlled medium in Table 1 or the text when mentioning the procedure on pages 6 and 7. The explanation shows up too late.

Author’s response: As suggested by the reviewer, we added the explanation about the control medium earlier on page 7, line 153-154.

3. Fig. 4 labeling should be EtOH-SH-xxx missing SH in two labels.

Author’s response: We added the missing SH to the EtOH-va-st and EtOH-st labels in Fig. 4.

Reviewer ≠2:

1. In the methods section, authors mentioned roots were cut to approximately 1 cm for optical microscopy. Also, they show images of grown roots in several images within Figs 2, 3, and 5. It will be helpful to readers if these authors give the diameter of those Petri dishes so one has a sense of actual length of those grown roots.

Author’s response: We thank the reviewer for the comment. We added the missing scale bars in Fig 2, 3, 5 and the corresponding figures captions (Fig2. page 11, line 239-240) (Fig3. page 12, line 262) (Fig5. page 13, line 295).

2. I am concerned with poor image quality in Figs 2, 3 and 5. It could be the result of a poor production of my copy only. Anyway, even with a cell phone one surely can obtain much higher quality images of this nature. Authors should make sure their original pictures do have adequate contrast to show clearly grown roots.

Author’s response: We thank the reviewer for observing and pointing out the resolution issues. We have checked and export the multi-panel images using a different software to keep the initial high resolution of individual images.

3. Fig. 8b needs improvement on how to present it. Its background at lower right quarter is too bright, overwhelming/dominating the lone fluorescent dot in the upper left quarter.

Author’s response: We thank to the reviewer for the useful comment. According with this comment we decided to present the fluorescence microscopy images in the revised version of manuscript without any changes in signal to noise ratio (best fit) suggested by the image processing software (ZEN 3.1).

4. Images in Fig. 10 are very good. Author’s comments about unable to determine whether microorganisms were on root surface with optical microscopy was a misconception. Optical microscopic imaging is capable do even 3-D sectional imaging, for example with confocal microscopy. Optical lenses form planar images of objects on a plane. At the resolution of their work, there is no doubt that images in Fig. 10 are features on root surface, not internal.

Author’s response: We thank the reviewer for the valuable explanation. The reviewer comment is completely justified and correct. Therefore, we decided to remove the corresponding statement from the text.

5. Fig. 11 is actually puzzling. Those “dots,” deemed detected microorganisms, are not clear et all and are too small. The resolution of HIM should be far better. These authors should show enlarged section of those dots so that their 3-D structure can be elucidated. Images in Fig.11 do not support claims of any detected microorganism. Structures of root hairs are apparent. Red circles are very faint to almost invisible. I only saw a few random and very blurred red dots, no arrows at all.

Author’s response: We thank to the reviewer for pointing out resolution issues with many of the presented figures. We have checked individually each figure and realized the resolution was decreased during exporting of the multi-panel figures. In the revised version we used another software to export multi-panel images with excellent results for keeping the initial resolution of individual images. In addition, when available we replaced images with close ups for better observation of bacterial cells on the root surface. We made the circles and arrows larger for better recognition and supporting our claim.

6. These authors need to provide details on “cell counting,” both on methods and actual work. By imaging, readers understand how to literally count fluorescent dots in an image. This direct method gives numbers (of cells/microorganisms or else) per unit area. How to convert it to numbers per unit volume is not clear at all. These authors need to have one paragraph on methods. If literally counting “cells” on images, it is more scientific to provide the total number before a conversion to the unit number. In terms of counting, if it is manual, these authors should state so and report on how time-consuming the process actually is.

Author’s response: We appreciate the reviewer comment. We incorporated the explanation of DAPI cell counting in the material and methods section (page 9, lines 183-194).

Attachment

Submitted filename: Response to Reviewers.docx

Decision Letter 1

Yi Cao

30 Oct 2020

High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds

PONE-D-20-22883R1

Dear Dr. Davoudpour,

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Yi Cao

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #1: All comments have been addressed

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: (No Response)

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Acceptance letter

Yi Cao

16 Nov 2020

PONE-D-20-22883R1

High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds

Dear Dr. Davoudpour:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at plosone@plos.org.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Yi Cao

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    Attachment

    Submitted filename: POLS_article_Rev(0820).pdf

    Attachment

    Submitted filename: Response to Reviewers.docx

    Data Availability Statement

    All relevant data are within the manuscript.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES