Abstract
目的
探讨喀什地区少数民族的主动脉疾病基因突变类型,分析其与临床表型的相关性。
方法
利用二代测序技术对包含马凡综合征在内的19例新疆维吾尔族主动脉疾病家系的37个相关致病基因进行基因检测|、分析,并对其近亲家属完成sanger验证。
结果
本研究纳入19个主动脉疾病家系,共检测出23个突变位点,有11例先证者(57.89%)存在一个或以上的基因突变。其中有1例(5.26%)为明确的致病性突变;8例(42.11%)检测出意义未明性突变;7例(36.84%)检测出良性/可能良性突变。23个突变位点中包括有1个(5.26%)明确的致病性突变位点,14个(60.87%)意义未明的基因突变,8个(34.78%)良性/可能良性突变。对14个意义未明突变位点采用SIFT及Polyphen2 HDIV软件预测,发现6个(42.86%)为有害性/可能有害性突变。对8个良性/可能良性突变位点进行上述软件预测,结果均为有害性/可能有害性突变。
结论
本研究发现了23个突变位点,其中22个尚待以后更多的患者数据进行验证。基因诊断有助于患者及其近亲属的早期诊断及鉴别诊断。
Keywords: 主动脉瘤, 主动脉夹层, 基因, 二代测序
Abstract
Objective
To explore genetic mutation types and their correlation with clinical phenotypes in Uighur patients with aortic disease in Kashgar (Xinjiang Uighur Autonomous Region, China).
Methods
We examined 37 pathogenic genes in 19 Uighur families with aortic diseases including Marfan syndrome from Kashgar using next generation sequencing, and the results were confirmed by Sanger sequence in the first relatives.
Results
This study included 19 families with aortic diseases, in whom a total of 23 variants were identified, and 11 (57.89%) probands had one or more variants. Among them, definite pathogenic mutation was detected in one patient (5.26%), variants of uncertain significance (VUS) were found in 8 (42.11%), and benign/likely benign variants were detected in 7 (36.84%). The 23 variants identified included one (5.26%) pathogenic variant, 14 (60.87%) VUS, and 8 (34.78%) benign/likely benign variants. The 14 VUS were analyzed by prediction with SIFT and Polyphen2 HDIV, which identified 6 (42.86%) variants as deleterious/possibly damaging; all the 8 benign/likely benign variants were predicted to be deleterious/possibly damaging.
Conclusions
We detected 23 genetic variants in the 19 Uighur families with aortic diseases, and 22 of these variants remain to be verified by more patient data in future studies.
Keywords: thoracic aortic aneurysms, thoracic aortic dissection, gene, next generation sequencing
主动脉瘤和主动脉夹层是致死率极高的大血管疾病,欧洲报道的发病率为4.3~25.4人/10万人,65岁以上年龄段的年发病率为35人/10万(欧洲)[1]。我国近年来的报道患者主要集中于50~60岁,每年新发病例预测20万人次左右。根据是否累及多系统表现,胸主动脉瘤/夹层细分为综合征型胸主动脉瘤/夹层和非综合征型胸主动脉瘤/夹层;根据是否有家族史,分为遗传性胸主动脉瘤/夹层和非遗传性胸主动脉瘤/夹层。综合征型胸主动脉瘤/夹层多为常染色体显性遗传疾病,其临床症状在遗传水平上存在高度异质性,且涉及多个基因的多种变异。例如原纤维蛋白-1(FBN1)基因突变导致的马凡氏综合征(MFS)[2],Ⅲ型胶原蛋白α1(COL3A1)基因突变导致的Ehlers-Danlos综合征(EDS)[3],转录生长因子-β或肌动蛋白突变所致的LDS综合征(LDS)[4]。非综合征型胸主动脉瘤/夹层如二叶式主动脉瓣畸形亦具有明确的基因改变[5]。除了高血压、动脉粥样硬化、外伤、炎症、吸烟等临床因素外,基因突变是极其重要的致病因素,通过造成细胞外基质的蛋白异常、TGF-β信号通路的改变、平滑肌细胞收缩功能、分化及增殖受损进而影响主动脉壁的正常结构和功能[6]。
大多数的主动脉夹层患者在发病之前都无任何症状,亦没有明显的家族史,发病24 h死亡率可达20%,48 h达30%[7]。然而随着测序技术的快速发展,越来越多的研究表明20%~40%的患者存在明显的家族遗传倾向。是否具有家族史、是否累及多系统以及是否携带有致病基因,对胸主动脉瘤/夹层的诊治、预后及生存质量存在着较大差异。适时的基因检测可以及早明确疾病诊断、预知先证者及近亲家属的发病风险、降低死亡率及改善预后。然而,目前胸主动脉瘤/夹层遗传发病机制仍尚不清楚,并没有明确的热点基因及基因-表型关系。
近年来,国内针对包括马凡综合征在内的胸主动脉瘤/夹层的汉族人群进行了多项基因检测分析,结果显示除了最常见的FBN1致病基因外,越来越多新的可能的致病基因被发现[8-11]。此外,多项研究表明[12-15],由于等位基因分布频率及种族的差异性,在不同的研究人群中基因-表型关系亦存在着明显的差别。为了进一步探究人群差异性,本研究首次利用全外显子组测序技术对喀什地区少数民族胸主动脉瘤/夹层人群的致病基因进行鉴定,进一步扩大和完善了致病基因谱。
1. 资料和方法
1.1. 研究对象
本研究纳入2018年10月1日~2019年9月30日期间在喀什地区第一人民医院就诊,并经超声心动图、主动脉CT检查确诊为胸主动脉瘤/夹层的喀什地区维吾尔族主动脉疾病患者19例。本研究已征得每位受试者的同意。
1.2. 实验方法
本研究依托广东省人民医院、广东省华南结构性心脏病重点实验室、喀什地区第一人民医院等医疗及研究单位,在患者签署知情同意书后,采集患者的外周血标本。离心后收血清、血浆作相应标记后,于-80℃冰箱保存。采用二代测序法对标本进行全外显子组测序,查找致病性点突变或较小的插入、缺失,并对一代亲属进行基因验证。后期基因数据分析主要包括如下37个基因:ACTA2、FBN1、FBN2、MYH11、COL3A1、SMAD3、TGFβR1、TGFβR2、TGFβ2、MYLK、MSTN、COL5A2、CBS、SLC2A10、TGFβ3、TNXB、PLOD1、COL1A1、COLSA1、COL1A2、ADAMTS-2、LOX、PRKG1、SMAD2、SMAD4、FOXE3、GATA5、EFEMP2、ELN、FLNA、MAT2A、MFAP5、NOTCH1、BGN、COL4A5、COL5A1、SKⅠ[16];此外,针对BAV家族同时进行了二叶式主动脉瓣相关的基因检测,包括: ELASTIN、COLLAGEN3、GATA4、NKX2- 5、NOS3、EGFR、AXIN1、ENG、PDIA2、TEX26、APC、AXIN2、FLT1、GLI1、JAG1、MCTP2、MSX1、NFATC1、NOS1、NOTCH2、NOTCH3、PAX6、PIGF、PPP3CA、PTCH2、SLC35B2、SNAI3、SOX9、TBX5、VEGFB、VEGFC、WNT4、ZNF236、SMAD6、KCNJ2[5, 17-18]。
1.2.1. 实验建库测序
1.2.1.1. DNA样本提取及检测
每个样本提取200 ng的基因组DNA[Magbead Blood DNA Kit(CWbiotech)];Nanodrop检测DNA的浓度和纯度(A260/280,A260/230比值;琼脂糖凝胶电泳分析DNA降解程度以及是否有RNA、蛋白质污染;Qubit对DNA浓度进行精准定量,总量在250 ng以上的DNA样本可以用来建库。
1.2.1.2. 建库捕获
采用全外显子组基础版、全外显子组ClinVar版、全外显子组CNV版、全外显子组COSMIC版的液相捕获技术,对人的全外显子区域进行高效、特异富集,富集后在HiSeq X10或NovaSeq平台上进行高通量、高深度测序:(1)将基因组DNA经Bioruptor Pico Diagenode,Belgium)超声随机打断成150~200 bp的片段;(2)片段化后的DNA进行末端修复、3'端加”A”;(3)接头连接后通过PCR扩增的方法进行样本标记和富集DNA;(4)带有特异index的文库与生物素标记的RNA探针进行液相杂交,再使用链酶;(5)亲和素标记的磁珠获取目标基因外显子,然后用PCR扩增进行目标基因的富集。
1.2.1.3. 文库质检定量
使用Qubit3.0进行文库定量,文库浓度 > 25 ng/µL参考为合格文库;使用Agilent2100检测,文库主峰要在220~320 bp左右,主峰前后无杂峰。
1.2.1.4. 上机测序
文库构建完成后,外显子的区域使用艾全外V1捕获试剂盒(艾吉泰康,北京,中国)进行捕获,然后用NovaSeq6000测序仪进行双端150 bp测序。
1.2.2. 生物信息分析流程
测序得到原始下机数据(Raw data),用FastQC程序来过滤掉低质量碱基、接头序列:(1)以4 bp滑窗的方式,剪切掉平均碱基质量值小于20的序列;(2)去除N碱基数 > 5的测序序列;(3)去除不合格碱基比例 > 40%的测序序列;(4)去除剪切过后剩余长度不足30 bp的测序序列;(5)自动检测接头序列并进行剪切;(6)针对pair end序列,对overlap区域进行碱基矫正。
用BWA程序将测序数据和hg19版本的人参考基因组进行比对,同时进行排序和重复序列去除工作,在此基础上,使用GATK程序鉴定和注释SNV和InDel,确定突变位点对应的基因信息、功能信息、有害性等。利用SIFT软件、PolyPhen2软件对蛋白质的结构进行分析,预测其保守域、功能域,并进行多序列比对(PolyPhen-2, <a href="http://genetics.bwh.harvard.edu/pph2/SIFT" target="_blank">http://genetics.bwh.harvard.edu/pph2/SIFT</a>, <a href="http://sift.jcvi.org/www/SIFT_BLink_submit.htl" target="_blank">http://sift.jcvi.org/www/SIFT_BLink_submit.htl</a>)。
1.3. 统计学方法
所有数据均用SPSS24.0软件进行分析。计量资料以均数±标准差表示,计数资料以频率或百分比表示。
2. 结果
2.1. 临床资料
本研究共纳入患者家系19个,5例为主动脉夹层,14例为胸主动脉瘤。包含有2个BAV家族及5例临床可疑马凡综合征患者。大多数为男性,占比84.21%(16/19)。平均发病年龄为41.6岁,主要集中在20~50岁之间,20岁以下有3例,50岁以上有5例。其中31.58% (6/19)有家族史,10.53% (2/19)有高血压病史。此外,63.16%(12/19)患者伴有主动脉关闭不全、二尖瓣关闭不全、主动脉狭窄等疾病(表 1)。
1.
19个家系的临床数据
Clinical data of the 19 Uighur families
| Family | Gender | Age (year) | AD | TAA | Other CVD | MFS | BAV | Family history |
| M: Male; F: Female; AD: Aortic dissection; TAA: Thoracic aortic aneurysm; AMI: Acute myocardial infarction; AR: Aortic regurgitation; MR: Mitral regurgitation; AS: Aortic stenosis. | ||||||||
| KS0101 | M | 20 | Y | Y | N | |||
| KS0201 | M | 56 | Y | AR; MR | N | |||
| KS0301 | M | 55 | Y | AMI | Y | Y | ||
| KS0401 | M | 28 | Y | AR | Y | Y | ||
| KS0501 | M | 18 | Y | AR | Y | Y | ||
| KS0601 | M | 14 | Y | AR | N | |||
| KS0701 | M | 34 | Y | AR | Y | Y | ||
| KS0801 | M | 49 | Y | AR | N | |||
| KS0901 | M | 38 | Y | AR; MR; | Y | Y | ||
| KS1001 | M | 42 | Y | N | ||||
| KS1101 | M | 64 | Y | N | ||||
| KS1201 | F | 68 | Y | AR; MR | N | |||
| KS1301 | M | 58 | Y | MI | N | |||
| KS1401 | M | 25 | Y | Y | N | |||
| KS1501 | M | 49 | Y | AR | N | |||
| KS1601 | F | 46 | Y | AS | N | |||
| KS1701 | F | 47 | Y | N | ||||
| KS1801 | M | 50 | Y | N | ||||
| KS1901 | M | 29 | Y | Y | ||||
2.2. 各家系基因突变结果
在19个家族中,总共检测出17个基因的23个突变位点(图 1),包括1个(5.26%)明确的致病性突变位点,14个(60.87%)意义未明的基因突变,8个(34.78%)良性/可能良性基因突变(图 2)。其中42.86%(6/14)的意义未明性位点被SIFT、Polyphen2 HDIV软件预测为有害性/可能有害性突变。8个良性/可能良性突变位点亦均被预测为有害性/可能有害性突变。在11例(57.89%)基因突变阳性的先证者中(表 2),1例(5.26%)因携带有FBN1致病性突变而确诊为马凡氏综合征。此外,8例患者(42.11%)检测出意义未明性突变;7例(36.84%)检测出良性/可能良性突变。基因突变结果见表 2、基因分布比例见图 1、遗传变异分类见图 2、家系图见图 3。
1.

基因分布比例
Gene distribution.
2.

遗传变异分类
Classification of genetic variation.
2.
基因信息总览
Summary of genetic information
| Family | AD | TAA | Other CVD | MFS | Gene | Nucleotide | Protein | Classification | SIFT | Polyphen2_HDIV |
| AD: aortic dissection; TAA: Thoracic aortic aneurysm; CVD: Cardiovascular diseases; MFS: Mafan syndrome; Patho: Pathogenic; VUS: Variants of Uncertain significance; SIFT: D: Deleterious (score≤0.05), T: Tolerated (score > 0.05); Polyphen2_HDIV: D: Probably damaging (score≥0.957), P: Possibly damaging (0.453≤score≤0.956), B: Benign (score≤0.452). | ||||||||||
| KS0101 | Y | Y | FBN1 | c.4930C > T | p. R1644X | Patho | ||||
| KS0301 | Y | AMI | Y | MYLK | c.1021A > G | p. T341A | VUS | D | P | |
| ELN | c.1828G > C | p. G610R | Benign | D | D | |||||
| KS0401 | Y | AR | Y | COL5A2 | c.2498C > T | p. P833L | Likely benign | D | D | |
| KS0501 | Y | AR; AS | MYLK | c.1327C > T | p. P443S | Benign | D | D | ||
| FLNA | c.4042C > A | p. P1348T | VUS | T | B | |||||
| PDIA2 | c.1403C > T | p. P468L | VUS | D | P | |||||
| APC | c.7877C > A | p. T2626N | VUS | T | B | |||||
| NFATC1 | c.230C > T | p. P77L | VUS | D | P | |||||
| FLT1 | c.1437-5- > T | |||||||||
| ZNF236 | c.995C > T | p. T332M | VUS | D | D | |||||
| KS0601 | Y | AR | SMAD2 | c.235A > G | p. S79G | VUS | T | B | ||
| KS0701 | Y | AR | Y | ELN | c.1232T > G | p. V411G | Benign | D | P | |
| KS1101 | Y | FBN1 | c.4187C > T | p. T1396I | VUS | T | B | |||
| KS1301 | Y | MI | COL3A1 | c.3145C > A | p. P1049T | VUS | D | D | ||
| FBN2 | c.8592G > A | p.M2864I | VUS | T | B | |||||
| KS1401 | Y | COL5A1 | c.4135C > T | p. P1379S | Benign | D | D | |||
| FLT1 | c.1437-5- > T | |||||||||
| NOTCH3 | c.3399C > A | p.H1133Q | VUS | D | P | |||||
| KS1501 | Y | AR | COL4A5 | c.3029A > G | p. N1010S | VUS | T | B | ||
| ELN | c.1828G > C | p. G610R | Benign | D | D | |||||
| COL5A1 | c.1588G > A | p. G530S | Benign | T | B | |||||
| KS1601 | Y | AS | COL5A1 | c.5326T > C | p. Y1776H | VUS | T | B | ||
| ELN | c.1828G > C | p. G610R | Benign | D | D | |||||
| SKI | c.185C > G | p. A62G | Benign | D | D | |||||
3.

突变家系图谱
Pedigrees of the families with mutations.
2.2.1. 二叶式主动脉瓣(BAV)家系
共纳入有两组BAV家系。KS05家系:先证者18岁,临床诊断为升主动脉扩张、先天性主动脉瓣二瓣化畸形,合并有严重的主动脉瓣狭窄和关闭不全。其父亲、妹妹均经心脏彩超诊断为先天性二叶式主动脉瓣畸形,父亲合并重度主动脉瓣关闭不全,妹妹合并轻度主动脉狭窄和关闭不全。在此先证者中共检测出7个基因突变位点,包含有6个意义未明性突变和1个良性突变(表 3)。其中,3个意义未明性突变及良性突变位点均被预测为有害/可能有害性突变。先证者和父亲共有4个相同的基因突变,MYLKc.1327C > T(p.P443S),PDIA2 c.1403C > T(p. P468L),NFATC1c.230C > T(p.P77L),FLT1c.1437-5- > T;和妹妹共有两个突变位点FLNA c.4042C > A(p. P1348T),APC c.7877C > A(p.T2626N)。此外,妹妹存在有和父亲一样的另一个新的突变位点PDIA2 c.356C > G(p.T119R),虽然为良性病变,但是SIFT、Polyphen2 HDIV软件均预测为有害性突变。值得注意的是,即使父亲、妹妹及先证者均有先天性主动脉瓣二瓣化畸形,但在三者中尚未发现同样的BAV相关的基因突变。KS14家系:在25岁的先证者中共检测到了3个基因突变,除了COL5A1、NOTCH3基因外,还存在和KS05家族同样的突变位点FLT1:c.1437-5- > T。
3.
KS05家系中相关基因测序及验证结果
Result of sequencing and validation in family KS05
| Proband | Ⅱ:5 | Ⅱ:6 | Ⅲ:2 | Classification | SIFT | Polyphen2_HDIV | |
| MYLK:c.1327C > T (p.P443S) | √ | √ | Benign | D | D | ||
| FLNA:c.4042C > A (p.P1348T) | √ | √ | √ | VUS | T | B | |
| PDIA2:c.1403C > T (p.P468L) | √ | √ | VUS | D | P | ||
| PDIA2:c.356C > G (p.T119R) | √ | √ | Benign | D | D | ||
| APC:c.7877C > A (p.T2626N) | √ | √ | √ | VUS | T | B | |
| NFATC1:c.230C > T (p.P77L) | √ | √ | VUS | D | P | ||
| FLT1 c.1437-5- > T | √ | √ | VUS | ||||
| ZNF236:c.995C > (p.T332M) | √ | VUS | D | D |
2.2.2. 升主动脉瘤家系
本研究共纳入了12例升主动脉瘤/根部瘤家系(不包含BAV),基因检测阳性率为58.33%(7/12),平均年龄为38.75岁,最小年龄为14岁,最大为56岁。KS01家系,先证者表现为主动脉根部瘤,Ghent系统评分为7分,发病年龄为20岁。检测出明确的FBN1致病性基因突变c.4930C > T(p.R1644X),曾经被多次报道[19],确诊为马凡氏综合征。KS03家系,临床表现为疑似马凡氏综合征,且合并急性心肌梗塞,母亲有类似疾病史。检测结果发现新的MYLK突变位点c.1021A > G(p.T341A),突变类型为错义突变,且意义未明,SIFT、Polyphen2 HDIV数据库的预测结果为有害/可能有害性突变。同时,在其余没有临床表型的三兄弟中均检测到同样的突变。此外,Ⅱ:1和先证者均携带有ELN基因的突变位点c.1828G > C(p.G610R),虽然为良性突变,但是SIFT软件、Polyphen2 HDIV预测均为有害突变。有报道称ELN基因突变可以导致主动脉瓣及主动脉疾病的报道[20]。KS04家系,先证者为28岁,以主动脉窦瘤(瘤径为54.8 mm)来就诊,体查发现其胸廓不对称,轻度脊柱侧突,无晶状体脱位等其他体征。基因检测发现COL5A2基因的突变位点c.2498C > T(p. P833L),为可能良性突变,SIFT软件、Polyphen2 HDIV软件预测均为有害性突变。妹妹、母亲、两兄弟均存在同样的突变位点,父亲没有任何突变。据了解,其母亲有心脏病史,具体诊断不祥,两兄弟体查无明显异常。家属的基因检测也没有发现可疑致病位点。KS06家系,先证者临床诊断为升主动脉瘤,合并重度主动脉瓣关闭不全,其年龄14岁,合并卵圆孔未闭。基因测序发现,SMAD2意义未明性突变c.235A > G(p.S79G),SIFT软件、Polyphen2 HDIV软件预测并不会对蛋白质结构和功能造成有害性改变。KS07家系,临床诊断升主动脉扩张,合并轻度主动脉关闭不全、右肾先天发育不良;手术中可见左右冠状开口均开口于右冠窦。检测发现,ELN c.1232T > G(p.V411G)良性突变,但是SIFT软件预测为有害性突变,Polyphen2 HDIV软件预测为可能有害性突变。家系验证,我们收集了包括父母、3个妹妹、3个儿子、一个女儿在内共9的血液标本。结果显示,母亲、其中一个妹妹、女儿、最小的儿子均携带有同样的突变。而且这个女儿幼时有心脏手术史:VSD(室间隔缺损)+PDA(动脉导管未闭),除此之外,其他家属暂时并没有明显的异常。家族有近亲结婚史,从结果显示,突变显然来自于母亲,并遗传到子代。KS15家系,为升主动脉扩张,伴有重度主动脉瓣狭窄、左右冠状动脉不同程度狭窄。COL4A5 c.3029A > G(p.N1010S),意义未明,SIFT软件、Polyphen2 HDIV软件预测均为可能不会对蛋白功能造成有害性改变。ELN.c.1828G > C(p.G610R)为良性改变,SIFT软件、Polyphen2 HDIV软件预测均为有害性突变。COL5A1c.1588G > A.(p. G530S)为良性改变,SIFT软件预测为可能不会对蛋白功能造成有害性改变,而Polyphen2 HDIV软件预测为有害性改变。KS16家系,为主动脉窦部扩张,合并重度主动脉关闭不全、冠心病-左对角支狭窄。COL5A1 c.5326T > C(p.Y1776H)意义未明,SIFT软件、Polyphen2 HDIV软件预测均为可能不会对蛋白功能造成有害性改变。和KS1503、KS0301含有同样的突变位点c.1828G > C(p.G610R);第3个突变位点为SKI. c.185C > G(p.A62G),为良性改变,但是SIFT软件、Polyphen2 HDIV软件预测均为有害性突变
2.2.3. 主动脉夹层家系
共纳入5例主动脉夹层,并且均为B型夹层,年龄主要集中在50~60岁左右,且均没有家族史,突变基因检测阳性率为40.00%(2/5),结果均为意义未明性突变。KS11家系,检测发现FBN1c.4187C > T(p. T1396I),为意义未明,SIFT软件和Polyphen2 HDIV软件预测为可能不会影响蛋白结构和功能。KS13家系,临床诊断为B型夹层,伴有陈旧性下壁梗死,检测结果COL3A1.c.3145C > A(p.P1049T),在东亚人群频率极低;为意义未明,SIFT软件、Polyphen2 HDIV软件预测均为有害性突变。另一个意义未明的突变位点是FBN2.c.8592G > A(p.M2864I),SIFT软件、Polyphen2 HDIV软件预测均为可能不会对蛋白功能造成有害性改变。
3. 讨论
本研究首次利用二代测序技术针对喀什地区少数民族人群中患有主动脉疾病的群体进行检测,其中共涉及37个胸主动脉瘤/夹层相关的基因及35个BAV相关的基因,是目前已知针对少数民族最大基因数目的检测研究。由于胸主动脉瘤/夹层的罕见性及诊疗技术的地区差异性,既往基因检测主要集中于汉族人群[10, 21],尤其是具有先进大血管诊疗技术的医学中心等,数据具有一定的偏倚性。本研究首次聚焦维吾尔族主动脉疾病人群,进一步扩大和完善了少数民族主动脉疾病的致病基因谱。
本次研究共有11个患者检测出(57.89%,11/19)基因突变,其中5.26%(1/19)为致病性突变,确诊为马凡氏综合征。相比于汉族人群,少数民族似乎具有更高的基因阳性检测率,而在Ziganshin团队的检测中,欧洲人群的基因突变诊断率仅为27.5%[22]。值得注意的是,不同于汉族人群,少数民族大部分意义未明性、良性/可能良性突变均被预测为有害/可能有害性突变。此外,本研究中,少数民族人群基因的突变类型相对分布比较分散,涉及有17个基因的突变,如图 1所示,主要以ELN、COL5A1、FBN1、PDIA2、MYLK、FLT1等为主,21.05%(4/19)的先证者有ELN基因突变,15.79%(3/19)为COL5A1基因突变,FBN1基因突变则为10.53%(2/ 19)。而在继往的研究人群中,主要是以FBN1、ACTA2等为主。Poninska、Renard等的报道,则主要以FBN1、ACTA2、TGFBR1、TGFBR2、SKI、SMAD3等突变为主[16, 23]。我们此前针对汉族人群的研究对来自中国南方的70例主动脉夹层患者的11个已知致病基因进行了筛选,以FBN1、ACTA2、COL5A2、SLC2A10、MYH11、MYLK等为主[8];我们针对临床诊断马方综合征的汉族患者的基因检测发现突变基因以FBN1为主,突变类型与国外报道也存在较大差异[9]。
先天性二叶式主动脉瓣畸形(BAV)的发病率为1% ~2%,NOTCH1、GATA5基因突变是最常见的引起主动脉瓣发育异常的因素之一[24-25]。然而在少数民族中,我们发现入组的BAV家族中NOTCH1、GATA5均为阴性,却都存在有新的FLT1:c.1437-5- > T变异,为意义未明性突变。其实,FLT1基因曾经也被报道为BAV相关的26个候选基因之一[26]。在KSO4家族中,即使3个家庭成员均具有明确BAV病史,依然尚未发现有共同存在的基因突变。除BAV外的升主动脉瘤家系中,近一半具有家族史,基因检测率达58.33%(7/12)。在5个临床诊断为可疑马凡综合征的病例中,只有一个因携带有致病性FBN1突变而确诊。其中3个病例主要是涉及ELN及COL5A2基因的改变,虽然都是良性/可能良性改变,但是蛋白功能预测均为有害性/可能有害性。ELN编码的弹性蛋白和FBN1编码的原纤维蛋白是血管壁的重要组成成份,分别影响着主动脉的弹性回缩和拉伸强度,在主动脉壁的发育和机械性能中发挥着巨大作用[27]。COL5A2基因编码一种纤维胶原的α链, 可以导致Ehlers-Danlos Syndrome(EDS),涉及到皮肤、关节等表现[28-29]。根据最新的国际EDS分类[30],这个家系并不符合EDS综合征的诊断标准,此外,致病等级分类与软件预测结果也不一致,因此亟需进一步的功能验证。另外一个特殊的可疑马凡综合征患者,38岁时出现窦部扩张合并重度主动脉瓣、二尖瓣关闭不全,两个女儿分别有较长的身高及胸骨的异常,但是仍然没有检测到任何一个基因改变,有待进一步扩大基因检测谱而明确诊断。
总之,本研究总共检测出23个突变位点,其中有1个明确的致病性突变(FBN1:c.4930C > T),14个(14/23,60.87%)为意义未明的基因突变位点,8个(8/23,34.78%)为良性/可能良性突变。14个意义未明的突变位点中,SIFT软件、Polyphen2 HDIV软件预测结果有6个为有害性/可能有害性突变,7个良性/可能良性突变位点。使用SIFT软件、Polyphen2 HDIV软件对8个良性/可能良性突变位点进行预测,结果均为有害性/可能有害性突变。但软件预测只是蛋白功能上的提示,是否真的导致主动脉疾病或者出现明显的临床症状,未来仍需要大量数据进一步验证。
近几十年来,多项研究表明主动脉疾病与基因突变具有不同程度的相关性[10-11, 31-32]。专家共识也建议通过基因检测,可以及早识别具有高危险因素的无症状胸主动脉疾病患者,同时对其近亲家属基因筛查以预防并发症[33]。本研究聚焦于喀什地区少数民族人群,利用NGS技术对遗传性主动脉疾病的相关基因进行检测,发现胸主动脉瘤/夹层的基因-表型关系存在着一定的人群差异性,同时也证实了基因诊断对于临床鉴别诊断及家系筛查的作用。本研究虽然检测出多个可疑基因突变位点,但因为数据量偏少,且目前仅局限于临床检测,未经过蛋白组学、细胞学、动物实验等进一步验证,很难明确其是否为致病基因突变。并且基因型-表型也很难总结出明确的对应关系,甚至难以从基因的角度完全解释先证者所出现的所有症状。因此,有待进一步的研究获取更多的数据来对主动脉疾病基因型-表型相关性进行解读。
Biography
于长江,副主任医师, E-mail: 38035570@qq.com
Funding Statement
广东省科技厅援疆项目(2018YJ025);广东省医学科学技术研究基金项目(A2017240)
Contributor Information
于 长江 (Changjiang YU), Email: 38035570@qq.com.
范 瑞新 (Ruixin FAN), Email: fanruixin@163.com.
References
- 1.Nienaber CA, Clough RE, Sakalihasan N, et al. Aortic dissection. Nat Rev Dis Primers. 2016;2:16053. doi: 10.1038/nrdp.2016.53. [Nienaber CA, Clough RE, Sakalihasan N, et al. Aortic dissection[J]. Nat Rev Dis Primers, 2016, 2: 16053.] [DOI] [PubMed] [Google Scholar]
- 2.Dietz HC, Cutting CR, Pyeritz RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–9. doi: 10.1038/352337a0. [Dietz HC, Cutting CR, Pyeritz RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene[J]. Nature, 1991, 352(6333): 337-9.] [DOI] [PubMed] [Google Scholar]
- 3.Narcisi P, Richards AJ, Ferguson SD, et al. A family with EhlersDanlos syndrome type Ⅲ/articular hypermobility syndrome has a Glycine 637 to serine substitution in type Ⅲ collagen. Hum Mol Genet. 1994;3(9):1617–20. doi: 10.1093/hmg/3.9.1617. [Narcisi P, Richards AJ, Ferguson SD, et al. A family with EhlersDanlos syndrome type Ⅲ/articular hypermobility syndrome has a Glycine 637 to serine substitution in type Ⅲ collagen[J]. Hum Mol Genet, 1994, 3(9): 1617-20.] [DOI] [PubMed] [Google Scholar]
- 4.Loeys BL, Chen JJ, Neptune ER, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81. doi: 10.1038/ng1511. [Loeys BL, Chen JJ, Neptune ER, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2[J]. Nat Genet, 2005, 37(3): 275-81.] [DOI] [PubMed] [Google Scholar]
- 5.Abdulkareem N, Smelt J, Jahangiri M. Bicuspid aortic valve aortopathy: genetics, pathophysiology and medical therapy. Interact Cardiovasc Thorac Surg. 2013;17(3):554–9. doi: 10.1093/icvts/ivt196. [Abdulkareem N, Smelt J, Jahangiri M. Bicuspid aortic valve aortopathy: genetics, pathophysiology and medical therapy[J]. Interact Cardiovasc Thorac Surg, 2013, 17(3): 554-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Arnaud P, Hanna N, Benarroch L, et al. Genetic diversity and pathogenic variants as possible predictors of severity in a French sample of nonsyndromic heritable thoracic aortic aneurysms and dissections (nshTAAD) Genet Med. 2019;21(9):2015–24. doi: 10.1038/s41436-019-0444-y. [Arnaud P, Hanna N, Benarroch L, et al. Genetic diversity and pathogenic variants as possible predictors of severity in a French sample of nonsyndromic heritable thoracic aortic aneurysms and dissections (nshTAAD)[J]. Genet Med, 2019, 21(9): 2015-24.] [DOI] [PubMed] [Google Scholar]
- 7.Nienaber CA, Clough RE. Management of acute aortic dissection. Lancet. 2015;385(9970):800–11. doi: 10.1016/S0140-6736(14)61005-9. [Nienaber CA, Clough RE. Management of acute aortic dissection[J]. Lancet, 2015, 385(9970): 800-11.] [DOI] [PubMed] [Google Scholar]
- 8.Fang M, Yu C, Chen S, et al. Identification of novel clinically relevant variants in 70 southern Chinese patients with thoracic aortic aneurysm and dissection by next-generation sequencing. Sci Rep. 2017;7(1):10035. doi: 10.1038/s41598-017-09785-y. [Fang M, Yu C, Chen S, et al. Identification of novel clinically relevant variants in 70 southern Chinese patients with thoracic aortic aneurysm and dissection by next-generation sequencing[J]. Sci Rep, 2017, 7(1): 10035.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.于 长江, 杨 珏, 方 妙弦, et al. 马方综合征患者原纤维蛋白-1基因新发突变分析. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhxxxgwk201707012. 中华胸心血管外科杂志. 2017;33(7):424–8. [于长江, 杨珏, 方妙弦, 等.马方综合征患者原纤维蛋白-1基因新发突变分析[J].中华胸心血管外科杂志, 2017, 33(7): 424-8.] [Google Scholar]
- 10.Li JC, Lu CX, Wu W, et al. Application of next-generation sequencing to screen for pathogenic mutations in 123 unrelated Chinese patients with Marfan syndrome or a related disease. Sci China Life Sci. 2019;62(12):1630–7. doi: 10.1007/s11427-018-9491-8. [Li JC, Lu CX, Wu W, et al. Application of next-generation sequencing to screen for pathogenic mutations in 123 unrelated Chinese patients with Marfan syndrome or a related disease[J]. Sci China Life Sci, 2019, 62(12): 1630-7.] [DOI] [PubMed] [Google Scholar]
- 11.Zheng JX, Guo J, Huang L, et al. Genetic diagnosis of acute aortic dissection in South China Han population using next-generation sequencing. Int J Legal Med. 2018;132(5):1273–80. doi: 10.1007/s00414-018-1890-9. [Zheng JX, Guo J, Huang L, et al. Genetic diagnosis of acute aortic dissection in South China Han population using next-generation sequencing[J]. Int J Legal Med, 2018, 132(5): 1273-80.] [DOI] [PubMed] [Google Scholar]
- 12.Lesauskaite V, Sepetiene R, Jariene G, et al. FBN1 polymorphisms in patients with the dilatative pathology of the ascending thoracic aorta. Eur J Cardio-Thorac Surg. 2015;47(4):e124–30. doi: 10.1093/ejcts/ezu520. [Lesauskaite V, Sepetiene R, Jariene G, et al. FBN1 polymorphisms in patients with the dilatative pathology of the ascending thoracic aorta [J]. Eur J Cardio-Thorac Surg, 2015, 47(4): e124-30.] [DOI] [PubMed] [Google Scholar]
- 13.Iakoubova OA, Tong CH, Rowland CM, et al. Genetic variants in FBN-1 and risk for thoracic aortic aneurysm and dissection. PLoS One. 2014;9(4):e91437. doi: 10.1371/journal.pone.0091437. [Iakoubova OA, Tong CH, Rowland CM, et al. Genetic variants in FBN-1 and risk for thoracic aortic aneurysm and dissection[J]. PLoS One, 2014, 9(4): e91437.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.LeMaire SA, McDonald ML, Guo DC, et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet. 2011;43(10):996–1000. doi: 10.1038/ng.934. [LeMaire SA, McDonald ML, Guo DC, et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1[J]. Nat Genet, 2011, 43(10): 996-1000.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.龙 浏城, 向 定成, 肖 华, et al. 原纤维蛋白-1基因多态性与汉族人群散发性急性主动脉综合征的相关性. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y3157698. 中国介入心脏病学杂志. 2016;24(6):305–10. [龙浏城, 向定成, 肖华, 等.原纤维蛋白-1基因多态性与汉族人群散发性急性主动脉综合征的相关性[J].中国介入心脏病学杂志, 2016, 24(6): 305-10.] [Google Scholar]
- 16.Renard M, Francis C, Ghosh R, et al. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2018;72(6):605–15. doi: 10.1016/j.jacc.2018.04.089. [Renard M, Francis C, Ghosh R, et al. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection[J]. J Am Coll Cardiol, 2018, 72(6): 605-15.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.蔡 怀敏, 王 春生, 孙 晓宁. 二叶式主动脉瓣基础与临床. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwyx-slblkxylcfc201710036. 临床与病理杂志. 2017;37(10):2243–50. [蔡怀敏, 王春生, 孙晓宁.二叶式主动脉瓣基础与临床[J].临床与病理杂志, 2017, 37(10): 2243-50.] [Google Scholar]
- 18.Wu B, Wang Y, Xiao F, et al. Developmental mechanisms of aortic valve malformation and disease. Annu Rev Physiol. 2017;79:21–41. doi: 10.1146/annurev-physiol-022516-034001. [Wu B, Wang Y, Xiao F, et al. Developmental mechanisms of aortic valve malformation and disease[J]. Annu Rev Physiol, 2017, 79: 21-41.] [DOI] [PubMed] [Google Scholar]
- 19.Loeys B, Nuytinck L, Delvaux I, et al. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected marfan syndrome. Arch Intern Med. 2001;161(20):2447–54. doi: 10.1001/archinte.161.20.2447. [Loeys B, Nuytinck L, Delvaux I, et al. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected marfan syndrome[J]. Arch Intern Med, 2001, 161(20): 2447-54.] [DOI] [PubMed] [Google Scholar]
- 20.Metcalfe K, Rucka AK, Smoot L, et al. Elastin: mutational spectrum in supravalvular aortic stenosis. Eur J Hum Genet. 2000;8(12):955–63. doi: 10.1038/sj.ejhg.5200564. [Metcalfe K, Rucka AK, Smoot L, et al. Elastin: mutational spectrum in supravalvular aortic stenosis[J]. Eur J Hum Genet, 2000, 8(12): 955-63.] [DOI] [PubMed] [Google Scholar]
- 21.Li Z, Zhou C, Tan L, et al. A targeted sequencing approach to find novel pathogenic genes associated with sporadic aortic dissection. Sci China Life Sci. 2018;61(12):1545–53. doi: 10.1007/s11427-018-9382-0. [Li Z, Zhou C, Tan L, et al. A targeted sequencing approach to find novel pathogenic genes associated with sporadic aortic dissection [J]. Sci China Life Sci, 2018, 61(12): 1545-53.] [DOI] [PubMed] [Google Scholar]
- 22.Ziganshin BA, Bailey AE, Coons C, et al. Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann Thorac Surg. 2015;100(5):1604–11. doi: 10.1016/j.athoracsur.2015.04.106. [Ziganshin BA, Bailey AE, Coons C, et al. Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting[J]. Ann Thorac Surg, 2015, 100(5): 1604-11.] [DOI] [PubMed] [Google Scholar]
- 23.Poninska JK, Bilinska ZT, Franaszczyk M, et al. Next-generation sequencing for diagnosis of thoracic aortic aneurysms and dissections: diagnostic yield, novel mutations and genotype phenotype correlations. J Transl Med. 2016;14:115. doi: 10.1186/s12967-016-0870-4. [Poninska JK, Bilinska ZT, Franaszczyk M, et al. Next-generation sequencing for diagnosis of thoracic aortic aneurysms and dissections: diagnostic yield, novel mutations and genotype phenotype correlations[J]. J Transl Med, 2016, 14: 115.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4. doi: 10.1038/nature03940. [Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437(7056): 270-4.] [DOI] [PubMed] [Google Scholar]
- 25.Padang R, Bagnall RD, Richmond DR, et al. Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease. J Mol Cell Cardiol. 2012;53(2):277–81. doi: 10.1016/j.yjmcc.2012.05.009. [Padang R, Bagnall RD, Richmond DR, et al. Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease[J]. J Mol Cell Cardiol, 2012, 53(2): 277-81.] [DOI] [PubMed] [Google Scholar]
- 26.Bonachea EM, Zender G, White P, et al. Use of a targeted, combinatorial next-generation sequencing approach for the study of bicuspid aortic valve. BMC Med Genomics. 2014;7:56. doi: 10.1186/1755-8794-7-56. [Bonachea EM, Zender G, White P, et al. Use of a targeted, combinatorial next-generation sequencing approach for the study of bicuspid aortic valve[J]. BMC Med Genomics, 2014, 7: 56.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Carta L, Wagenseil JE, Knutsen RH, et al. Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler ThrombVasc Biol. 2009;29(12):2083–9. doi: 10.1161/ATVBAHA.109.193227. [Carta L, Wagenseil JE, Knutsen RH, et al. Discrete contributions of elastic fiber components to arterial development and mechanical compliance[J]. Arterioscler ThrombVasc Biol, 2009, 29(12): 2083-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Ritelli M, Dordoni C, Venturini M, et al. Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J Rare Dis. 2013;8(1):58. doi: 10.1186/1750-1172-8-58. [Ritelli M, Dordoni C, Venturini M, et al. Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations[J]. Orphanet J Rare Dis, 2013, 8(1): 58.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Colombi M, Dordoni C, Venturini M, et al. Spectrum of mucocutaneous, ocular and facial features and delineation of novel presentations in 62 classical Ehlers-Danlos syndrome patients. Clin Genet. 2017;92(6):624–31. doi: 10.1111/cge.13052. [Colombi M, Dordoni C, Venturini M, et al. Spectrum of mucocutaneous, ocular and facial features and delineation of novel presentations in 62 classical Ehlers-Danlos syndrome patients[J]. Clin Genet, 2017, 92(6): 624-31.] [DOI] [PubMed] [Google Scholar]
- 30.Malfait F, Francomano C, Byers P, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175(1):8–26. doi: 10.1002/ajmg.c.31552. [Malfait F, Francomano C, Byers P, et al. The 2017 international classification of the Ehlers-Danlos syndromes[J]. Am J Med Genet C Semin Med Genet, 2017, 175(1): 8-26.] [DOI] [PubMed] [Google Scholar]
- 31.Milewicz DM, Regalado ES, Shendure J, et al. Successes and challenges of using whole exome sequencing to identify novel genes underlying an inherited predisposition for thoracic aortic aneurysms and acute aortic dissections. Trends Cardiovasc Med. 2014;24(2):53–60. doi: 10.1016/j.tcm.2013.06.004. [Milewicz DM, Regalado ES, Shendure J, et al. Successes and challenges of using whole exome sequencing to identify novel genes underlying an inherited predisposition for thoracic aortic aneurysms and acute aortic dissections[J]. Trends Cardiovasc Med, 2014, 24 (2): 53-60.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Pomianowski P, Elefteriades JA. The genetics and genomics of thoracic aortic disease. http://europepmc.org/articles/PMC3741851/ Ann Cardiothorac Surg. 2013;2(3):271–9. doi: 10.3978/j.issn.2225-319X.2013.05.12. [Pomianowski P, Elefteriades JA. The genetics and genomics of thoracic aortic disease[J]. Ann Cardiothorac Surg, 2013, 2(3): 271-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Verhagen JMA, Kempers M, Cozijnsen L, et al. Expert consensus recommendations on the cardiogenetic care for patients with thoracic aortic disease and their first-degree relatives. Int J Cardiol. 2018;258:243–8. doi: 10.1016/j.ijcard.2018.01.145. [Verhagen JMA, Kempers M, Cozijnsen L, et al. Expert consensus recommendations on the cardiogenetic care for patients with thoracic aortic disease and their first-degree relatives[J]. Int J Cardiol, 2018, 258: 243-8.] [DOI] [PubMed] [Google Scholar]
